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Abstract The paper is concerned with the slightly subcritical elliptic problem with Hardy-critical term
−∆u− µ u

|x|2
= |u|2

∗−2−εu in Ω,

u = 0 on ∂Ω

in a bounded domain Ω ⊂ RN with 0 ∈ Ω, in dimensions N ≥ 7. We investigate the possible blow-up

behavior of solutions as µ, ε → 0. In particular, we prove the existence of nodal solutions that blow up

positively at the origin and negatively at a different point as µ, ε → 0+. The location of the negative

blow-up point is determined by the geometry of Ω. Moreover, the asymptotic shape of the solutions is

described in detail. An interesting new consequence of our results is that the type of blow-up solutions

considered here exists for µ = O(εα) with α > N−4
N−2 . The bound N−4

N−2 is sharp.
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1 Introduction

The paper is concerned with the semilinear singular problem
−∆u− µ u

|x|2
= |u|2

∗−2−εu in Ω,

u = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN , N ≥ 7, is a smooth bounded domain with 0 ∈ Ω; 2∗ := 2N
N−2 is the critical Sobolev

exponent. Using variational methods Ghoussoub and Yuan [23, Theorem 1.2] proved that this problem

has infinitely many solutions provided 0 < ε < 2∗ − 2 and 0 < µ < µ where µ is the best constant in the

Hardy inequality, i.e.

µ = inf
0 6=u∈H1

0 (Ω)

∫
Ω
|∇u|2dx∫

Ω
|u|2/|x|2

.

The main goal of this paper and subsequent work is to understand the possible blow-up behavior of

solutions as µ, ε → 0. In particular we construct nodal (i.e. sign changing) solutions that blow-up as

µ, ε→ 0 at precisely two points: one is the origin, the second blow-up point is away from the origin and
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determined by the geometry of the domain. The shape of the solutions will be described in detail. We

use singular perturbation techniques and a Lyapunov-Schmidt type reduction. An interesting and new

feature of our type of solutions is that their existence depends on the relative speed of ε→ 0 and µ→ 0.

This will be made precise below.

It is well known that the blow-up of solutions near singular parameter values is closely related to

Bahri’s [2] theory of critical points at infinity. The existence of a positive solution in domains with

nontrivial homology and when µ = ε = 0 has been shown in the seminal work [3] of Bahri and Coron.

Around the same time the blow-up phenomenon for positive and for nodal solutions to problem (1.1) has

been studied extensively in the case µ = 0, ε → 0. It was proved in [10, 22, 26, 32, 33] that as ε → 0+,

the positive solution uε blows up and concentrates at a critical point of the Robin’s function of Ω. In

[4, 34], the existence of positive solutions with multiple bubbles was considered. In convex domains a

positive solution cannot have multiple bubbles, see [24]. The existence of nodal solutions with k bubbles

at k different points was proved in [6] in the case k = 2, in [7] in the case k = 4 when Ω is convex and

satisfies a certain symmetry, and in [8] in the case k = 3 when Ω is a ball. Bubble tower solutions, i.e.

solutions with multiple bubbles concentrating at the same point, were obtained in [29, 31], based on an

idea from [16]. All these papers only treat the regular case µ = 0.

When µ 6= 0, the Hardy-critical potential 1
|x|2 cannot be regarded as a lower order perturbation

because it has the same homogeneity as the Laplace operator and because it does not belong to the Kato

class. This makes the analysis much more complicated compared with the case µ = 0. For the existence

of positive and nodal solutions for the problem with Hardy type potentials and possibly critical Sobolev

exponent we refer the reader to [11, 12, 18, 21, 23, 25, 27, 35, 36, 38] and the references therein. However,

concerning blow-up solutions to the problem involving Hardy type potentials very few results are known.

We are only aware of the papers [19, 20], dealing with the problem
−∆u− µ

|x|2
u = k(x)u2∗−1,

u ∈ D1,2(RN ), u > 0 in RN \ {0};
(1.2)

here D1,2(RN ) := {u ∈ L2∗(RN )| |∇u| ∈ L2(RN )}. In [19] the existence of a positive solution to (1.2)

blowing up at a critical point of k(x) was obtained as µ → 0+. In [20] the existence of positive bubble

tower solutions to (1.2), blowing up at the origin, was proved for k(x) = 1+εK(x) as ε→ 0; here K(x) is

a continuous bounded function. These solutions, called fountain-like in [20], are superpositions of positive

bubbles. On the other hand, for fixed 0 < µ < µ = (N−2)2

4 , Musso and Wei [30] considered (1.2) when

k(x) = 1 and proved the existence of entire sign changing solutions by gluing together a large number of

positive and negative bubbles distributed along the vertices of a regular polygon. In [13] Cao and Peng

investigated the asymptotic behavior of positive solutions to (1.1) in a ball.

In this paper we investigate the existence of nodal solutions to problem (1.1) that blow up, as µ, ε→ 0,

positively at the origin and negatively at a point staying away from the origin. Compared with [19, 20]

the location of the bow-up points does not depend on the shape of a coefficient function k(x) but on the

more subtle influence of the geometry of the domain. Since we look for solutions of a special form we

make a corresponding ansatz and derive a reduced finite-dimensional variational problem via a Lyapunov-

Schmidt reduction scheme. The reduced functional depends on k different points in Ω \ {0}, the blow-up
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points, and on k+ 1 real parameters. We shall then prove the existence of a critical point of the reduced

functional in the case k = 1. The case of k > 1 bubbles outside the origin will be treated in subsequent

work. Though these singular perturbation techniques have of course been used in a variety of other

problems we would like to emphasize that there are not only major technical difficulties due to the

Hardy-critical term. We also discover a new phenomenon concerning the existence of solutions of the

special shape we are looking for. Namely, as mentioned above this depends on the speed µ → 0 and

ε → 0. More precisely, fixing µ0 > 0 and setting µ = µ0ε
α the solutions exist for α > N−4

N−2 , and do not

exist for 0 < α ≤ N−4
N−2 . Thus µ has to converge to 0 like a power of ε (or faster), and we have a precise

threshold value for this power.

The paper is organized as follows. In Section 2, we state and discuss our main theorems. Then in

Section 3 we collect some notations and preliminary results, in particular concerning the limit problem

when ε = 0 on RN . In Section 4 we perform the finite-dimensional reduction. This will be done for

multiple blow-up points (not just two). Section 5 is devoted to the proof of the main theorems, that is,

the existence of nodal solutions with two bubbles blowing up at two different points. Finally, various

useful technical lemmas are collected in the appendix. Section 4 and Proposition 5.1 together with the

computations in the appendix form the core of the paper. We point out that the reduction results in

Section 4 and the lemmas in the appendix will also be used in future work on solutions with more than

two blow-up points and solutions with bubble towers.

Throughout this paper Ω ⊂ RN , N ≥ 7, is a smooth bounded domain. The results can be extended

to the case N = 6, but this requires a separate treatment which we avoid in order to not to make the

presentation too heavy. We do not know whether our results hold in dimensions N ≤ 5.

2 Statement of results

In order to state our results we introduce some notations. By Hardy’s inequality, the norm

‖u‖µ :=

(∫
Ω

(|∇u|2 − µ u2

|x|2
)dx

) 1
2

is equivalent to the norm ‖u‖0 =
(∫

Ω
|∇u|2dx

)1/2
on H1

0 (Ω) provided 0 ≤ µ < µ = (N−2)2

4 . This will

of course be the case for µ → 0. As in [21] we write Hµ(Ω) for the Hilbert space consisting of H1
0 (Ω)

functions with the inner product

(u, v)µ :=

∫
Ω

(
∇u∇v − µ uv

|x|2

)
dx.

It is known that the nonzero critical points of the energy functional

Jµ,ε(u) :=
1

2

∫
Ω

(
|∇u|2 − µ u2

|x|2

)
dx− 1

2∗ − ε

∫
Ω

|u|2
∗−εdx

defined on Hµ(Ω) are precisely the nontrivial weak solutions of problem (1.1).

Next we introduce two limiting problems. The first one is−∆u = |u|2
∗−2u in RN ,

u→ 0 as |x| → ∞.
(2.1)
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It is well known that the nontrivial least energy (positive) solutions to (2.1) are the instantons

Uδ,ξ(x) := C0

(
δ

δ2 + |x− ξ|2

)N−2
2

with δ > 0, ξ ∈ RN and C0 := (N(N−2))
N−2

4 , cf. [1, 37]. These solutions minimize the Rayleigh quotient

S0 := min
u∈D1,2(RN )\{0}

∫
RN |∇u|

2dx

(
∫
RN |u|2

∗dx)2/2∗
.

Moreover there holds ∫
RN
|∇Uδ,ξ|2dx =

∫
RN
|Uδ,ξ|2

∗
dx = S

N
2

0 .

The second limiting problem, dealing with µ > 0, is
−∆u− µ u

|x|2
= |u|2

∗−2u in RN ,

u→ 0 as |x| → ∞.
(2.2)

For 0 < µ < µ we know from [14, 38] that all positive solutions to (2.2) are given by

Vµ,σ(x) = Vσ(x) = Cµ

(
σ

σ2|x|β1 + |x|β2

)N−2
2

with σ > 0, β1 := (
√
µ −
√
µ− µ)/

√
µ, β2 := (

√
µ +
√
µ− µ)/

√
µ, and Cµ :=

(
4N(µ−µ)
N−2

)N−2
4

. We drop

the index µ if it is clear from the context. These solutions are minimizers of

Sµ := min
u∈D1,2(RN )\{0}

∫
RN (|∇u|2 − µ u2

|x|2 )dx

(
∫
RN |u|2

∗dx)2/2∗
,

and they satisfy ∫
RN

(
|∇Vµ,σ|2 − µ

|Vµ,σ|2

|x|2

)
dx =

∫
RN
|Vµ,σ|2

∗
dx = S

N
2
µ .

Clearly Vµ,σ → Uσ,0 as µ→ 0.

Now we can formulate the goal of this paper: We investigate the existence of solutions uε of (1.1) close

to Vµ,σ −Uδ,ξ with µ, σ, δ, ξ all depending on ε, and µ, σ, δ → 0 as ε→ 0. Thus uε blows up positively at

the origin and negatively at ξ. The precise blow-up rate is determined as is the location of ξ in the limit

ε→ 0.

The Green’s function of the Dirichlet Laplacian can be written as G(x, y) = 1
|x−y|N−2 −H(x, y), for

x, y ∈ Ω, where H is the regular part. The regular part is symmetric, i.e. H(x, y) = H(y, x), and satisfies

H(x, x)→∞ as x→ ∂Ω. An important ingredient of our results will be the map

ϕ : Ω \ {0} → R, ϕ(x) := H
1
2 (0, 0)H

1
2 (x, x) +G(x, 0).

Observe that 0 < ϕ(x)→∞ as x→ 0 or x→ ∂Ω, hence ϕ has a minimum in Ω \ {0}.

Theorem 2.1. Suppose ξ∗ ∈ Ω \ {0} is an isolated stable critical point of ϕ. Then for fixed α > N−4
N−2

and µ0 > 0 the following holds. For ε > 0 small the problem (1.1) with µ = µ0ε
α has a solution uε of the

form

uε(x) = Cµ

(
σε

(σε)2|x|β1 + |x|β2

)N−2
2

− C0

(
δε

(δε)2 + |x− ξε|2

)N−2
2

+ o(1) as ε→ 0. (2.3)

Here δε = λεε
1

N−2 and σε = λ
ε
ε

1
N−2 with λε and λ

ε
bounded away from 0 and ∞, i.e. λε, λ

ε ∈ (η, 1
η ) for

some η ∈ (0, 1). Moreover, ξε ∈ Ω \ {0} converges as ε→ 0 towards ξ∗ ∈ Ω \ {0}
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Remark 2.2. a) Here ξ∗ being a stable critical point means that a C1-function ψ : Bρ(ξ
∗) → R that

is close to ϕ in the C1-norm on a neighborhood Bρ(ξ
∗) must have a critical point close to ξ∗. This is

clearly the case if ξ∗ is a non-degenerate critical point of ϕ. It is also the case if the index of ξ∗ or, more

generally, the critical groups of ξ∗ as critical point of ϕ are not trivial. We expect that for a generic

domain all critical points of ϕ are non-degenerate. We also expect that if ξ∗ is a non-degenerate critical

point of ϕ with Morse index m(ξ∗) then the corresponding solution uε has Morse index k + 2 as critical

point of Jµ,ε. Below we state more results where we do not require any a-priori knowledge about the

existence of isolated stable critical points of ϕ.

b) The assumption α > N−4
N−2 is essential for the result to hold. From a technical point of view it

implies that the interaction between the bubbles Uδ,ζ , Vσ, and the Hardy potential is negligible. This

is not just technical, however. Setting µ = µ0ε
α, µ0 > 0 arbitrary, and making the ansatz for uε as in

Theorem 2.1 leads to a reduced function ψ = ψ(λ, λ, ξ) defined on R+ × R+ × (Ω \ {0}). Then problem

(1.1) has a solution uε with a limiting behavior for ε → 0 as in Theorem 2.1 if, and only if, ψ has a

critical point. We shall see that critical points of ψ correspond to critical points of ϕ if α > N−4
N−2 . On

the other hand, for 0 ≤ α ≤ N−4
N−2 critical points of ψ do not exist; see Remark 5.2.

