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Bifurcation in a multi-component system of

nonlinear Schrödinger equations
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Abstract

We consider the system

−∆uj + a(x)uj = µju
3
j + β

∑

k 6=j

u2kuj, uj > 0, j = 1, . . . , n,

on a possibly unbounded domain Ω ⊂ RN , N ≤ 3, with Dirichlet boundary
conditions. The system appears in nonlinear optics and in the analysis of mix-
tures of Bose-Einstein condensates. We consider the self-focussing (attractive
self-interaction) case µ1, . . . , µn > 0 and take β ∈ R as bifurcation parameter.
There exists a branch of positive solutions with uj/uk being constant for all
j, k ∈ {1, . . . , n}. The main results are concerned with the bifurcation of solu-
tions from this branch. Using a hidden symmetry we are able to prove global
bifurcation even when the linearization has even-dimensional kernel (which is
always the case when n > 1 is odd).

Key words: coupled Gross-Pitaevskii equations, system of nonlinear Schrödin-
ger equations, self-focussing, solitary waves, repulsive interaction, global bifurcation

AMS subject classification: 35B05, 35B32, 35J50, 35J55, 58C40, 58E07

1 Introduction

The system of coupled Gross-Pitaevskii equations

(1.1) − i∂tψj(x, t) = ∆xψj + µj|ψj |
2ψj + β

∑

k 6=j

|ψk|
2ψj j = 1, . . . , n,
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in RN , N ≤ 3, with parameters µ1, . . . , µn > 0, β ∈ R, has found considerable
interest in the last years. It appears in nonlinear optics and in models for mixtures of
Bose-Einstein condensates; see [1, 9, 15] for physics, and [2, 5, 7, 8, 13, 14, 19, 20, 22]
for mathematics papers. We deal with the case of attractive self-interaction, i. e.
µ1, . . . , µn > 0. Concerning β ∈ R our bifurcating solutions appear in the range
β < µ1; in fact, all but finitely many bifurcations appear in the range β < 0 of
repelling interaction between different components. The ansatz

ψj(x, t) = eituj(x), j = 1, . . . , n,

for stationary waves leads to the following elliptic system for the amplitudes
u1, . . . , un:

(1.2)











−∆uj + uj = µju
3
j + β

∑

k 6=j

u2kuj,

uj ∈ H1(RN), uj > 0,

j = 1, . . . , n.

We keep µ1, . . . , µn > 0 fixed and take β as bifurcation parameter.
Most of the above mentioned papers papers deal with the case n = 2 of two

components. Using variational methods, the existence of ground and bound states is
obtained. In [5] a different approach is pursued using bifurcation methods, but only
for n = 2. We shall extend this bifurcation approach from n = 2 to arbitrary n ≥ 2.
This leads to interesting new features and difficulties. For instance, in the radial
setting of [5] the linearizations have a one-dimensional kernel at the bifurcation
parameter. This allows the use of degree theory to prove global bifurcation of
solutions.

For more than two equations we have to deal with high-dimensional kernels
forced by the structure of the system. In fact, in the radial setting the dimension of
the kernels is precisely n− 1. In the general case, the dimensions of the kernels are
multiples of n − 1. Therefore if n is odd the kernels always have even dimensions,
so there will never be a change of degree to prove bifurcation. Observe that there is
no symmetry subgroup G of the symmetric group Sn leaving the system invariant,
since we do not assume that (some of) the coefficients µ1, . . . , µn are equal.

We discover a hidden symmetry of the problem which explains the high nulli-
ties at the bifurcation parameters, and which can be used to prove multiple global
bifurcation branches. Observe that due to the lack of a manifest symmetry of the
system (except for the radial symmetry of the domain which allows us to work on the
space of radially symmetric functions), we cannot apply the equivariant degree or
the equivariant gradient degree as presented in [3, 11, 21] and the references therein.
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Actually, we shall deal with a more general problem. Let Ω ⊂ RN , N ≤ 3,
be a domain which is invariant under a closed subgroup G ⊂ O(N), and suppose
a ∈ L∞

loc(Ω) is invariant under G. We require that −∆ + a is a positive self-adjoint
operator on L2(Ω), and define

E :=

{

u ∈ H1
0 (Ω) : u is G-invariant,

∫

Ω

au2 <∞

}

.

