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Abstract

Using a new elementary method, we prove the existence of minimizers for
various critical problems in BV () and also in W*P(Q), 1 < p < oc.
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1. Introduction

After the classical results due to Brezis and Nirenberg ([2]), many papers were devoted
to critical minimization problems on W'?(Q) (1 < p < o) or on some subspaces. See
e.g. the list of references in [10].

When p = 1, it is necessary to replace Wh1(Q) by BV (Q), the space of integrable
functions with bounded variations on 2. We know only 3 papers devoted to critical
minimization problems on BV (Q2) : [1], [5] and [7]. The critical trace problem in BV (€2),
treated in [8], is different since it is convex. We exclude this problem.

The existence of optimal functions for the sharp Poincaré inequality

u_ﬁ/gudx

is proved in [5] when 2 is a ball or a sphere and in [1] when € is a bounded domain
with C? boundary. The proof in [5] uses a specific isoperimetric inequality and in [1]
the concentration-compactness principle in BV (€). When Q C R?, the results in [1]
solve a problem of [3].

The minimization problem

inf [HDuHQ—l—/a\u]dx—l—/ |u|d0}
Q o9

u € BV(Q), ||U||LN/(N—1)(Q) = ]_,

c < |[Dulla

LN/(N=1)(Q)

is treated in [7] using approximation by subcritical problems and the concentration-

compactness principle in BV (§2). The penalization term / |u|do replaces the Dirichlet
o9
boundary condition (see [7] and [11]). See also [6] and [15] for the existence of critical

points.

A general existence theorem for subcritical minimization problems on BV (Q) is
contained in [11].

In this paper, we solve critical minimization problems on BV () by using a new
elementary lemma (Lemma 3.2) or a variant (Lemma 4.1). This method is also appli-
cable to critical minimization problems on W'?(Q) (1 < p < o) (see Lemma 5.1), is
rather simple and avoids any concentration-compactness type argument.

In section 2 we recall some basic properties of functions of bounded variations (see
[10] and [16]).



2. Functions of bounded variations

Let © be an open subset of RY. The variation of u € Li () is defined by

||Dullq = sup{/udivvd:c :v € D(Q,RY), 1[0 < 1}
Q

where

N 1/2
ol = sup (Z@k(x))?) .

2€Q \ =1
The variation is lower semi-continuous.

Lioc () .
un == u=|[Dullo < lim |[Duy||o.

On
BV (Q) ={u € LI(Q) .|| Dul|q < oo}
we define the norm
l[ull Bve) = |[Dulla + [[u]|L1 @)

and the distance of strict convergence

d(f,9) = |IIDflle = [1Dglle| + [If = gllr@)-

The sequence (u,,) converges weakly to u in BV () (written u,, — u) if
||un —ul[r — 0, n — oo,

Ok, — Opu in [Co(Q)]*, n— 00,1 <k < N.

where [Cy(€2)]* denotes the space of finite measures on .
It is clear that

norm convergence = strict convergence = weak convergence.

We now assume that  is a bounded domain of RY (N > 2) with Lipschitz boundary.
Let us recall (see [10]) that, for every u € BV(Q), the trace of u, ~o(u), belongs to
LY(09Q) and that the extension by 0

belongs to BV (RY). Moreover,
|Duall = 1Dl + [ ro(u)ldo
0
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defines an equivalent norm on BV (Q2). The space W(Q) is dense in BV () with
respect to the strict convergence (not the norm convergence!) and the trace operator
Y @ BV(Q) — LY(09) is continuous with respect to the strict convergence (not the
weak convergence!).

We will also denote by u the trace of u and the extension of u by 0.

Let us denote by 1* the critical exponent N/(N — 1) and by Vi the volume of the
unit ball in RY. The following inequality is due to Cherrier [4].

Theorem 2.1. For every e > 0 there exists c. > 0 such that, for all u € BV (),
(N(Vw/2) = e)llull e o) < [1Dulla + cellul| 0.
Let us recall that, for 1 < p < 1*, the imbedding BV (2) C LP(2) is compact and
that the imbedding BV () C L' (Q) is continuous (but not compact!).

