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1. Introduction

After the classical results due to Brezis and Nirenberg ([2]), many papers were devoted
to critical minimization problems on W 1,p(Ω) (1 < p < ∞) or on some subspaces. See
e.g. the list of references in [10].

When p = 1, it is necessary to replace W 1,1(Ω) by BV (Ω), the space of integrable
functions with bounded variations on Ω. We know only 3 papers devoted to critical
minimization problems on BV (Ω) : [1], [5] and [7]. The critical trace problem in BV (Ω),
treated in [8], is different since it is convex. We exclude this problem.

The existence of optimal functions for the sharp Poincaré inequality

c

∥∥∥∥u− 1

m(Ω)

∫
Ω

u dx

∥∥∥∥
LN/(N−1)(Ω)

≤ ||Du||Ω

is proved in [5] when Ω is a ball or a sphere and in [1] when Ω is a bounded domain
with C2 boundary. The proof in [5] uses a specific isoperimetric inequality and in [1]
the concentration-compactness principle in BV (Ω). When Ω ⊂ R2, the results in [1]
solve a problem of [3].

The minimization problem
inf

[
||Du||Ω +

∫
Ω

a|u|dx+

∫
∂Ω

|u|dσ
]

u ∈ BV (Ω), ||u||LN/(N−1)(Ω) = 1,

is treated in [7] using approximation by subcritical problems and the concentration-

compactness principle in BV (Ω). The penalization term

∫
∂Ω

|u|dσ replaces the Dirichlet

boundary condition (see [7] and [11]). See also [6] and [15] for the existence of critical
points.

A general existence theorem for subcritical minimization problems on BV (Ω) is
contained in [11].

In this paper, we solve critical minimization problems on BV (Ω) by using a new
elementary lemma (Lemma 3.2) or a variant (Lemma 4.1). This method is also appli-
cable to critical minimization problems on W 1,p(Ω) (1 < p < ∞) (see Lemma 5.1), is
rather simple and avoids any concentration-compactness type argument.

In section 2 we recall some basic properties of functions of bounded variations (see
[10] and [16]).
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2. Functions of bounded variations

Let Ω be an open subset of RN . The variation of u ∈ L1
loc(Ω) is defined by

||Du||Ω = sup

{∫
Ω

u div v dx : v ∈ D(Ω,RN), ||v||∞ ≤ 1

}
where

||v||∞ = sup
x∈Ω

(
N∑

k=1

(vk(x))2

)1/2

.

The variation is lower semi-continuous.

un

L1
loc(Ω)
−→ u⇒ ||Du||Ω ≤ lim

n→∞
||Dun||Ω.

On
BV (Ω) = {u ∈ L1(Ω) : ||Du||Ω <∞}

we define the norm
||u||BV (Ω) = ||Du||Ω + ||u||L1(Ω)

and the distance of strict convergence

d(f, g) =
∣∣∣||Df ||Ω − ||Dg||Ω∣∣∣+ ||f − g||L1(Ω).

The sequence (un) converges weakly to u in BV (Ω) (written un ⇀ u) if

||un − u||L1 → 0, n→∞,

∂kun ⇀ ∂ku in [C0(Ω)]∗, n→∞, 1 ≤ k ≤ N.

where [C0(Ω)]∗ denotes the space of finite measures on Ω.
It is clear that

norm convergence⇒ strict convergence⇒ weak convergence.

We now assume that Ω is a bounded domain of RN (N ≥ 2) with Lipschitz boundary.
Let us recall (see [10]) that, for every u ∈ BV (Ω), the trace of u, γ0(u), belongs to
L1(∂Ω) and that the extension by 0

u0(x) = u(x), x ∈ Ω,

= 0, x ∈ RN\{0},

belongs to BV (RN). Moreover,

||Du0||RN = ||Du||Ω +

∫
∂Ω

|γ0(u)|dσ
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defines an equivalent norm on BV (Ω). The space W 1,1(Ω) is dense in BV (Ω) with
respect to the strict convergence (not the norm convergence!) and the trace operator
γ0 : BV (Ω) → L1(∂Ω) is continuous with respect to the strict convergence (not the
weak convergence!).