The norm in E is given by

‖u‖2E =

∫

Ω

|∇u|2 +

∫

Ω

au2.

We also require that

(A) the embedding E →֒ L4(Ω) is compact.

This is the case, for instance, if Ω is bounded and G is trivial, or if Ω is radially
symmetric and G = O(N), 2 ≤ N ≤ 3. It is also the case if Ω = RN , 2 ≤ N ≤ 3,
and a(x) → ∞ as |x| → ∞; see [6] for more general results in this direction. The
problem we investigate is

(1.3)











−∆uj + a(x)uj = µju
3
j + β

∑

k 6=j

u2kuj , j = 1, . . . , n,

uj ∈ E, uj > 0.

As mentioned above, this covers the important special case Ω = RN , N = 2 or
N = 3, E = H1

rad(R
N).

A solution (u1, . . . , un) of (1.3) is said to be locked if ui/uj is constant for all
i, j. In this paper we first describe the set of locked solutions of (1.3). We then
investigate the bifurcation of non-locked solutions from the set of locked solutions.
In particular, we shall prove the bifurcation of partially locked solutions where ui/uj
is constant for some i 6= j, but not for all indices.

Without loss of generality we assume 0 < µ1 ≤ µ2 ≤ . . . ≤ µn throughout the
paper.

2 Branches of locked solutions

Given a solution of the scalar equation

(2.1)

{

−∆w + a(x)w = w3

w ∈ E,w > 0
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there exists a branch Tw ⊂ R × En of locked solutions (β, u1, . . . , un) of (1.3) such
that each ui is a multiple of w. In order to describe this branch we set

(2.2) g(β) := 1 + β

n
∑

k=1

1

µk − β

and for j = 1, . . . , n:

(2.3) αj(β) :=
(

(µj − β)g(β)
)−1/2

Observe that g is defined and strictly increasing in the interval (−∞, µ1), and that
it satisfies g(0) = 1, g(β) → 1 − n < 0 as β → −∞. Thus there exists a unique
β = β(µ1, . . . , µn) < 0 such that g(β) = 0. Moreover, g is defined and negative for
β > µn. Consequently, the functions α1, . . . , αn are defined for β ∈ (β, µ1)∪(µn,∞).

Proposition 2.1. Problem (1.3) has a locked solution (β, u1, . . . , un) precisely in
the following cases:

(i) β ∈ (β, µ1)∪ (µn,∞): Then uj = αj(β)w, j = 1, . . . , n, for some solution w of
(2.1).

(ii) β = µ1 = . . . = µn: Then uj = αjw, j = 1, . . . , n, for some solution w of
(2.1), α1, . . . , αn > 0, α2

1 + . . .+ α2
n = 1/β.

Proof. If (β, u1, . . . , un) is a locked solution then u1 solves −∆u1 + a(x)u1 = cu31
for some constant c > 0. It follows that w = c1/2u1 solves (2.1), and all uj’s are
multiples of w.

Now write uj = αjw, j = 1, . . . , n, where w is a solution of (2.1). Then (1.3)
leads to

αjw
3 = (−∆+ a(x))αjw =

(

µjα
3
j + β

∑

k 6=j

α2
kαj

)

w3

hence,

(2.4) µjα
2
j + β

∑

k 6=j

α2
k = 1, j = 1, . . . , n.

This implies

(2.5) (µi − β)α2
i = (µj − β)α2

j for all i, j.
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In case (i) it follows from (2.5) that αj =
(

µ1−β
µj−β

)1/2

α1 for j = 1, . . . , n. A simple

computation using (2.4) now yields

α1 =
(

(µ1 − β)g(β)
)−1/2

= α1(β),

and αj = αj(β) for all j follows immediately. This proves in case (i) that a locked
solution (β, u1, . . . , un) necessarily has the form uj = αj(β)w for some solution w of
(2.1). If (i) does not apply then we must have β = µ1 = . . . = µn, which implies
β(α2

1 + . . .+ α2
n) = 1, again by (2.4). This is as claimed in (ii).

Finally, an elementary calculation shows that (β, u1, . . . , un) as described in (i)
or (ii) is a solution of (1.3).