The next two theorems apply to any bounded smooth domain.

Theorem 2.3. For fixed α > N−4
N−2 and µ0 > 0 the following holds. For ε > 0 small the problem (1.1)

with µ = µ0ε
α has a solution uε of the form (2.3). Moreover, ξε ∈ Ω \ {0} converges as ε→ 0 towards a

minimizer ξ∗ ∈ Ω \ {0} of ϕ.

In Theorem 2.3 it is not required that ϕ has an isolated minimizer. Next we state a multiplicity for

solutions of the form (2.3) in terms of the Lusternik-Schnirelmann category of Ω \ {0}.

Theorem 2.4. For fixed α > N−4
N−2 and µ0 > 0 the following holds. For ε > 0 small problem (1.1) with

µ = µ0ε
α, has at least cat(Ω \ {0}) solutions u

(i)
ε of the form (2.3). The parameters λε = λεi , λ

ε
= λ

ε

i ∈
(η, 1

η ) and the blow-up points ξεi ∈ Ω \ {0} depend on i ∈ {1, . . . , cat(Ω \ {0})}. Moreover, ξεi → ξ∗i with

ξ∗i ∈ Ω \ {0} being a critical point of ϕ.

More can be said when the domain is symmetric in the following sense.

(S1) Ω is invariant under a compact Lie group Γ ⊂ O(N), i.e. gΩ = Ω for all g ∈ Γ.

A simple example is when Ω = −Ω; here Γ = {±id}. If (S1) holds then any solution generates a Γ-orbit

of solutions in the following way. If u solves (1.1) then for any g ∈ Γ the function g ∗ u defined by

g ∗ u(x) = u(g−1x) solves (1.1). In that case one can use the equivariant category catΓ in Theorem 2.4;

see [5, 15] for definitions and properties.

Theorem 2.5. If (S1) holds then in the setting of Theorem 2.4 for ε > 0 small there exist at least

catΓ(Ω \ {0}) Γ-orbits Γ ∗ u(i)
ε of solutions of (1.1) of the form (2.3). The parameters and the blow-up

points depend on i as in Theorem 2.4.

Remark 2.6. It is well known that 2 ≤ cat(Ω \ {0}) ≤ N for any smooth bounded domain Ω ⊂ RN with

0 ∈ Ω. For Ω diffeomorphic to a ball one has cat(Ω \ {0}) = 2. On the other hand, if Ω = −Ω, so that

(S1) holds with Γ = {±id}, then catΓ(Ω \ {0}) = N .
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In the symmetric case one can also say something about the localization of the blow-up point ξ∗ ∈
Ω \ {0}.

Theorem 2.7. Suppose (S1) holds and let Σ ⊂ Γ be a subgroup such that ΩΣ = {x ∈ Ω : gx =

x for all g ∈ Σ} 6= {0}. Then there exist solutions uε as in Theorem 2.3 with ξε ∈ ΩΣ and ξε → ξ∗ as

ε→ 0 where ξ∗ is a minimum of ϕ|ΩΣ. Moreover, g ∗ uε = uε for all g ∈ Σ.

Remark 2.8. a) In the setting of Theorem 2.7 one can also formulate a multiplicity result as in Theo-

rems 2.4 and 2.5. Let NΣ be the normalizer of Σ in Γ and WΣ = NΣ/Σ the Weyl group. Observe

that WΣ acts on ΩΣ so that the equivariant category catWΣ(ΩΣ \ {0}) is defined. Then one obtains at

least catWΣ(ΩΣ \ {0}) different orbits of solutions as in Theorem 2.7 with ξε ∈ ΩΣ. The blow-up points

converge towards critical points of ϕ|ΩΣ. We leave details to the reader.

b) In order to illustrate Theorem 2.7 suppose Ω is invariant under the reflection T1 : (x1, x
′) 7→

(x1,−x′); here x1 ∈ R and x′ ∈ RN−1. Then setting Γ = Σ = {id, T1} Theorem 2.7 yields a solution uε

with ξε ∈ Ω∩(R×{0}) and such that ξε → ξ∗ where ξ∗ is a minimizer of ϕ in ΩΣ\{0} = (Ω\{0})∩(R×{0}).
Moreover, uε(T1x) = uε(x). In fact, there are at least catWΣ(ΩΣ \{0}) such solution with blow up points

ξεi → ξ∗i . Here catWΣ(ΩΣ \ {0}) = cat(ΩΣ \ {0}) is simply the number of components of ΩΣ \ {0}. The

point ξ∗i is a minimizer of ϕ constrained to the i-th component of (Ω \ {0}) ∩ (R× {0}).
c) Suppose Ω is invariant under T1 as in b) and under T2, where T2 is the reflection at the x2-axis.

Then one can set Γ = {id, T1, T2, T1T2} and Σk = {id, Tk} for k = 1, 2. Then NΣk = Γ and WΣk ∼= Z/2,

and one can count the number of solutions using a). Details and further examples are left to the reader.

3 Notations and preliminary results

Throughout this paper, positive constants will be denoted by C, c. Let ι∗µ : L2N/(N+2)(Ω) → Hµ(Ω)

be the adjoint operator of the inclusion ιµ : Hµ(Ω)→ L2N/(N−2)(Ω), that is,

ι∗µ(u) = v ⇐⇒ (v, φ)µ =

∫
Ω

u(x)φ(x)dx, for all φ ∈ Hµ(Ω). (3.1)

There exists c > 0 such that

‖ι∗(u)‖µ ≤ c‖u‖2N/(N+2). (3.2)

Then problem (1.1) is equivalent to the fixed point problem

u = ι∗µ(fε(u)), u ∈ Hµ(Ω), (3.3)

where fε(s) = |s|2∗−2−εs.

In order to continue, we first solve an eigenvalue problem.

Proposition 3.1. Let 0 < µ < µ be fixed, and let Λi, i = 1, 2, . . . , be the eigenvalues of−∆u− µ u
|x|2 = Λ|Vσ|2

∗−2u in RN ,

|u| → 0 as |x| → +∞,
(3.4)

in increasing order. Then Λ1 = 1 with eigenfunction Vσ, Λ2 = 2∗ − 1 with eigenfunction ∂Vσ
∂σ .
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Proof. Direct computations give that Vσ and ∂Vσ
∂σ are eigenfunctions corresponding to 1 and 2∗ − 1,

respectively. Now as in [39], it is enough to prove that the eigenfunction u corresponding to the eigenvalue

Λ ≤ 2∗ − 1 has to be radial.

Denote by ψi, i ∈ N0, the sequence of spherical harmonics, i.e. the eigenfunctions of the Laplace-

Beltrami operator on SN−1:

−∆SN−1ψi = τiψi.

It is well known that τ0 = 0, τ1, . . . , τN = N − 1, τN+1 > τN . We prove that for every i ≥ 1,∫
SN−1

u(r, θ)ψi(θ)dθ = 0.

Setting ϕi(r) =
∫
SN−1 u(r, θ)ψi(θ)dθ we have:

∆ϕi = ∆rϕi =

∫
SN−1

∆ru(r, θ)ψi(θ)dθ

= −
∫
SN−1

∆θu(r, θ)

r2
ψi(θ)dθ −

∫
SN−1

(
µu(r, θ)

r2
+ ΛV 2∗−2

σ u(r, θ)

)
ψi(θ)dθ

=

∫
SN−1

τiu(r, θ)

r2
ψi(θ)dθ −

∫
SN−1

( µ
r2

+ ΛV 2∗−2
σ

)
u(r, θ)ψi(θ)dθ

=
( τi
r2
−
( µ
r2

+ ΛV 2∗−2
σ

))
ϕi(r).

This implies for any R > 0:

0 =

∫
BR(0)

∆ϕi
∂Vσ
∂r

+
( µ
r2

+ ΛV 2∗−2
σ − τi

r2

)
ϕi
∂Vσ
∂r

=

∫
BR(0)

ϕi∆

(
∂Vσ
∂r

)
+
( µ
r2

+ ΛV 2∗−2
σ − τi

r2

)
ϕi
∂Vσ
∂r

+

∫
∂BR(0)

(
∂Vσ
∂r
· ∂ϕi
∂r
− ϕi

∂2Vσ
∂r2

)
=

∫
BR(0)

N − 1

r2
ϕi
∂Vσ
∂r

+ ϕi
∂

∂r

(
−µVσ

r2
− V 2∗−1

σ

)
+
( µ
r2

+ ΛV 2∗−2
σ − τi

r2

)
ϕi
∂Vσ
∂r

+

∫
∂BR(0)

(
∂Vσ
∂r
· ∂ϕi
∂r
− ϕi

∂2Vσ
∂r2

)
=

∫
BR(0)

N − 1− τi
r2

ϕi
∂Vσ
∂r

+ (Λ− (2∗ − 1))V 2∗−2
σ

∂Vσ
∂r

ϕi +
2µVσ
r3

ϕi

+

∫
∂BR(0)

(
∂Vσ
∂r
· ∂ϕi
∂r
− ϕi

∂2Vσ
∂r2

)
.

Now let R be the first zero of ϕi; R := +∞ if ϕi is never zero. Without loss of generality we assume

ϕi(r) > 0 for r ∈ (0, R). Then ∂ϕi
∂r (R) ≤ 0, and we finish the proof. �

Let us define the projection P : H1(RN )→ H1
0 (Ω), that is, ∆Pu = ∆u in Ω, Pu = 0 on ∂Ω. Consider

the function H satisfying ∆H(0, x) = 0 in Ω \ {0},

H(0, x) = 1
|x|N−2 on ∂Ω.

Finally set dinf := inf{|x| : x ∈ ∂Ω} and dsup := sup{|x| : x ∈ ∂Ω}.

Proposition 3.2. Let 0 < µ < µ be fixed. Then for σ > 0 the function ϕσ := Vσ − PVσ satisfies

0 ≤ ϕσ ≤ Vσ and ϕσ(x) = Cµ
(
d(x)

)√µ−√µ−µ
H(0, x)σ

N−2
2 + hσ(x), (3.5)
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with

dinf ≤ d(x) ≤ dsup, and hσ = o
(
σ
N+2

2

)
,
∂hσ
∂σ

= o
(
σ
N
2

)
as σ → 0. (3.6)

Proof. It is easy to see that ϕσ satisfies
∆ϕσ(x) = 0 in Ω \ {0},

ϕσ(x) = Vσ(x) = Cµ

(
σ

σ2|x|β1+|x|β2

)N−2
2

on ∂Ω.

Then the first part of (3.5) holds by the maximum principle. It also follows that ϕσσ
−N−2

2 is increasing.

Now we estimate for x ∈ ∂Ω and for σ > 0 small:

Cµd
√
µ−
√
µ−µ

inf H(0, x)σ
N−2

2 − ϕσ(x)

σ
N+2

2

= Cµσ
−2

(
d
√
µ−
√
µ−µ

inf

|x|N−2
− 1

(σ2|x|β1 + |x|β2)
N−2

2

)

≤ C1(µ, dinf , dsup)σ−2

(
d
√
µ−
√
µ−µ

inf

(
σ2|x|β1 + |x|β2

)N−2
2 − |x|N−2

)
≤ C2(µ, dinf , dsup)σ−2

(
|x|
√
µ−
√
µ−µ (σ2|x|β1 + |x|β2

)N−2
2 − |x|N−2

)
≤ C3(µ, dinf , dsup)σ−2

(
|x|
√
µ−
√
µ−µ(|x|β2(N−2

2 ) + C4(µ, dinf , dsup)σ2)− |x|N−2
)

≤ C = C(µ, dinf , dsup).

The constant C(µ, dinf , dsup) can be chosen independent of x ∈ ∂Ω and of σ ∈ (0, σ0), some σ0 > 0.

Similary we have for σ > 0 small and x ∈ ∂Ω:

Cµd
√
µ−
√
µ−µ

sup H(0, x)σ
N−2

2 − ϕσ(x)

σ
N+2

2

= Cµσ
−2

(
d
√
µ−
√
µ−µ

sup

|x|N−2
− 1

(σ2|x|β1 + |x|β2)
N−2

2

)

≥ C ′1(µ, dinf , dsup)σ−2

(
d
√
µ−
√
µ−µ

sup

(
σ2|x|β1 + |x|β2

)N−2
2 − |x|N−2

)
≥ C ′2(µ, dinf , dsup)σ−2

(
|x|
√
µ−
√
µ−µ (σ2|x|β1 + |x|β2

)N−2
2 − |x|N−2

)
≥ C ′3(µ, dinf , dsup)σ−2

(
|x|
√
µ−
√
µ−µ(|x|β2(N−2

2 ) + C ′4(µ, dinf , dsup)σ2)− |x|N−2
)

≥ C ′ = C ′(µ, dinf , dsup).

Thus we have:

Cµd
√
µ−
√
µ−µ

inf H(0, x)σ
N−2

2

σ
N+2

2

− C ≤ ϕσ(x)

σ
N+2

2

≤
Cµd

√
µ−
√
µ−µ

sup H(0, x)σ
N−2

2

σ
N+2

2

− C ′.

