Benutzerspezifische Werkzeuge

Information zum Seitenaufbau und Sprungmarken fuer Screenreader-Benutzer: Ganz oben links auf jeder Seite befindet sich das Logo der JLU, verlinkt mit der Startseite. Neben dem Logo kann sich rechts daneben das Bannerbild anschließen. Rechts daneben kann sich ein weiteres Bild/Schriftzug befinden. Es folgt die Suche. Unterhalb dieser oberen Leiste schliesst sich die Hauptnavigation an. Unterhalb der Hauptnavigation befindet sich der Inhaltsbereich. Die Feinnavigation findet sich - sofern vorhanden - in der linken Spalte. In der rechten Spalte finden Sie ueblicherweise Kontaktdaten. Als Abschluss der Seite findet sich die Brotkrumennavigation und im Fussbereich Links zu Barrierefreiheit, Impressum, Hilfe und das Login fuer Redakteure. Barrierefreiheit JLU - Logo, Link zur Startseite der JLU-Gießen Direkt zur Navigation vertikale linke Navigationsleiste vor Sie sind hier Direkt zum Inhalt vor rechter Kolumne mit zusaetzlichen Informationen vor Suche vor Fußbereich mit Impressum

Artikelaktionen

BWL XI: Paper in Information Sciences

A new research paper on negation scope detection has been accepted for publication in Information Sciences (IF: 5.524).

Title: Negation Scope Detection for Sentiment Analysis: A Reinforcement Learning Framework for Replicating Human Interpretations

Authors: Nicolas Pröllochs, Stefan Feuerriegel (ETH Zurich), Bernhard Lutz (University of Freiburg), Dirk Neumann (University of Freiburg)


Abstract:

Textual materials represent a rich source of information for improving the decision-making of people, businesses and organizations. However, for natural language processing (NLP), it is difficult to correctly infer the meaning of narrative content in the presence of negations. The reason is that negations can be formulated both explicitly (e.g., by negation words such as "not") or implicitly (e.g., by expressions that invert meanings such as "forbid") and that their use is further domain-specific. Hence, NLP requires a dynamic learning framework for detecting negations and, to this end, we develop a reinforcement learning framework for this task. Formally, our approach takes document-level labels (e.g., sentiment scores) as input and then learns a negation policy based on the document-level labels. In this sense, our approach replicates human perceptions as provided by the document-level labels and achieves a superior prediction performance. Furthermore, it benefits from weak supervision; meaning that the need for granular and thus expensive word-level annotations, as in prior literature, is replaced by document-level annotations. In addition, we propose an approach to interpretability: by evaluating the state-action table, we yield a novel form of statistical inference that allows us to test which linguistic cues act as negations.

abgelegt unter: fb02_forschung