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Abstract

In this paper we consider the problem
−∆u = up in ΩR,
u = 0 on ∂ΩR,

(0.1)

where p > 1 and ΩR is a smooth bounded domain with a hole which is
diffeomorphic to an annulus and expands as R −→ ∞. The main goal of
the paper is to prove, for large R, the existence of a positive solution to
(0.1) which is close to the positive solution in the corresponding diffeo-
morphic annulus. The proof relies on a careful analysis of the spectrum
of the linearized operator at the radial solution as well as on a delicate
analysis of the nondegeneracy of suitable approximating solutions.

1 Introduction

In this paper we study the existence of positive solutions of the semilinear elliptic
problem {

−∆u = up in Ω,
u = 0 on ∂Ω, (1.1)

where p > 1 and Ω is a bounded smooth domain in RN , N ≥ 2. It is well
known that the answer to this problem is strictly related to the exponent p of
the nonlinear term and to the geometrical and/or topological properties of the
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C.U., 04510 México DF, Mexico, e-mail: mclapp@math.unam.mx
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domain Ω. Indeed the classical Pohozaev identity ([P]) implies that, if Ω is
starshaped and p ≥ N+2

N−2 in dimension N ≥ 3, then (1.1) does not admit any
solution. On the other hand it has been proved in [BC] that if Ω has nontrivial
topology then a positive solution exists even if p is the critical exponent N+2

N−2 .
In the special case when Ω is an annulus it is easy to prove that a radial

positive solution always exists, whatever p is, even supercritical (see [KW]),
and this solution is unique (see [NN]). Moreover, exploiting the invariance of
the annulus with respect to different symmetry groups, several authors were
able to prove the existence of nonradial positive solutions for p up to a certain
exponent pN > N+2

N−2 in expanding annuli AR =
{
x ∈ RN : R < |x| < R+ 1

}
,

for R sufficiently large (see [C], [YYL], [L1], [L2], [B], [CW]). A study of the
asymptotic behavior of some of these solutions, as R → ∞, shows that they
converge to positive solutions on an infinite strip (see [L2]). As to the positive
radial solution, it is a least energy solution and of mountain pass type in the
space of radial H1

0 -functions, but its Morse index in the full space becomes
unbounded as R→∞.

In view of these results it is natural to expect that similar multiplicity results
should also hold in expanding ”annular-type” domains, i.e. in domains with an
expanding hole, which are not necessarily annuli. This idea has been carried out
in the papers [CW], [DY], [ACP] where, in the subcritical case, the existence
of an increasing number of positive solutions is proved, as the domain expands.
In particular, in [DY] the limit problem in the strip is exploited to construct
positive multibump solutions using a Lyapunov-Schmidt reduction argument.
The domains DR considered in [DY] are the sets of points whose distance to a
fixed convex set is larger than R and smaller than R+ 1. So they are diffeomor-
phic to an annulus. However the solutions that they construct (as well as those
of [CW]) are very different from radial solutions in annuli, since they exhibit a
finite number of bumps.

The existence of the radial positive solution in an annulus suggests that a
positive solution of ”radial-type” should exist also in expanding annular-type
domains, regardless of the growth of the nonlinearity. It is the main goal of the
present paper to prove the existence of a positive solution, in domains of this
kind, which is close to the positive radial solution in an annulus. More precisely,
using polar coordinates (ρ, θ) ∈ R+ × SN−1 in RN and fixing a positive C∞-
function g : SN−1 → R on the unit sphere SN−1 =

{
x ∈ RN : |x| = 1

}
, we

consider the domains

ΩR =
{

(ρ, θ) ∈ R+ × SN−1 : R+
g(θ)
Rs

< ρ < R+ 1 +
g(θ)
Rs

}
(1.2)

for R > 0 with s > N−5
2 if N ≥ 5 and s = 0 if 2 ≤ N ≤ 4. We observe that ΩR

is diffeomorphic to the annulus

AR =
{
x ∈ RN : R < |x| < R+ 1

}
by the obvious diffeomorphism

T : ΩR → AR, T (ρ, θ) = (ρ− g(θ)
Rs

, θ). (1.3)
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Moreover, for any s ≥ 0, the exterior unit normal to the hypersurface{
(R+ g(θ)R−s, θ) : θ ∈ SN−1