Defining d(x) by the equation

d(x)
√
µ−
√
µ−µ = min

{
max

{
ϕσ(x)

CµH(0, x)σ
N−2

2

, dinf

}
, dsup

}

and using the maximum principle we deduce dinf ≤ d(x) ≤ dsup and ~σ = o(σ
N−2

2 ) as σ → 0. The

estimate ∂hσ
∂σ = o(σ

N−4
2 ) as σ → 0 follows by direct similarly. �

Remark 3.3. a) If µ→ 0+, then

ϕµ,σ(x) = C0H(0, x)σ
N−2

2 +O(µσ
N−2

2 ) + hµ,σ (3.7)

where hµ,σ satisfies (3.6) uniformly in µ.
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b) A similar result has been obtained in [33] for Uδ,ξ:

0 ≤ ϕδ,ξ := Uδ,ξ − PUδ,ξ ≤ Uδ,ξ and ϕδ,ξ = C0H(ξ, ·)δ
N−2

2 +O(δ
N+2

2 ) (3.8)

as δ → 0, uniformly in compact subsets of Ω.

4 The finite dimensional reduction

This section is more general than necessary for the proofs of the results in this paper in that we deal

with arbitrarily many blow-up points. This is needed for subsequent work. We fix an integer k ≥ 0,

the case k = 1 corresponds to our main theorems. Throughout this section we assume µ = µ0ε
α. For

λ = (λ1, λ2, . . . , λk, λ) ∈ Rk+1
+ we set

δi = λiε
1

N−2 and σ = λε
1

N−2 . (4.1)

For λ ∈ Rk+1
+ and ξ = (ξ1, . . . , ξk) ∈ Ωk we now define

Wε,λ,ξ :=

k∑
i=1

Ker
(
−∆− (2∗ − 1)U2∗−2

δi,ξi

)
+ Ker

(
−∆− µ

|x|2
− (2∗ − 1)V 2∗−2

σ

)
,

where. According to [9], the kernel of the operator −∆− (2∗− 1)U2∗−2
δi,ξi

on L2(RN ) has dimension N + 1

and is spanned by
∂Uδi,ξi
∂δi

,
∂Uδi,ξi
∂(ξi)j

, j = 1, 2, . . . , N , where (ξi)
j is the j−th component of ξi. Combining

this with Proposition 3.1, we have

Wε,λ,ξ = span
{

Ψj
i , Ψ0

i , Ψ, i = 1, 2, . . . , k, j = 1, 2, . . . , N
}
,

where for i = 1, 2, . . . , k and j = 1, 2, . . . , N :

Ψj
i :=

∂Uδi,ξi
∂(ξi)j

, Ψ0
i :=

∂Uδi,ξi
∂δi

, Ψ :=
∂Vσ
∂σ

. (4.2)

For simplicity of notation here we dropped the dependance on the parameters. Next we define for

η ∈ (0, 1):

Oη :=
{

(λ, ξ) ∈ Rk+1
+ × Ωk : λi ∈ (η, η−1), λ ∈ (η, η−1), dist(ξi, ∂Ω) > η,

|ξi| > η, |ξi1 − ξi2 | > η, i, i1, i2 = 1, 2, . . . , k, i1 6= i2
}
.

Let us introduce the spaces

Kε,λ,ξ := PWε,λ,ξ,

and

K⊥ε,λ,ξ :=
{
φ ∈ Hµ(Ω) : (φ, PΨ) = 0, for all Ψ ∈Wε,λ,ξ

}
,

as well as the (·, ·)µ-orthogonal projections

Πε,λ,ξ : Hµ(Ω)→ Kε,λ,ξ,

and

Π⊥ε,λ,ξ := Id−Πε,λ,ξ : Hµ(Ω)→ K⊥ε,λ,ξ.
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We want to find solutions of (1.1) close to

Vε,λ,ξ =

k∑
i=1

τiPUδi,ξi + PVσ, (4.3)

where (λ, ξ) ∈ Oη for some η ∈ (0, 1), τi = 1 or −1. This is equivalent to finding η > 0, (λ, ξ) ∈ Oη and

φε,λ,ξ ∈ K⊥ε,λ,ξ such that Vε,λ,ξ + φε,λ,ξ solves (3.3), hence solving:

Π⊥ε,λ,ξ
(
Vε,λ,ξ + φε,λ,ξ − ι∗µ

(
fε(Vε,λ,ξ + φε,λ,ξ)

))
= 0, (4.4)

and

Πε,λ,ξ

(
Vε,λ,ξ + φε,λ,ξ − ι∗µ

(
fε(Vε,λ,ξ + φε,λ,ξ)

))
= 0, (4.5)

We solve (4.4) first for φε,λ,ξ. Let us introduce the operator Lε,λ,ξ : K⊥ε,λ,ξ → K⊥ε,λ,ξ defined by

Lε,λ,ξ(φ) = Π⊥ε,λ,ξι
∗
µ

(
f ′0(Vε,λ,ξ)φ

)
= φ−Πε,λ,ξι

∗
µ

(
f ′0(Vε,λ,ξ)φ

)
.

Proposition 4.1. For any η ∈ (0, 1), there exist ε0 > 0 and c > 0 such that for every (λ, ξ) ∈ Oη and

for every ε ∈ (0, ε0):

‖Lε,λ,ξ(φ)‖µ ≥ c‖φ‖µ, for all φ ∈ K⊥ε,λ,ξ.

In particular, Lε,λ,ξ is invertible with continuous inverse.

Proof. We argue by contradiction, following the same line as in [28]. Suppose there exist η > 0,

sequences εn > 0, (λn, ξn) ∈ Oη, φn ∈ Hµ(Ω) satisfying εn → 0, λn =
(
λn1 , . . . , λ

n
k , λ

n)→ (
λ1, . . . λk, λ

)
,

ξn =
(
ξn1 , . . . , ξ

n
k

)
→ (ξ1, . . . ξk), as n→∞, and such that

φn ∈ K⊥εn,λn,ξn , ‖φn‖µ = 1, (4.6)

and

Lεn,λn,ξn(φn) = hn, with ‖hn‖µ → 0. (4.7)

Thus we have

φn − ι∗µ(f ′0(Vεn,λn,ξn)φn) = hn −Πεn,λn,ξn
(
ι∗µ(f ′0(Vεn,λn,ξn)φn)

)
. (4.8)

Setting

δni = λni ε
1

N−2
n , σn = λ

n
ε

1
N−2
n

as in (4.1) and

(Ψj
i )n :=

∂Uδni ,ξni
∂(ξni )j

for j = 1, 2, . . . , N, (Ψ0
i )n :=

∂Uδni ,ξni
∂δni

, (Ψ)n :=
∂Vσn

∂σn
,

where (ξni )j is the j−th component of ξni , we obtain

wn := −Πεn,λn,ξn(ι∗µ(f ′0(Vεn,λn,ξn)φn)) =

k∑
i=1

N∑
j=0

cni,jP (Ψj
i )n + cn0P (Ψ)n

for some coefficients cni,j , c
n
0 . Now we argue in three steps.

Step 1. We prove limn→∞ ‖wn‖µ = 0.
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Multiplying (4.8) by ∆P (Ψh
l )n + µ

P (Ψhl )n
|x|2 , we get∫

Ω

φn

(
∆P (Ψh

l )n + µ
P (Ψh

l )n
|x|2

)
−
∫

Ω

ι∗µ(f ′0(Vεn,λn,ξn)φn)

(
∆P (Ψh

l )n + µ
P (Ψh

l )n
|x|2

)
= −

∫
Ω

hn

(
−∆P (Ψh

l )n − µ
P (Ψh

l )n
|x|2

)
+

∫
Ω

wn
(

∆P (Ψh
l )n + µ

P (Ψh
l )n

|x|2

)
and then

k∑
i=1

N∑
j=0

cni,j
(
P (Ψj

i )n, P (Ψh
l )n
)
µ

+ cn0
(
P (Ψ)n, P (Ψh

l )n
)
µ

=
(
φn, P (Ψh

l )n
)
µ
−
(
ι∗µ(f ′0(Vεn,λn,ξn)φn), P (Ψh

l )n
)
µ
−
(
hn, P (Ψh

l )n
)
µ
.

From Lemma A.1 we deduce:

cnl,hc̃
n
l,h

1

(δnl )2
+ o

(
1

(δnl )2

)
= −

(
ι∗µ(f ′0(Vεn,λn,ξn)φn), P (Ψh

l )n
)
µ
, (4.9)

where c̃nl,h > 0 is a constant. Next Proposition 3.2 implies

0 = (φn, P (Ψh
l )n)µ =

∫
Ω

∇φn∇P (Ψh
l )n − µ

φnP (Ψh
l )n

|x|2
=

∫
Ω

∇φn∇(Ψh
l )n − µ

φn(Ψh
l )n

|x|2
+ o(1)

=

∫
Ω

f ′0(Uδnl ,ξnl )(Ψh
l )nφn + o(1),

and then

− (ι∗µ(f ′0(Vεn,λn,ξn)φn), P (Ψh
l )n)µ = −

∫
Ω

f ′0(Vεn,λn,ξn)φnP (Ψh
l )n

≤
∣∣∣∣∫

Ω

(
f ′0(Vεn,λn,ξn)− f ′0(Uδnl ,ξnl )

)
φn(Ψh

l )n

∣∣∣∣+

∣∣∣∣∫
Ω

f ′0(Vεn,λn,ξn)φn
(
P (Ψh

l )n − (Ψh
l )n
)∣∣∣∣+ o(1)

= o(1)

by Lemma A.2 and Lemma A.3.

Combining the above inequality with (4.9) yields cnl,h → 0 as n → ∞. Similar arguments show that

cn0 → 0 as n→∞, and lim
n→∞

‖wn‖µ = 0 follows.

Step 2. Let χ : RN → [0, 1] be a smooth cut-off function, such that χ(x) = 1 if |x| ≤ η/4, χ(x) = 0

if |x| ≥ η/2, and |∇χ(x)| ≤ C
η . Let α1, α2 be positive constants to be determined later. We set

φni (x) :=
(
(εn)α1

)N−2
2 φn

(
(εn)α1x+ ξni

)
χ
(
(εn)α1x

)
, x ∈ Ωni :=

Ω− ξni
(εn)α1

, i = 1, . . . , k,

and

φn0 (x) :=
(
(εn)α2

)N−2
2 φn

(
(εn)α2x

)
χ
(
(εn)α2x

)
, for x ∈ Ωn0 :=

Ω

(εn)α2
.

Since φni is bounded in D1,2(RN ), we may assume, up to a subsequence,

φni ⇀ φ∞i weakly in D1,2(RN ), i = 0, 1, . . . , k.

Now we claim that

φ∞i (x) = 0, i = 0, 1, . . . , k. (4.10)
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Firstly we prove (4.10) for i = 1, . . . , k. Notice that
∣∣∇χ((εn)α1x

)∣∣ =
∣∣(εn)α1∇χ(·)

∣∣ ≤ C(εn)α1

η = o(1).

Thus we have for any ψ ∈ C∞0 (RN ):(
(εn)α1

)N−2
2

∫
Ωni

∇χ
(
(εn)α1x

)(
φn((εn)α1x+ ξni )∇ψ − ψ∇φn((εn)α1x+ ξni )

)
= o(1). (4.11)

On the other hand, taking α1 = 1
N−2 and noticing N ≥ 7, we get:

(
(εn)α1

) 2−N
2 µ

∫
Ω

ι∗µ
(
f ′0(Vεn,λn,ξn(y))φn(y)

)
χ(y − ξni )ψ

(
y−ξni

(εn)α1

)
|y|2

= o(1). (4.12)

By (4.11) and (4.8), we have for any ψ ∈ C∞0 (RN ):∫
Ωni

∇φni ∇ψ =
(
(εn)α1

)N−2
2

∫
Ωni

(
∇φn

(
(εn)α1x+ ξni

)
∇(χ((εn)α1x)ψ)

+∇χ
(
(εn)α1x

)(
φn
(
(εn)α1x+ ξni

)
∇ψ − ψ∇φn((εn)α1x+ ξni )

))
=
(
(εn)α1

)N−2
2

∫
Ωni

∇φn
(
(εn)α1x+ ξni

)
∇
(
χ((εn)α1x)ψ

)
+ o(1)

=
(
(εn)α1

)N−2
2

∫
Ωni

∇ι∗µ
(
f ′0
(
Vεn,λn,ξn((εn)α1x+ ξni )

)
φn
(
(εn)α1x+ ξni

))
∇
(
χ((εn)α1x)ψ

)
+
(
(εn)α1

)N−2
2

∫
Ωni

∇hn((εn)α1x+ ξni )∇
(
χ((εn)α1x)ψ

)
+
(
(εn)α1

)N−2
2

∫
Ωni

∇wn
(
(εn)α1x+ ξni

)
∇(χ((εn)α1x)ψ) + o(1)

=: I1 + I2 + I3 + o(1).

