
ar
X

iv
:2

00
6.

07
54

5v
1 

 [
m

at
h.

A
P]

  1
3 

Ju
n 

20
20

Strongly localized semiclassical states for

nonlinear Dirac equations

Thomas Bartsch, Tian Xu∗

June 16, 2020

Abstract

We study semiclassical states of the nonlinear Dirac equation

−i~∂tψ = ic~

3∑

k=1

αk∂kψ −mc2βψ −M(x)ψ + f(|ψ|)ψ, t ∈ R, x ∈ R
3,

where V is a bounded continuous potential function and the nonlinear term f(|ψ|)ψ
is superlinear, possibly of critical growth. Our main result deals with standing wave

solutions that concentrate near a critical point of the potential. Standard methods

applicable to nonlinear Schrödinger equations, like Lyapunov-Schmidt reduction or

penalization, do not work, not even for the homogeneous nonlinearity f(s) = sp.

We develop a variational method for the strongly indefinite functional associated to

the problem.

Keywords. Dirac equation, semiclassical states, standing waves, concentration, strongly

indefinite functional

1 Introduction

Standing wave solutions for the nonlinear Schrödinger equation

−i~∂tψ = −∆ψ + V (x)ψ + f(|ψ|)ψ

a non-relativistic wave equation, have been in the focus of nonlinear analysis since decades.

In particular, semiclassical states that concentrate near a critical point of the potential V
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have been widely investigated ever since the influential paper [24] by Floer and Weinstein

who treated the cubic nonlinearity |ψ|2ψ in one-dimension.

Much less is known for the nonlinear Dirac equation

−i~∂tψ = ic~

3∑

k=1

αk∂kψ −mc2βψ −M(x)ψ + f(x, |ψ|)ψ, t ∈ R, x ∈ R
3,

a relativistic wave equation and a spinor generalization of the nonlinear Schrödinger equa-

tion, not even in the case of f being a pure power with subcritical nonlinearity. Here

ψ(t, x) ∈ C4, c is the speed of light, ~ is Planck’s constant, m is the mass of the particle

and α1, α2, α3 and β are the 4× 4 complex Pauli matrices:

β =

(
I 0
0 −I

)
, αk =

(
0 σk
σk 0

)
, k = 1, 2, 3,

with

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The external field M(x) represents an arbitrary electric potential depending only upon

x ∈ R3. The nonlinear coupling f(x, |ψ|)ψ describes a self-interaction. Typical examples

for nonlinear couplings can be found in the self-interacting scalar theories; see [22, 23,

31] and more recently [7, 20, 21, 25, 26, 37, 43]. Usually, in Quantum electrodynamics

nonlinear Dirac equations have to satisfy symmetry constraints, in particular the Poincaré

covariance. Nonlinear Dirac equations modeling Bose-Einstein condensates break this

symmetry, and often the nonlinearity is a power-type function that depends only on the

local condensate density (see [28–30] for more background from physics).

The ansatz ψ(t, x) = eiωt/~u(x) for a standing wave solution and a change of notation

(in particular ε instead of ~) leads to an equation of the form

− iε

3∑

k=1

αk∂ku+ aβu+ V (x)u = f(x, |u|)u, u ∈ H1(R3,C4). (1.1)

This type of particle-like solution does not change its shape as it evolves in time, hence has

a soliton-like behavior. In this paper we investigate the existence of semiclassical states,

i.e. solutions uε of (1.1) for small ε > 0, that concentrate as ε → 0 at a critical point x0 of

the potential V . There are many results of this type for nonlinear Schrödinger equations

− ε2∆u+ V (x)u = g(u), u ∈ H1(RN), (1.2)

beginning with the pioneering work by Floer and Weinstein [24] and then continued by

Oh [38, 39] and many others, e.g. [2–6, 8–11, 40]. It has been proved that there exists

a family of semiclassical solutions to (1.2) for small ε which concentrate around stable
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critical points of the potential V as ε → 0. The proofs are based on Lyapunov-Schmidt

type methods, penalization, and variational techniques.

Very few results are available for the nonlinear Dirac equation (1.1) compared with

the nonlinear Schrödinger equation. A major difference between nonlinear Schrödinger

and Dirac equations is that the Dirac operator is strongly indefinite in the sense that both

the negative and positive parts of the spectrum are unbounded and consist of essential

spectrum. It follows that the quadratic part of the energy functional associated to (1.1) has

no longer a positive sign, moreover, the Morse index and co-index at any critical point of

the energy functional are infinite.

In order to compare our result with the existing literature we first present in short the

state of the art. The first result for concentration behavior of the nonlinear Dirac equation

(1.1) is due to Ding [13], who considered the case V ≡ 0 and f(x, |u|) = P (x)|u|p−2

with p ∈ (2, 3) subcritical, inf P > 0, and lim sup|x|→∞ P (x) < maxP . He obtained a

least energy solution uε for ε > 0 small that concentrates around a global maximum of

P as ε → 0. A similar result has been obtained in [14] where f = f(|u|) is subcritical

and V satisfies a < min V < lim inf |x|→∞ V (x) ≤ |V |∞ < a. Here the solutions uε

concentrate at a global minimum of V . In both papers [13, 14] the solutions are obtained

via a mountain pass argument applied to a reduced functional. In [18, 44] the authors

considered the case of a local minimum of V using a penalization approach analogous to

the one in [10, 11].

All papers mentioned so far consider a subcritical nonlinearity f . The only papers

dealing with a critical nonlinearity, i.e. where f(t) grows as t for t → ∞, are [15, 16].

Both papers assume, in addition to various technical conditions, that V has a global min-

imum. The least energy solution is obtained again via a mountain pass argument applied

to a reduced functional. It is essential that the mountain pass level is below the threshold

level where the Palais-Smale condition fails. In [15] the authors were also able to obtain

solutions with energy above the mountain pass level using the oddness of the equation

and Lusternik-Schnirelmann type arguments, but again the energy levels of the solutions

are below the level where the Palais-Smale condition fails.

The distinct new feature of our result is that we find solutions of

− iε

3∑

k=1

αk∂ku+ aβu+ V (x)u = f(|u|)u (1.3)

localized near a critical point of V that is not necessarily a (local or global) minimum of

V . The model nonlinearity we consider is f(t) = κt+λtp−2 with κ, λ > 0 and p ∈ (2, 3).

We can deal with local minima, local maxima, or saddle points of V , both in the critical

(κ > 0) and subcritical (κ = 0) case. As a consequence, a least energy solution may not

exist, and in the variational setting there is no threshold value below which the Palais-

Smale condition holds, so that the methods from [15, 16] do not apply. We have to work
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at energy levels where the Palais-Smale condition fails which, in the critical case κ > 0,

leads to a subtle interplay between κ, V, λ, p. Our results are new even in the subcritical

case where so far only local minima of V have been treated. They are of course new in

the critical case where only global minima of V have been considered.

The paper is organized as follows. In the next section we state and discuss our main

theorem. After collecting some basic results on the Dirac operator in Section 3 we inves-

tigate the family of equations

− i
3∑

k=1

αk∂ku+ aβu+ V (ξ)u = f(|u|)u (1.4)

parametrized by ξ ∈ R3 which appear as limit equations. This will be done in Section 4.

In Section 5 we introduce a truncated problem, set up the variational structure, and prove

the Palais-Smale condition for the truncated functional in a certain parameter range. Then

in Section 6 we develop a min-max scheme that can be applied to the truncated problem.

The proof of a key result, Proposition 6.4, that is needed for the passage to the limit ε→ 0

will be presented in Section 7. The delicate analysis in Section 7 is not needed in the case

of a local minimum of V because in that case the lower bound estimate of Proposition 6.4

is automatically satisfied. In the final Section 8 we show that the solutions of the truncated

problem are actually solutions of (1.1) for ε > 0 small enough, thus finishing the proof of

the main theorem. The proof of a technical lemma will be presented in the Appendix.

2 The main result

We set α · ∇ :=
∑3

k=1 αk∂k so that equation (1.3) reads as

−iεα · ∇u+ aβu+ V (x)u = f(|u|)u, u ∈ H1(R3,C4).

Throughout the paper, we fix the constant a > 0 and assume that the potential V satisfies

(V 0) V ∈ C0,1(R3) ∩ L∞(R3) and |V |∞ < a.

Here we use the notation | · |p for the various Lp-norms. We also require one of the fol-

lowing hypotheses:

(V 1) V is C1 in a neighborhood of 0, and 0 is an isolated local maximum or minimum of

V .

(V 2) V is C2 in a neighborhood of 0, 0 is an isolated critical point, and there exists a

vector space X ⊂ R
3 such that:

(a) V |X has a strict local maximum at 0;
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(b) V |X⊥ has a strict local minimum at 0.

In the case of (V 2) we may assume that {0} 6= X 6= R3 so that 0 is a possibly degenerate

saddle point of V .

The domain of the quadratic form associated to the Dirac operator is H
1

2 (R3,C4).

This space embeds into the corresponding Lq-spaces for 2 ≤ q ≤ 3, and the embedding

is locally compact precisely if q < 3. Therefore the nonlinearity f(|u|)u has subcritical

growth if f(s)s ∼ sp−1 with 2 < p < 3, and it has critical growth if p = 3. In (3.8) below

we define for λ > 0, p ∈ (2, 3) a constant κ̄(V, λ, p) > 0 that appears in the following

assumptions when the nonlinearity is critical. Here F (s) :=
∫ s

0
f(t)t dt is the primitive of

f(s)s.

(f1) f ∈ C0[0,∞) ∩ C1(0,∞) satisfies f(0) = 0 and f ′(s) > 0 for s > 0.

(f2) There exist λ > 0, p ∈ (2, 3), κ ∈ [0, κ̄) with κ̄ = κ̄(V, λ, p) defined in (3.8) such

that f(s) ≥ κs + λsp−2 for s > 0, and f ′(s) → κ as s→ ∞.

(f3) There exists θ > 2 such that 0 < θF (s) ≤ f(s)s2 + θ−2
3
κs3 for s > 0.

These conditions imply that s 7→ f(s)s is strictly increasing and superlinear. Condition

(f3) is a weakened Ambrosetti-Rabinowitz condition. If κ > 0 then the nonlinearity has

critical growth.

Theorem 2.1. Assume that V satisfies (V 0) and one of (V 1) or (V 2). Suppose that f

satisfies (f1), (f2) and (f3). Then (1.1) has a solution uε for ε > 0 small. These solutions

have the following properties.

(i) |uε| possesses a global maximum point xε ∈ R3 such that xε → 0 as ε→ 0, and

|uε(x)| ≤ C exp
(
−
c

ε
|x− xε|

)

with C, c > 0 independent of ε.

(ii) The rescaled function Uε(x) = uε(εx+xε) converges as ε→ 0 uniformly to a least

energy solution U : R3 → C4 of

−iα · ∇U + aβU + V (0)U = f(|U |)U.

Remark 2.2. Thus in the subcritical case κ = 0 equation (1.1) always has solutions with

shape as in (i) and (ii). We do allow critical growth but the factor κ cannot be too large.

The constant κ̄ depends on |V |∞, supV , λ and p. It is bounded away from 0 by a positive

number provided V is bounded away from −a and sup V ≤ 0. Moreover κ̄ → 0 as

|V |∞ → a. It is an interesting open problem whether the restriction on κ can be removed.
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3 Preliminaries

We write Lq = Lq(R3,C4) for q ≥ 1 and Hs = Hs(R3,C4) for s > 0. Let Da =

−iα · ∇+ aβ denote the self-adjoint operator on L2 with domain D(Da) = H1. It is well

known that the spectrum of Da is purely continuous and σ(Da) = σc(Da) = R \ (−a, a).