}
at the point (R + g(θ)R−s, θ) tends to the radial unit vector (1, θ) as R → ∞.
Hence, as it expands, ΩR looks more and more like an annulus. Note that ΩR
becomes closer, in fact, toAR asR→∞ if s > 0. Denoting by wR ∈ H1

0 (AR) the
positive radial solution of (1.1) with Ω = AR we define ũR := wR ◦T ∈ H1

0 (ΩR),
that is,

ũR(ρ, θ) = wR(ρ− g(θ)
Rs

, θ). (1.4)

Now we can state the main result of the paper.

Theorem 1.1. There exists a sequence Rk →∞ with the property that for every
δ > 0 there exists kδ ∈ N such that for any k ≥ kδ and for R ∈ [Rk+δ,Rk+1−δ],
problem (1.1) admits a positive solution

uR = ũR + φR

for some φR ∈ H1
0 (ΩR).

Moreover the distance Rk+1 − Rk is bounded away from zero by a constant
independent of k, and φR → 0 in H1

0 (ΩR) as R ∈ [Rk + δ,Rk+1 − δ].

Remark 1.2. The proof of Theorem 1.1 yields that uR is an isolated solution
of (1.1) in H1

0 (ΩR) and that it depends continuously on R in the H1-norm.
If ΩR = AR then uR = wR exists for all R > 0. In this case all curves uR,
R ∈ Ik := [Rk + δ,Rk+1 − δ], from Theorem 1.1 are part of one solution curve.
The radii Rk are bifurcation points for solutions of (1.1) in AR with R as
parameter. After perturbing the radial setting the bifurcations may disappear,
and the solution curves uR, R ∈ Ik, may not lie on one continuum of solutions.
The global behavior of these solution branches is a challenging problem that
remains to be studied.

In the case of a nonlinearity with subcritical growth our theorem provides
a new multiplicity result since, besides the positive multibump solutions con-
structed in [CW], [DY], [ACP], it asserts the existence of asymptotically radial
solutions in a different type of expanding domains. In the critical exponent case
our approach gives a direct proof of the Bahri-Coron result ([BC]) for annu-
lar shaped domains with large holes, complementing various results in domains
with small holes ([Co], [R], [LYY], [CMP]). To our knowledge the only other
result in this direction has been obtained in [CP] for symmetric domains. In the
supercritical case Theorem 1.1 is the first existence result for a positive solution
without assuming that Ω has a small hole as in [DW], [DFM].

We believe that the main interest of the present paper, however, is to give a
direct construction of asymptotically radial positive solutions of (1.1) in annular
shaped domains with large holes. To our knowledge this is the first result of this
type. Even in the case when p is subcritical a variational characterization or
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minmax approach seems to be difficult because the Morse indices of the solutions
which we obtain become unbounded.

The proof of Theorem 1.1 is quite long and technically difficult. It requires
a delicate analysis of the asymptotic behavior, as R→∞, of the eigenvalues of
the linearized operator at the radial solution wR. We believe that this analysis
has an interest of its own and could be used in other problems. This allows
to prove the nondegeneracy of the asymptotically radial function ũR, for some
values of R. Then we use a fixed point argument and the contraction mapping
principle in the space H1

0 (ΩR) to find the true solution, close to ũR. This last
part is quite difficult to perform. This part of the proof is also responsible for
the correction of the diffeomorphism with the term 1

Rs in dimension N ≥ 5.
We would like to remark that it would be possible to get the result of The-

orem 1.1 in dimension N ≥ 5 also for s = 0 in (1.2) by correcting the approx-
imating solutions with the addition of some extra terms. Anyway, since this
would make the proof technically much more complicated we have chosen to
carry out the proof for the special class of domains defined in (1.1).