We will also denote by u the trace of u and the extension of u by 0.
Let us denote by 1∗ the critical exponent N/(N − 1) and by VN the volume of the

unit ball in RN . The following inequality is due to Cherrier [4].

Theorem 2.1. For every ε > 0 there exists cε > 0 such that, for all u ∈ BV (Ω),

(N(VN/2)1/N − ε)||u||L1∗ (Ω) ≤ ||Du||Ω + cε||u||L1(Ω).

Let us recall that, for 1 ≤ p < 1∗, the imbedding BV (Ω) ⊂ Lp(Ω) is compact and
that the imbedding BV (Ω) ⊂ L1∗(Ω) is continuous (but not compact!).

We will also need the sharp Gagliardo-Nirenberg inequality due to Mazýa and Fed-
erer and Fleming (see [14]):

Theorem 2.2. For every u ∈ L1∗(RN),

NV
1/N
N ||u||L1∗ (RN ) ≤ ||Du||RN .

Moreover equality holds if and only if u is the characteristic function of a ball.

We will use truncation as a basic tool. We define, for h > 0,

Th(s) = min(max(s,−h), h), Rh(s) = s− Th(s).

Proposition 2.3. For every u ∈ BV (Ω),

||Du||Ω = ||DThu||Ω + ||DRhu||Ω.

Proof. It is clear that
||Du||Ω ≤ ||DThu||Ω + ||DRhu||Ω.

Let (un) ⊂ W 1,1(Ω) be such that un → u strictly in BV (Ω). Then, by lower semi-
continuity,

||DThu||Ω + ||DRhu||Ω ≤ lim
n→∞

||∇Thun||L1(Ω) + lim
n→∞

||∇Rhun||L1(Ω)

≤ lim
n→∞

||∇un||L1(Ω) = ||Du||Ω. �

The proof of Proposition 2.3 was communicated to us by J. Van Schaftingen.
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3. Critical minimizations problems in BV (Ω)

The following result is due to Degiovanni and Magrone in the case p = 1∗ (see [6]
p. 603). We give the proof for the sake of completeness.

Lemma 3.1. Let Ω be a bounded domain in RN and let 1 ≤ p <∞ and (un) ⊂ Lp(Ω)
be such that

a) sup ||un||p <∞
b) (un) converges to u almost everywhere on Ω.

Then
lim

n→∞
(||un||pp − ||Rhun||pp) = (||u||pp − ||Rhu||pp).

Proof. Let us define
f(s) = |s|p − |Rh(s)|p.

For every ε > 0, there exists Cε > 0 such that

|f(s)− f(t)| ≤ ε(|s|p + |t|p) + Cε.

It follows from Fatou’s lemma that

2ε

∫
Ω

|u|pdx+ Cεm(Ω)

≤ lim
n→∞

∫
Ω

ε(|un|p + |u|p) + Cε − |f(un)− f(u)|dx

≤ ε sup
n

∫
Ω

|un|pdx+ ε

∫
Ω

|u|pdx+ Cεm(Ω)− lim
n→∞

∫
Ω

|f(un)− f(u)|dx.

Hence

lim
n→∞

∫
Ω

|f(un)− f(u)|dx ≤ ε sup
n

∫
Ω

|un|pdx.

Since ε > 0 is arbitrary, the proof is complete. �

In this section, we assume that Ω is a bounded domain of RN (N ≥ 2) with Lipschitz
boundary.

Lemma 3.2. Let a ∈ C(Ω̄) and b ∈ C(∂Ω) be such that ϕ defined on BV (Ω) by

ϕ(u) = ||Du||Ω +

∫
Ω

a|u|dx+

∫
∂Ω

b|u|dσ

satisfies
c = inf{ϕ(u)/||u||L1∗ (Ω) : u ∈ BV (Ω)\{0}} > 0.