Now we fix a solution w of (2.1) and set

u(β) := (α1(β)w, . . . , αn(β)w) for β ∈ (β, µ1) ∪ (µn,∞).

We want to investigate the bifurcation of solutions of (1.3) from

Tw :=
{

(β, u(β)) : β ∈ (β, µ1) ∪ (µn,∞)
}

.

3 Necessary conditions for bifurcation

We need to linearize (1.3) at (β, u(β)) ∈ Tw. A simple calculation leads to the
system

(3.1)

{

(−∆+ a(x))φ = w2C(β)φ

φ = (φ1, . . . , φn)
⊤ ∈ En

with

C(β) = En +
2

g(β)
D(β) ∈ Rn×n.

Here En is the n× n unit matrix and

D(β) =









µ1γ
2
1 βγ1γ2 . . . βγ1γn

βγ1γ2 µ2γ
2
2 . . . βγ2γn

. . . . . . . . .
βγ1γn βγ2γn . . . µnγ

2
n.








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where γj = γj(β) := (µj − β)−1/2. Hence, D(β) = (dij(β))i,j=1,...,n with

dij(β) =















βγi(β)γj(β) =
β

(

(µi − β)(µj − β)
)1/2

if i 6= j;

µiγi(β)
2 =

µi

µi − β
if i = j.

Observe that C(β) and D(β) are symmetric matrices.

Lemma 3.1. a) C(β) has the eigenvalues 3 and

f(β) := 1 +
2

g(β)
= 1 +

2

1 + β
∑n

k=1
1

µk−β

.

b) If β 6= 0 then the eigenvalue 3 is simple with eigenvector

(3.2) b1(β) = (γ1(β), . . . , γn(β))
⊤ =

(

(µ1 − β)−1/2, . . . , (µn − β)−1/2
)⊤
,

and the eigenvalue f(β) has multiplicity n−1 with eigenspace b1(β)
⊥. If β = 0

then f(0) = 3 and C(0) = 3En.

Proof. A simple calculation shows that D(β)b1(β) = g(β)b1(β), hence C(β)b1(β) =
3b1(β). Moreover, setting

(3.3) bj(β) = (bj1, . . . , bjn)
⊤ where bjk =











γj(β) if k = 1,

−γ1(β) if k = j,

0 else.

for j = 2, . . . , n we have bj(β) ⊥ b1(β) and D(β)bj(β) = bj(β). This implies
C(β)bj(β) = f(β)bj(β) for j = 2, . . . , n.

Since f(β) 6= 3 for β 6= 0 we see that C(β) has the eigenvalue f(β) with
eigenspace span{b2, . . . , bn} = b1(β)

⊥. If β = 0 then f(0) = 3, hence 3 is the
only eigenvalue of the symmetric matrix C(0).

Remark 3.2. Observe that f : (β, µ1) → (1,∞) is a strictly decreasing diffeomor-
phism. In fact,

f ′(β) =
−2g′(β)

g(β)2
< 0 for β < β < µ1.

Moreover, f(β) → 1 as β ր µ1, and f(β) → ∞ as β ց β.
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Remark 3.3. Since C(β) is a symmetric matrix depending smoothly on β, and
since the eigenvector b1(β) also depends smoothly on β, there exists a smooth map
T : (β, µ1) → SO(n) such that

T (β)−1C(β)T (β) = diag(3, f(β), . . . , f(β)).

A point (β, u(β)) ∈ Tw can be a bifurcation point of solutions of (1.3) only if
(3.1) has a nontrivial solution φ. Nontrivial solutions of (3.1) are closely related to
the weighted eigenvalue problem

(3.4) −∆ψ + a(x)ψ = λw2ψ, ψ ∈ E.

Remark 3.4. Recall that w is a non-degenerate solution of (2.1) if and only if λ = 3
is not an eigenvalue of (3.4). In the degenerate case where ψ 6= 0 is a solution of
(3.4) with λ = 3, we see that φ = b1(β)ψ ∈ En, b1(β) ∈ Rn as in (3.2), is a solution
(3.1) for every β < β < µ1. If w is not an isolated solution of (2.1), say wk → w
for a sequence of solutions of (2.1), then we have branches Twk

of solutions of (1.3).
In this case every point on Tw is a bifurcation point for (1.3). The problem is more
subtle if w is an isolated, degenerate solution of (2.1). This case will not be treated
here.