The outline of the paper is as follows. In Section 2 we give some preliminary
results on the radial solution wR, while in Section 3 and 4 we perform a precise
analysis of the spectrum of the linearized operator at wR. In Section 5 we study
the approximate solutions and its possible degeneracy. Finally in Section 6 we
prove Theorem 1.1.

2 Preliminary results on the radial solution

As in the introduction we denote by AR the annulus

AR =
{
x ∈ RN , R < |x| < R+ 1

}
, R > 1,

and by wR the unique positive radial solution of (1.1) for Ω = AR. We start with
analyzing the asymptotic behavior of wR as R→∞. Obviously wR satisfies −w

′′
R − N−1

r w′R = wpR in (R,R+ 1),
wR > 0 in (R,R+ 1),
wR(R) = wR(R+ 1) = 0,

(2.1)

where we write (r, θ) ∈ R+ × SN−1 for the polar coordinates in RN . Since wR
is the unique positive solution of (2.1) we have that wR = β

1
p−1
R wR, where

βR = inf
u∈H1

0 (R,R+1),
‖u‖Lp+1=1

∫ R+1

R

(u′)2rN−1dr

= inf
u∈H1

0 (R,R+1),
u6≡0

∫ R+1

R
(u′)2rN−1dr(∫ R+1

R
|u|p+1rN−1dr

) 2
p+1
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and wR is a minimizer for βR. Taking a function φ ∈ C∞0
(
(0, 1)

)
, φ ≥ 0 and

defining φ ∈ C∞0
(
(R,R+ 1)

)
by φ(r) = φ(r −R) we have

βR ≤
∫ R+1

R
(φ′)2rN−1dr(∫ R+1

R
φp+1rN−1dr

) 2
p+1

=

∫ 1

0
(φ
′
)2(R+ t)N−1dt(∫ 1

0
φ
p+1

(R+ t)N−1dt
) 2
p+1

≤ CR(N−1)(1− 2
p+1 ).

(2.2)

Moreover, from equation (2.1) we deduce∫ R+1

R

wp+1
R rN−1dr = β

p+1
p−1
R ≤ CRN−1. (2.3)

Now we consider the function

w̃R(t) = wR(t+R)

and observe that (2.3) implies∫ 1

0

w̃R(t)p+1dt =
∫ R+1

R

wR(r)p+1dr

≤ 1
RN−1

∫ R+1

R

wR(r)p+1rN−1dr ≤ C.
(2.4)

By (2.1) we have ∫ R+1

R

(w′R)2rN−1dr =
∫ R+1

R

wp+1
R rN−1dr,

so we get

RN−1

∫ 1

0

(w̃′R)2
dt ≤

∫ 1

0

(w̃′R)2 (t+R)N−1dt =
∫ R+1

R

(w′R)2rN−1dr

=
∫ 1

0

w̃p+1
R (t+R)N−1dt ≤ (1 +R)N−1

∫ 1

0

w̃p+1
R dt.

As a consequence we obtain by (2.4)∫ 1

0

(w̃′R)2
dt ≤ C

∫ 1

0

w̃p+1
R dt ≤ C. (2.5)

Observe that w̃R satisfies
−w̃′′R − N−1

ρ+R w̃
′
R = w̃pR in (0, 1),

w̃R > 0 in (0, 1),
w̃R(0) = w̃R(1) = 0.
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¿From (2.5) we deduce that w̃R is bounded inH1
0 (0, 1) and hence also in L∞(0, 1)

and in C2(0, 1). Consequently w̃R → w0 uniformly, as R→∞, where −w
′′
0 = wp0 in (0, 1),

w0 ≥ 0 in (0, 1),
w0(0) = w0(1) = 0.