(4.13)

By (4.7) and Step 1 it is easy to see that I2 = o(1) and I3 = o(1). On the other hand, (4.12) and (3.8)

imply

I1 =
(
(εn)α1

) 2−N
2

∫
Ω

∇ι∗µ
(
f ′0(Vεn,λn,ξn(y))φn(y)

)
∇
(
χ(y − ξni )ψ(

y − ξni
(εn)α1

)
)

+ o(1)

=
(
(εn)α1

) 2−N
2

∫
Ω

f ′0
(
Vεn,λn,ξn(y)

)
φn(y)χ(y − ξni )ψ

(
y − ξni
(εn)α1

)
+ o(1)

=
(
(εn)α1

) 2−N
2

∫
|y−ξni |≤η/2

f ′0

 k∑
j=1

τjPUδnj ,ξnj (y) + PVσn(y)

φn(y)χ(y − ξni )ψ

(
y − ξni
(εn)α1

)

+ o(1)

=
(
(εn)α1

) 2−N
2

∫
|y−ξni |≤η/2

f ′0
(
Uδni ,ξni (y)

)
φn(y)χ(y − ξni )ψ(

y − ξni
(εn)α1

) + o(1)

=

∫
|(εn)α1x|≤η/2

f ′0
(
Uλni ,0(x)

)(
(εn)α1

)N−2
2 φn

(
(εn)α1x+ ξni

)
χ
(
(εn)α1x

)
ψ(x) + o(1)

=

∫
RN

f ′0(Uλi,0(x))φ∞i (x)ψ(x) + o(1).

(4.14)

Therefore we have ∫
Ωni

∇φni ∇ψ =

∫
RN

f ′0(Uλi,0(x))φ∞i (x)ψ(x) + o(1),

which implies that φ∞i is a weak solution of

−∆φ∞i = f ′0(Uλi,0)φ∞i in D1,2(RN ). (4.15)
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In order to continue we denote Ψj
λi,0

:=
∂Uλi,0
∂xj for j = 1, . . . , N , and Ψ0

λi,0
:=

∂Uλi,0
∂λi

. Now we claim

that ∫
RN
∇φ∞i (x)∇Ψj

λi,0
(x) = 0, j = 0, 1, . . . , N. (4.16)

In fact, ∣∣∣∣∣
∫

Ωni

f ′0
(
Uλni ,0(x)

)
φni (x)Ψj

λni ,0
(x)

∣∣∣∣∣ (4.17)

=

∣∣∣∣∣
∫

Ωni

f ′0
(
Uλni ,0(x)

)(
(εn)α1

)N−2
2 φn

(
(εn)α1x+ ξni

)
χ((εn)α1x)Ψj

λni ,0
(x)

∣∣∣∣∣
=

∣∣∣∣∣
∫

(εn)−α1Ω

f ′0

(
U
λni ,

ξn
i

(εn)α1

(x)

)(
(εn)α1

)N−2
2 φn

(
(εn)α1x

)
χ
(
(εn)α1x− ξni

)
×

×Ψj
λni ,0

(
x− ξni

(εn)α1

)∣∣∣∣.
Noticing that ∫

(εn)−α1Ω

f ′0

(
U
λni ,

ξn
i

(εn)α1

(x)

)(
(εn)α1

)N−2
2 φn

(
(εn)α1x

)
Ψj
λni ,0

(
x− ξni

(εn)α1

)
= −(εn)α1

∫
Ω

f ′0
(
Uδni ,ξni (y)

)
φn(y)

(
Ψj
i

)
n
(y) = o(1),

then

(4.17) =

∣∣∣∣∣
∫

(εn)−α1Ω

f ′0

(
U
λni ,

ξn
i

(εn)α1

(x)

)(
(εn)α1

)N−2
2 φn

(
(εn)α1x

)(
χ((εn)α1x− ξni )− 1

)
×Ψj

λni ,0

(
x− ξni

(εn)α1

) ∣∣∣∣∣+ o(1)

≤

∣∣∣∣∣
∫
∣∣∣x− ξn

i
(εn)α1

∣∣∣≥ η/4

(εn)α1

f ′0

(
U
λni ,

ξn
i

(εn)α1

(x)

)(
(εn)α1

)N−2
2 φn

(
(εn)α1x

)
Ψj
λni ,0

(
x− ξni

(εn)α1

)∣∣∣∣∣
+ o(1)

≤ C‖φn‖ 2N
N−2

(∫
∣∣∣x− ξn

i
(εn)α1

∣∣∣≥ η/4

(εn)α1

(
U
λni ,

ξn
i

(εn)α1

(x)

) 2N
N−2

) 2
N

×

(∫
∣∣∣x− ξn

i
(εn)α1

∣∣∣≥ η/4

(εn)α1

(
Ψj
λni ,0

(
x− ξni

(εn)α1

)) 2N
N−2

)N−2
2N

= o(1).

Therefore (4.16) holds. Using this and (4.15) we conclude that (4.10) holds for i = 1, . . . , k.
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Now we turn to the proof of φ∞0 = 0. Setting α2 = 1
N−2 we obtain as in (4.13) and (4.14) :∫

Ωn0

∇φn0∇ψ =
(
(εn)α2

) 2−N
2

∫
Ω

f ′0
(
Vεn,λn,ξn(y)

)
φn(y)χ(y)ψ

(
(εn)−α2y

)
+ o(1)

=
(
(εn)α2

) 2−N
2

∫
|y|≤η/2

f ′0

 k∑
j=1

τjPUδnj ,ξnj (y) + PVσn(y)

φn(y)χ(y)ψ((εn)−α2y) + o(1)

=
(
(εn)α2

) 2−N
2

∫
|y|≤η/2

f ′0
(
Vσn(y)

)
φn(y)χ(y)ψ((εn)−α2y) + o(1)

=

∫
|(εn)α2x|≤η/2

f ′0
(
Uλn,0(x)

)(
(εn)α2

)N−2
2 φn

(
(εn)α2x

)
χ
(
(εn)α2x

)
ψ(x) + o(1)

=

∫
RN

f ′0
(
Uλ,0

)
φ∞0 ψ(x) + o(1).

Therefore φ∞0 is a weak solution of

−∆φ∞0 = f ′0(Uλ,0)φ∞0 , in D1,2(RN ).

Similarly to (4.16) there holds∫
RN
∇φ∞0 (x)∇Ψj

λ,0
(x) = 0, for j = 0, 1, . . . , N,

where Ψj

λ,0
:=

∂Uλ,0
∂xj , for j = 1, . . . , N , and Ψ0

λ,0
:=

∂Uλ,0
∂λ

. This shows that φ∞0 = 0 as claimed.

Step 3. We obtain a contradiction.

Firstly we claim that

lim
n→∞

∫
Ω

f ′0
(
Vεn,λn,ξn(y)

)
(φn(y))2 = 0. (4.18)

In fact, (3.7) and (3.8) imply:∫
Ω

f ′0(Vεn,λn,ξn(y))(φn(y))2

=

∫
B(0, η4 )∪

k⋃
i=1

B(ξi,
η
4 )

f ′0

 k∑
j=1

τjUδnj ,ξnj (y) + Vσn(y)

 (φn(y))2 + o(1).

Notice that f ′0(Uλni ,0) ∈ LN
2 (RN ) and (4.10) imply

∫
B(ξi,

η
4 )

f ′0

 k∑
j=1

τjUδnj ,ξnj (y) + Vσn(y)

(φn(y)
)2

=

∫
B(ξi,

η
4 )

f ′0
(
Uδni ,ξni (y)

)
(φn(y))2 + o(1)

=

∫
|(εn)α1x|≤ η4

f ′0
(
Uλni ,0(x)

)
(φni (x))2 + o(1)

= o(1).

(4.19)

Similarly we obtain:

∫
B(0, η4 )

f ′0

 k∑
j=1

τjUδnj ,ξnj (y) + Vσn(y)

 (φn(y))2 = o(1). (4.20)

Now we obtain (4.18) from (4.19) and (4.20).
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On the other hand, (4.8), (4.7), and Step 1 imply:∫
Ω

|∇φn|2 =

∫
Ω

∇ι∗µ(f ′0(Vεn,λn,ξn)φn)∇φn +

∫
Ω

∇hn∇φn +

∫
Ω

∇wn∇φn

=

∫
Ω

∇ι∗µ
(
f ′0(Vεn,λn,ξn)φn

)
∇φn − µ

∫
Ω

ι∗µ(f ′0(Vεn,λn,ξn)φn)φn

|x|2
+ o(1)

=

∫
Ω

f ′0
(
Vεn,λn,ξn(y)

)
(φn(y))2 + o(1),

which contradicts (4.18) using (4.6). �

Proposition 4.2. For every η ∈ (0, 1), there exist ε0 > 0 and c0 > 0 with the following property: for

every (λ, ξ) ∈ Oη and for every ε ∈ (0, ε0) there exists a unique solution φε,λ,ξ ∈ K⊥ε,λ,ξ of equation (4.4)

satisfying

‖φε,λ,ξ‖µ ≤ c0
(
ε

N+2
2(N−2) + ε

1+2α
4

)
.

Moreover, Φε : Oη → K⊥ε,λ,ξ defined by Φε(λ, ξ) := φε,λ,ξ is C1.

Proof. As in [6] solving (4.4) is equivalent to finding a fixed point of the operator Tε,λ,ξ : K⊥ε,λ,ξ → K⊥ε,λ,ξ

defined by

Tε,λ,ξ(φ) = L−1
ε,λ,ξΠ

⊥
ε,λ,ξ

(
ι∗µ
(
fε(Vε,λ,ξ + φ)− f ′0(Vε,λ,ξ)φ

)
− Vε,λ,ξ

)
.

We claim that Tε,λ,ξ is a contraction mapping.

First of all, Proposition 4.1, Lemma A.4 and (3.2) imply

‖Tε,λ,ξ(φ)‖µ ≤ C‖ι∗µ(fε(Vε,λ,ξ + φ)− f ′0(Vε,λ,ξ)φ)− Vε,λ,ξ‖µ

≤ C

∥∥∥∥∥ι∗µ
(
fε(Vε,λ,ξ + φ)− f ′0(Vε,λ,ξ)φ−

(
k∑
i=1

τif0(Uδi,ξi) + f0(Vσ)

))∥∥∥∥∥
µ

+

∥∥∥∥∥ι∗µ
(

k∑
i=1

τif0(Uδi,ξi) + f0(Vσ)

)
− Vε,λ,ξ

∥∥∥∥∥
µ


≤ C

∥∥∥∥∥fε(Vε,λ,ξ + φ)− f ′0(Vε,λ,ξ)φ−

(
k∑
i=1

τif0(Uδi,ξi) + f0(Vσ)

)∥∥∥∥∥
2N/(N+2)

+

k∑
i=1

O(µδi) +O
(

(µσ
N−2

2 )
1
2

))

≤ C
∥∥fε(Vε,λ,ξ + φ)− fε(Vε,λ,ξ)− f ′ε(Vε,λ,ξ)φ

∥∥
2N/(N+2)

+ C
∥∥(f ′ε(Vε,λ,ξ)− f ′0(Vε,λ,ξ))φ

∥∥
2N/(N+2)

+ C
∥∥fε(Vε,λ,ξ)− f0(Vε,λ,ξ)

∥∥
2N/(N+2)

+ C

∥∥∥∥∥f0(Vε,λ,ξ)−

(
k∑
i=1

τif0(Uδi,ξi) + f0(Vσ)

)∥∥∥∥∥
2N/(N+2)

+

k∑
i=1

O(µδi) +O
(

(µσ
N−2

2 )
1
2

)
.

By using Lemma A.5 and noticing that

‖fε(Vε,λ,ξ + φ)− fε(Vε,λ,ξ)− f ′ε(Vε,λ,ξ)φ‖2N/(N+2) ≤ C‖φ‖2
∗−1
µ ,
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we deduce

‖Tε,λ,ξ(φ)‖µ ≤ C‖φ‖2
∗−1
µ + Cε‖φ‖µ + Cε

+O(σ
N+2

2 ) +

k∑
i=1

O
(
δ
N+2

2
i

)
+

k∑
i=1

O(µδi) +O
(
(µσ

N−2
2 )

1
2

)
= C‖φ‖2

∗−1
µ + Cε‖φ‖µ +O

(
ε

N+2
2(N−2)

)
+O

(
ε

1+2α
4

)
.

The remaining argument is standard, see e.g. [6]. �

Now we consider the reduced functional

Iε(λ, ξ) = Jε(Vε,λ,ξ + φε,λ,ξ).

Proposition 4.3. If (λ, ξ) ∈ Oη is a critical point of Iε then Vε,λ,ξ +φε,λ,ξ is a solution of problem (1.1)

for ε > 0 small.

Proof. It is enough to prove that Vε,λ,ξ + φε,λ,ξ satisfies (4.5). As in [29], equation (4.4) implies that

there exist constants ci,j , i = 1, . . . , k and j = 0, . . . , N , and c0 so that:

∇Jε(Vε,λ,ξ + φε,λ,ξ)[ω] =

k∑
i=1

N∑
j=0

ci,jPΨj
i + c0PΨ.

It remains to prove that ci,j = 0 and c0 = 0, provided ε > 0 is small enough.