We will also need the sharp Gagliardo-Nirenberg inequality due to Mazya and Fed-
erer and Fleming (see [14]):

Theorem 2.2. For every u € L' (RY),
NV ™ llull e ey < 11Dl
Moreover equality holds if and only if u is the characteristic function of a ball.
We will use truncation as a basic tool. We define, for h > 0,
Th(s) = min(max(s, —h), h), Rn(s) = s — Th(s).
Proposition 2.3.  For every u € BV (),

|Dullo = ||DTyul|o + || DRyul|q-

Proof. 1t is clear that
[[Dulla < [|DThulla + |[DRyul|q-

Let (u,) € WH(Q) be such that u, — u strictly in BV(2). Then, by lower semi-
continuity,

[DThullo +[[DRyulle < lm [[VTun|[pi@) + m ||V Rytg|| 1)

IN

T [V, 120) = || Dal a
The proof of Proposition 2.3 was communicated to us by J. Van Schaftingen.
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3. Critical minimizations problems in BV ()

The following result is due to Degiovanni and Magrone in the case p = 1* (see [6]
p. 603). We give the proof for the sake of completeness.

Lemma 3.1. Let Q be a bounded domain in RN and let 1 < p < oo and (u,) C LP(Q)
be such that
a) sup ||u,||, < oo
b) (u,) converges to u almost everywhere on €.
Then
timn (Iual 2 — | Rnenl2) = (|l = || B ).

Proof. Let us define
f(s) = [s[" = [Ru(s)|".

For every ¢ > 0, there exists C. > 0 such that
[f(s) = F(O) < e(|s]” + [t]") + C.

It follows from Fatou’s lemma that

2 Pd C.m(Q2

5/ﬂ|u| x4+ Com(R2)

< lm /5(|un|p  Jul?) + Ce = | (un) — f(u)]dz
n—oo Q

< ¢ sup/|un|pdx+a/|u|pdx+05m(§2)— T [ |f(un) — f(u)|da.
n Q Q Q

Hence
fi [ [7(w) = f)ids < esup [ Ju P
Since ¢ > 0 is arbitrary, the proof is complete. U

In this section, we assume that €2 is a bounded domain of RY (N > 2) with Lipschitz
boundary.

Lemma 3.2. Leta € C(Q) and b € C(OR) be such that ¢ defined on BV () by

o(u) = HDuHQ—l—/a\u|d1‘+/ bluldo
Q o9

satisfies

¢ = inf{o(u)/[[ul| (@) - v € BV(Q)\{0}} > 0.
Let (u,) C BV(Q) be such that ||up|[p1q) = 1, p(u,) — ¢, n — 00, and u, — u in
BV (Q). Then either [|u]| 1+ o) = 0 or ||u]| 1= o) = 1.
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Proof. By going if necessary to a subsequence, we can assume that u,, — u a.e. on €.
We have, using the preceding lemma,

¢ = lim [p(Thun) + o(Riun)]
> cnh_{glo[HThun 1+ + || R || 1]
= [Tl + (1 + (Rl — [lallE)],
When h — oo, we obtain
1> (Jul i)Y + (1= Jfull5)Y",
so that ||u||1+ = 0 or ||ul|;+ = 1. -

We consider first the case when b = 0. We assume that a € C(£2) and
(A1) 0 < Sp(a,f) =inf { {||Du||g + /Qa|u|dx} Jull @)t u € BV(Q)\{O}} ,

(A2)  Sp(A,Q) < N(Vn/2)YN.

Theorem 3.3. Under assumptions (A1), (A2), there exists u € BV (Q)\{0} such that
u >0 and

S0, )lfullpe oy = 1Dl + [ alulds
0
Proof. Let (u,) C BV(Q2) be such that ||u,|[; =1 and
|| Dun|lo + / alu,|dz — Sp(a, Q).
Q

Since (u,) is bounded in BV (f)), we can assume that u, — u in BV (Q). Let 0 < e <
NV /2)YN — Sy(a, Q). Tt follows from Theorem 2.1 that, for some c. > 0,

So(a, ) = lim {\|Dun||g+/alun|d4
n—oo QO

> N(VN/Q)UN—&“—CE/ ]u\d:l:—i—/a\u]d:v.
Q Q

Hence, u # 0. The preceding lemma implies that ||u||;« = 1. Since, by lower semi-

continuity,
|| Dul|o + / aluldz < Sy(a, ),
Q

u is a minimizer for Sy(a, ). Since ||Dul|lq < ||Dul|q, we can replace u by |ul. O
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The following result gives a concrete sufficient condition for (A2).