(2.6)

It is not difficult to show that w0 6≡ 0 so that it is the unique positive solution of
(2.6). Indeed ‖w̃R‖∞ ≥ α > 0, where α is a constant independent of R, as can
be seen by multiplying the equation in (1.1) by the first eigenfunction of −∆
in AR and integrating. Now we prove that wR is nondegenerate in the space of
radial functions. It is possible that this result is already known but we are not
aware of any reference.

Proposition 2.1. The linearized problem{
−∆v = pwp−1

R v in AR,
v = 0 on ∂AR,

(2.7)

does not admit any nontrivial radial solution.

Proof. Arguing by contradiction let us assume that there exists a nontrivial
radial solution v of (2.7). Denoting by µ̃1, . . . , µ̃k the radial eigenvalues of the
operator

LwR = −∆− pwp−1
R I

with zero boundary conditions in AR, it is well known that only µ̃1 is negative.
Hence v must be the second radial eigenfunction and, so, it has only two nodal
regions A1 =

{
x ∈ RN : R < |x| < d

}
and A2 =

{
x ∈ RN : d < |x| < R+ 1

}
,

and in each region the first eigenvalue of the linearized operator LwR is zero. It
is easy to see that

z = x · ∇wR +
2

p− 1
wR

solves  −∆z = pwp−1
R z in AR,

z(x) > 0 if |x| = R,
z(x) < 0 if |x| = R+ 1.

Hence z is radial and changes sign in AR. We claim that z changes sign only
once, i.e. it has only two annular nodal regions. Indeed if it had more than
two nodal regions, by the boundary behavior, it would have at least four nodal
regions Bi, i = 1, . . . , k, k ≥ 4. Hence there would exist Bj such that z = 0 on
∂Bj and Bj ⊂ Ai, for some i = 1, 2. This implies a contradiction for the first
eigenvalues:

0 = λ1(LwR , Bj) > λ1(LwR , Ai) = 0.

Thus z has only two nodal regions B1, B2, and therefore Ai ⊂ Bj , for some
i, j = 1, 2. Using z as a testfunction one sees that λ1(LwR , Bj) > 0 contradicting
λ1(LwR , Bj) ≤ λ1(LwR , Ai) = 0.
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3 Analysis of the linearized operator

As in the previous section let wR be the unique positive radial solution of (2.1)
in the annulus AR. We want to analyze the possible degeneracy of the lin-
earized operator LwR = −∆− pwp−1

R I. To this aim let us denote by ν a generic
eigenvalue of the problem{

−∆v = νpwp−1
R v in AR,

v = 0 in ∂AR,
(3.1)

and study the eigenvalues ν close to 1. We start by considering the operator

L̃νR = |x|2
(
−∆− νpwp−1

R I
)

(3.2)

and noting that ν is an eigenvalue for (3.1) if and only if zero is an eigenvalue
for L̃νR. We also need the operator

L̂νR(v) = r2

(
−v′′ − N − 1

r
v′ − νpwp−1

R v

)
in (R,R+ 1) (3.3)

with zero boundary conditions. Let us denote by λk, k = 0, 1, . . . , the eigenval-
ues of the Laplace-Beltrami operator −∆SN−1 on the N − 1 dimensional unit
sphere SN−1. It is well known that λk = k(k+N − 2). We start with a prelim-
inary lemma, known in the case ν = 1 (see for example [Pa], [L2]). However,
since in the sequel we need a more accurate analysis of the eigenvalues ν close
to 1 and to recall explicit computations, we also detail the proof of this first
lemma.

Lemma 3.1. The spectra of L̃νR, L̂νR, and −∆SN−1 are related by

σ(L̃νR) = σ(L̂νR) + σ(−∆SN−1).

Proof. Given µ ∈ σ(L̃νR) we choose an eigenfunction ψ, i.e. ψ satisfies{
−∆ψ − νpwp−1

R ψ = µ ψ
|x|2 in AR,

ψ = 0 on ∂AR.