Let ∂s denote one of ∂λi , ∂λ, ∂(ξi)j , i = 1, . . . , k, j = 1, . . . , N . If (λ, ξ) is a critical point of Iε(λ, ξ),

then
k∑
i=1

N∑
j=0

ci,j
(
PΨj

i , ∂sVε,λ,ξ + ∂sφε,λ,ξ
)
µ

+ c0
(
PΨ, ∂sVε,λ,ξ + ∂sφε,λ,ξ

)
µ

= 0. (4.21)

Observe that

∂λiVε,λ,ξ = τiε
1

N−2PΨ0
i , ∂λVε,λ,ξ = ε

1
N−2PΨ, ∂(ξi)jVε,λ,ξ = τiPΨj

i , j = 1, . . . , N. (4.22)

On the other hand, (PΨj
i , φε,λ,ξ)µ = 0 for j = 0, 1, . . . , N , Proposition 4.2 and Lemma A.6 imply

(PΨj
i , ∂sφε,λ,ξ)µ = −(∂sPΨj

i , φε,λ,ξ) = O(‖∂sPΨj
i‖µ‖φε,λ,ξ‖µ) = o(‖∂sPΨj

i‖µ) = o(δ−2
i ).

Similarly we have

(PΨ, ∂sφε,λ,ξ)µ = o(‖∂sPΨ‖µ) = o(ε
1

N−2σ−2).

Now Lemma A.1, (4.21) and (4.22) yield

0 =

k∑
i=1

N∑
j=0

ci,j(PΨj
i , ∂λVε,λ,ξ) + c0(PΨ, ∂λVε,λ,ξ) + o

(
ε

1
N−2σ−2

)

= ε
1

N−2

 k∑
i=1

N∑
j=0

ci,j(PΨj
i , PΨ) + c0(PΨ, PΨ)

+ o
(
ε

1
N−2σ−2

)
= c0c̃0ε

1
N−2σ−2

(
1 + o(1)

)
,

which implies c0 = 0. Similar arguments show that ci,j = 0 for i = 1, . . . , k, j = 0, 1, . . . , N . �
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5 Proof of the main results

As in Section 4 we assume µ = µ0ε
α and we use the notation δi = λiε

1
N−2 , σ = λε

1
N−2 from (4.1). We

continue to consider Vε,λ,ξ = −
k∑
i=1

PUδi,ξi +PVσ as in (4.3) . The reduced energy is expanded as follows.

Proposition 5.1. For ε→ 0+ there holds

Iε(λ, ξ) = a1 + a2ε− a3ε
α − a4ε ln ε+ ψ(λ, ξ)ε+ o(ε) (5.1)

C1-uniformly with respect to (λ, ξ) in compact sets of Oη. The constants are given by a1 = 1
N (k+ 1)S

N
2

0 ,

a2 = (k+1)
2∗

∫
RN U

2∗

1,0 lnU1,0 − k+1
(2∗)2S

N
2

0 , a3 = 1
2S

N−2
2

0 Sµ0, and a4 = k+1
2·2∗

∫
RN U

2∗

1,0. The function ψ is given

by

ψ(λ, ξ) = b1

(
H(0, 0)λ

N−2
+

k∑
i=1

H(ξi, ξi)λ
N−2
i − 2

k∑
i=1

τiG(ξi, 0)λ
N−2

2
i λ

N−2
2

− 2

k∑
i,j=1
i<j

τiτjG(ξi, ξj)λ
N−2

2
i λ

N−2
2

j

)
− b2 ln(λ1λ2 . . . λkλ)

N−2
2

with b1 = 1
2C0

∫
RN U

2∗−1
1,0 and b2 = 1

2∗

∫
RN U

2∗

1,0.

Proof. Observe that

Jε(Vε,λ,ξ) =
1

2

∫
Ω

(
|∇Vε,λ,ξ|2 − µ

|Vε,λ,ξ|2

|x|2

)
− 1

2∗

∫
Ω

|Vε,λ,ξ|2
∗

+

(
1

2∗

∫
Ω

|Vε,λ,ξ|2
∗
− 1

2∗ − ε

∫
Ω

|Vε,λ,ξ|2
∗−ε
)

= I1 + I2 + I3.

By Lemma A.7, Lemma A.10, and noticing µ = µ0ε
α, ε→ 0+, we obtain

I1 =
1

2

∫
Ω

(
|∇PVσ|2 − µ

|PVσ|2

|x|2

)
+

k∑
i=1

(
|∇PUδi,ξi |2 − µ

|PUδi,ξi |2

|x|2

)

+

k∑
i=1

τi

∫
Ω

(
∇PVσ∇PUδi,ξi − µ

PVσPUδi,ξi
|x|2

)

+

k∑
i,j=1
i<j

τiτj

∫
Ω

(
∇PUδi,ξi∇PUδj ,ξj − µ

PUδi,ξiPUδj ,ξj
|x|2

)

=
1

2
(k + 1)S

N
2

0 −
N

4
S
N−2

2
0 Sµ0ε

α +
1

2
C0

∫
RN

U2∗−1
1,0

(
−H(0, 0)σN−2 −

k∑
i=1

H(ξi, ξi)δ
N−2
i

+2

k∑
i=1

τiσ
N−2

2 δ
N−2

2
i G(ξi, 0) + 2

k∑
i,j=1
i<j

τiτjG(ξi, ξj)δ
N−2

2
i δ

N−2
2

j

+ o(ε).

(5.2)
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By Lemma A.8 and Lemma A.10, and again using µ = µ0ε
α, ε→ 0+, we obtain:

I2 = − 1

2∗
(k + 1)S

N
2

0 +
N − 2

4
S
N−2

2
0 Sµ0ε

α + C0

∫
RN

U2∗−1
1,0

(
H(0, 0)σN−2

+

k∑
i=1

H(ξi, ξi)δ
N−2
i − 2

k∑
i=1

τiσ
N−2

2 δ
N−2

2
i G(ξi, 0)− 2

k∑
i,j=1
i<j

τiτjG(ξi, ξj)δ
N−2

2
i δ

N−2
2

j


+ o(ε).

(5.3)

Next Lemma A.8, Lemma A.9 and Lemma A.10 yield:

I3 = − ε

(2∗)2

∫
Ω

|Vε,λ,ξ|2
∗

+
ε

2∗

∫
Ω

|Vε,λ,ξ|2
∗

ln |Vε,λ,ξ|+ o(ε)

= − ε

(2∗)2
(k + 1)S

N
2

0 +
ε

2∗

(
−N − 2

2
lnσ ·

∫
RN

V 2∗

1 − N − 2

2
ln(δ1 . . . δk) ·

∫
RN

U2∗

1,0

+

∫
RN

V 2∗

1 lnV1 + k

∫
RN

U2∗

1,0 lnU1,0

)
+ o(ε)

= − ε

(2∗)2
(k + 1)S

N
2

0 −
(N − 2)ε

2 · 2∗

∫
RN

U2∗

1,0 · ln(δ1 . . . δkσ)

+
(k + 1)ε

2∗

∫
RN

U2∗

1,0 lnU1,0 + o(ε).

(5.4)

Arguing similarly to Lemma 6.1 in [29], we deduce from Proposition 4.2, (3.7), (3.8), and Lemma A.5,

that

Jε(Vε,λ,ξ + φε,λ,ξ)− Jε(Vε,λ,ξ) =
1

2
‖φε,λ,ξ‖2µ +

∫
Ω

(∇Vε,λ,ξ∇φε,λ,ξ − µ
Vε,λ,ξφε,λ,ξ
|x|2

)

− 1

2∗ − ε
(

∫
Ω

|Vε,λ,ξ + φε,λ,ξ|2
∗−ε − |Vε,λ,ξ|2

∗−ε)

= o(ε).

(5.5)

Now (5.2)–(5.5) imply (5.1). That (5.1) holds C1-uniformly with respect to (λ, ξ) in compact sets of Oη
can be seen as in [29, Lemma 7.1]. We omit the details here. �

Remark 5.2. If 0 < α < N−4
N−2 then α+ 2

N−2 < 1. From the proof of the above lemma we can see that in

that case

Iε(λ, ξ) = a1 + a2ε− a3ε
α − a4ε ln ε+ ψ(λ, ξ)εα+ 2

N−2 + o(εα+ 2
N−2 )

with

ψ(λ, ξ) = −b3
k∑
i=1

λ2
i

|ξi|2
.

where b3 = µ0C
2
0

∫
RN U

2
1,0 and a1, a2, a3, a4 are the same as above. Clearly ψ has no critical points, hence

Iε has no critical points for ε small, as stated in Remark 2.2. If α = N−4
N−2 then α + 2

N−2 = 1, and we

have:

Iε(λ, ξ) = a1 + a2ε− a3ε
α − a4ε ln ε+ ψ(λ, ξ)ε+ o(ε)

with

ψ(λ, ξ) = b1

(
H(0, 0)λ

N−2
+

k∑
i=1

H(ξi, ξi)λ
N−2
i − 2

k∑
i=1

τiG(ξi, 0)λ
N−2

2
i λ

N−2
2

− 2

k∑
i,j=1
i<j

τiτjG(ξi, ξj)λ
N−2

2
i λ

N−2
2

j

)
− b2 ln(λ1λ2 . . . λkλ)

N−2
2 − b3

k∑
i=1

λ2
i

|ξi|2
,
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Also in this case ψ does not have critical points, hence the functional Iε does not admit critical points

for ε > 0 small.

As a corollary of Proposition 5.1 we obtain the following.

Corollary 5.3. If (λ, ξ) is a stable (non-degenerate) critical point of ψ then Iε has for ε > 0 small a

critical point (λε, ξε) that converges towards (λ, ξ) as ε→ 0.

Proof of Theorem 2.1. The reduced function ψ(λ, ξ) from Proposition 5.1 becomes when k = 1, τ1 =

−1, so ξ = ξ1:

ψ(λ, ξ) = b1

(
H(0, 0)λ

N−2
+H(ξ, ξ)λN−2

1 + 2G(ξ, 0)λ
N−2

2
1 λ

N−2
2

)
− b2 ln(λ1λ)

N−2
2 .

Observe that ψ is coercive, that is ψ(λ, ξ)→∞ as (λ, ξ)→ ∂(R+×R+× (Ω \ {0})); here ∂R+ = {0,∞}.
From

λ1
∂ψ(λ, ξ)

∂λ1
= (N − 2)b1

(
H(ξ, ξ)λN−2

1 +G(ξ, 0)λ
N−2

2
1 λ

N−2
2

)
− (N − 2)b2

2
(5.6)

and

λ
∂ψ(λ, ξ)

∂λ
= (N − 2)b1

(
H(0, 0)λ

N−2
+G(ξ, 0)λ

N−2
2

1 λ
N−2

2

)
− (N − 2)b2

2
, (5.7)

we deduce that ∇λψ(λ, ξ) = 0 implies

λN−2
1 H(ξ, ξ) = λ

N−2
H(0, 0),

and then

λ1 = λ1(ξ) =

 b2
2b1
· 1

H(ξ, ξ) +G(ξ, 0)
(
h(t,t)
h(0,0)

) 1
2


1

N−2

and

λ = λ(ξ) =

 b2
2b1
· 1

H(0, 0) +G(ξ, 0)
(
H(0,0)
H(ξ,ξ)

) 1
2


1

N−2

.

Thus for fixed ξ ∈ Ω \ {0} the function ψ( · , ξ) has a unique critical point λ(ξ) = (λ1(ξ), λ(ξ)), which

must be its global minimum. An elementary computation shows that λ(ξ) is a non-degenerate minimum

of ψ( · , ξ).
Now we consider the reduced function ν : Ω \ {0} → R defined by ν(ξ) = ψ(λ(ξ), ξ). The above

considerations show that (λ, ξ) is a critical point of ψ if, and only if, λ = λ(ξ) and ξ is a critical point

of ν. Moreover, (λ, ξ) is a stable or non-degenerate critical point of ψ iff ξ is stable or non-degenerate

critical point of ν. Also the critical groups are isomorphic, the Morse indices, nullities are the same. A

direct computation gives:

ν(ξ) = b2 − b2 ln
b2
2b1

+ b2 lnϕ(ξ).

Consequently, ν and ϕ have the same critical points with the same Morse indices, nullities, critical groups.

Theorem 2.1 now follows from Corollary 5.3. �

Proof of Theorem 2.3. Since ψ is coercive one can minimize Iε, for ε > 0 small, as in [6, Theorem 1.1(i)].