Let (un) ⊂ BV (Ω) be such that ||un||L1∗ (Ω) = 1, ϕ(un) → c, n → ∞, and un ⇀ u in
BV (Ω). Then either ||u||L1∗ (Ω) = 0 or ||u||L1∗ (Ω) = 1.
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Proof. By going if necessary to a subsequence, we can assume that un → u a.e. on Ω.
We have, using the preceding lemma,

c = lim
n→∞

[ϕ(Thun) + ϕ(Rhun)]

≥ c lim
n→∞

[||Thun||1∗ + ||Rhun||1∗ ]

= c
[
||Thu||1∗ + (1 + ||Rhu||1

∗

1∗ − ||u||1
∗

1∗)
1/1∗
]
.

When h→∞, we obtain

1 ≥ (||u||1∗1∗)
1/1∗ + (1− ||u||1∗1∗)

1/1∗ ,

so that ||u||1∗ = 0 or ||u||1∗ = 1. �

We consider first the case when b = 0. We assume that a ∈ C(Ω̄) and

(A1) 0 < S0(a,Ω) = inf

{[
||Du||Ω +

∫
Ω

a|u|dx
]
/||u||L1∗ (Ω) : u ∈ BV (Ω)\{0}

}
,

(A2) S0(A,Ω) < N(VN/2)1/N .

Theorem 3.3. Under assumptions (A1), (A2), there exists u ∈ BV (Ω)\{0} such that
u ≥ 0 and

S0(a,Ω)||u||L1∗ (Ω) = ||Du||Ω +

∫
Ω

a|u|dx.

Proof. Let (un) ⊂ BV (Ω) be such that ||un||1∗ = 1 and

||Dun||Ω +

∫
Ω

a|un|dx→ S0(a,Ω).

Since (un) is bounded in BV (Ω), we can assume that un ⇀ u in BV (Ω). Let 0 < ε <
N(VN/2)1/N − S0(a,Ω). It follows from Theorem 2.1 that, for some cε > 0,

S0(a,Ω) = lim
n→∞

[
||Dun||Ω +

∫
Ω

a|un|dx
]

≥ N(VN/2)1/N − ε− cε
∫

Ω

|u|dx+

∫
Ω

a|u|dx.

Hence, u 6= 0. The preceding lemma implies that ||u||1∗ = 1. Since, by lower semi-
continuity,

||Du||Ω +

∫
Ω

a|u|dx ≤ S0(a,Ω),

u is a minimizer for S0(a,Ω). Since ||D|u|||Ω ≤ ||Du||Ω, we can replace u by |u|. �
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The following result gives a concrete sufficient condition for (A2).

Theorem 3.4. Let Ω be a bounded domain with C2 boundary and let a ∈ C(Ω̄) be such
that, for some y ∈ ∂Ω,

2
N − 1

N + 1

VN−1

VN

H(y) > a(y),

where H(y) denotes the mean curvature of ∂Ω at y. Then (A2) is satisfied.

Proof. We can assume that y = 0. For r > 0 small enough, we have

δ =
N − 1

N + 1
VN−1H(0)− VN

2
A > 0,

where A = sup{a(x) : x ∈ Ω∩B(0, r)}. Let us define uε = χ
Ω∩B(0,ε). By formula (1) in

[12], we have, for ε→ 0,

||uε||1
∗

1∗ = m(Ω ∩B(0, ε)) =
VN

2
εN − N − 1

N + 1

VN−1

2
H(0)εN+1 + o(εN+1),

||Duε||Ω = N
VN

2
εN−1 − (N − 1)

VN−1

2
H(0)εN + o(εN),∫

Ω

a uεdx ≤ A
VN

2
εN + o(εN).

It follows that, for ε→ 0,[
||Duε||Ω +

∫
Ω

a uεdx

]
/||uε||1∗

≤
(
VN

2

) 1−N
N
[
N
VN

2
− N − 1

N + 1
VN−1H(0)ε+

VN

2
Aε

]
+ o(ε)

= N(VN/2)1/N − δ(VN/2)
1−N

N ε+ o(ε),

so that S0(a,Ω) < N(VN/2)1/N . �

We consider now the case when b = 1. The following result is due to Demengel [7],
but our proof, using Lemma 3.1, is simpler.