From now on we assume that w is a non-degenerate solution of (2.1). Then (3.4)
has a sequence of eigenvalues λ1 = 1 < λ2 < λ3 < . . . such that λk 6= 3 for all k ∈ N

and λk → ∞ as k → ∞. The multiplicity of λk as eigenvalue of (3.4) is denoted by

(3.5) nk = dimVk with Vk = kern(−∆+ a− λkw
2).

Proposition 3.5. a) A point (β, u(β)) ∈ Tw is a bifurcation point only if β =
βk := f−1(λk) for some k ≥ 2 with f from Lemma 3.1.

b) If β = βk then φ = (φ1, . . . , φn) ∈ En solves (3.1) if, and only if, φj ∈
Vk for j = 1, . . . , n, and φ ⊥ b1(β) with b1(β) ∈ Rn from (3.2), that is,
∑n

j=1 γj(β)φj = 0. In particular, the space of solutions of (3.1) has dimension
(n− 1) · nk.

Proof. a) Let T (β) ∈ SO(n) be as in Remark 3.3. Then φ solves (3.1) if, and only
if, ψ = T (β)−1φ solves

(3.6)

{

−∆ψ1 + aψ1 = 3w2ψ1

−∆ψj + aψj = f(β)w2ψj , j = 2, . . . , n.
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Since w is non-degenerate this implies ψ1 = 0, hence a nontrivial solution ψ exists,
if and only if f(β) = λk for some k ≥ 2. (The case k = 1, i. e. λ1 = 1, β = µ1 does
not apply; see also Remark 3.6.) If f(β) = λk then ψ = (ψ1, . . . , ψn)

⊤ with ψ1 = 0,
ψ2, . . . , ψn ∈ Vk, solves (3.6).

b) We fix β = f−1(λk) and write T = T (β) = (T1, . . . , Tn). The transforma-
tions ψ 7→ Tψ, φ 7→ T−1φ, are isomorphisms between the solutions of (3.6) and
(3.1). As a consequence of Lemma 3.1 we see that T1 is a multiple of b1(β), and
span{T2, . . . , Tn} = b1(β)

⊥. Thus φ solves (3.1) if, and only if, ψ = T−1φ = T⊤φ
solves

(3.7) 〈T1, φ〉 = ψ1 = 0, hence 0 = 〈b1(β), φ〉 = γ1(β)φ1 + . . .+ γn(β)φn

and

(3.8) 〈Tj, φ〉 = ψj ∈ Vk, for j = 2, . . . , n.

Recall that the eigenvectors b2, . . . , bn from (3.3) satisfy span{b2, . . . , bn} =
span{T2, . . . , Tn}. It follows that (3.8) is equivalent to

(3.9) 〈bj , φ〉 = γj(β)φ1 − γ1(β)φj ∈ Vk for j = 2, . . . , n.

Now (3.7) and (3.9) are equivalent to

φ1, . . . , φn ∈ Vk and
n
∑

j=1

γj(β)φj = 0.

Remark 3.6. By our definition Tw does not contain a point with the parameter value
β = µ1. If µ1 < µn then it is not difficult to show that (µ1, u1, . . . , un) ∈ T w implies
that at least one uj = 0. If µ1 = µn then (µ1, (nµ1)

−1/2w, . . . , (nµ1)
−1/2w) ∈ T w.

This is a bifurcation point where the bifurcating locked solutions are described in
Proposition 2.1:

(µ1, α1w, . . . , αnw) with αj > 0,

n
∑

j=1

α2
j = 1/β = 1/µ1.
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4 Sufficient conditions for bifurcation

We first recall the variational structure of problem (1.3). Since N ≤ 3 the functional

Jβ(u1, . . . , un)

=
1

2

n
∑

j=1

∫

Ω

(|∇uj|
2 + a(x)u2j)−

1

4

n
∑

j=1

∫

Ω

µju
4
j −

β

2

∑

i<j

∫

Ω

u2iu
2
j

=
1

2

n
∑

j=1

‖uj‖
2
E −

1

4

n
∑

j=1

µj‖uj‖
4
L4 −

β

2

∑

i<j

∫

Ω

u2iu
2
j

is well defined for u1, . . . , un ∈ E. It is well known that Jβ : En → R is of class C2,
and critical points of Jβ are (weak) solutions of (1.3).