We choose k ∈ N0 and an eigenfunction φ of −∆SN−1 associated to λk. Then
the function

w(r) :=
∫
SN−1

ψ(r, θ)φ(θ)dθ.

satisfies

−w′′ − N − 1
r

w′ =
∫
SN−1

(
−ψrr −

N − 1
r

ψr

)
φdθ

=
∫
SN−1

(
−∆ψ +

1
r2

∆SN−1ψ

)
φdθ

= νpwp−1
R w +

µ

r2
w +

1
r2

∫
SN−1

(∆SN−1ψ)φdθ.
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Integrating the last term by parts we get

−w′′ − N − 1
r

w′ − νpwp−1
R w =

µ− λk
r2

w,

which implies that the numbers µ−λk are eigenvalues of the operator L̂νR, hence

µ = µ− λk + λk ∈ σ(L̂νR) + σ(−∆SN−1). (3.4)

In order to see the converse consider α ∈ σ(L̂νR) and λk ∈ σ(−∆SN−1), and
choose corresponding eigenfunctions w and φ. Setting

v(x) = w(|x|)φ
(
x

|x|

)
,

there holds

−∆v =
(
−w′′ − N − 1

r
w′
)
φ− w

r2
∆SN−1φ

=
[
νpwp−1

R w +
α

r2
w
]
φ+

λk
r2
wφ = νpwp−1

R v +
α+ λk
r2

v

which implies α+ λk ∈ σ(L̃νR).

As pointed out before we are interested in studying the eigenvalues of prob-
lem (3.1) close to 1 for large R. To do this we first study the asymptotic behavior
of the eigenvalues of the operator L̂νR as R → ∞. We need the eigenvalues βνn
of the operator L̄ν on (0, 1) with Dirichlet boundary conditions defined by

L̄νψ = −ψ′′ − νpwp−1
0 ψ, (3.5)

where w0 is from (2.6).

Lemma 3.2. The n-th eigenvalue ανn(R) of the operator L̂νR satisfies

ανn(R) = βνnR
2 + o

(
R2
)

as R→∞. (3.6)

Proof. We consider the operator L̄νR on (0, 1) with Dirichlet boundary conditions
defined by

L̄νRψ :=
(t+R)2

R2

(
−ψ′′ − N − 1

t+R
ψ′ − νpw̃p−1

R ψ

)
.

If w is an n-th eigenfunction of L̂νR then ψR(t) := w(t+R) satisfies

L̄νRψR =
ανn(R)
R2

ψR

and viceversa. Consequently there holds

σ(L̂νR) = R2σ(L̄νR).
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Since the coefficients of L̄νR converge uniformly on (0, 1) towards the coefficients
of L̄ν as R→∞, we obtain

σ
(
L̄νR
)

= σ
(
L̄ν
)

+ o(1).

and the result follows immediately.

Remark 3.3. Let β1 and β2 the first and the second eigenvalue respectively
of the operator L̄1 from (3.5) with ν = 1. It is well known that the unique
positive solution w0 of (2.6) has Morse index one and hence β1 < 0 and β2 ≥ 0.
Moreover it is easy to prove that β2 > 0, repeating for example the proof of
Proposition 2.1. Then, by the continuity of the eigenvalues there exists σ > 0
such that

|ν − 1| < σ =⇒ βν1 < 0 and βν2 > 0, (3.7)

where βν1 and βν2 are the first and the second eigenvalue of L̄ν . The proof of
(3.7) is not difficult and can be found in [GPY].

An immediate consequence of this and Lemma 3.2 is

Corollary 3.4. If |ν − 1| < σ, σ as in (3.7), then

αν2(R) > 0 for R sufficiently large,

where αν2(R) is the second eigenvalue of the operator L̂νR from (3.3).

Now let us come back to the problem from which we started in this section,
i.e. to understand for which values R of the radius a number ν close to 1 can
be an eigenvalue of (3.1) in AR. A consequence of the results obtained so far is

Proposition 3.5. Assume |ν− 1| < σ, σ as in (3.7). Then there exists R0 > 0
such that ν can be an eigenvalue of (3.1) in AR for R > R0, if and only if

αν1(R) = −λk = −k(k +N − 2) for some k ≥ 1. (3.8)

Proof. We know that ν is an eigenvalue of (3.1) if and only if

0 ∈ σ(L̃νR) = σ(L̂νR) + σ(−∆SN−1).