�

Proof of Theorem 2.4. The idea is as in the proof of [6, Theorem 1.2]. There exists a compact subset
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C ⊂ R+ × R+ × (Ω \ {0}) with cat(C) = cat(Ω \ {0}) =: k. Since ψ is coercive there exists a compact

neighborhood U of C in R+ × R+ × (Ω \ {0}) such that min
∂U

ψ > max
C

ψ. Then min
∂U

Iε > max
C

Iε =: c for

ε > 0 small. Now standard Lusternik-Schnirelmann theory implies that Iε has at least k critical points

in the sublevel set Icε . Theorem 2.4 follows now from Proposition 4.3. �

Proof of Theorem 2.5. The invariance of Ω under the action of Γ ⊂ O(N) implies Jε(g ∗ u) = Jε(u)

and g ∗ Vε,λ,x = Vε,λ,gx, for all g ∈ Γ. Then Proposition 4.2 yields g ∗ φε,λ,x = Vε,λ,gx, and consequently

Iε(λ, gx) = Iε(λ, x), for all g ∈ Γ. Now the proof proceeds as the one of Theorem 2.4 using catΓ instead

of cat. �

Proof of Theorem 2.7. Using the equivariance properties proved above the principle of symmetric

criticality implies that a critical point (λ, ξ) of Iε constrained to the fixed point set R+×R+× (ΩΣ \ {0})
is a critical point of Iε, hence induces a critical point uε = Vε,λ,ξ + φε,λ,ξ of Jε. Clearly we have

Vε,λ,ξ ∈ (Hµ)Σ = {u ∈ Hµ : g ∗ u = u for all g ∈ Σ} because ξ ∈ ΩΣ. This implies uε ∈ (Hµ)Σ. �
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A Appendix

In this appendix we prove several lemmas that were used in the proofs of our main results. The

lemmas are more general than needed and will be of use also in subsequent work. We fix 0 < η <

min{|ξi|, dist(ξi, ∂Ω), |ξi1 − ξi2 |, i, i1, i2 = 1, . . . , k}. Recall the functions Ψ, Ψj
i defined in (4.2) and

their dependence on µ, σ, δi ∈ R+, ξi ∈ Ω.

Lemma A.1. For i, l = 1, . . . , k, and j, h = 0, 1, . . . , N , with i 6= l or j 6= h, there are constants c̃0 > 0,

c̃i,j > 0 such that the following estimates hold uniformly for 0 < µ < µ.

PΨ, PΨ)µ = c̃0
1

σ2
+ o(σ−2) for σ → 0. (A.1)

(PΨ, PΨj
i )µ = o(σ−2)o(δ−2

i ) as σ → 0, δi → 0, uniformly for ξi in a compact subset of Ω. (A.2)

(PΨj
i , PΨj

i )µ = c̃i,j
1

δ2
i

+ o(δ−2
i ) as δi → 0, uniformly for ξi in a compact subset of Ω. (A.3)

(PΨj
i , PΨh

l )µ = o(δ−2
i ) as δi → 0, uniformly for ξi, ξl in a compact subset of Ω. (A.4)

Proof. We only prove (A.1), and (A.2) with j = 0; b) with j 6= 0 is similar. Parts (A.3) and (A.4)

are from Lemma A.5 in [29]. In order to prove (A.1), recall that Ψ is an eigenfunction to (3.4) with
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Λ = 2∗ − 1. Then by Proposition (3.2) we have

(PΨ, PΨ)µ =

∫
Ω

|∇PΨ|2 − µ |PΨ|2

|x|2
=

∫
Ω

∇Ψ∇PΨ− µΨPΨ

|x|2
− µ (PΨ−Ψ)PΨ

|x|2

= (2∗ − 1)

∫
Ω

V 2∗−2
σ Ψ

2 − (2∗ − 1)

∫
Ω

V 2∗−2
σ Ψ(Ψ− PΨ)− µ (PΨ−Ψ)PΨ

|x|2

= (2∗ − 1)

∫
Ω

V 2∗−2
σ Ψ

2
+O(σ

N−2
2 )

=
(N2 − 4)C2∗

µ

4

∫
Ω

σ2

(σ2|x|β1 + |x|β2)2
· σN−4 · (|x|β2 − σ2|x|β1)2

(σ2|x|β1 + |x|β2)N
+O(σ

N−2
2 )

=
(N2 − 4)C2∗

µ

4

∫
Ωσ,µ

1

σ2
· (|y|β2 − |y|β1)2

(|y|β1 + |y|β2)2+N
+O(σ

N−2
2 )

=
(N2 − 4)C2∗

µ

4

∫
RN

1

σ2
· (|y|β2 − |y|β1)2

(|y|β1 + |y|β2)2+N
+ o(σ−2)

= c̃0
1

σ2
+ o(σ−2),

for a positive constant c̃0. Here Ωσ,µ :=

{
y = σ

−
√
µ√

µ−µx : x ∈ Ω

}
. Similarly we compute:

(PΨ, PΨ0
i )µ =

∫
Ω

∇PΨ · ∇PΨ0
i − µ

PΨ · PΨ0
i

|x|2
=

∫
Ω

∇Ψ∇PΨ0
i − µ

ΨPΨ0
i

|x|2
− µ (PΨ−Ψ)PΨ0

i

|x|2

= (2∗ − 1)

∫
Ω

V 2∗−2
σ ΨΨ0

i +O(σ
N−2

2 )

= C0C
2∗−1
µ (2∗ − 1)

∫
Ω

σ2

(σ2|x|β1 + |x|β2)2
· N − 2

2
· σ

N−4
2 · (|x|β2 − σ2|x|β1)

(σ2|x|β1 + |x|β2)
N
2

· N − 2

2
· δ

N−4
2

i · (|x− ξi|2 − δ2
i )

(δ2
i + |x− ξi|2)

N
2

+O(σ
N−2

2 )

= o(σ−2)o(δ−2
i )

�

Lemma A.2. a) For i = 1, . . . , k, and j = 0, 1, . . . , N , there holds:

‖PΨj
i −Ψj

i‖2N/(N−2) =

O
(
δ
N−2

2
i

)
if j = 1, 2, . . . , N,

O
(
δ
N−4

2
i

)
if j = 0

as δi → 0 uniformly for ξi in a compact subset of Ω.

b)

‖PΨ−Ψ‖2N/(N−2) = O
(
σ
N−4

2

)
as σ → 0, uniformly for 0 < µ < µ.

Proof. a) can be proved as Lemma B.4 in [28], and b) can be obtained similarly using Proposition 3.2.

�
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Lemma A.3. a) For i, l = 1, . . . , k there holds∥∥∥∥∥(f ′0(

k∑
i=1

τiPUδi,ξi + PVσ)− f ′0(Uδl,ξl))Ψ
h
l

∥∥∥∥∥
2N/(N+2)

≤


O
(
σ
N−2

2

)
+
∑k
i=1O

(
δ
N−2

2
i

)
if h = 1, . . . , N,

O
(
σ
N−2

2

)
+

k∑
i=1
i6=l

O
(
δ
N−2

2
i

)
+O

(
δ
N−4

2

l

)
if h = 0;

as σ, δi, δl → 0 uniformly for 0 < µ < µ and ξ in a compact subset of Ωη.

b) ∥∥∥∥∥
(
f ′0

(
k∑
i=1

τiPUδi,ξi + PVσ

)
− f ′0(Vσ)

)
Ψ

∥∥∥∥∥
2N/(N+2)

≤ O(σ
N−4

2 ) +

k∑
i=1

O(δ
N−2

2
i )

as σ, δi → 0 uniformly for 0 < µ < µ and ξ in Ωη.

Proof. We only prove b).

∫
Ω

∣∣∣∣∣
(
f ′0

(
k∑
i=1

τiPUδi,ξi + PVσ

)
− f ′0(Uδl,ξl)

)
Ψh
l

∣∣∣∣∣
2N/(N+2)

=

∫
B(ξl,

η
2 )

∣∣∣∣∣
(
f ′0

(
k∑
i=1

τiPUδi,ξi + PVσ

)
− f ′0(Uδl,ξl)

)
Ψh
l

∣∣∣∣∣
2N/(N+2)

+

∫
B(0, η2 )

⋃⋃k
i=1
i6=l

B(ξi,
η
2 )

∣∣∣∣∣
(
f ′0

(
k∑
i=1

τiPUδi,ξi + PVσ

)
− f ′0(Uδl,ξl)

)
Ψh
l

∣∣∣∣∣
2N/(N+2)

+

∫
Ω\(B(0, η2 )

⋃⋃k
i=1 B(ξi,

η
2 ))

∣∣∣∣∣
(
f ′0

(
k∑
i=1

τiPUδi,ξi + PVσ

)
− f ′0(Uδl,ξl)

)
Ψh
l

∣∣∣∣∣
2N/(N+2)

.

First of all, (3.5) and (3.8) yield

∫
B(ξl,

η
2 )

∣∣∣∣∣
(
f ′0

(
k∑
i=1

τiPUδi,ξi + PVσ

)
− f ′0(Uδl,ξl)

)
Ψh
l

∣∣∣∣∣
2N/(N+2)

≤
∫
B(ξl,

η
2 )

∣∣(f ′0(PUδl,ξl)− f ′0(Uδl,ξl))Ψ
h
l

∣∣2N/(N+2)
+O(σ

N(N−2)
N+2 ) +

k∑
i=1
i6=l

O(δ
N(N−2)
N+2

i )

≤ O
(
σ
N(N−2)
N+2

)
+

k∑
i=1

O
(
δ
N(N−2)
N+2

i

)
.

For i 6= l, we have∫
B(ξi,

η
2 )

|(f ′0(

k∑
i=1

τiPUδi,ξi + PVσ)− f ′0(Uδl,ξl))Ψ
h
l |2N/(N+2)

=

∫
B(ξi,

η
2 )

∣∣∣∣∣∣∣
f ′0 (PUδi,ξi) +O

(
σ
N−2

2

)
+

k∑
j=1

j 6=i,j 6=l

O
(
δ
N−2

2
j

)
+O

(
δ2
l

)Ψh
l

∣∣∣∣∣∣∣
2N/(N+2)

=

O
(
δ
N(N−2)
N+2

l

)
if h = 1, . . . , N,

O
(
δ
N(N−4)
N+2

l

)
if h = 0.
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At last, ∫
Ω\(B(0, η2 )

⋃k
i=1 B(ξi,

η
2 ))

∣∣∣∣∣
(
f ′0

(
k∑
i=1

τiPUδi,ξi + PVσ

)
− f ′0(Uδl,ξl)

)
Ψh
l

∣∣∣∣∣
2N/(N+2)

≤


O
(
δ
N(N−2)
N+2

l

)(
O
(
σ

4N
N+2

)
+
∑k
i=1O

(
δ

4N
N+2

i

))
if h = 1, . . . , N,

O
(
δ
N(N−4)
N+2

l

)(
O
(
σ

4N
N+2

)
+
∑k
i=1O

(
δ

4N
N+2

i

))
if h = 0.

Now b) follows. �

Lemma A.4. ∥∥∥∥∥ι∗µ
(

k∑
i=1

τif0(Uδi,ξi) + f0(Vσ)

)
− Vε,λ,ξ

∥∥∥∥∥
µ

≤
k∑
i=1

O(µδi) +O
(
(µσ

N−2
2 )

1
2

)
as µ, σ, δi → 0 uniformly for ξ in Ωη.

Proof. By (3.1), there holds∫
Ω

∇ι∗µ(f0(Vσ))∇
(
ι∗µ(f0(Vσ))− PVσ

)
− µ

∫
Ω

ι∗µ(f0(Vσ))
(
ι∗µ(f0(Vσ))− PVσ

)
|x|2

=

∫
Ω

f0(Vσ)(ι∗µ(f0(Vσ))− PVσ).

(A.5)

We also have −∆PVσ = −∆Vσ = µ Vσ
|x|2 + f0(Vσ) in Ω,

PVσ = 0 on ∂Ω.

Now we obtain ∫
Ω

∇PVσ∇
(
ι∗µ(f0(Vσ))− PVσ

)
− µ

∫
Ω

Vσ(ι∗µ(f0(Vσ))− PVσ)

|x|2

=

∫
Ω

f0(Vσ)
(
ι∗µ(f0(Vσ))− PVσ

)
.

(A.6)

Combining (A.5) and (A.6) yields∫
Ω

|∇
(
ι∗µ(f0(Vσ))− PVσ

)
|2 = µ

∫
Ω

(
ι∗µ(f0(Vσ))− Vσ

)(
ι∗µ(f0(Vσ))− PVσ

)
|x|2

.

Next (3.5) implies

‖ι∗µ(f0(Vσ))− PVσ‖µ = (µ

∫
Ω

|(Vσ − PVσ)(ι∗µ(f0(Vσ))− PVσ)|
|x|2

)
1
2 ≤ O((µσ

N−2
2 )

1
2 ). (A.7)

Similarly to (A.5) and (A.6) we also have∫
Ω

∇ι∗µ(f0(Uδi,ξi))∇(ι∗µ(f0(Uδi,ξi))− PUδi,ξi)− µ
∫

Ω

ι∗µ(f0(Uδi,ξi))(ι
∗
µ(f0(Uδi,ξi))− PUδi,ξi)
|x|2

=

∫
Ω

f0(Uδi,ξi)(ι
∗
µ(f0(Uδi,ξi))− PUδi,ξi)

and ∫
Ω

∇PUδi,ξi∇(ι∗µ(f0(Uδi,ξi))− PUδi,ξi) =

∫
Ω

f0(Uδi,ξi)(ι
∗
µ(f0(Uδi,ξi))− PUδi,ξi).