Therefore L2 possesses the orthogonal decomposition

L2 = L+ ⊕ L−, u = u+ + u−, (3.1)

so that Da is positive definite (resp. negative definite) in L+ (resp. L−). Now let E :=

D(|Da|
1/2) be the form domain of Da endowed with the inner product

〈u, v〉 = Re
(
|Da|

1/2u, |Da|
1/2v

)
2

and induced norm ‖ · ‖; here (·, ·)2 denotes the L2-inner product. This norm is equivalent

to the usual H1/2-norm, hence E embeds continuously into Lq for all q ∈ [2, 3] and

compactly into Lq
loc for all q ∈ [2, 3). Clearly E possesses the decomposition

E = E+ ⊕ E− with E± = E ∩ L±, (3.2)

orthogonal with respect to both (·, ·)2 and 〈·, ·〉. Since σ(Da) = R \ (−a, a), one has

a|u|22 ≤ ‖u‖2 for all u ∈ E. (3.3)

The decomposition of E induces also a natural decomposition of Lq for every q ∈ (1,∞)

as proved in [18].

Proposition 3.1. Setting E±
q := E± ∩ Lq for q ∈ (1,∞) there holds

Lq = clq E
+
q ⊕ clq E

−
q

with clq denoting the closure in Lq. More precisely, for every q ∈ (1,∞) there exists

dq > 0 such that

dq|u
±|q ≤ |u|q for all u ∈ E ∩ Lq.

Moreover, the decomposition is invariant when taking derivatives.

Proposition 3.2. For u ∈ H1 we have ∂ku
± = (∂ku)

±.

Proof. The Fourier transformation of Da is given by

(Dau)̂ (ξ) =

(
0

∑3
k=1 ξkσk∑3

k=1 ξkσk 0

)
û+

(
a 0
0 −a

)
û,
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where û, a C4-valued function, denotes the Fourier transform of u ∈ L2. It has been

proved in [18] that the Fourier transforms of the orthogonal projections P± : L2 → L±

are given by

(P+u)̂ (ξ) =
(1
2
+

a

2
√
a2 + |ξ|2

)( I Σ(ξ)

Σ(ξ) A(ξ)

)
û

and

(P−u)̂ (ξ) =
(1
2
+

a

2
√
a2 + |ξ|2

)( A(ξ) −Σ(ξ)

−Σ(ξ) I

)
û

with I being the 2× 2 identity matrix and

A(ξ) =

√
a2 + |ξ|2 − a

a+
√
a2 + |ξ|2

· I, Σ(ξ) =

3∑

k=1

ξkσk

a +
√
a2 + |ξ|2

.

The proposition follows from the fact that these matrix operations commute with the

multiplication by iξk for k = 1, 2, 3.

The proof of our main results will be achieved by variational methods applied to func-

tionals J : E → R of the form

J(u) =
1

2

(
‖u+‖2 − ‖u−‖2

)
+

1

2

∫

R3

W (x)|u|2 dx−

∫

R3

G(x, |u|) dx. (3.4)

The following reduction process will be very useful.

Theorem 3.3. Let W ∈ L∞ satisfy |W |∞ < a and suppose G : R3 × R
+
0 → R has the

form G(x, s) =
∫ s

0
g(x, t)tdt where g is measurable in x ∈ R3, of class C1 in s ∈ R

+
0 and

satisfies

(i) 0 ≤ g(x, s)s for all x ∈ R3;

(ii) g(x, s)s = o(s) as s→ 0 uniformly in x ∈ R
3;

(iii) 0 ≤ ∂s
(
g(x, s)s

)
≤ Cs for all x ∈ R3, s > 0, some C > 0.

Then the following hold for J as in (3.4).

a) There exists a C1-map hJ : E+ → E− such that for v ∈ E+ and w ∈ E−

DJ(v + w)[φ] = 0 for all φ ∈ E− ⇐⇒ w = hJ (v)

and

‖hJ(v)‖
2 ≤

2|W |∞
a− |W |∞

‖v‖2 +
2a

a− |W |∞

∫

R3

G(x, |v|)dx.
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b) Setting Jred : E+ → R, Jred(v) := J(v + hJ(v)), the sets

M+(J) := {v ∈ E+ \ {0} : DJred(v)[v] = 0}

and

M(J) := {v+hJ(v) ∈ E\{0} : v ∈ M+(J)} = {u ∈ E\{0} : DJ(u)|Ru⊕E− = 0}

are C1-submanifolds ofE, diffeomorphic to an open subset of the unit sphere SE+ =

{v ∈ E+ : ‖v‖ = 1}.

c) If (vn)n is a Palais-Smale sequence for Jred then {vn + hJ(vn)}n is a Palais-Smale

sequence for J .

d) If |g(x, s)| = O (|s|p−2) as |s| → ∞ for some p ∈ (2, 3) then hJ is weakly sequen-

tially continuous.

The proof of Theorem 3.3 is standard. We refer the reader to [1, 18, 42] for this kind

of results. The diffeomorphisms to an open subset of SE+ are simply given by u 7→
u+

‖u+‖ . In the case W ≡ ν ∈ (−a, a) the manifold M(J) is the Nehari-Pankov manifold

associated to J . It will be useful that the decomposition E = E+ ⊕E− is independent of

W and does not necessarily correspond to the decomposition of E into the positive and

negative eigenspaces associated to D2J(0) = P+−P−+W (x). We call Jred the reduced

functional, hJ the reduction map, and (Jred, hJ) the reduction couple of J .

Remark 3.4. In the setting of Theorem 3.3, for each v ∈ SE+ the map ϕv(t) = Jred(tv)

is C2 and has at most one critical point tv > 0, which is a nondegenerate maximum. There

holds:

M+(J) = {tvv : v ∈ SE+, ϕ′
v(tv) = 0}.

If G grows super-quadratically in t as t → ∞ then J(tu) → −∞ as t → ∞ and ϕv(t)

has a unique maximum for each v ∈ SE+. Then M(J) and M+(J) are diffeomorphic

to SE+. It is clear that M(J) contains all nontrivial critical points of J , and that for

u ∈ E \ {0} there holds:

DJ(u) = 0 ⇐⇒ u− = hJ(u
+) and DJred(u+) = 0

Finally, the infimum of J on M(J) can be described as follows:

γ(J) := inf
u∈M(J)

J(u) = inf
v∈E+\{0}

sup
u∈Rv⊕E−

J(u)

= inf
v∈E+\{0}

max
t>0

Jred(tv) = inf
v∈M+(J)

Jred(v)
(3.5)

If γ(J) is achieved then it is the ground state energy.
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Theorem 3.3 applies in particular to the following functional which depends on the

parameters ~µ = (κ, λ, ν, p) with κ, λ ≥ 0, |ν| < a and p ∈ (2, 3):

J~µ(u) =
1

2

(
‖u+‖2 − ‖u−‖2

)
+
ν

2
|u|22 −

λ

p
|u|pp −

κ

3
|u|33. (3.6)

In order to define the constant κ̄ from Theorem 2.1 let

S := inf
06=u∈H1

|∇u|22
|u|26

(3.7)

be the best constant for the embedding H1(R3,C4) →֒ L6(R3,C4). Then we define for V

as in (V 0), λ > 0, p ∈ (2, 3) as in (f2), (f3):

κ̄ :=

(
a2 − |V |2∞

a2

) 3

4

S
3

4

(
6γ(J~µV

)
)− 1

2 with ~µV := (0, λ, supV, p). (3.8)

The following technical result will be needed later.

Lemma 3.5. For v ∈ E+ \ {0} the function H(t) = I(tv)− t
2
I ′(tv)[v] is of class C1 and

satisfies H ′(t) > 0 for all t > 0.

Proof. We set ϕv(t) = I(tv) so that H(t) = ϕv(t)−
t
2
ϕ′
v(t). Since

H ′(t) =
1

2
ϕ′
v(t)−

t

2
ϕ′′
v(t) =

1

2t

[
ϕ′
tv(1)− ϕ′′

tv(1)
]
,

it is sufficient to check that ϕ′
v(1) − ϕ′′

v(1) > 0 for all v ∈ E+ \ {0}. Setting K(u) =∫
R3 G(x, |u|) dx, we have by the definition of hJ

− 〈hJ(v), φ〉+ Re

∫

R3

W (x)(v + hJ (v)) · φ dx−K ′(v + hJ (v))[φ] = 0 (3.9)

for all φ ∈ E−. It follows for zv = v + hJ(v) and wv = h′J(v)[v]− hJ(v) that

ϕ′
v(1) = ‖v‖2 + Re

∫

R3

W (x)zv · v dx−K ′(zv)[v] = J ′(zv)[zv + wv]. (3.10)

Since (3.9) is valid for all v ∈ E+, differentiating yields for all φ ∈ E−:

0 = −〈h′J(v)[v], φ〉+Re

∫

R3

W (x)(v+h′J (v)[v])·φ dx−K
′′(v+hJ(v))[v+h

′
J(v)[v], φ] .
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Choosing φ = h′J(v)[v] in the above identity, so that zv + wv = v + φ, we get

ϕ′′
v(1) = ‖v‖2 + Re

∫

R3

W (x)(v + h′J(v)[v]) · v dx−K ′′(zv)[zv + wv, v]

= ‖v‖2 − ‖φ‖2 +

∫

R3

W (x)|v + φ|2 dx−K ′′(zv)[zv + wv, v + φ]

= J ′′(zv)[zv + wv, zv + wv]

= ‖v‖2 − ‖hJ(v)‖
2 +

∫

R3

W (x)|zv|
2 dx−K ′′(zv)[zv, zv]

+ 2

(
−〈hJ(v), wv〉+ Re

∫

R3

W (x)zv · wv dx−K ′′(zv)[zv, wv]

)

+

(
−‖wv‖

2 +

∫

R3

W (x)|wv|
2 dx−K ′′(zv)[wv, wv]

)

= ϕ′
v(1) +

(
K ′(zv)[zv]−K ′′(zv)[zv, zv]

)
+ 2
(
K ′(zv)[wv]−K ′′(zv)[zv, wv]

)

−K ′′(zv)[wv, wv]− ‖wv‖
2 +

∫

R3

W (x)|wv|
2 dx.

Finally we obtain:

ϕ′
v(1)− ϕ′′

v(1) ≥

∫

R3

G′(x, |zv|)|wv|
2 +G′′(x, |zv|)|zv|

(
|zv|+

Re zv · wv

|zv|

)2
dx > 0

4 The limit problem

For |ν| < a the problem

− iα · ∇u+ aβu+ νu = f(|u|)u, u ∈ E, (4.1)

appears as limit equation of (1.1). We begin with the model case

−iα · ∇u+ aβu+ νu = λ|u|p−2u+ κ|u|u u ∈ E.

and recall the associated energy functional J~µ from (3.6) with ~µ = (κ, λ, ν, p) and κ, λ, p

from (f2), (f3).

Proposition 4.1. The infimum γ(J~µ) is attained provided ν satisfies

( a2

a2 − ν2−

) 3

2

· κ2 · γ(J~µ) <
S

3

2

6
, (4.2)

where ν− = min{0, ν}.
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Proof. We only give the proof for κ > 0 since the subcritical case κ = 0 is much easier.

Let (Jred
~µ , h~µ) denote the reduction couple of J~µ and let (vn)n be a minimizing sequence

for Jred
~µ in M+(J~µ). Setting un = vn + h~µ(vn) it is not difficult to check that (un)n is

bounded inE, hence it is either vanishing or non-vanishing up to a subsequence (see [34]).