By the assumption on ν we can apply Lemma 3.4 so that αν1(R) < 0 and
αν2(R) > 0 for R large. Now (3.8) follows immediately.

4 Analysis of the eigenvalues of (3.1) close to 1

We start by making a deeper analysis on the behavior of αν1(R) showing that,
for large R, it is a strictly decreasing function of the radius R. As in Section 2
we denote by w̃R(t) the function wR(t+ R) which is the only positive solution
of {

−u′′ − N−1
t+R u

′ = up in (0, 1),
u(0) = u(1) = 0.

(4.1)

We have
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Lemma 4.1. The function w̃R is continuously differentiable with respect to R.
Moreover

lim
R→∞

Rq
∫ 1

0

∣∣∣∣∂w̃R∂R

∣∣∣∣q dt = 0 ∀q > 1. (4.2)

Proof. Using the nondegeneracy of the solution w̃R, which follows from Propo-
sition 2.1, and applying the implicit function theorem to the function

F (φ,R) = φ′′ +
N − 1
t+R

φ′ + φp

it easy to see that w̃R is continuously differentiable with respect to R. The
function V (t, R) := ∂ ewR

∂R satisfies{
−V ′′ − N−1

t+R V
′ + N−1

(t+R)2 w̃
′
R = pw̃p−1

R V in (0, 1),
V (0) = V (1) = 0.

We claim that
R‖V ( . , R)‖H1

0 (0,1) ≤ C (4.3)

for some constant C > 0. If (4.3) does not hold then for a sequence Rn → ∞
we have

Rn‖V (·, Rn)‖H1
0 (0,1) →∞ as n→∞.

Now zn = V (·,Rn)
‖V (·,Rn)‖

H1
0(0,1)

satisfies

{
−z′′n − N−1

t+Rn
z′n +

(N−1)Rn ew′Rn
(t+Rn)2Rn‖V (·,Rn)‖

H1
0

= pw̃p−1
Rn

zn in (0, 1),

zn(0) = zn(1) = 0,
(4.4)

and zn → z0 weakly in H1
0 (0, 1) and strongly in Lq(0, 1), for any q > 1. More-

over, since w′Rn is bounded in L∞(0, 1) by the results of Section 2, passing to
the limit in (4.4) yields{

−z′′0 = pwp−1
0 z0 in (0, 1),

z(0) = z(1) = 0,

with w0 from (2.6). Then z0 ≡ 0 by Remark 3.3. This is a contradiction because
from the equations we also get that zn converges strongly to z0 in H1

0 (0, 1) so
that ‖z0‖H1

0 (0,1) = 1. Consequently (4.3) holds. This implies that the function
RV (·, R) converges weakly in H1

0 (0, 1) and strongly in Lq(0, 1), for any q > 1,
to a function V̄ which solves as before{

−V̄ ′′ = pwp−1
0 V̄ in (0, 1),

V̄ (0) = V̄ (1) = 0.

Again V̄ must be identically zero so that (4.2) holds.
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Lemma 4.2. The first eigenvalue αν1(R) of the operator L̂νR is differentiable
with respect to R and

∂αν1(R)
∂R

= 2βν1R+ o(R) as R→∞, (4.5)

where βν1 is the first eigenvalue of L̄ν from (3.5).