Then ∫
Ω

|∇(ι∗µ(f0(Uδi,ξi))− PUδi,ξi)|2 = µ

∫
Ω

ι∗µ(f0(Uδi,ξi))(ι
∗
µ(f0(Uδi,ξi))− PUδi,ξi)
|x|2

.
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Therefore, by the Hölder and Hardy inequalities,

‖ι∗µ(f0(Uδi,ξi))− PUδi,ξi‖µ =

(
µ

∫
Ω

PUδi,ξi(ι
∗
µ(f0(Uδi,ξi))− PUδi,ξi)

|x|2

) 1
2

≤ µ 1
2

(∫
Ω

(PUδi,ξi)
2

|x|2

) 1
4

(∫
Ω

(ι∗µ(f0(Uδi,ξi))− PUδi,ξi)2

|x|2

) 1
4

≤ C(µδi‖ι∗µ(f0(Uδi,ξi))− PUδi,ξi‖µ)
1
2 ,

which implies

‖ι∗µ(f0(Uδi,ξi))− PUδi,ξi‖µ ≤ O(µδi). (A.8)

Hence, Lemma A.4 follows from (A.7) and (A.8). �

Lemma A.5. The following estimates hold uniformly for 0 < µ < µ and (λ, ξ) ∈ Ωη.

‖(f ′ε(Vε,λ,ξ)− f ′0(Vε,λ,ξ))φ‖2N/(N+2) = O(ε)‖φ‖µ as ε→ 0. (A.9)

|fε(Vε,λ,ξ)− f0(Vε,λ,ξ)‖2N/(N+2) = O(ε) as ε→ 0. (A.10)

∥∥∥∥∥f0(Vε,λ,ξ)−

(
k∑
i=1

τif0(Uδi,ξi) + f0(Vσ)

)∥∥∥∥∥
2N/(N+2)

= O
(
σ
N+2

2

)
+

k∑
i=1

O
(
δ
N+2

2
i

)
as σ, δi → 0. (A.11)

Proof. We only prove (A.11), since (A.9) and (A.10) are easier. Using (3.7) and (3.8) we can estimate:∫
B(0, η2 )

∣∣∣∣∣f0(Vε,λ,ξ)−

(
k∑
i=1

τif0(Uδi,ξi) + f0(Vσ)

)∣∣∣∣∣
2N/(N+2)

(N+2)/2N

≤ C

(∫
B(0, η2 )

|(PVσ)2∗−1 − V 2∗−1
σ |2N/(N+2)

)(N+2)/2N

+

k∑
i=1

O(δ
N+2

2
i )

≤ Cσ
N−2

2

(∫
B(0, η2 )

|(Vσ)2∗−2|2N/(N+2)

)(N+2)/2N

+

k∑
i=1

O(δ
N+2

2
i )

= O(σ
N+2

2 ) +

k∑
i=1

O(δ
N+2

2
i ),

We also have:∫
B(ξi,

η
2 )

∣∣∣∣∣f0(Vε,λ,ξ)−

(
k∑
i=1

τif0(Uδi,ξi) + f0(Vσ)

)∣∣∣∣∣
2N/(N+2)

(N+2)/2N

≤ C

(∫
B(ξi,

η
2 )

|(PUδi,ξi)2∗−1 − U2∗−1
δi,ξi
|2N/(N+2)

)(N+2)/2N

+O(σ
N+2

2 ) +

k∑
j=1
j 6=i

O(δ
N+2

2
j )

= O(σ
N+2

2 ) +

k∑
i=1

O(δ
N+2

2
i ),
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and

(

∫
Ω\(B(0, η2 )

⋃k
i=1 B(ξi,

η
2 ))

∣∣∣∣∣f0(Vε,λ,ξ)−

(
k∑
i=1

τif0(Uδi,ξi) + f0(Vσ)

)∣∣∣∣∣
2N/(N+2)

)(N+2)/2N

= O(σ
N+2

2 ) +

k∑
i=1

O(δ
N+2

2
i ).

Now (A.11) follows immediately. �

Lemma A.6. The following estimates hold for i = 1, . . . , k, j, l = 1, . . . , N with j 6= l, uniformly for

0 < µ < µ and (λ, ξ) ∈ Ωη.

‖∂λiPΨj
i‖µ = O(ε

1
N−2 δ−2

i ) as ε, δi → 0. (A.12)

‖∂(ξi)jPΨj
i‖µ = O(δ−2

i ) as δi → 0. (A.13)

‖∂(ξi)lPΨj
i‖µ = O(δ−2

i ) as δi → 0. (A.14)

‖∂λiPΨ0
i ‖µ = O

(
ε

1
N−2 δ−2

i

)
as ε, δi → 0. (A.15)

‖∂(ξi)jPΨ0
i ‖µ = O(δ−2

i ) as δi → 0. (A.16)

‖∂λPΨ‖µ = O(ε
1

N−2σ−2) as ε, σ → 0. (A.17)

Proof. We only prove (A.12) and (A.17) here because the proofs of the other parts are analogous. For

(A.12) we compute:

‖∂λiPΨj
i‖

2
µ = ε

2
N−2 ‖∂δiPΨj

i‖
2
µ

≤ Cε
2

N−2

∫
Ω

∇∂δiΨ
j
i∇∂δiPΨj

i

= Cε
2

N−2

∫
Ω

(
(2∗ − 1)(2∗ − 2)U2∗−3

δi,ξi
Ψj
iΨ

0
i + (2∗ − 1)U2∗−2

δi,ξi
∂δiΨ

j
i

)
∂δiPΨj

i

= O(ε
2

N−2 δ−4
i ).

And (A.17) is obtained as follows.

‖∂λPΨ‖2µ = ε
2

N−2 ‖∂σPΨ‖2µ

= ε
2

N−2

∫
Ω

∇∂σΨ∇∂σPΨ− µ∂σΨ∂σPΨ

|x|2
+ µ

∂σPΨ(∂σΨ− ∂σPΨ)

|x|2

= ε
2

N−2

(∫
Ω

((2∗ − 1)(2∗ − 2)V 2∗−3
σ Ψ

2
+ (2∗ − 1)V 2∗−2

σ ∂σΨ)∂σPΨ + o(1)

)
= O(ε

2
N−2σ−4).

�

Lemma A.7. For i, j = 1, . . . , k, i 6= j, the following estimates hold uniformly for (λ, ξ) ∈ Ωη.

a) For µ, σ → 0:∫
Ω

|∇PVµ,σ|2 − µ
|PVµ,σ|2

|x|2

= S
N
2
µ − C0C

2∗−1
µ H(0, 0)σN−2

∫
RN

1

(|z|β1 + |z|β2)
N+2

2

+O(µσN−2) +O(σN ).

(A.18)
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b) For µ, δi, σ → 0:∫
Ω

∇PVµ,σ∇PUδi,ξi − µ
PVµ,σPUδi,ξi

|x|2

= C0C
2∗−1
µ σ

N−2
2 δ

N−2
2

i

∫
RN

G(ξi, 0)

(|z|β1 + |z|β2)
N+2

2

+O
(
µσ

N−2
2 δ

N−2
2

i

)
+ o
(
σ
N−2

2 δ
N−2

2
i

)
.

(A.19)

c) For δi → 0: ∫
Ω

|PUδi,ξi |2

|x|2
=
C2

0δ
2
i

|ξi|2

∫
RN

1

(1 + |z|2)N−2
+O(δ4

i ). (A.20)

d) For δi → 0: ∫
Ω

PUδi,ξiPUδj ,ξj
|x|2

= O
(
δ
N−2

2
i δ

N−2
2

j

)
. (A.21)

e) For δi, δj , σ → 0:∫
Ω

|∇PUδi,ξi |2 = S
N
2

0 − C2∗

0 H(ξi, ξi)δ
N−2
i

∫
RN

1

(1 + |z|2)
N+2

2

+ o(δN−2
i ). (A.22)

f) For µ, δi, δj , σ → 0:∫
Ω

∇PUδi,ξi∇PUδj ,ξj = C2∗

0 G(ξi, ξj)δ
N−2

2
i δ

N−2
2

j

∫
RN

1

(1 + |z|2)
N+2

2

+ o
(
δ
N−2

2
i δ

N−2
2

j

)
. (A.23)

Proof. The proofs of (A.22) and (A.23) are from [3]. We prove the remaining estimates.

Proof of (A.18). Integration by parts yields∫
Ω

|∇PVσ|2 − µ
|PVσ|2

|x|2
=

∫
Ω

(−∆Vσ)PVσ − µ
|PVσ|2

|x|2

=

∫
Ω

V 2∗−1
σ PVσ + µ

VσPVσ − |PVσ|2

|x|2

=

∫
Ω

V 2∗

σ −
∫

Ω

V 2∗−1
σ ϕσ + µ

∫
Ω

ϕσ(Vσ − ϕσ)

|x|2
.

Next we compute:∫
Ω

V 2∗−1
σ H(0, x) =

∫
B(0, η2 )

V 2∗−1
σ H(0, x) +O(σ

N+2
2 )

= H(0, 0)

∫
B(0, η2 )

V 2∗−1
σ +O(σ

N+2
2 )

= H(0, 0)C2∗−1
µ

∫
B(0, η2 )

σ
N+2

2

(σ2|x|β1 + |x|β2)
N+2

2

+O(σ
N+2

2 )

= H(0, 0)C2∗−1
µ

∫
B(0,ρ)

σ
µ√
µ−µ

(|z|β1 + |z|β2)
N+2

2

+O(σ
N+2

2 )

= H(0, 0)C2∗−1
µ σ

µ√
µ−µ

∫
RN

1

(|z|β1 + |z|β2)
N+2

2

+O(σ
N+2

2 ).

Here ρ = η
2 · σ

−
√
µ√

µ−µ in the second to last line. Now, using (3.7) yields:∫
Ω

V 2∗−1
σ ϕσ = C0C

2∗−1
µ H(0, 0)σ

√
µ(
√
µ+
√
µ−µ)√

µ−µ

∫
RN

1

(|z|β1 + |z|β2)
N+2

2

+O(µσ
√
µ(
√
µ+
√
µ−µ)√

µ−µ ) +O(σN )

= C0C
2∗−1
µ H(0, 0)σN−2

∫
RN

1

(|z|β1 + |z|β2)
N+2

2

+O(µσN−2) +O(σN ).

(A.24)
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Moreover, we have∣∣∣∣∣
∫

Ω

d
√
µ−
√
µ−µ

(x)H(0, x)

|x|2

(
1

(σ2|x|β1 + |x|β2)
N−2

2

− 1

|x|
√
µ+
√
µ−µ

)∣∣∣∣∣
≤ C

∫
B(0,ρ)

1

|x|2
·

∣∣∣|x|√µ+
√
µ−µ − (σ2|x|β1 + |x|β2)

N−2
2

∣∣∣
(σ2|x|β1 + |x|β2)

N−2
2 |x|

√
µ+
√
µ−µ

+ C

∫
Ω\B(0,ρ)

1

|x|2
·

∣∣∣|x|√µ+
√
µ−µ − (σ2|x|β1 + |x|β2)

N−2
2

∣∣∣
(σ2|x|β1 + |x|β2)

N−2
2 |x|

√
µ+
√
µ−µ

≤ C
∫
B(0,ρ)

1

|x|2
σN−2|x|

√
µ−
√
µ−µ

σN−2|x|
√
µ−
√
µ−µ|x|

√
µ+
√
µ−µ

+ C

∫
Ω\B(0,ρ)

1

|x|2
|x|
√
µ+
√
µ−µσ2|x|

−2
√
µ−µ√
µ

|x|
√
µ+
√
µ−µ|x|

√
µ+
√
µ−µ

= O(σ
√
µ(
√
µ−
√
µ−µ)√

µ−µ ) +O(σ2),

(A.25)

where ρ = σ
√
µ√

µ−µ . It follows that

µ

∫
Ω

ϕσVσ
|x|2

= (1 + o(1))µC2
µσ

N−2

∫
Ω

(d(x))
√
µ−
√
µ−µH(0, x)

|x|2|x|
√
µ+
√
µ−µ

= O(µσN−2).

(A.26)

It is also easy to see that

µ

∫
Ω

ϕ2
σ

|x|2
= O(µσN−2) (A.27)

and ∫
Ω

V 2∗

σ = S
N
2
µ +O(σN ). (A.28)

Now (A.24), (A.26), (A.27), and (A.28) yield (A.18).

Proof of (A.19). Using (3.8) integration by parts yields∫
Ω

∇PVσ∇PUδi,ξi − µ
PVσPUδi,ξi
|x|2

=

∫
Ω

V 2∗−1
σ Uδi,ξi −

∫
Ω

V 2∗−1
σ ϕδi,ξi + µ

∫
Ω

ϕσ(Uδi,ξi − ϕδi,ξi)
|x|2

.

(A.29)

Now we estimate these three summands.∫
Ω

V 2∗−1
σ Uδi,ξi =

(∫
B(0, η4 )

+

∫
B(ξi,

η
4 )

+

∫
Ω\(B(0, η4 )∪B(ξi,

η
4 ))

)
V 2∗−1
σ Uδi,ξi

=

(∫
B(0, η4 )

+

∫
B(ξi,

η
4 )

)
V 2∗−1
σ Uδi,ξi +O(σ

N+2
2 δ

N−2
2

i ).