If (un)n has a non-vanishing subsequence then we are done, so let us assume to the

contrary that (un)n is vanishing, hence |un|p → 0. We first show that this implies

γ(J~µ) ≥ γ(J~µ0
) where ~µ0 = (κ, 0, ν, p). (4.3)

In order to see this let tn > 0 be defined by tnvn ∈ M+(J~µ0
). Observe that ‖vn‖ is

bounded away from 0 and the nonlinearity in J~µ0
is super-quadratic, so that (tn)n is

bounded. Theorem 3.3 d) now implies |h~µ0
(tnvn)|p → 0 where h~µ0

is the reduction map

for J~µ0
. Now (4.3) follows from

γ(J~µ0
) ≤ J~µ0

(tnvn + h~µ0
(tnvn))

= J~µ(tnvn + h~µ0
(tnvn)) + on(1) ≤ Jred

~µ (vn) + on(1) = γ(J~µ) + on(1).

Next we show that

Jred
~µ0

(v) ≥
1

6κ2

(
‖v‖2 + ν|v|22

|v|23

)3

for all v ∈ M+(J~µ0
) . (4.4)

For this we consider the functional

I : E \ {0} → R, u 7→
‖u+‖2 − ‖u−‖2 + ν|u|22

|u|23
.

For any v ∈ E+ it is easy to see by a direct argument that supw∈E− I(v + w) > 0 is

achieved by some wv ∈ E−. Moreover, for any c > 0 the set {w ∈ E− : I(v + w) ≥ c}

is strictly convex because

w 7→ ‖v‖2 − ‖w‖2 + ν|v + w|22 − c|v + w|23

is strictly concave on E−. This also uses |ν| < a. Hence wv is the unique critical point of

w 7→ I(v + w). On the other hand, for v ∈ M+(J~µ0
), we have

0 = DJred
~µ0

(v)[v] = ‖v‖2 − ‖h~µ0
(v)‖2 + ν|v + h~µ0

(v)|22 − κ|v + h~µ0
(v)|33, (4.5)

hence

Jred
~µ0

(v) = Jred
~µ0

(v)−
1

2
DJred

~µ0
(v)[v] =

κ

6
|v + h~µ0

(v)|33.

A direct calculation gives

DI
(
v + h~µ0

(v)
)∣∣

E−
= 0 and I

(
v + h~µ0

(v)
)
> 0
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which implies h~µ0
(v) = wv. Now (4.4) follows, using (4.5) once more:

Jred
~µ0

(v) =
κ

6
|v + h~µ0

(v)|33 =
1

6κ2
I3(v + h~µ0

(v)) ≥
1

6κ2
I3(v)

Finally, the proposition follows from (4.3), (4.4) and

‖v‖2 + ν|v|22
|v|23

≥
(a2 − ν2−

a2

) 1

2

S
1

2 for all v ∈ M+(J~µ0
) . (4.6)

For the proof of (4.6) we pass to the Fourier domain and recall from [18] that

‖u‖2 =

∫

R3

(a2 + |ξ|2)
1

2 |û|2 dξ for all u ∈ E.

Since |ν| < a we have

(a2 + t2)
1

2 + ν ≥

(
a2 − ν2−
a2

) 1

2

|t| for all t ∈ R

which implies for v ∈ E+ \ {0}:

‖v‖2 + ν|v|22
|v|23

=

∫
R3 [(a

2 + |ξ|2)
1

2 + ν] · |v̂|2 dξ

|v|23
≥

(
a2 − ν2−
a2

) 1

2

∫
R3 |ξ||û|

2 dξ

|u|23

≥

(
a2 − ν2−
a2

) 1

2

S
1

2

Here the last inequality follows from

∫
R3 |ξ|

2|û|2dξ

|u|26
=

|∇̂u|22
|u|26

=
|∇u|22
|u|26

≥ S for all u ∈ H1(R3,C4)

and the Calderón-Lions interpolation theorem (see [41]).

Now we consider the energy functional Iν : E → R associated to (4.1) given by

Iν(u) =
1

2

(
‖u+‖2 − ‖u−‖2

)
+
ν

2
|u|22 −

∫

R3

F (|u|)dx. (4.7)

The hypotheses (f1) − (f3) imply that Iν satisfies the assumptions of Theorem 3.3 for

|ν| < a.

Lemma 4.2. If ν0 ∈ (−a, a) satisfies (4.2) then γ(Iν) is achieved for all ν ∈ (−a, ν0].

Moreover, the map ν 7→ γ(Iν) is continuous and strictly increasing.

Proof. For ν ∈ (−a, ν0] ⊂ (−a, a) assumption (f3) implies Iν ≤ J~µ1
≤ J~µ2

, where

~µ1 = (κ, λ, ν0, p) and ~µ2 = (0, λ, ν0, p). It follows that γ(Iν) ≤ γ(J~µ1
) ≤ γ(J~µ2

). A
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similar argument as in the proof of Proposition 4.1 implies the existence of a nontrivial

critical point uν for Iν such that u+ν is the minimizer for Iredν on M+(Iν).

In order to prove the monotonicity of γ(ν) we consider −a < ν1 < ν2 ≤ ν0. Let

u ∈ M(Iν2) be a minimizer for γ(Iν2) and define s > 0 by su+ ∈ M+(Iν1). Then we

have, with (Iredν1
, hν1) denoting the reduction couple for Iν1 and u1 := t1u

+ + hν1(su
+) ∈

M(Iν1):

γ(Iν1) ≤ Iredν1
(su+) = Iν1(u1) = Iν2(u1)−

ν2 − ν1
2

|u1|
2
2 ≤ Iredν2

(t1u
+)−

ν2 − ν1
2

|u1|
2
2

≤ max
t>0

Iredν2
(tu+)−

ν2 − ν1
2

|u1|
2
2 = γ(Iν2)−

ν2 − ν1
2

|u1|
2
2.

Choosing a minimizer v ∈ M(Iν1) for γ(Iν1), defining t > 0 by tv+ ∈ M+(Iν2), and

setting u2 := tv+ + hν1(tv
+) ∈ M(Iν2), an analogous argument shows that

γ(Iν2) ≤ γ(Iν1) +
ν2 − ν1

2
|u2|

2
2.

For the continuity of γ(ν) it remains to prove that s, t are bounded for ν1, ν2 in a compact

subset of (−a, ν0] because then |γ(Iν2)− γ(Iν1)| = O(ν2 − ν1). This follows for s from

0 < Iredν1 (su+) ≤
s2

2

(
‖u+‖2 + ν1|u

+|22
)
−
dpλ

p
sp|u+|pp.

where dp > 0 is from Proposition 3.1. The bound for t is proved analogously.

5 The truncated problem

For a subset Λ ⊂ R3, let Λc denote its complement, and Λε :=
{
x ∈ R3 : εx ∈ Λ

}
,

ε > 0. By the change of variables x 7→ εx and setting Vε(x) = V (εx), the singularly

perturbed problem (1.1) is equivalent to

− iα · ∇u+ aβu+ Vε(x)u = f(|u|)u. (5.1)

In the sequel, we will modify the function f similar to [9, 10]. For

0 < δ0 ≤
a− |V |∞

4
, (5.2)

we define f̃ = f̃δ0 ∈ C1(R+
0 ) by f̃(0) = 0 and

d

ds

(
f̃(s)s

)
= min

{
f ′(s)s+ f(s), δ0

}
.

In the subcritical case κ = 0 of Theorem 2.1 the choice δ0 =
a−|V |∞

4
will be fine. For the

critical case κ > 0 we need to make δ0 smaller in the course of the proof. Let F̃ (s) =∫ s

0
f̃(t)t dt be the primitive of f̃(s)s. By our assumptions on V there existsR1 > 0 so that

∇V (x) /∈ Rx for all x ∈ R
3 with |x| = R1 and V (x) = V (0), (5.3)
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see [8]. We define the cut-off function χ : R3 → [0, 1] by

χ(x) =





1, if |x| < R1
2R1−|x|

R1
, if R1 ≤ |x| < 2R1

0, if |x| ≥ 2R1.

(5.4)

and consider

g(x, s) = χ(x)f(s) +
(
1− χ(x)

)
f̃(s)

as well as

G(x, s) =

∫ s

0

g(x, t)tdt = χ(x)F (s) +
(
1− χ(x)

)
F̃ (s).

For later use, associated to the above notations, we denote B1 = B(0, R1) and B2 =

B(0, 2R1) the open balls in R
3 of radius R1 and 2R1. The following lemma is easy to

prove.

Lemma 5.1. The function G(x, s) satisfies the conditions (i)− (iii) from Theorem 3.3.

We will consider the truncated problem

− iα · ∇u+ aβu+ Vε(x)u = gε(x, |u|)u, u ∈ E (5.5)

where we write gε(x, s) = g(εx, s); we also use the notations χε and Gε for the dilations

of χ and G, respectively. The corresponding energy functional is

Φε(u) =
1

2

(
‖u+‖2 − ‖u−‖2

)
+

1

2

∫

R3

Vε(x)|u|
2 dx−

∫

R3

Gε(x, |u|) dx.

As a direct consequence of Lemma 5.1, we can introduce (Φred
ε , hε) as the reduction

couple of Φε.

In order to establish a compactness result for Φε, we first prove a bound for Palais-

Smale sequences of Φε that is uniform in ε.

Lemma 5.2. For c ∈ R fixed, (PS)c-sequences of Φε are bounded uniformly in ε.

Proof. Given a (PS)c-sequence (un)n for Φε we have by our conditions on f :

∫

R3

χε(x)f(|un|)|un| · |u
+
n − u−n |dx

≤
(∫

R3

χε(x)
(
f(|un|)|un|

) 3

2dx
) 2

3

·
∣∣u+n − u−n

∣∣
3
+ δ0

∫

R3

χε(x)|un| · |u
+
n − u−n |dx

≤ Cθ

(∫

R3

χε(x)
(
f(|un|)|un|

2 − 2F (|un|)
)
dx
) 2

3

‖un‖+ δ0|un|
2
2,
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where Cθ > 0 only depends on the constant θ > 2 in (f2). It follows from (5.2) that

(
1−

|V |∞
a

)
‖un‖

2 ≤ Φ′
ε(un)[u

+
n − u−n ] +

∫

R3

gε(x, |un|)|un| · |u
+
n − u−n |dx

≤ Cθ

(
2Φε(un)− Φ′

ε(un)[un]
) 2

3

‖un‖+ 2δ0|un|
2
2 + o(‖un‖).

Now the lemma follows using (3.3):

(
1−

|V |∞ + 2δ0
a

)
‖un‖

2 ≤ Cθ

(
2(c+ o(1)) + o(‖un‖)

) 2

3‖un‖+ o(‖un‖). (5.6)

Now we can prove the Palais-Smale condition for Φε. Recall that the nonlinearity G

in Φε depends on a constant δ0; see (5.2).

Proposition 5.3. If

κ2 · c0 <

(
a2 − |V |2∞

a2

) 3

2

·
S

3

2

6
,

then there exists δ0 > 0 such that the truncated functionalΦε satisfies the (PS)c-condition

for all c ≤ c0, all ε > 0.

Proof. We choose δ0 > 0 so that

(
a2 − |V |2∞

a2

) 3

2 S
3

2

6
>

(
a2 − (|V |∞ + δ0)

2

a2

) 3

2 S
3

2

6
> κ2 · c0.