Theorem 3.4. Let ) be a bounded domain with C* boundary and let a € C(S2) be such

that, for some y € 0S),
N —1Vn_4
—_— H
N1V (y) > aly),

where H(y) denotes the mean curvature of 02 at y. Then (A2) is satisfied.

Proof. We can assume that y = 0. For » > 0 small enough, we have

N—1 Vy
CH(0) - Y4
N1 -0 = A >0,

6:

where A = sup{a(z) : 2 € QN B(0,7)}. Let us define u. = Xonp(,). By formula (1) in
[12], we have, for ¢ — 0,

Ve v N—1Vy_,

||U5 %: = m(Q N B(O,g)) = 75 _ N—H 5 H(O)€N+1 + 0(€N+1)’
Vi V-
[Ducllo = NTNEN_l - (N-1) ]\; IH(O)(—:N—l—o(eN),
V
/auadI < A7N€N +o(e").
Q

It follows that, for ¢ — 0,

1*

[HDuEHQ%—/augdx} /| ue
Q

W\ ¥ [ Vy N-1 Vi

< - A -4

< ( 5 ) {N 5 N+1VN71H(O)€+ 5 Ae| + o(e)
= NVy/2)YN —5(Vy/2)'F &+ ole),

so that Sy(a, Q) < N(Vy/2)Y/N. O

We consider now the case when b = 1. The following result is due to Demengel [7],

but our proof, using Lemma 3.1, is simpler.
Let us recall that, for u € BV (),

|[Dul|lpy = || Dul|q +/ |u|dor.
29

We assume that a € C(Q) and



1) 0<5i0.9) = int { [IDullex + [ ald] /lulle ey -0 € BV},

(B2)  Si(a,Q) < N/~

Theorem 3.5. Under assumptions (B1), (B2), there ezists u € BV (Q2)\{0} such that
u >0 and

S1(a, )|l |1+ ) = 1Dl + / aluldz.

Proof. Let (u,) C BV(Q) be such that ||u,|[;~ =1 and
|| Dy ||ry + / alu,|dx — Si(a, Q).
Q

The sequence (u,) is bounded in BV (RY). We can assume that u, — u in BV (RY).
It follows from Theorem 2.2 that

Si(a,Q) = lim |:||DUHRN+/CL"U”‘CZ$:|
n—oo 0

> NV]\l,/N+/a|u|dx.
Q

By assumption (B2), v # 0. Lemma 3.2 implies that ||u|[;+ = 1. Since, by lower

semi-continuity,

| Dul [~ + / aluldz < Si(a, ),
Q

u is a minimizer for S;(a, Q). Since ||D|u|||gy < ||Dul|g~, we can replace u by |u|. O

4. Poincaré inequality

Let us recall the general Poincaré inequality in BV (€2) due to Meyers and Ziemer [13].
Let ©Q be a bounded domain of RY (N > 2) with Lipschitz boundary and let

f € LY(Q) be such that /f dx = 1. Then
Q
Sa(f, Q) = inf {||Du||Q/||u||L1*(Q) Tu € BV(Q)\{O},/ fudx = O} > 0.
Q
When f = 1/m(Q), this is the Poincaré inequality.
Lemma 4.1. Let f € LN(Q) be such that /fdx = 1 and let (u,) C BV(Q) be
Q

such that |[un|| 1) = 1, /fundx =0, |[Duylla — S2(f,Q), n — oo, and u, — u in

Q
BV (Q). Then either ||ul| 1+ o) = 0 or ||ul| 1=y = 1.
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Proof. By going if necessary to a subsequence, we can assume that u,, — u a.e. on €.
Let us define, for h > 0 and n € N,