Proof. We consider the first eigenfunction v1,R of L̂νR with ‖v1,R‖∞ = 1. The
function ṽ1,R(t) = v1(t+R) then solves{

−ṽ′′1,R − N−1
t+R ṽ

′
1,R − νp‖wR‖p−1

∞ ṽ1,R = αν1(R) ev1,R
(t+R)2 in (0, 1),

ṽ1,R(0) = ṽ1,R(1) = 0.
(4.6)

Since ‖v1,R‖∞ = 1 we have that ṽ1,R → φ1 6≡ 0, as R →∞, uniformly in (0, 1)
and φ1 ≥ 0 solves{

−φ′′1 − νp‖w0‖p−1
∞ φ1 = βν1φ1 in (0, 1),

φ1(0) = φ1(1) = 0. (4.7)

By results of Kato (see [K], p. 380) we have that both ṽ1,R and αν1(R) depend
analytically on R. Thus the function Φ = Φ(t, R) = ∂ev1,R

∂R satisfies

− Φ′′ − N − 1
t+R

Φ′ +
N − 1

(t+R)2
ṽ′1,R − νp(p− 1)w̃p−2

R

∂w̃R
∂R

ṽ1,R − νpw̃p−1
R Φ

=
∂αν1(R)
∂R

1
(t+R)2

ṽ1,R +
αν1(R)

(t+R)2
Φ− 2

αν1(R)
(t+R)3

ṽ1,R.

Multiplying this equation by ṽ1,R and integrating we get∫ 1

0

Φ′ṽ′1,R(t+R)N−1dt+ (N − 1)
∫ 1

0

ṽ′1,Rṽ1,R(t+R)N−3dt

− νp(p− 1)
∫ 1

0

w̃p−2
R

∂w̃R
∂R

ṽ2
1,R(t+R)N−1dt

− νp
∫ 1

0

w̃p−1
R ṽ1,RΦ(t+R)N−1dt

=
∂αν1(R)
∂R

∫ 1

0

ṽ2
1,R(t+R)N−3dt+ αν1(R)

∫ 1

0

Φṽ1,R(t+R)N−3dt

− 2αν1(R)
∫ 1

0

Φṽ2
1,R(t+R)N−4dt.

Multiplying instead (4.6) by Φ and integrating we get∫ 1

0

Φ′ṽ′1,R(t+R)N−1dt− νp
∫ 1

0

w̃p−1
R ṽ1,RΦ(t+R)N−1dt

= αν1(R)
∫ 1

0

Φṽ1,R(t+R)N−3dt.

11



Subtracting the last two equations we deduce

(N − 1)
∫ 1

0

ṽ′1,Rṽ1,R(t+R)N−3dt− νp(p− 1)
∫ 1

0

w̃p−2
R

∂w̃R

∂R
ṽ2

1,R(t+R)N−1dt

=
∂αν1(R)
∂R

∫ 1

0

ṽ2
1,R(t+R)N−3dt− 2αν1(R)

∫ 1

0

ṽ2
1,R(t+R)N−4dt.

Since

(N − 1)
∫ 1

0

ṽ′1,Rṽ1,R(t+R)N−3dt = − (N − 1)(N − 3)
2

∫ 1

0

ṽ2
1,R(t+R)N−4dt

= O
(
RN−4

)
and

νp(p− 1)
∫ 1

0

w̃p−2
R

(
R
∂w̃R
∂R

)
ṽ2

1,R

(t+R)N−1

R
dt = o

(
RN−2

)
by (4.2) we have

∂αν1(R)
∂R

∫ 1

0

ṽ2
1,R

(t+R)N−3

RN−3
dt = 2αν1(R)

∫ 1

0

ṽ2
1,R

(t+R)N−4R2

RN−3
dt+ o(R).

Finally using the convergence of ṽ1,R to φ1 as in (4.7) and Lemma 3.2 we get

∂αν1(R)
∂R

(∫ 1

0

φ2
1dt+ o(1)

)
= 2βν1R

(∫ 1

0

φ2
1dt+ o(1)

)
+ o(R)

so that (4.5) holds.