Let (un)n be a (PS)c-sequence for Φε with c ≤ c0, any ε > 0. By Lemma 5.2 there exists

u ∈ E such that, along a subsequence, un ⇀ u in E and un → u strongly in Lq
loc for

q ∈ [2, 3). We want to show that un → u strongly in E.

Set zn = un − u so that zn ⇀ 0 in E and ‖u±n ‖
2 = ‖u±‖2 + ‖z±n ‖

2 + on(1). Note that

lim
s→0

f̃(s) = lim
s→∞

f̃(s)

s
= 0 and lim

s→0
f(s) = lim

s→∞

f(s)

s
− κ = 0.

By the Brezis-Lieb lemma (see for instance [45, Lemma 1.32]) there holds

∫

R3

Gε(x, |un|) =

∫

R3

Gε(x, |u|) +

∫

R3

(
1− χε(x)

)
F̃ (|zn|) +

κ

3

∫

R3

χε(x)|zn|
3 + on(1),

and
∫

R3

gε(x, |un|)|un|
2 =

∫

R3

gε(x, |u|)|u|
2+

∫

R3

(
1−χε(x)

)
f̃(|zn|)|zn|

2+κ

∫

R3

χε(x)|zn|
3+on(1).

Therefore

Φε(un) = Φε(u) + Φε(zn) + on(1),
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and

DΦε(un)[un] = DΦε(u)[u] +DΦε(zn)[zn] + on(1).

Obviously, DΦε(u) = 0, hence DΦε(zn)[zn] = on(1). We claim that

DΦε(zn) → 0 as n→ ∞. (5.7)

In fact, consider ϕ ∈ E with ‖ϕ‖ ≤ 1 and set g1(x, s) = g(x, s)− κχ(x)s. We have

DΦε(un)[ϕ] =
〈
u+n − u−n , ϕ

〉
+ Re

∫

R3

Vε(x)un · ϕ̄− Re

∫

R3

gε(x, |un|)un · ϕ̄

=
〈
z+n , ϕ

+
〉
−
〈
z−n , ϕ

−〉+
〈
u+, ϕ+

〉
−
〈
u−, ϕ−〉

+Re

∫

R3

Vε(x)zn · ϕ̄+ Re

∫

R3

Vε(x)u · ϕ̄

−Re

∫

R3

g1ε(x, |zn|)zn · ϕ̄− Re

∫

R3

g1ε(x, |u|)u · ϕ̄

−κ · Re

∫

R3

χε(x)|zn + u|(zn + u) · ϕ̄+ on(‖ϕ‖) (5.8)

where we used un = zn + u and DΦε(u) = 0. The estimate for the subcritical part

Re

∫

R3

g1ε(x, |un|)un · ϕ̄− Re

∫

R3

g1ε(x, |zn|)zn · ϕ̄− Re

∫

R3

g1ε(x, |u|)u · ϕ̄ = on(‖ϕ‖)

follows from a standard argument in [12, Lemma 7.10]. To estimate the last integral in

(5.8), we set ψn := |zn + u|(zn + u) − |zn|zn − |u|u and observe |ψn| ≤ 2|zn| · |u|. By

the Egorov theorem there exists Θσ ⊂ Bε
2 such that meas(Bε

2 \ Θσ) < σ and zn → 0

uniformly on Θσ as n→ ∞. Thus, by the Hölder inequality, we have

∫

R3

χε(x)|ψn| · |ϕ| ≤

∫

Θσ

|ψn| · |ϕ|+

∫

Bε
2
\Θσ

|ψn| · |ϕ|

≤

∫

Θσ

|ψn| · |ϕ|+ 2

(∫

Bε
2
\Θσ

|zn|
3

) 1

3

·

(∫

Bε
2
\Θσ

|u|3

) 1

3

·

(∫

Bε
2
\Θσ

|ϕ|3

) 1

3

.

The first integral in the last line converges to 0 as n → ∞ and the remaining integrals go

to 0 uniformly in n as σ → 0. This shows

∫

R3

χε(x)|ψn| · |ϕ| = on(‖ϕ‖) as n→ ∞
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and consequently, using again DΦε(u) = 0,

DΦε(un)[ϕ] =
〈
z+n , ϕ

+
〉
−
〈
z−n , ϕ

−〉+
〈
u+, ϕ+

〉
−
〈
u−, ϕ−〉

+ Re

∫

R3

Vε(x)zn · ϕ̄+ Re

∫

R3

Vε(x)u · ϕ̄

− Re

∫

R3

g1ε(x, |zn|)zn · ϕ̄− Re

∫

R3

g1ε(x, |u|)u · ϕ̄

− κ · Re

∫

R3

χε(x)|zn|zn · ϕ̄− κ · Re

∫

R3

χε(x)|u|u · ϕ̄ + o(‖ϕ‖)

= DΦε(zn)[ϕ] +DΦε(u)[ϕ] + on(‖ϕ‖)

= DΦε(zn)[ϕ] + on(‖ϕ‖)

It follows that DΦε(zn) → 0 as n → ∞ as claimed in (5.7). Now DΦε(zn)[z
+
n − z−n ] =

on(1) reads as

‖zn‖
2 + Re

∫

R3

Vε(x)zn · (z+n − z−n )

=

∫

R3

(
1− χε(x)

)
f̃(|zn|)zn · (z+n − z−n ) + κ · Re

∫

R3

χε(x)|zn|zn · (z+n − z−n ) + on(1).

Then, by using the fact f̃(s) ≤ δ0 and (4.6), we obtain

(
a2 − (|V |∞ + δ0)

2

a2

) 1

2

S
1

2

(∫

R3

χε(x)|zn|
3dx

) 2

3

≤ κ ·

∫

R3

χε(x)|zn|
3dx+ on(1).

If b := limn→∞
∫
R3 χε(x)|zn|

3dx = 0 then ‖zn‖ = on(1) and un → u strongly in E, as

claimed. Suppose to the contrary that b > 0 so that

(
a2 − (|V |∞ + δ0)

2

a2

) 3

2

S
3

2 ≤ κ3 ·

∫

R3

χε(x)|zn|
3dx = κ3 · b+ on(1).

In case κ = 0, this is a contradiction. In case κ > 0, using

Φε(u) =

∫

R3

1

2
gε(x, |u|)|u|

2 −Gε(x, |u|) ≥ 0,

as well as Φε(un) ≥ Φε(zn)+on(1) andDΦε(zn)[zn] = on(1), we obtain the contradiction

κ2 · c+ on(1) ≥
κ3

6
· b+ on(1) ≥

(
a2 − (|V |∞ + δ0)

2

a2

) 3

2 S
3

2

6
+ on(1).

We finish this section with a couple of notations that will be of use later. For simplicity,

when ν belongs to the range of V (x) that is ν ∈ {V (x) : x ∈ R3}, we denote ν0 = V (0)

and correspondingly

Iν0 = IV (0), Iredν0
= IredV (0), γ(Iν0) = γ(IV (0)). (5.9)
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Moreover, given arbitrarily y ∈ R3, we can define the functional Φy : E → R,

Φy(u) =
1

2

(
‖u+‖2 − ‖u−‖2

)
+
V (y)

2
|u|22 −

∫

R3

G(y, |u|)dx,

and (Φred
y , hy) the reduction couple associated to Φy. Plainly, the critical point of Φy are

solutions of the problem

−iα · ∇u+ aβu+ V (y)u = g(y, |u|)u.

When y ∈ B1, we have Φy = IV (y) and hy = hV (y). Let us point out that, by virtue

of [19, Lemma 4.3], we can conclude the following splitting type result, whose proof is

postponed to the appendix.

Proposition 5.4. For y ∈ R3, let us define the functional Φε,y : E → R,

Φε,y(u) =
1

2

(
‖u+‖2 − ‖u−‖2

)
+

1

2

∫

R3

V (εx+ y)|u|2dx−

∫

R3

G(εx+ y, |u|)dx,

and (Φred
ε,y , hε,y) the associated reduction couple, we have that

(1) let {yε} ⊂ R3 be such that yε → y for some y ∈ R3 then, up to a subsequence,

hε,yε(w) → hy(w) as ε→ 0 for each w ∈ E+;

(2) let {yε} ⊂ R3 be such that yε → y for some y ∈ R3 and let {wε} ⊂ E+ be such

that wε ⇀ w for some w ∈ E+ then, up to a subsequence,

‖hε,yε(wε)− hε,yε(wε − w)− hy(w)‖ = oε(1)

as ε → 0;

(3) let {yε} ⊂ R3 be such that yε → y for some y ∈ R3 and let {wε} ⊂ E+ be such

that wε ⇀ w for some w ∈ E+ then, up to a subsequence,

Φred
ε,yε(wε)− Φred

ε,yε(wε − w)− Φred
y (w) = oε(1)

and

DΦred
ε,yε(wε)[ϕ]−DΦred

ε,yε(wε − w)[ϕ]−DΦy(w)[ϕ] = oε(1)‖ϕ‖

uniformly for ϕ ∈ E+ as ε → 0.

6 The min-max scheme

In this section, we will prove the existence of solutions to the truncated problem (5.5) and,

by virtue of Lemma 4.2, we will restrict ourselves in the barrier 0 ≤ κ < κ̄ where κ̄ is
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define in (3.8). We would like to emphasize that such a choice of κ̄ can be interpreted as

we choose c0 = γ(J~µV
) in Proposition 5.3. With all these notations, for such choice of

κ, we can fix the constant δ0 > 0 properly small so that the Palais-Smale condition holds

automatically in the energy range Φε ≤ γ(J~µV
).

To begin with, let us mention that, under our hypotheses on V , there always exists a

vector space X ⊂ R3 such that:

(a) V |X has a strict local maximum at 0;

(b) V |X⊥ has a strict local minimum at 0.

In fact, in case (V 1), X = R3 if 0 is local maximum or X = {0} if 0 is local minimum,

whereas, in case (V 2), X is the space spanned by eigenvectors associated to negative

eigenvalues of D2V (0). Let PX : R3 → X be the orthogonal projection (in the case

X = {0}, PX is simply the trivial projection).

In the next, solutions of (5.5) will be obtained as critical points of Φε, and a key ingre-

dient for the construction of a min-max scheme is using the reduction couple (Φred
ε , hε).

However, due to the lack of information on the exact behavior of the reduction map

hε : E+ → E−, it seems hopeless to make a ”path of least energy spikes” by proper

scaling as was employed in [8, 32].

Recalling ν0 = V (0), let us focus on functions in the subspace E+. Denoted by B0 :=

B(0, R0) for some R0 < R1. Let us choose a minimizer U ∈ M(Iν0) for γ(Iν0) and

consider the path pε : B
ε
0 → M+(Φε) defined as

pε(ξ)(x) = tξ,εU
+(x− ξ), x ∈ R

3,

where M+(Φε) =
{
w ∈ E+ \ {0} : DΦred

ε (w)[w] = 0
}

and tξ,ε is the unique t > 0 such

that

tξ,εU
+(· − ξ) ∈ M+(Φε).

We also define a family of deformations on M+(Φε)

Γε ≡
{
ϕ : M+(Φε) → M+(Φε) homeomorphism : ϕ(pε(ξ)) = pε(ξ) if ξ ∈ ∂Bε

0 ∩X
}
.

Then we define the min-max level

γε := inf
ϕ∈Γε

max
ξ∈Bε

0
∩X

Φred
ε (ϕ(pε(ξ))). (6.1)

We point out here that, in the case X = {0}, γε = γ(Φε) = infM+(Φε)Φ
red
ε . A technical

point we would like to emphasize, which constitutes a crucial difference with min-max

quantity defined in [8], is the fact that the elements pε(ξ) + hε(pε(ξ)) do not resemble a

least energy solution of Iν since not much is known about the map hε : E
+ → E−.
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Proposition 6.1. There exist ε0, δ > 0 such that for any ε ∈ (0, ε0)

Φred
ε (pε(·))

∣∣
∂Bε

0
∩X ≤ γ(Jν0)− δ.