For β ∈ (β, µ1) ∪ (µn,∞) let m(β) be the Morse index of u(β) =
(α1(β)w, . . . , αn(β)w) as critical point of Jβ. Recall the bifurcation parameters βk
from Proposition 3.5.

Lemma 4.1. For k ≥ 2 there holds

m(βk − ε)−m(βk + ε) = (n− 1)nk for ε > 0 small.

Proof. Consider the quadratic form on En given by

Qβ(φ) =
n
∑

j=1

∫

Ω

(|∇φj|
2 + aφ2

j)−

∫

Ω

w2〈C(β)φ, φ〉

= ‖φ‖2En −

∫

Ω

w2〈C(β)φ, φ〉

where C(β) is as in (3.1). Then m(β) is precisely the index of Qβ. Let En =
V +
βk

⊕ V 0
βk

⊕ V −
βk

be the decomposition of En into the positive eigenspace V +
βk

of Qβk
,

the negative eigenspace V −
βk

of Qβk
, and the kernel

(4.1) V 0
βk

=

{

φ ∈ En : φj ∈ Vk for j = 1, . . . , n,

n
∑

j=1

γj(β)φj = 0

}

.

The derivative Q′
β = ∂

∂β
Qβ of Qβ with respect to β is given by

Q′
β(φ) = −

∫

Ω

w2〈C ′(β)φ, φ〉.

9



Recall that C(β) is a smooth function of β. Now we have

Qβ = Qβk
+ (β − βk)Q

′
βk

+ o(|β − βk|) as β → βk.

This implies that Qβ > 0 on V +
βk

and Qβ < 0 on V −
βk
, if β is close to βk. Thus the

lemma follows if Q′
βk

is positive on V 0
βk
. In order to prove this let T (β) ∈ SO(n) be

as in 3.3, that is, T depends smoothly on β, and satisfies

T (β)−1C(β)T (β) = diag(3, f(β), . . . , f(β)) =: CT (β).

It follows that C(β)T (β) = T (β)CT (β), hence

C ′(β) = T ′(β)CT (β)T (β)
−1 + T (β)C ′

T (β)T (β)
−1 − C(β)T ′(β)T (β)−1

For an eigenvector u ∈ b1(β)
⊥ ⊂ Rn of C(β) corresponding to the eigenvalue f(β)

we compute
T ′(β)CT (β)T (β)

−1u = f(β)T ′(β)T (β)−1u,

and
T (β)C ′

T (β)T (β)
−1u = f ′(β)u,

and
〈C(β)T ′(β)T (β)−1u, u〉 = 〈T ′(β)T (β)−1u, C(β)u〉

= f(β)〈T ′(β)T (β)−1u, u〉.

This implies
〈C ′(β)u, u〉 = f ′(β)|u|2.

According to Proposition 3.5 a function φ ∈ V 0
βk

satisfies

n
∑

j=1

γj(βk)φj = 0, i. e. φ(x) ∈ b1(βk)
⊥ ⊂ Rn for every x ∈ Ω.

Here we used Proposition 3.5 b). Consequently, for φ ∈ V 0
βk

we have

Q′
βk
(φ) = −

∫

Ω

w2〈C ′(βk)φ, φ〉 = −f ′(βk)

∫

Ω

|φ|2w2 > 0

because f ′(βk) < 0 by Remark 3.2. Therefore Q′
βk

is positive definite on V 0
βk
, as

required.

Theorem 4.2. For every k ≥ 2, the point (βk, u(βk)) ∈ Tw is a bifurcation point of
solutions of (1.3).
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Proof. We can apply a classical bifurcation theorem of Krasnoselski [12] in the ver-
sion of [16, Theorem 8.9]. Care has to be taken in order to show that the bifurcating
solutions are actually positive. For this one may argue as in [5, pp. 354-355]. Alter-
natively one can use [4, Corollary 1.4, Theorem 1.5] in order to prove the existence
of solutions bifurcating into the positive cone of En. Both arguments yield that the
bifurcating solutions (β, u1, . . . , un) satisfy uj > 0 for j = 1, . . . , n.