(A.30)
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For µ→ 0+ we have:∫
B(0, η4 )

V 2∗−1
σ Uδi,ξi

= C0C
2∗−1
µ σ

N+2
2 δ

N−2
2

i

∫
B(0, η4 )

1

(σ2|x|β1 + |x|β2)
N+2

2

· 1

(δ2
i + |x− ξi|2)

N−2
2

= C0C
2∗−1
µ σ

N+2
2 δ

N−2
2

i

∫
B(0, η4 )

1

(σ2|x|β1 + |x|β2)
N+2

2

(
1

(δ2
i + |ξi|2)

N−2
2

+O(|x|2)

)

= C0C
2∗−1
µ σ

µ√
µ−µ δ

N−2
2

i

∫
RN

1

(|z|β1 + |z|β2)
N+2

2

1

|ξi|N−2
+ o(σ

µ√
µ−µ δ

N−2
2

i )

and ∫
B(ξi,

η
4 )

V 2∗−1
σ Uδi,ξi

= C0C
2∗−1
µ σ

N+2
2 δ

N−2
2

i

∫
B(0, η4 )

1

(σ2|x+ ξi|β1 + |x+ ξi|β2)
N+2

2

· 1

(δ2
i + |x|2)

N−2
2

≤ O(σ
N+2

2 δ
N−2

2
i ).

Therefore (A.30) gives∫
Ω

V 2∗−1
σ Uδi,ξi = C0C

2∗−1
µ σ

µ√
µ−µ δ

N−2
2

i

∫
RN

1

(|z|β1 |z|β2)
N+2

2

1

|ξi|N−2
+ o(σ

µ√
µ−µ δ

N−2
2

i ).

Next we treat the second summand in (A.29).∫
Ω

V 2∗−1
σ ϕδi,ξi =

∫
B(0, η2 )

V 2∗−1
σ ϕδi,ξi +O(σ

N+2
2 δ

N−2
2

i )

= C0C
2∗−1
µ σ

N+2
2 δ

N−2
2

i

∫
B(0, η2 )

H(ξi, x)

(σ2|x|β1 + |x|β2)
N+2

2

+O(σ
N+2

2 δ
N−2

2
i )

= C0C
2∗−1
µ σ

N+2
2 δ

N−2
2

i

∫
B(0, η2 )

H(ξi, 0)

(σ2|x|β1 + |x|β2)
N+2

2

+O(σ
N+2

2 δ
N−2

2
i )

= C0C
2∗−1
µ σ

µ√
µ−µ δ

N−2
2

i

∫
RN

H(ξi, 0)

(|z|β1 + |z|β2)
N+2

2

+ o(σ
µ√
µ−µ δ

N−2
2

i ).

(A.31)

Concerning the third summand in (A.29) we observe that similarly to (A.25)∣∣∣∣∣
∫

Ω

d
√
µ−
√
µ−µ

(x)H(0, x)

|x|2

(
1

(δ2
i + |x− ξi|2)

N−2
2

− 1

(|x− ξi|2)
N−2

2

)∣∣∣∣∣ ≤ O(δ2
i ),

which yields

µ

∫
Ω

ϕσUδi,ξi
|x|2

= µCµC0σ
N−2

2 δ
N−2

2
i

∫
Ω

d
√
µ−
√
µ−µ

(x)H(0, x)

|x|2|x− ξi|N−2
+ o(µσ

N−2
2 δ

N−2
2

i )

= O(µσ
N−2

2 δ
N−2

2
i ).

(A.32)

It is also easy to see that

µ

∫
Ω

ϕσϕδi,ξi
|x|2

= O(µσ
N−2

2 δ
N−2

2
i ). (A.33)

Now (A.30), (A.31), (A.32), (A.33) imply (A.19).
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Proof of (A.20).∫
Ω

U2
δi,ξi

|x|2
= C2

0δ
N−2
i

∫
Ω

1

|x|2(δ2
i + |x− ξi|2)N−2

= C2
0δ
N−2
i

(
C +

∫
B(ξi,

η
4 )

1

|x|2(δ2
i + |x− ξi|2)N−2

)

= C2
0δ
N−2
i

(
C +

∫
B(0, η4 )

1

|x+ ξi|2(δ2
i + |x|2)N−2

)

= C2
0δ
N−2
i

(
C +

∫
B(0, η4 )

1 +O(|x|2)

|ξi|2(δ2
i + |x|2)N−2

)

= C2
0δ
N−2
i

(
C +

1

|ξi|2

(
−
∫
RN\B(0, η4δi

)

+

∫
RN

)
δ4−N
i

(1 + |z|2)N−2
+

1

|ξi|2

∫
B(0, η4 )

O(|x|2)

(δ2
i + |x|2)N−2

)

=
C2

0

|ξi|2
δ2
i

∫
RN

1

(1 + |z|2)N−2
+O(δ4

i ).

(A.34)

On the other hand, there holds∫
Ω

ϕ2
δi,ξi

|x|2
= O(δN−2

i ) and

∫
Ω

ϕδi,ξiUδi,ξi
|x|2

= O(δN−2
i ).

which together with (A.34) implies (A.20).

Proof of (A.21). This is similar to the proof of (A.20), and will therefore be omitted. �

Lemma A.8. a) For µ, σ → 0 there holds:∫
Ω

|PVµ,σ|2
∗

= S
N
2
µ − 2∗C0C

2∗−1
µ H(0, 0)σN−2

∫
RN

1

(|z|β1 + |z|β2)
N+2

2

+O(µσN−2) +O(σN ).

b) As δi → 0 there holds uniformly for ξi in compact subsets of Ω:∫
Ω

|PUδi,ξi |2
∗

= S
N
2

0 − 2∗C2∗

0 H(ξi, ξi)δ
N−2

2
i

∫
RN

1

(1 + |z|2)
N+2

2

+O(δNi ).
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c) For µ, σ, δi → 0 there holds uniformly in compact subsets of Ω:

∫
Ω

∣∣∣∣∣
k∑
i=1

τiPUδi,ξi + PVµ,σ

∣∣∣∣∣
2∗

= S
N
2
µ − 2∗C0C

2∗−1
µ H(0, 0)σN−2

∫
RN

1

(|z|β1 + |z|β2)
N+2

2

+ 2∗
k∑
i=1

C0C
2∗−1
µ σ

N−2
2 δ

N−2
2

i

∫
RN

τiG(ξi, 0)

(|z|β1 + |z|β2)
N+2

2

+

k∑
i=1

(
S
N
2

0 − 2∗C2∗

0 H(ξi, ξi)δ
N−2
i

∫
RN

1

(1 + |z|2)
N+2

2

+ 2∗
k∑
j=1
j 6=i

C2∗

0 δ
N−2

2
i δ

N−2
2

j

∫
RN

τiτjG(ξi, ξj)

(1 + |z|2)
N+2

2

+ 2∗CµC
2∗−1
0 σ

N−2
2 δ

N−2
2

i

∫
RN

τiG(ξi, 0)

(1 + |z|2)
N+2

2

)

+

k∑
i=1

o(σN−2
2 δ

N−2
2

i ) +

k∑
j=1
j 6=i

o(δ
N−2

2
j δ

N−2
2

i ) +O(δNi )

+O(µσN−2) +O(σN ).

Proof. a) By (A.24) we have:∫
Ω

|PVµ,σ|2
∗

=

∫
Ω

V 2∗

µ,σ − 2∗
∫

Ω

V 2∗−1
µ,σ ϕσ +O(σN )

= S
N
2
µ − 2∗C0C

2∗−1
µ H(0, 0)σ

√
µ(
√
µ+
√
µ−µ)√

µ−µ

∫
RN

1

(|z|β1 + |z|β2)
N+2

2

+O(µσ
√
µ(
√
µ+
√
µ−µ)√

µ−µ ) +O(σN ).

b) is from [3].

c) Here (3.7), (3.8), (A.30), (A.31) imply:∫
B(0, η2 )

(PVµ,σ)2∗−1PUδi,ξi =

∫
B(0, η2 )

(
V 2∗−1
µ,σ +O(V 2∗−2

µ,σ ϕσ)
)

(Uδi,ξi − ϕδi,ξi)

=

∫
B(0, η2 )

V 2∗−1
µ,σ (Uδi,ξi − ϕδi,ξi) +O(σ

√
µ(N−2+

√
µ−µ)√

µ−µ δ
N−2

2
i )

= C0C
2∗−1
µ σ

N−2
2 δ

N−2
2

i

∫
RN

G(ξi, 0)

(|z|β1 + |z|β2)
N+2

2

+ o(σ
N−2

2 δ
N−2

2
i ).
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Then using part a) we deduce:∫
B(0, η2 )

∣∣∣∣∣
k∑
i=1

τiPUδi,ξi + PVµ,σ

∣∣∣∣∣
2∗

=

∫
B(0, η2 )

(PVµ,σ)2∗ + 2∗
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i=1

∫
B(0, η2 )

τi(PVµ,σ)2∗−1PUδi,ξi +

k∑
i=1

O

(∫
B(0, η2 )

(PVµ,σ)2∗−2(PUδi,ξi)
2
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= S
N
2
µ − 2∗C0C

2∗−1
µ H(0, 0)σN−2

∫
RN

1

(|z|β1 + |z|β2)
N+2

2

+ 2∗
k∑
i=1

C0C
2∗−1
µ σ

N−2
2 δ

N−2
2

i

∫
RN

τiG(ξi, 0)

(|z|β1 + |z|β2)
N+2

2

+

k∑
i=1

o(σ
N−2

2 δ
N−2

2
i ) +O(µσN−2) +O(σN ).

(A.35)

We also have∫
B(ξi,

η
2 )

(PUδi,ξi)
2∗−1PVµ,σ =

∫
B(ξi,

η
2 )

U2∗−1
δi,ξi

(Vµ,σ − ϕσ) + o(δ
N−2

2
i σ

N−2
2 )

= CµC
2∗−1
0 σ

N−2
2 δ

N−2
2

i

∫
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1

(1 + |z|2)
N+2

2

(
1

|ξi|
√
µ+
√
µ−µ
− |d(x)|

√
µ−
√
µ−µH(0, ξi)

)
+ o(σ

N−2
2 δ

N−2
2

i )

= CµC
2∗−1
0 σ

N−2
2 δ

N−2
2

i

∫
RN

G(ξi, 0)

(1 + |z|2)
N+2

2

+ o(σ
N−2

2 δ
N−2

2
i ),

hence

∫
B(ξi,

η
2 )

∣∣∣∣∣
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i=1

τiPUδi,ξi + PVµ,σ

∣∣∣∣∣
2∗

=

∫
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j 6=i
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k∑
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+O
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(PUδi,ξi)
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2

= S
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0 H(ξi, ξi)δ
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i

∫
RN

1

(1 + |z|2)
N+2

2

+O(δNi )

+ 2∗
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j 6=i
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0 δ
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2
i δ

N−2
2

j

∫
RN

τiτjG(ξi, ξj)

(1 + |z|2)
N+2

2

+

k∑
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j 6=i

o(δ
N−2

2
j δ

N−2
2

i )

+ 2∗CµC
2∗−1
0 σ

N−2
2 δ

N−2
2
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∫
RN

τiG(ξi, 0)

(1 + |z|2)
N+2

2

+ o(σ
N−2

2 δ
N−2

2
i ).

(A.36)

where the last equality was obtained by the results in [3]. Finally we have:∫
Ω\(B(0, η2 )∪

⋃
i=1kB(ξi,

η
2 ))

∣∣∣∣∣
k∑
i=1

τiPUδi,ξi + PVµ,σ

∣∣∣∣∣
2∗

≤
k∑
i=1

O(δNi ) +O(σN ). (A.37)

Now (A.35), (A.36), (A.37) yield c). �
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Lemma A.9. For µ, σ, δi → 0 there holds uniformly in compact subsets of Ω:

∫
Ω

∣∣∣∣∣
k∑
i=1

τiPUδi,ξi + PVµ,σ

∣∣∣∣∣
2∗

ln

∣∣∣∣∣
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τiPUδi,ξi + PVµ,σ
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= −N − 2

2
lnσ ·

∫
RN

V 2∗
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N − 2

2
ln(δ1 . . . δk) ·

∫
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U2∗

1,0

+

∫
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V 2∗
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∫
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U2∗

1,0 lnU1,0 + o(1).

Proof. Similarly to [17] we obtain:

∫
B(0, η2 )
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∫
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µ,1 +

∫
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µ,1 lnVµ,1 + o(1),

and ∫
B(ξi,
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2 )
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k∑
i=1

τiPUδi,ξi + PVµ,σ

∣∣∣∣∣
2∗
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2
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∫
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U2∗
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and ∫
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⋃k
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η
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The Lemma follows now. �

Lemma A.10. For µ→ 0+ there holds:∫
RN

V pµ,1 =

∫
RN

Up1,0 + o(1) and

∫
RN

V pµ,1 lnVµ,1 =

∫
RN

Up1,0 lnU1,0 + o(1)

for p > 1 as well as

Cµ = C0 −
C0

N − 2
µ+O(µ2) and Sµ = S0 − Sµ+O(µ2),

for some positive constant S independent of µ.

Proof. These equalities can be obtained by direct computations. �
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