Proof. To simplify notation, we use subscript ”ξ” to indicate the coordinate translation of

a function u ∈ E, that is, uξ(x) = u(x− ξ). Then, on a fixed bounded interval t ∈ [0, T0]

with some T0 large, we have

Φred
ε (tWξ) ≤

1

2

(
‖tWξ‖

2 − ‖hε(tWξ)‖
2
)
+

1

2

∫

R3

Vε(x)|tWξ + hε(tWξ)|
2dx

−

∫

Bε
1

F (|tWξ + hε(tWξ)|)dx.

Let us first remark that there exists σ > 0 such that V (ξ) ≤ ν0 − σ for all ξ ∈ ∂Bε
0 ∩

X . Since t ∈ [0, T0] is bounded and R0 < R1, by (1) in Proposition 5.4, hε(tWξ) =

hε(tW )ξ → JV (ξ)(tW ) uniformly in t as ε→ 0. Thus, we deduce

Φred
ε (tWξ) ≤ Jred

ν0−σ(tW ) + oε(1) ∀ξ ∈ ∂Bε
0 ∩X.

Finally, since Jν0−σ < Jν0 strictly on compact subsets, we have that

max
t>0

Jred
ν0−σ(tW ) = max

t>0
Jν0−σ(tW + Jν0−σ(tW ))

< max
t>0

Jν0(tW + Jν0−σ(tW ))

≤ max
t>0

Jred
ν0

(tW ) = γ(Jν0),

which completes the proof.

Proposition 6.2. We have that

lim sup
ε→0

γε ≤ γ(Jν0).

Proof. It suffices to show that

lim sup
ε→0

max
ξ∈Bε

0
∩X

Φred
ε (pε(ξ)) ≤ γ(Jν0). (6.2)

In the following we take a sequence ε = εn → 0, but we drop the sub-index n for the sake

of clarity. For every ε, there exists a maximum point ξε ∈ Bε
0 ∩X such that

max
ξε∈Bε

0
∩X

Φred
ε (pε(ξ)) = Φred

ε (pε(ξε)).

And we see that

Φred
ε (pε(ξε)) ≤

1

2

(
‖tεWξε‖

2 − ‖hε(tεWξε)‖
2
)
+

1

2

∫

R3

Vε(x)|tεWξε + hε(tεWξε)|
2dx

−

∫

Bε
1

F (|tεWξε + hε(tεWξε)|)dx,
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where tε = tξε,ε. Since we have {tε} is bounded (up to a subsequence), we can assume

that tε → t0 and εξε → ξ0 ∈ B0 ∩X . Then we can conclude that

Φred
ε (pε(ξε)) ≤

1

2

(
‖t0W‖2 − ‖JV (ξ0)(t0W )‖2

)
+
V (ξ0)

2

∫

R3

|t0W + JV (ξ0)(t0W )|2dx

−

∫

R3

F (|t0W + JV (ξ0)(t0W )|)dx+ oε(1)

= Jred
V (ξ0)

(t0W ) + oε(1).

Notice that V (ξ0) ≤ ν0, then

Jred
V (ξ0)(t0W ) ≤ max

t>0
Jred
ν0 (tW ) = γ(Jν0),

and hence (6.2) holds.

In the next, we will show that γε is a critical value of Φε. Motivated by [8, 11], we are

going to give an estimate from below on γε and show that γε ≥ γ(Jν0) + oε(1). And in

order to do so, we need to compare γε with another auxiliary minimization value. Firstly,

set B3 = B(0, 3R1) the open ball of radius 3R1 and ζ : R3 → R
3 be a cut-off function

ζ(x) =

{
x if |x| < 3R1,

3R1x/|x| if |x| ≥ 3R1,
(6.3)

and letQε : R
3 → X be defined asQε(x) = PX(ζ(εx)). Then, let us define the barycenter

type functional Bε : E \ {0} → R,

Bε(u) =

∫
R3 Qε(x)|u|

θdx∫
R3 |u|θdx

, for u ∈ E \ {0}

where θ ∈ (2, 3) is the constant in (f2). Recall that (Φred
ε , hε) is the reduction couple for

Φε and M+(Φε) =
{
w ∈ E+ \ {0} : DΦred

ε (w)[w] = 0
}

, let us consider the following

subset of functions in M+(Φε):

M̃+(Φε) =
{
w ∈ M+(Φε) : Bε(w) = 0

}
.

We also define the corresponding auxiliary minimization

bε ≡ inf
w∈M̃+(Φε)

Φred
ε (w). (6.4)

When X is trivial, i.e. X = {0}, we have M̃+(Φε) = M+(Φε) and then bε = γε.

The next lemma shows that bε is well-defined in general.

Lemma 6.3. There exists ε0, ̺ > 0 such that for ε ∈ (0, ε0),

γε ≥ bε ≥ ̺.
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Technically, the crucial difference with the barycenter quantity defined in [8,11] is that

the integrations in Bε are taken over the whole space R3. The reason is twofold: firstly, the

orthogonal projections associated to the decompositionE = E+⊕E− are of convolution

type with some tempered distributions ρ± (see an abstract result in [27] for operators that

commutes with translations), and thus, making the choice of compact-supported functions

in E± by simply multiplying smooth cut-off functions would be in our situation hopeless

since the convolution with ρ± do not commute with the multiplication in general. Sec-

ondly, the barycenter of an element w ∈ E+ does not exhibit the location of the mass of

those u ∈ E with u+ = w. Therefore, it is not enough if we only consider the barycenter

integrations over a bounded domain as was introduced in [8, 11].

Proof of Lemma 6.3. Since bε ≥ ̺ follows directly from (f1)− (f3) for some ̺ > 0, we

only need to prove that γε ≥ bε for all small ε.

Motivated by [8], let us take an arbitrary ϕ ∈ Γε. We define ψε : B0 ∩X → X as

ψε(ξ) = Bε

(
ϕ(pε(ξ/ε))

)
.

We point out here that, by the definition of Γε, ϕ(pε(ξ/ε)) 6= 0 for all ξ ∈ B0 ∩X , and so

ψε is well defined.

For ξ ∈ ∂B0 ∩X , it can be seen from the definition of Bε that

ψε(ξ) = ξ + oε(1) uniformly in ξ ∈ ∂B0 ∩X, as ε→ 0.

Therefore we can choose ε0 small enough (independent of ϕ) so that, for all ε ∈ (0, ε0),

deg(ψε, B0 ∩X, 0) = deg(id, B0 ∩X, 0) = 1.

Then we can conclude that for every ε, there exists ξε ∈ B0 ∩X such that ψε(ξε) = 0.

Therefore, since ξε/ε ∈ Bε
0 ∩X , there follows

max
ξ∈Bε

0
∩X

Φred
ε (ϕ(pε(ξ))) ≥ Φred

ε (ϕ(pε(ξε/ε))) ≥ bε,

which concludes the proof.

Proposition 6.4. We have that

lim inf
ε→0

bε ≥ γ(Jν0).

The proof of this proposition contains the main difficulties of the paper. It will be pre-

sented in the next section. Assuming the conclusion for the moment, jointly with Propo-

sition 6.2, we can obtain the following
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Proposition 6.5. We have that

lim
ε→0

γε = γ(Jν0).

From Proposition 6.1 and 6.5, we can get γε > Φred
ε (pε(·))

∣∣
∂Bε

0
∩X for all small ε > 0.

Recall that we have restricted κ ∈ [0, κ̄), it follows that κ2 · γ(Jν0) <
(

a2−|V |2∞
a2

) 3

2 S
3
2

6

which guarantees the compactness. Thus, by Proposition 5.3, we easily obtain

Theorem 6.6. There exists ε0 > 0 such that for ε ∈ (0, ε0) there exists a solution zε of

the problem (5.5). Moreover, Φred
ε (z+ε ) = Φε(zε) = γε.

7 Proof of Proposition 6.4

The proof will be divided into several parts. As a first step, we prove the existence of a

minimizer uε to be auxiliary problem (6.4).

Lemma 7.1. There exists ε0 > 0 such that for any ε ∈ (0, ε0), there exist uε ∈ E \ {0}

with Bε(u
+
ε ) = 0 and λε ∈ X such that

− iα · ∇uε + aβuε + Vε(x)uε = gε(x, |uε|)uε +
(
λε ·Qε(x)|u

+
ε |

θ−2u+ε
)+

(7.1)

and

Φε(uε) = bε.

Moreover, the sequence {uε} is bounded in E.

Proof. We sketch the proof as follows. For ε > 0 fixed, by the Ekeland variational princi-

ple, there exists a sequence {wn} ⊂ M̃+(Φε) which is a constrained (PS)-sequence for

Φred
ε at level bε, moreover, it can be deduced that there exists {λn} ⊂ X such that

Φred
ε (wn) → bε, as n→ ∞, (7.2)

DΦred
ε (wn)−

(λn ·Qε(x)|wn|
θ−2wn)

+

|wn|
θ
θ

→ 0, as n→ ∞. (7.3)

Now, let us set un = wn + hε(wn). Since Bε(u
+
n ) = Bε(wn) = 0, by (7.2) and (7.3),

repeating the arguments of Lemma 5.2, we get that {un} is bounded in E (uniformly with

respect to ε) and, therefore, up to a subsequence, it converges weakly to some uε ∈ E.

Since we have assumed 0 ≤ κ < κ̄, it follows that bε ≤ γε ≤ γ(Jν0) + oε(1) ≤ γ(J~µV
)

for small ε. By Proposition 5.3, {un} converges strongly in E, i.e. un → uε as n → ∞.

Note that uε 6= 0, lim infε→0 bε > 0, also the sequence λn is bounded, we have uε is the

desired minimizer and this concludes the proof.

Lemma 7.2. We have that u+ε χBε
2

is non-vanishing.
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Proof. We only consider the case κ > 0 since it is much easier when κ = 0. To the

contrary, we assume that u+ε χBε
2

vanishes. Then we have u+ε χBε
2
→ 0 in Lq for all q ∈

(2, 3). At this point we first claim that

u+ε χBε
2
6→ 0 in L3. (7.4)

Accepting this fact for the moment, let us consider the function

t 7→ Φε(tu
+
ε )

and denote tε > 0 the unique maximum point which realizes its maximum. Then {tε} is

bounded. Set zε = tεu
+
ε ∈ E+, we have that DΦε(zε)[zε] = 0 and hence

‖zε‖
2 +

∫

R3

Vε(x)|zε|
2dx =

∫

R3

(1− χε(x))f̃(|zε|)|zε|
2dx+ κ

∫

R3

χε(x)|zε|
3dx+ oε(1).

Since u+ε χBε
2
6→ 0 in L3, similarly as that was argued in Proposition 5.3, we soon have

that

κ3
∫

R3

χε(x)|zε|
3dx+ oε(1) ≥

(a2 − (|V |∞ + δ0)
2

a2

) 3

2

S
3

2 .

And hence, thanks to our choice of κ ∈ (0, κ̄), we get

κ2Φε(zε) = κ2
(
Φε(zε)−

1

2
Φ′

ε(zε)[zε]
)

≥
(a2 − (|V |∞ + δ0)

2

a2

) 3

2 S
3

2

6
+ oε(1)

> κ2γ(J~µV
).