Remark 4.3. a) If (n−1)nk is odd then there exists a connected set Sk ⊂ R×En\Tw

of solutions (β, u) of (1.3) such that (βk, u(βk)) ∈ Sk. This can be proved using
degree theory in the spirit of Rabinowitz’ global bifurcation theorem. Whether Sk is
unbounded in the β-direction, or in the En-direction, or whether it returns to Tw is
unclear in general.

b) The case n = 2 has been treated in [5]. Clearly, if n is odd degree theoretic
methods do not apply. On the other hand, one may hope for an (n−1)nk-dimensional
manifold of bifurcating solutions, or multiple bifurcating branches. In many cases,
a high dimensional kernel is not generic but forced by some symmetry. In the next
section we present some hidden symmetry, which is not inherent to the full func-
tional, but to a special type of solutions. In this way we obtain multiple bifurcating
branches.

5 Branches of partially locked solutions

In this section we investigate partially locked solutions of (1.3), i. e. solutions (β, u)
where ui/uj is constant for some, but not all i 6= j. If ui/uj is constant we say that
ui and uj are locked.

Lemma 5.1. If (β, u) solves (1.3) and ui, uj are locked then

uj =

(

µi − β

µj − β

)1/2

ui =
γj(β)

γi(β)
ui .

Proof. We set uj = γui for some γ > 0. Then the equations (1.3) for ui and uj lead
to

−∆ui + aui = (µi + βγ2)u3i + β
∑

k 6=i,j

u2kui

and, respectively, to

−∆ui + aui = (µjγ
2 + β)u3i + β

n
∑

k 6=i,j

u2kui

11



It follows that

γ =

(

µi − β

µj − β

)1/2

=
γj(β)

γi(β)
.

The next result reveals some hidden symmetry in the problem which will allow
a dimension reduction argument below. It is simple to prove but has not been
observed before.

Lemma 5.2. Suppose (β, u) solves (1.3) for some i ∈ {1, . . . , n}, and suppose

uj =

(

µi − β

µj − β

)1/2

ui =
γj(β)

γi(β)
ui .

Then (1.3) also holds for uj.

Proof. We set γ :=
γj(β)

γi(β)
, so uj = γui. Multiplying the equation for ui

−∆ui + aui = µiµ
3
i + β

∑

k 6=i

u2kui = (µi + βγ2)u3i + β
∑

k 6=i,j

u2kui

by γ yields

−∆uj + auj = (µi + βγ2)γu3i + β
∑

k 6=i,j

u2kuj = (µjγ
2 + β)γu3i + β

∑

k 6=i,j

u2kuj

= µju
3
j + β

∑

k 6=j

u2kuj.

This is equation (1.3) for uj as claimed.

Let P = {P1, . . . , Pm} be a partition of {1, . . . , n}, i. e. {1, . . . , n} = P1∪̇ . . . ∪̇Pm

is a disjoint union and P1, . . . , Pm 6= ∅. We write |P| := m for the cardinality of P.
For β < µ1 we define

XP
β :=

{

u ∈ En | ∀k = 1, . . . , m ∀ i, j ∈ Pk : uj =
γj(β)

γi(β)
ui

}

.

A solution u ∈ XP
β of (1.3) will be called P-locked.

Proposition 5.3. If u ∈ XP
β is a critical point of Jβ|X

P
β then u is a critical point

of Jβ, hence a solution of (1.3).
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Proof. We may assume ui ∈ Pi for i = 1, . . . , m. That u ∈ XP
β is a critical point of

Jβ|X
P
β is equivalent to u1, . . . , um being solutions of (1.3) with uj =

γj(β)

γi(β)
ui j ∈ Pi,

i = 1, . . . , m. Lemma 5.2 implies that u = (u1, . . . , un) solves (1.3), hence u is a
critical point of Jβ.

One can now use Proposition 5.3 to find bifurcations of partially locked solutions
in XP

β . We may assume that i ∈ Pi for i = 1, . . . , m. Define

iPβ : Em → XP
β , (u1, . . . , um) 7→ (u1, . . . , un),

by

uj =
γj(β)

γi(β)
ui if j ∈ Pi, i = 1, . . . , m.