Let us recall that, for u ∈ BV (Ω),

||Du||RN = ||Du||Ω +

∫
∂Ω

|u|dσ.

We assume that a ∈ C(Ω̄) and
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(B1) 0 < S1(a,Ω) = inf

{[
||Du||RN +

∫
Ω

a|u|dx
]
/||u||L1∗ (Ω) : u ∈ BV (Ω)\{0}

}
,

(B2) S1(a,Ω) < NV
1/N
N .

Theorem 3.5. Under assumptions (B1), (B2), there exists u ∈ BV (Ω)\{0} such that
u ≥ 0 and

S1(a,Ω)||u||L1∗ (Ω) = ||Du||RN +

∫
Ω

a|u|dx.

Proof. Let (un) ⊂ BV (Ω) be such that ||un||1∗ = 1 and

||Dun||RN +

∫
Ω

a|un|dx→ S1(a,Ω).

The sequence (un) is bounded in BV (RN). We can assume that un ⇀ u in BV (RN).
It follows from Theorem 2.2 that

S1(a,Ω) = lim
n→∞

[
||Du||RN +

∫
Ω

a|un|dx
]

≥ NV
1/N
N +

∫
Ω

a|u|dx.

By assumption (B2), u 6= 0. Lemma 3.2 implies that ||u||1∗ = 1. Since, by lower
semi-continuity,

||Du||RN +

∫
Ω

a|u|dx ≤ S1(a,Ω),

u is a minimizer for S1(a,Ω). Since ||D|u|||RN ≤ ||Du||RN , we can replace u by |u|. �

4. Poincaré inequality

Let us recall the general Poincaré inequality in BV (Ω) due to Meyers and Ziemer [13].
Let Ω be a bounded domain of RN (N ≥ 2) with Lipschitz boundary and let

f ∈ LN(Ω) be such that

∫
Ω

f dx = 1. Then

S2(f,Ω) = inf

{
||Du||Ω/||u||L1∗ (Ω) : u ∈ BV (Ω)\{0},

∫
Ω

fu dx = 0

}
> 0.

When f ≡ 1/m(Ω), this is the Poincaré inequality.

Lemma 4.1. Let f ∈ LN(Ω) be such that

∫
Ω

f dx = 1 and let (un) ⊂ BV (Ω) be

such that ||un||L1∗ (Ω) = 1,

∫
Ω

fundx = 0, ||Dun||Ω → S2(f,Ω), n → ∞, and un ⇀ u in

BV (Ω). Then either ||u||L1∗ (Ω) = 0 or ||u||L1∗ (Ω) = 1.
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Proof. By going if necessary to a subsequence, we can assume that un → u a.e. on Ω.
Let us define, for h > 0 and n ∈ N,

ch,n =

∫
Ω

f Thundx, ch =

∫
Ω

f Thu dx.

Using Lemma 3.1, we obtain,

S2(f,Ω) = lim
n→∞

[||DThun||Ω + ||DRhun||Ω]

≥ S2(f,Ω) lim
n→∞

[||Thun − ch,n||1∗ + ||Rhun + ch,n||1∗ ]

≥ S2(f,Ω) lim
n→∞

[||Thun||1∗ + ||Rhun||1∗ − 2||ch,n||1∗ ]

= S2(f,Ω)
[
||Thu||1∗ +

[
1 + ||Rhu||1

∗

1∗ − ||u||1
∗

1∗

]1/1∗ − 2||ch||1∗
]
.

Since lim
h→∞

ch = lim
h→∞

∫
Ω

f Thu dx =

∫
Ω

fu dx = 0, we have

1 ≥
[
||u||1∗1∗

]1/1∗
+
[
1− ||u||1∗1∗

]1/1∗
,

so that ||u||1∗ = 0 or ||u||1∗ = 1. �

The following theorem was proved by Bouchez and Van Schaftingen in the case
f ≡ 1/m(Ω) (see [1]).