Therefore, we have that

γ(J~µV
) < Φε(zε) ≤ max

t>0
Φred

ε (tu+ε ) = bε ≤ γ(Jν0) as ε → 0

which is impossible due to Lemma 4.2.

Now, it remains to show (7.4) is valid. Indeed, it follows from Lemma 7.1 that, for

some C > 0,

bε = Φε(uε) = max
t>0

Φred
ε (tu+ε ) ≥ max

t>0
Φε(tu

+
ε )

≥ max
t>0

[ t2
2

(
1−

|V |∞ + δ0
a

)
‖u+ε ‖

2 − Cκt3
∫

Bε
2

|u+ε |
3dx
]
.

Then, if u+ε χBε
2
→ 0 in L3 as ε → 0, we can choose T0 > 0 (independent of ε) large

enough such that Φε(T0u
+
ε ) > 2γ(J~µV

) for all small ε > 0, and we soon have that

lim inf
ε→0

bε ≥ lim inf
ε→0

Φε(T0u
+
ε ) > γ(J~µV

)

which is absurd.
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Lemma 7.3. We have that {λε} ⊂ X is bounded.

Proof. Let us assume that λε 6= 0, otherwise we are done. In the sequel, let us set λ̃ε =

λε/|λε|. By elliptic regularity arguments we have that uε ∈ ∩q≥2W
1,q(R3,C4) and then,

jointly with Proposition 3.2, we are allowed to multiply (7.1) by ∂λ̃ε
uε. Then, we have

Re

∫

R3

(
− iα · ∇uε + aβuε + Vε(x)uε − gε(x, |uε|)uε

)
· ∂λ̃ε

uε dx

= Re

∫

R3

λε ·Qε(x)|u
+
ε |

θ−2u+ε · ∂λ̃ε
u+ε dx.

(7.5)

Now, let us evaluate each term of the previous equality. We get

0 = Re

∫

R3

∂λ̃ε

[
(−iα · ∇uε) · uε

]
dx = 2Re

∫

R3

(−iα · ∇uε) · ∂λ̃ε
uεdx

and so

Re

∫

R3

(−iα · ∇uε) · ∂λ̃ε
uεdx = 0 (7.6)

Analogously, we have

0 =

∫

R3

∂λ̃ε

[
Vε(x)|uε|

2
]
dx

= ε

∫

R3

∂λ̃ε
V (εx)|uε|

2dx+ 2Re

∫

R3

Vε(x)uε · ∂λ̃ε
uεdx

and so

Re

∫

R3

Vε(x)uε · ∂λ̃ε
uεdx = −

ε

2

∫

R3

∂λ̃ε
V (εx)|uε|

2dx = O(ε). (7.7)

It also follows that

Re

∫

R3

aβuε · ∂λ̃ε
uεdx = 0. (7.8)

For the nonlinear part, let us recall the definition of Gε,

∂λ̃ε
Gε(x, |uε|) = ε∂λ̃ε

χ(εx)
(
F (|uε|)− F̃ (|uε|)

)
+ Re gε(x, |uε|)uε · ∂λ̃ε

uε,

then we have

0 =

∫

R3

∂λ̃ε

[
Gε(x, |uε|)

]
dx

= ε

∫

R3

(
F (|uε|)− F̃ (|uε|)

)(
∂λ̃ε

χ(εx)
)
dx+ Re

∫

R3

gε(x, |uε|)uε · ∂λ̃ε
uεdx

and it follows that

Re

∫

R3

gε(x, |uε|)uε · ∂λ̃ε
uεdx = O(ε). (7.9)
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Finally

0 =

∫

R3

∂λ̃ε

[
λε ·Qε(x)|u

+
ε |

θ
]
dx

= ε|λε|

∫

Bε
3

|u+ε |
θdx+ ε|λε|

∫

R3\Bε
3

R3

ε|x|

[
1−

(λε · x)
2

|λε|2|x|2

]
|u+ε |

θdx

+ θRe

∫

R3

λε ·Qε(x)|u
+
ε |

θ−2u+ε · ∂λ̃ε
u+ε dx

Observe that 0 ≤ ∂λ̃ε
λε · Qε(x) ≤ ε|λε| for all x ∈ R3 \ Bε

3; this is the key point of our

estimates. And hence

Re

∫

R3

λε ·Qε(x)|u
+
ε |

θ−2u+ε · ∂λ̃ε
u+ε dx = −

ε|λε|

θ

∫

Bε
3

|u+ε |
2dx

−
ε|λε|

θ

∫

R3\Bε
3

R3

ε|x|

[
1−

(λε · x)
2

|λε|2|x|2

]
|u+ε |

2dx.

(7.10)

By (7.5)-(7.10) and Lemma 7.2, we conclude the boundedness of λε ∈ X .

In what follows, we consider a sequence εk → 0 and assume that λεk → λ̄ ∈ X . For

simplicity, we still denote εk by ε. For a small δ > 0, let us define

Hε =
{
x ∈ R

3 : λ̄ ·Qε(x) ≤ δ
}
.

The next proposition gives a complete description of uε as ε → 0. We recall the

notations B2 = B(0, 2R1) and B3 = B(0, 3R1).

Proposition 7.4. Passing to a subsequence if necessary, there exist y1ε ∈ Hε, y1 ∈ B2 and

u1 ∈ E \ {0} with

−iα · ∇u1 + aβu1 + V (y1)u1 = g(y1, |u1|)u1,

such that λ̄ · y1 = 0 and

εy1ε → y1, ‖uε − u1(· − y1ε)‖ → 0 as ε→ 0.

Proof. We divide the proof into different steps:

Step 1. u+ε |Hε
6→ 0 in the L2-norm and Lθ-norm.

Let us first show that u+ε 6→ 0 in Lθ(Hε). Suppose contrarily that

∫

Hε

|u+ε |
θdx→ 0, as ε→ 0.
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Since Bε(u
+
ε ) = 0 and λ̄ ∈ X , we have

0 =

∫

R3

λ̄ ·Qε(x)|u
+
ε |

θdx =

∫

Hε

λ̄ ·Qε(x)|u
+
ε |

θdx+

∫

Hc
ε

λ̄ ·Qε(x)|u
+
ε |

θdx

≥ δ

∫

Hc
ε

|u+ε |
θdx+

∫

Hε

λ̄ ·Qε(x)|u
+
ε |

θdx.

Therefore

δ

∫

Hc
ε

|u+ε |
θdx ≤

∣∣∣
∫

Hε

λ̄ ·Qε(x)|u
+
ε |

θdx
∣∣∣ ≤ |λ̄|R3

∫

Hε

|u+ε |
θdx

and so ∫

Hc
ε

|u+ε |
θdx→ 0, as ε→ 0.

Then we get u+ε → 0 in Lθ which is a contradiction with Lemma 7.2. Now, by the

boundedness of {uε} in E and so in L3, we can conclude by interpolation: for a suit-

able µ ∈ (0, 1)

0 < c ≤ ‖u+ε ‖Lθ(Hε) ≤ ‖u+ε ‖
µ
L2(Hε)

‖u+ε ‖
1−µ
L3(Hε)

≤ C‖u+ε ‖
µ
L2(Hε)

.

Step 2. Passing to be limit by concentration-compactness.

By Step 1, we can conclude that {u+ε |Hε
} is non-vanishing. And hence, by concentration-

compactness arguments (see [34]), there exist y1ε ∈ Hε and r > 0 such that

∫

B(y1ε ,r)∩Hε

|u+ε |
2 ≥ c > 0.

Therefore there exits u1 ∈ E \ {0} such that v1ε = uε(·+ y1ε)⇀ u1 in E.

Claim 7.1. {εy1ε} is bounded and, up to a subsequence, εy1ε → y1 ∈ B2 as ε→ 0.

To see this, let us assume that εy1ε 6∈ B2 and dist(εy1ε , ∂B2)/ε → ∞. Observe that v1ε
solves the equation

−iα ·∇v1ε+aβv
1
ε+V (εx+εy

1
ε)v

1
ε = g(εx+εy1ε , |v

1
ε |)v

1
ε+
(
λε ·Qε(x+y

1
ε)|v

1+
ε |θ−2v1+ε

)+
,

and if we assume that V (εy1ε) → ν1 as ε→ 0 (passing to a subsequence), we have that u1

is a weak solution of

− iα · ∇u+ aβu+ ν1u = f̃(|u|)u+
(
λ̄ · ỹ1|u

+|θ−2u+
)+

(7.11)

where ỹ1 ∈ B3 is given by

ỹ1 =





lim
ε→0

εy1ε if εy1ε ∈ B3,

lim
ε→0

3R1y
1
ε

|y1ε |
if εy1ε ∈ Bc

3.
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Since y1ε ∈ Hε, we have that λ̄ · ỹ1 ≤ δ and, by the definition of f̃ , we easily get that

λ̄ · ỹ1 > 0 (otherwise u+1 should be 0). Now we let Φ̃1 : E → R denote the associated

energy functional for (7.11), that is

Φ̃1(u) =
1

2

(
‖u+‖2 − ‖u−‖2

)
+
ν1
2
|u|22 −

∫

R3

F̃ (|u|)dx−
λ̄ · ỹ1
θ

∫

R3

|u+|θdx.

Remark that, for any u ∈ E with u+ 6= 0 and arbitrary v ∈ E, there holds that

λ̄ · ỹ1

∫

R3

|u+|θ−2|v+|2dx+ (θ − 2)λ̄ · ỹ1

∫

R3

|u+|θ−2
(
|u+|+

Re u+ · v+

|u+|

)2
dx > 0.

As a consequence of [1, Theorem 5.1] (see also [19, Lemma 4.6]), we have that Theo-

rem 3.3 applies to the situation here. So, we can take (Φ̃red
1 , h̃1) to be the reduction couple

for Φ̃1 and let γ̃1 stand for the critical level realized by u1, we then have

γ̃1 = Φ̃red
1 (u+1 ) = max

t>0
Φ̃red

1 (tu+1 ) ≥ max
t>0

Φ̃1(tu
+
1 )

≥ max
t>0

t2

2

(
‖u+1 ‖

2 − (|V |∞ + δ0)|u1|
2
2

)
−
λ̄ · ỹ1
θ

tθ
∫

R3

|u+1 |
θdx

≥ max
t>0

t2

2

(
‖u+1 ‖

2 − (|V |∞ + δ0)|u1|
2
2

)
−
δ

θ
tθ
∫

R3

|u+1 |
θdx.

Since ‖u1‖ ≤ ‖v1ε‖ = ‖uε‖ < ∞, we can conclude that γ̃1 > 2γ(Jν0) provided that δ is

fixed small enough. However, by Fatou’s lemma, we get

γ̃1 = Φ̃1(u1)−
1

2
DΦ̃1(u1)[u1] =

∫

R3

1

2
f̃(|u1|)|u1|

2 − F̃ (|u1|)dx+
(1
2
−

1

θ

)
λ̄ · ỹ1|u

+
1 |

θ
θ

≤

∫

R3

1

2
f̃(|u1|)|u1|

2 − F̃ (|u1|)dx+O(δ)

≤ O(δ) + lim inf
ε→0

∫

R3

1

2
g(εx+ εy1ε , |v

1
ε |)|v

1
ε |

2 −G(εx+ εy1ε , |v
1
ε |)dx

= O(δ) + lim inf
ε→0

Φε(uε) ≤ 2γ(Jν0)

which is impossible. This proves the claim.