Let π : En → Em be the projection onto the first m components, so that π ◦ iPβ is
the identity on Em for every β < µ1. Finally we define

JP
β := J ◦ iPβ : Em → R

for β ∈ R. A critical point u ∈ Em of JP
β yields a critical point iPβ (u) ∈ XP

β of
Jβ|X

P
β , hence a P-locked solution of (1.3) as a consequence of Proposition 5.3. The

branch
T P
w = {(β, πu) : (β, u) ∈ Tw} = {(β, u) : (β, iPβ (u)) ∈ Tw}

is a branch of critical points corresponding to the branch Tw of locked solutions.

LetmP(β) be the Morse index of πu(β) = (α1(β)w, . . . , αm(β)w) as critical point
of JP

β . Bifurcation of P-locked solutions occurs if mP(β) changes.

Lemma 5.4. For k ≥ 2 there holds

mP(βk − ǫ)−mP(βk + ǫ) = (|P| − 1)nk for ε > 0 small.

Proof. This follows from Proposition 5.3 and Lemma 4.1 if we can show that

dim(V 0
βk

∩XP
βk
) = (|P| − 1)nk;

here V 0
βk

is the kernel of the Hessian of Jβk
at u(βk) as in (4.1), and nk = dimVk

as in (3.5); recall the description of V 0
βk

in Proposition 3.5. For simplicity we write

13



γj = γj(βk) below.

φ ∈ V 0
βk

∩XP
βk

⇐⇒ φ1, . . . , φn ∈ Vk,

n
∑

j=1

γjφj = 0, and

φj =
γj
γi
φi for j ∈ Pi, i = 1, . . . , m = |P|

⇐⇒ φ1, . . . , φm ∈ Vk,

m
∑

i=1

(

∑

j∈Pi

γ2j
γi

)

φi = 0, and

φ = iPβk
(φ1, . . . , φm)

Corollary 5.5. For every partition P of {1, . . . , n} with |P| ≥ 2, and for every
k ≥ 2 the point (βk, u(βk)) ∈ Tw is a bifurcation point of P-locked solutions of (1.3).
It is a global bifurcation point of P-locked solutions if (|P| − 1) · nk is odd.

In the application of the Corollary 5.5 one has to be cautious because a P-locked
solution may also be P ′-locked for P 6= P ′. This is the case if for any P ′

i ∈ P ′ there
exists a Pj ∈ P with P ′

i ⊂ Pj. On the other hand, the bifurcating P-locked solutions
are different from the P ′-locked solutions if every solution which is both P-locked
and P ′-locked is automatically completely locked. Recall that the completely locked
solutions are those in Tw.

For a subset A ⊂ {1, . . . , n} we set Ac := {1, . . . , n} \ A and PA := {A,Ac}.
Given two subsets ∅ 6= A,B ( {1, . . . , n} such that A 6= B and Ac 6= B, a solution
which is PA-locked and PB-locked is necessarily completely locked. We therefore
obtain the following multiplicity result.

Corollary 5.6. Suppose nk is odd. For every subset ∅ 6= A ( {1, . . . , n} there exists
a global branch SA

k of PA-locked solutions of (1.3) bifurcating from Tw at (βk, u(βk)).
The branches SA

k and SB
k are disjoint except when A = B or A = Bc. In particular,

there exist at least 2n−1 − 1 such global branches which are different.

Remark 5.7. a) The corollary applies, for instance, if Ω ⊂ R is a bounded interval,
or if Ω ⊂ RN , 2 ≤ N ≤ 3, is radially symmetric and one looks for radially symmetric
solutions, i. e. G = O(N). Then problem (2.1) has a unique solution which is also
nondegenerate in E. This has been proved in [17, 18, 23, 10], in the case of a ball,
an annulus, and RN .
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b) If nk = 1 then one can apply the Crandall-Rabinowitz theorem to show that
the bifurcating branches SA

k of PA-locked solutions of (1.3) are C1-curves near the
bifurcation point.

c) The global features of the branches SA
k are not known. If Ω is a ball or an

annulus and n = 2 it has been proved in [5] that the bifurcating branches Sk = S
{1}
k ⊂

(−∞, 0)×E2 are bounded over bounded subsets of (−∞, 0), hence they cover all of
(−∞, βk). An extension of this result to n > 2 is work in progress.
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topic, and for the invitation and hospitality during a visit at the Comenius University
in Bratislava in spring 2011.
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