Chon = / fTyu,dx, ¢ = / fThudx.
Q Q
Using Lemma 3.1, we obtain,

82(f7 Q)

Tim [[[DThunlle + ([ D Ry ||o]

> S(f,Q) i [[[Thtn — cpnlli- + [ Bt + cnl|1-]
> 55(f, ) I [[[ T + || Bntn| i = 2[[cnnl 1]
* x71/1*
= S3(£,9) [[|Tulls- + [1+ [[Rud i =l = 2llenllre ]
Since lim ¢, = lim [ fTudx = / fudxr =0, we have
h—o0 h—oo Jq Q
x71/1* x71/1*
1> [fulli-] " 4+ [1=ullie] ",
so that ||ul|;« = 0 or ||u||1+ = 1. O

The following theorem was proved by Bouchez and Van Schaftingen in the case

f=1/m(Q) (see [1]).

Theorem 4.2. Let Q be a bounded domain of RN with C* boundary and let f € LN (Q)
be such that /f dx = 1. Then there ezists u € BV (Q)\{0} such that /fud:c =0 and
0 Q

Sa(f, Dlull () = [|Dulla.

Proof. 1) Let us first prove that
(%) Sy(f,Q) < N(Viy/2)YV.

We can assume that 0 € 02 and that H(0), the mean curvature of 902 at 0, is positive.
Let us define, as in [1], for € > 0 small enough,

u: = XonB(0,e) = AX\B(0,e)>

I / fdz) f du.
QNB(0,e) Q\B(0,)

9



Holder inequality implies that A\. = o(eV~!). By formula (1) in [12], we have, for e — 0,

. Vi N —1Vy_
> m(QnB = NN _ N
[Duclla = (1+ )\a)||DXQmB(0,a)||

= N%gNl — (N -1)

It follows that, for e — 0,

1-N
Vv ¥ Vw N-1
< [ = N— — 1 H
1 _(2) |i 5 N+1VN 1 (0)8"‘0(8) ,

H(0)eN T + o(eNth),

N1 (0)2Y 4 o(eM).

|| Duclle/|us

so that (x) is satisfied.
2) Let (u,) C BV(2) be such that ||u,

1*—1,/fundx—0and
Q

|| Dupllo — So(f,Q), n— oo.

We can assume that u, — u in BV(Q). Let 0 < & < N(Vy/2)YN — Sy(f, Q). Tt follows
from Theorem 2.1 that, for some ¢, > 0,

S(£,9) = Tim [[Duylla > N(Viy/2)/V —5—05/ lulda.
n—oo Q

Hence u # 0. The preceding lemma implies that ||u||;« = 1. Since / fudx =0 and,
0

by lower semi-continuity,

u is a minimizer for Sy(f, ). O

5. Critical minimization problems in W!?(())

In this section, we assume that € is a smooth bounded domain of RY. We define, for
1 < p < o0, the critical exponent p* = Np/(N — p) and

X, = W'P(Q),
X1 = WyP(Q),

X, = {u c Wh(Q) / fudr = o}
Q
where f € L (Q2) and /fdx =1.
Q
The following lemma is a variant of Lemma 3.2 and Lemma 4.1 with a similar proof.
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Lemma 5.1. Let a € C(Q) be such that ¢ defined on X; (where j = 0,1 or2) by
o(u) = / |Vu|Pde + / aluPdx
Q Q

¢; = inf {ap(u)/||u||12p*(m u€ Xj\{O}} > 0.

Let (u,) C Xj be such that |[up|| ) = 1, p(un) — ¢j, n — oo, and u, — u in Xj.
Then either ||ul| o) = 0 or [|ul| ) = 1.

satisfies

The preceding lemma is applicable to many quasilinear critical problems as consid-
ered e.g. in [9].
Let us define

S(p, RY) = int { /R IVl g, € D(RN)\{O}} |

The following Theorem is a variant of Theorems 3.3, 3.5 and 4.2.

Theorem 5.2. a) If0 < ¢y < S(p, RN)/2P/N | then cy is achieved.
b) If 0 < ¢; < S(p,RY), then ¢, is achieved.
c) If 0 < cy < S(p,RN)/2P/N | then ¢y is achicved.
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