Now by Claim 7.1, passing to the limit, we have u1 is a weak solution of

−iα · ∇u1 + aβu1 + V (y1)u1 = g(y1, |u1|)u1 +
(
λ̄ · y1|u

+
1 |

θ−2u+1
)+
,

with εy1ε → y1 ∈ B2 such that λ̄ · y1 ≤ δ and there exits c̄ > 0 such that

‖uε‖ ≥ ‖u1‖ ≥ c̄ > 0.

Let us define z1,ε = uε − u1(· − y1ε). We consider two possibilities: either ‖z+1,ε‖ → 0 or

not. In the first case the proposition should be proved. In the second case, there are two

sub-cases: either z+1,ε|Hε
→ 0 in the Lθ-norm or not.
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Step 3. Assume that z+1,ε|Hε
6→ 0 in the Lθ-norm.

In this case, we can repeat the previous argument to the sequence {z1,ε} to obtain

y2ε ∈ Hε such that ∫

B(y2ε ,r)∩Hε

|z+1,ε|
2 ≥ c > 0.

Therefore there exists u2 ∈ E \ {0} such that v2ε = z1,ε(· + y2ε) ⇀ u2 in E. Moreover,

|y1ε − y2ε | → ∞, εy2ε → y2 ∈ B2, λ̄ · y2 ≤ δ and

−iα · ∇u2 + aβu2 + V (y2)u2 = g(y2, |u2|)u2 +
(
λ̄ · y2|u

+
2 |

θ−2u+2
)+
,

and ‖u2‖ ≥ c̄ > 0. Also, it follows from the weak convergence,

‖uε‖
2 ≥ ‖u1‖

2 + ‖u2‖
2.

Let us set z2,ε = uε − u1(· − y1ε)− u2(· − y2ε). Suppose that ‖z+2,ε‖ 6→ 0 and z+2,ε|Hε
6→ 0

in Lθ, then we can argue again as above. And it is all clear that there exists l ∈ N such

that, after repeating the above argument for l times, we can get that z+l,ε|Hε
→ 0 in the

Lθ-norm.

Step 4. ‖z+l,ε‖ → 0 as ε→ 0.

To the contrary let us assume that ‖z+l,ε‖ 6→ 0. Since Qε(·) is bounded, it follows from

a standard argument that

Re

∫

R3

λε ·Qε(x)|u
+
ε |

θ−2u+ε · ϕ+dx

=
l∑

j=1

λ̄ · yjRe

∫

R3

|u+j (· − yjε)|
θ−2u+j (· − yjε) · ϕ

+dx

+ Re

∫

R3

λε ·Qε(x)|z
+
l,ε|

θ−2z+l,ε · ϕ
+dx+ oε(1)‖ϕ‖,

uniformly for ϕ ∈ E as ε→ 0 and, particularly,

∫

R3

λε ·Qε(x)|u
+
ε |

θdx =
l∑

j=1

λ̄ · yj

∫

R3

|u+j |
θdx+

∫

R3

λε ·Qε(x)|z
+
l,ε|

θdx+ oε(1). (7.12)

Since Bε(u
+
ε ) = 0, together with Proposition 5.4, we can deduce from (7.12) that

oε(1) = ‖z+l,ε + hε(z
+
l,ε)‖

2 + Re

∫

R3

Vε(x)
(
z+l,ε + hε(z

+
l,ε)
)
·
(
z+l,ε − hε(z

+
l,ε)
)
dx

− Re

∫

R3

gε
(
x, |z+l,ε + hε(z

+
l,ε)|
)(
z+l,ε + hε(z

+
l,ε)
)
·
(
z+l,ε − hε(z

+
l,ε)
)
dx

−

∫

R3

λε ·Qε(x)|z
+
l,ε|

θdx.

(7.13)
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Therefore, by (f2) and Proposition 3.1, we obtain

‖z+l,ε + hε(z
+
l,ε)‖

2 ≤ C|z+l,ε + hε(z
+
l,ε)|

3
3 ≤ C ′‖z+l,ε + hε(z

+
l,ε)‖

3,

for some C,C ′ > 0 which implies there exists c > 0 such that ‖z+l,ε + hε(z
+
l,ε)‖ ≥ c. In

what follows, for simplicity of notation, we denote z̄l,ε = z+l,ε + hε(z
+
l,ε). By (7.13) again,

and a similar argument as in the proof of Lemma 5.2, we get that

‖z̄l,ε‖
2 ≤ Cθ

(∫

R3

χε(x)
(
f(|z̄l,ε|)|z̄l,ε|

2 − 2F (|z̄l,ε|)
)
dx
) 2

3

|z̄+l,ε − z̄−l,ε|3

+ C

∫

R3

λε ·Qε(x)|z̄
+
l,ε|

θdx+ oε(1)

≤ C ′
θ

(
2Φred

ε (z+l,ε)−DΦred
ε (z+l,ε)[z

+
l,ε]
) 2

3

‖z̄l,ε‖+ C

∫

R3

λε ·Qε(x)|z̄
+
l,ε|

θdx+ oε(1)

for some C,Cθ, C
′
θ > 0. Remark that z̄+l,ε = z+l,ε → 0 in Lθ(Hε). Then, it follows from

‖z̄l,ε‖ ≥ c and (f2) that there exists constant c′ > 0 (independent of R1) such that

lim inf
ε→0

(
Φred

ε (z+l,ε)−
1

2
DΦred

ε (z+l,ε)[z
+
l,ε]
)
≥ c′. (7.14)

Next, let us distinguish two possible situations.

• Case 1. λ̄ · yj ≥ 0 for all j = 1, . . . , l.

Since Bε(u
+
ε ) = 0, we have that

0 =

∫

Hε

λε ·Qε(x)|u
+
ε |

θdx+

∫

Hc
ε

λε ·Qε(x)|u
+
ε |

θdx.

By virtue of z+l,ε|Hε
→ 0 in the Lθ-norm and λ̄ · yj ≥ 0 for all j = 1, . . . , l, we know that

∫

Hε

λε ·Qε(x)|u
+
ε |

θdx→

l∑

j=1

λ̄ · yj

∫

R3

|u+j |
θdx ≥ 0,

whereas λε ·Qε(x) ≥
1
2
δ > 0 in Hc

ε . Thus we have

λ̄ · yj = 0, for all j = 1, . . . , l,

and so
δ

2

∫

Hc
ε

|u+ε |
θdx ≤

∫

Hc
ε

λε ·Qε(x)|u
+
ε |

θdx→ 0, as ε→ 0.

We also deduce from (7.12) that

∫

Hc
ε

λε ·Qε(x)|z
+
l,ε|

θdx→ 0, as ε→ 0.
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With all those information in hand, by Proposition 5.4, we can estimate the energy Φred
ε (u+ε )

as

Φred
ε (u+ε ) = Φred

ε (z+l,ε) +

l∑

j=1

T red
yj

(u+j ) + oε(1).

Moreover, we have that

DΦred
ε (u+ε )[u

+
ε ] = DΦred

ε (z+l,ε)[z
+
l,ε] +

l∑

j=1

DT red
yj

(u+j )[u
+
j ] + oε(1).

Since λ̄ · yj = 0 for all j = 1, . . . , l, we have u+j ’s are critical points of T red
yj

. And so, we

get the estimate

lim inf
ε→0

bε = lim inf
ε→0

Φred
ε (u+ε ) = lim inf

ε→0

(
Φred

ε (z+l,ε)−
1

2
DΦred

ε (z+l,ε)[z
+
l,ε]
)
+

l∑

j=1

T red
yj

(u+j ).

Recall that we have denoted z̄l,ε = z+l,ε + hε(z
+
l,ε), hence, by (7.14), we have

lim inf
ε→0

bε ≥ c′ +
l∑

j=1

T red
yj

(u+j ).

Since, by Lemma 5.1, we have that T red
yj

(w) ≥ Jred
V (yj)

(w), ∀w ∈ E+, for all j =

1, . . . , l, we can infer that

T red
yj

(u+j ) ≥ γ(JV (yj)), j = 1, . . . , l.

And therefore

lim inf
ε→0

bε ≥ l · min
j=1,...,l

γ(JV (yj)) + c′.

Remark that yj ∈ B2 = B(0, 2R1), by shrinking R1 if necessary, we can conclude from

the continuity of the map ν 7→ γ(Jν) that

∣∣γ(JV (yj))− γ(Jν0)
∣∣ < 1

2
c′ for all j = 1, . . . , l,

and then we obtain

lim inf
ε→0

bε ≥ γ(Jν0) +
1

2
c′ > γ(Jν0)

which contradicts to Proposition 6.2 and Lemma 6.3.

• Case 2. There exists {j1, . . . , jk} ⊂ {1, . . . , l} such that λ̄·yjm < 0 form = 1, . . . , k.

In this case, similar as that in Case 1, we can apply Proposition 5.4 to obtain

Φred
ε (u+ε ) =

(
Φred

ε (z+l,ε)−
1

2
DΦred

ε (z+l,ε)[z
+
l,ε]
)
+

l∑

j=1

(
T red

yj
(u+j )−

1

2
DT red

yj
(u+j )[u

+
j ]
)
+oε(1).
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By the definition of G(x, s), we have T red
yj

(u+j ) −
1
2
DT red

yj
(u+j )[u

+
j ] ≥ 0 for all j =

1, . . . , l. Then, we conclude that

Φred
ε (u+ε ) ≥

(
Φred

ε (z+l,ε)−
1

2
DΦred

ε (z+l,ε)[z
+
l,ε]
)

+
k∑

m=1

(
T red

yjm
(u+jm)−

1

2
DT red

yjm
(u+jm)[u

+
jm
]
)
+ oε(1). (7.15)

To evaluate the above inequality, let us denote M+(Tyjm ) =
{
w ∈ E+ \ {0} :

DT red
yjm

(w)[w] = 0
}

, form = 1, . . . , k, and tm > 0 be the unique point such that tmu
+
jm ∈

M+(Tyjm ). Observe that λ̄ · yjm < 0, by Step 2 and Step 3, we get that

DT red
yjm

(u+jm)[u
+
jm
]− λ̄ · yjm

∫

R3

|u+jm|
θdx = 0,

and hence we have tm < 1. Observe that, by applying Lemma 3.5, we have

T red
yjm

(u+jm)−
1

2
DT red

yjm
(u+jm)[u

+
jm] > T red

yjm
(tmu

+
jm)−

1

2
DT red

yjm
(tmu

+
jm)[tmu

+
jm].

Then, it follows from tmu
+
jm

∈ M+(Tyjm ) that

T red
yjm

(u+jm)−
1

2
DT red

yjm
(u+jm)[u

+
jm] > γ(JV (yjm )), for all m = 1, . . . , k.

Finally, by (7.14) and (7.15), we obtain the inequality

lim inf
ε→0

bε = lim inf
ε→0

Φred
ε (u+ε ) ≥ k · min

m=1,...,k
γ(JV (yjm )) + c′.

And therefore, as in Case 1, we conclude easily a contradiction.

Step 5. Complete description of uε as ε → 0.

As was argued in the previous steps, we know that there exists l ∈ N and, for any

j = 1, . . . , l, yjε ∈ Hε, yj ∈ B2 and uj ∈ E \ {0} such that

|yjε − yj
′

ε | → ∞, if j 6= j′,

εyjε → yj,

∥∥∥u+ε −

l∑

j=1

u+j (· − yjε)
∥∥∥→ 0,

DT red
yj

(u+j )− λ̄ · yj
(
|u+j |

θ−2u+j
)+

= 0.