Theorem 4.2. Let Ω be a bounded domain of RN with C2 boundary and let f ∈ LN(Ω)

be such that

∫
Ω

f dx = 1. Then there exists u ∈ BV (Ω)\{0} such that

∫
Ω

f u dx = 0 and

S2(f,Ω)||u||L1∗ (Ω) = ||Du||Ω.

Proof. 1) Let us first prove that

(∗) S2(f,Ω) < N(VN/2)1/N .

We can assume that 0 ∈ ∂Ω and that H(0), the mean curvature of ∂Ω at 0, is positive.
Let us define, as in [1], for ε > 0 small enough,

uε = χ
Ω∩B(0,ε) − λε

χ
Ω\B(0,ε),

λε =

∫
Ω∩B(0,ε)

f dx/

∫
Ω\B(0,ε)

f dx.
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Hölder inequality implies that λε = o(εN−1). By formula (1) in [12], we have, for ε→ 0,

||uε||1
∗

1∗ ≥ m(Ω ∩B(0, ε)) =
VN

2
εN − N − 1

N + 1

VN−1

2
H(0)εN+1 + o(εN+1),

||Duε||Ω = (1 + λε)||DχΩ∩B(0,ε)||

= N
VN

2
εN−1 − (N − 1)

VN−1

2
H(0)εN + o(εN).

It follows that, for ε→ 0,

||Duε||Ω/||uε||1∗ ≤
(
VN

2

) 1−N
N
[
N
VN

2
− N − 1

N + 1
VN−1H(0)ε+ o(ε)

]
,

so that (∗) is satisfied.

2) Let (un) ⊂ BV (Ω) be such that ||un||1∗ = 1,

∫
Ω

f undx = 0 and

||Dun||Ω → S2(f,Ω), n→∞.

We can assume that un ⇀ u in BV (Ω). Let 0 < ε < N(VN/2)1/N − S2(f,Ω). It follows
from Theorem 2.1 that, for some cε > 0,

S2(f,Ω) = lim
n→∞

||Dun||Ω ≥ N(VN/2)1/N − ε− cε
∫

Ω

|u|dx.

Hence u 6= 0. The preceding lemma implies that ||u||1∗ = 1. Since

∫
Ω

f u dx = 0 and,

by lower semi-continuity,
||Du||Ω ≤ S2(f,Ω),

u is a minimizer for S2(f,Ω). �

5. Critical minimization problems in W 1,p(Ω)

In this section, we assume that Ω is a smooth bounded domain of RN . We define, for
1 < p <∞, the critical exponent p∗ = Np/(N − p) and

X0 = W 1,p(Ω),

X1 = W 1,p
0 (Ω),

X2 =

{
u ∈ W 1,p(Ω) :

∫
Ω

f u dx = 0

}

where f ∈ Lp∗(Ω) and

∫
Ω

f dx = 1.

The following lemma is a variant of Lemma 3.2 and Lemma 4.1 with a similar proof.
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Lemma 5.1. Let a ∈ C(Ω̄) be such that ϕ defined on Xj (where j = 0, 1 or 2) by

ϕ(u) =

∫
Ω

|∇u|pdx+

∫
Ω

a|u|pdx

satisfies

cj = inf
{
ϕ(u)/||u||p

Lp∗ (Ω)
: u ∈ Xj\{0}

}
> 0.

Let (un) ⊂ Xj be such that ||un||Lp∗ (Ω) = 1, ϕ(un) → cj, n → ∞, and un ⇀ u in Xj.
Then either ||u||Lp∗ (Ω) = 0 or ||u||Lp∗ (Ω) = 1.

The preceding lemma is applicable to many quasilinear critical problems as consid-
ered e.g. in [9].

Let us define

S(p,RN) = inf

{∫
RN

|∇u|pdx/||u||p
Lp∗ (RN )

: u ∈ D(RN)\{0}
}
.

The following Theorem is a variant of Theorems 3.3, 3.5 and 4.2.

Theorem 5.2. a) If 0 < c0 < S(p,RN)/2p/N , then c0 is achieved.
b) If 0 < c1 < S(p,RN), then c1 is achieved.
c) If 0 < c2 < S(p,RN)/2p/N , then c2 is achieved.
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