Observe that there strictly holds

T red
yj

(u+j )−
1

2
DT red

yj
(u+j )[u

+
j ] > γ(JV (yj))

provided that λ̄ · yj < 0. Moreover, Lemma 4.2 implies that γ(JV (yj)) ≥ γ(Jν0) − σ for

any yj ∈ B2, where σ > 0 can be taken arbitrary small by appropriately shrinking R1.

Therefore, by Proposition 6.2 and Lemma 6.3, we conclude that l = 1 and λ̄ ·y1 = 0. And

thus we have ‖uε − u1(· − y1ε)‖ → 0 as ε → 0 which complete the proof.
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Corollary 7.5. y1 ∈ X⊥ and lim infε→0 bε ≥ γ(Jν0).

Proof. Since Bε(u
+
ε ) = 0, by Proposition 7.4, we get

0 =

∫

R3

Qε(x)|u
+
ε (x)|

θdx

=

∫

R3

PX(ζ(εx+ εy1ε))|u
+
ε (x+ y1ε)|

θdx→ PX(y1)

∫

R3

|u+1 |
θdx.

Then y1 ∈ X⊥, and we soon conclude

lim inf
ε→0

bε ≥ γ(JV (y1)) ≥ γ(Jν0).

This finishes the proof of Proposition 6.4.

8 Profile of the solutions

In this section, let us study the asymptotic behavior of the solution zε obtained in The-

orem 6.6. We will show that zε is actually a solution of the original problem (5.1), and

consequently, we can complete the proof of Theorem 2.1.

Let us recall that zε is the critical point of Φε at level γε, that is,

− iα · ∇zε + aβzε + Vε(x)zε = gε(x, |zε|)zε. (8.1)

Moreover, Proposition 6.5 implies that Φε(zε) → γ(Jν0) as ε→ 0.

In what follows, we will give the asymptotic behavior of zε as ε→ 0.

Proposition 8.1. Given a sequence εj → 0, up to a subsequence, there exists {yεj} ⊂ R
3

such that

εjyεj → 0, ‖zεj − Z(· − yεj)‖ → 0,

where Z ∈ Lν0 (see (5.9)).

Proof. For the sake of clarity, let us write ε = εj . Our argument here has been used

already in the previous section, so we will be sketchy. First of all, analogous to Proposition

7.4, we can conclude that: there exist ȳ1ε ∈ R3, ȳ1 ∈ B2 and z1 ∈ E \ {0} with

−iα · ∇z1 + aβz1 + V (ȳ1)z1 = g(ȳ1, |z1|)z1,

such that

εȳ1ε → ȳ1, ‖zε − z1(· − y1ε)‖ → 0 as ε→ 0.

So, the only thing that need to be proved is that ȳ1 = 0.
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By regularity arguments, {zε} ⊂ ∩q≥2W
1,q(R3,C4). For arbitrary ξ ∈ R3, multiplying

(8.1) by ∂ξzε and integrating, we get

−
ε

2

∫

R3

∂ξV (εx)|zε|
2dx+ ε

∫

R3

(
F (|zε|)− F̃ (|zε|)

)
∂ξχ(εx)dx = 0. (8.2)

And if χ is C1 around ȳ1, we shall divide by ε and pass to the limit to obtain

−
∂ξV (ȳ1)

2

∫

R3

|z1|
2dx+ ∂ξχ(ȳ1)

∫

R3

(
F (|z1|)− F̃ (|z1|)

)
dx = 0. (8.3)

At this point, similar as that in [8], we consider three different cases.

• Case 1. ȳ1 ∈ B1.

By (8.3), we get that ∂ξV (ȳ1) = 0. Since ξ ∈ R3 is arbitrary, ȳ1 is a critical point of V

in B1, and therefore ȳ1 = 0.

• Case 2. ȳ1 ∈ B2 \B1.

In this case, let us first fix ξ = 1
|ȳ1| ȳ1. By the definition of χ (see (5.4)), we have that

∂ξχ(ȳ1) = −1/R1.

Now, using (f3) and the fact F̃ (s) ≤ δ0
2
s2, it follow easily that there exists a constant

c > 0 (which is independent of the choice of δ0) such that
∫

R3

F (|z1|)dx ≥ c,

and so by the boundedness of z1 ∈ E (see an argument of Lemma 5.2) we get

c′
∫

R3

|z1|
2dx ≤

∫

R3

(
F (|z1|)− F̃ (|z1|)

)
dx.

Thus, it suffices to take R1 smaller, if necessary, to get a contradiction with (8.3).

• Case 3. ȳ1 ∈ ∂B2.

In this case, observe that χ(ȳ1) = 1, and so z1 is a solution of

−iα · ∇z1 + aβz1 + V (ȳ1)z1 = f(|z1|)z1.

Since Jred
V (ȳ1)

(z+1 ) = JV (ȳ1)(z1) = γ(Jν0), Lemma 4.2 implies that V (ȳ1) = ν0. Then, by

(5.3), there exists τ ∈ R3 tangent to ∂B1 at ȳ1 such that ∂τV (ȳ1) 6= 0.

Remark that χ is not C1 on ∂B1, let us go back to consider (8.2). Take ξ = τ and r <

R1, we can estimate by the dominated convergence theorem and the strong convergence

of zε(·+ ȳ1ε) that

∣∣∣
∫

R3

∂τχ(εx)
[
F (|zε|)− F̃ (|zε|)

]
dx
∣∣∣

≤
1

R1

∫

B(0,r/
√
ε)

[ |x · τ |

|x+ ȳ1ε |
+

|ȳ1ε · τ |

|x+ ȳ1ε |

][
F (|zε(x+ ȳ1ε)|)− F̃ (|zε(x+ ȳ1ε)|)

]
dx

+
1

R1

∫

R3\B(0,r/
√
ε)

|(x+ ȳ1ε) · τ |

|x+ ȳ1ε |

[
F (|zε(x+ ȳ1ε)|)− F̃ (|zε(x+ ȳ1ε)|)

]
dx→ 0.
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Dividing by ε and passing to the limit in (8.2), we can conclude

1

2
∂τV (ȳ1)

∫

R3

|z1|
2dx = 0,

a contradiction.

Complete proof of Theorem 2.1. It suffices to show that |zε(x)| → 0 uniformly in R3 \Bε
1

as ε → 0. In fact, from the regularity argument in [17, Lemma 3.19], we have that there

exists C > 0 (independent of ε) such that |zε|∞ ≤ C. Then we can use elliptic esitmate

to get

|zε(x)| ≤ C0

∫

B(x,1)

|zε(y)|dy

with C0 > 0 independent of both ε and x ∈ R3. And thus, by Proposition 8.1, we have

that for any x ∈ R3 \Bε
1,

|zε(x)| ≤ C0

(∫

B(x,1)

|zε|
2

)1/2

≤ C0

(∫

R3

∣∣zε − Z(· − yε)
∣∣2
)1/2

+ C0

(∫

B(x,1)

∣∣Z(· − yε)
∣∣2
)1/2

→ 0,

as ε → 0. Finally, by the decay estimates obtained in [18, Lemma 4.2], it is standard to

prove that there exists C, c > 0 independent of ε such that

|zε(x)| ≤ C exp
(
− c|x− yε|

)
.

This concludes the whole proof.

A Appendix

Here we sketch the proof of Proposition 5.4. Firstly for later use let us point out that,

under the assumptions of Proposition 5.4, V (ε · +yε) → V (y) in L∞
loc(R

N) as ε → 0.

Now, denote V 0
ε (x) = V (εx+ yε)− V (y), we soon have

Φε,yε(u) = Ty(u) +
1

2

∫

R3

V 0
ε (x)|u|

2dx−

∫

R3

(
G(εx+ yε, |u|)−G(y, |u|)

)
dx (A.1)

for all u ∈ E. We also remark that, for arbitrary w ∈ E+ and v ∈ E−, by setting

ṽ = v−hε,yε(w) and ℓ(t) = Φε,yε

(
w+hε,yε(w)+tṽ

)
, one has ℓ(1) = Φε,yε(w+v), ℓ(0) =

Φε,yε

(
w + hε,yε(w)

)
and ℓ′(0) = 0. Hence we deduce ℓ(1) − ℓ(0) =

∫ 1

0
(1 − s)ℓ′′(s)ds.

And consequently, we have

∫ 1

0

(1− s)Ψ′′
ε,yε

(
w + hε,yε(w) + sṽ

)
[ṽ, ṽ] ds

+
1

2
‖ṽ‖2 +

1

2

∫

RN

V (εx+ yε)|ṽ|
2dx = Φε,yε

(
w + hε,yε(w)

)
− Φε,yε(z + v),

(A.2)
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where, for notation convenience, we denote Ψε,y(u) ≡
∫
R3 G(εx + y, |u|)dx for u ∈ E

and y ∈ R3.

Observe that assertion (1) follows directly from [19, Lemma 4.3] and that assertion (3)

can be viewed as an immediate corollary of assertion (2). Hence, to complete the proof,

it suffices to show that, as ε → 0,
{
yε → y in R

3

wε ⇀ w in E+
=⇒ ‖hε,yε(wε)− hε,yε(wε − w)− hy(w)‖ = oε(1). (A.3)

To this end, we first claim that

yε → y in R
3 and uε ⇀ u in E as ε → 0

=⇒ Φε,yε(uε)− Φε,yε(uε − u)− Φε,yε(u) = oε(1) as ε→ 0.
(A.4)

This can be proved similarly as (5.8) in Proposition 5.3, therefore we omit the details. We

only point out here that, for the nonlinear part, it suffices to check
∫

R3

(
G1(εx+ yε, |uε|)−G1(εx+ yε, |uε − u|)−G1(εx+ yε, |u|)

)
dx = oε(1)

where G1(x, s) = G(x, s) − κ
3
χ(x)s3. Since G1 is subcritical, the proof follows from a

standard argument in [12, Lemma 7.10].

As a direct consequence of (A.4), we soon conclude that

For any sequence wε ⇀ 0 in E+, we have that hε,yε(wε)⇀ 0 in E−. (A.5)

Indeed, notice that hε,yε(wε) is bounded (see Theorem 3.3), we may assume up to a sub-

sequence that hε,yε(wε) ⇀ u0 ∈ E−. Then uε ≡ wε + hε,yε(wε) ⇀ u0. Now, remark that

Ψε,yε ≥ 0, we conclude from (A.4) that

a− |V |∞
2a

‖u0‖
2 ≤ − Φε,yε(u0) = Φε,yε(uε − u0)− Φε,yε(uε) + oε(1) ≤ oε(1)

as ε→ 0. And hence u0 = 0.

Now we are ready to show (A.3). Let wε ⇀ w in E+. We may assume hε,yε(wε) ⇀ v

in E−. By (A.5), there holds hε,yε(wε − w) ⇀ 0. Using (A.4) and assertion (1) (i.e. the

fact that hε,yε(w) → hy(w) as ε→ 0), we conclude that

Φε,yε

(
wε + hε,yε(wε)

)
= Φε,yε(w + v) + Φε,yε

(
wε − w + hε,yε(wε)− v

)
+ oε(1)

≤ Φε,yε

(
w + hε,yε(w)

)
+ Φε,yε

(
wε − w + hε,yε(wε − w)

)
+ oε(1)

= Φε,yε

(
w + hy(w)

)
+ Φε,yε

(
wε − w + hε,yε(wε − w)

)
+ oε(1)

= Φε,yε

(
wε + hε,yε(wε − w) + hy(w)

)
+ oε(1)

as ε→ 0. Now use (A.2), we can deduce that

a− |V |∞
2a

‖hε,yε(wε)− hε,yε(wε − w)− hy(w)‖
2 ≤ oε(1)

and hence (A.3) is proved.
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