From (4.5) we deduce that if |ν − 1| < σ as in (3.7) the function αν1(R) is a
strictly decreasing function of R, for R large. This allows to prove

Proposition 4.3. Let |ν − 1| < σ as in (3.7). Then there exists R̄ > 0 such
that ν can be an eigenvalue of problem (3.1) for R > R̄ at most for a sequence
R = Rνk which behaves asymptotically like

Rνk =

√
−k(k +N − 2)

βν1
+ o(1) as k →∞. (4.8)

Proof. As a consequence of Lemma 4.2 there exists R̄ > 0 such that αν1(R) is
strictly decreasing for R > R̄. Then for any k ≥ 1 the equation (3.8) has at
most one solution R = Rνk. Now Lemma 3.2 yields

(βν1 + o(1)) (Rνk)2 = −k(k +N − 2),

from which (4.8) follows.
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In particular, from (4.8) we deduce that the only possible radii for which the
linearized operator LwR can be degenerate, i.e. ν = 1 is an eigenvalue of (3.1),
are R1

k, k ≥ 1, and these behave asymptotically like

R1
k =

√
−k(k +N − 2)

β1
+ o(1) as k →∞. (4.9)

This implies that for any R > R̄ with R 6= R1
k for all k ≥ 1 the linearized

operator LwR is nondegenerate. Observe that

τ := lim
k→∞

(
R1
k+1 −R1

k

)
=

1√
|β1|

. (4.10)

We conclude this section by making a finer analysis of the nondegeneracy
of LwR . More precisely we prove that when R is at certain distance from the
”bad radii” R1

k then the eigenvalues νR of (3.1) are bounded away from 1 by a
constant which depends on the distance between R and R1

k, but is independent
from k.

Proposition 4.4. For δ > 0 there exists γ(δ) > 0 and k(δ) ∈ N such that for
k ≥ k(δ) and R ∈

(
R1
k, R

1
k+1

)
with min

{
R−R1

k, |R−R1
k+1|

}
≥ δ

|νR − 1| ≥ γ(δ) (4.11)

for any eigenvalue νR of problem (3.1).

Proof. Arguing by contradiction we assume there exists a sequence kn →∞, a
sequence of radii Rn ∈

(
R1
kn
, R1

kn+1

)
with min

{
Rn −R1

kn
, |Rn −R1

kn+1|
}
≥ δ,

and a sequence of eigenvalues νn of problem (3.1) such that

lim
n→∞

νn = 1

Then, obviously, |νn − 1| < σ, σ as in (3.7), for n sufficiently large and hence
by (4.8)

Rn =

√
hn(hn +N − 2)√

−βνn1

+ o(1) (4.12)

for a sequence of positive integers hn →∞. This implies Rn−R1
kn
→ 0 because

βν1 → β1 as ν → 1.

5 Study of the approximate solutions

In this section we go back to the domain ΩR defined in (1.2) which is dif-
feomorphic to the annulus AR by the diffeomorphism T defined in (1.3). As
in the previous sections we denote by wR the unique positive radial solution
of (1.1) for Ω = AR and by ũR the function defined in ΩR as in (1.4), i.e.
ũR(ρ, θ) = wR (T (ρ, θ)). We will prove that ũR is an ”approximate” solution of
(1.1) in ΩR, for large R, and we derive some useful estimates.
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Lemma 5.1.

−∆ũR = ũpR +O

(
1

R2+s

)
,

where s = 0 if N ≤ 4, s > N−5
2 if N ≥ 5, is from (1.2).

Proof. Using polar coordinates and the inverse transformation

T−1(r, θ) = (ρ, θ) =
(
r +

g(θ)
Rs

, θ

)
we get for ũR = wR ◦ T

−∆ũR = −∂
2ũR
∂ρ2

− N − 1
ρ

∂ũR
∂ρ
− 1
ρ2

∆SN−1 ũR

= −∂
2wR
∂r2

− N − 1
r

∂wR
∂r

+
(N − 1) g(θ)Rs

r
(
r + g(θ)

Rs

) ∂wR
∂r
− 1(

r + g(θ)
Rs

)2 ∆SN−1 ũR

= wpR +O

(
1

R2+s

)
,

having used the equation satisfied by wR and that |∆SN−1 ũR| = O(1/Rs). The
last fact holds because wR is radial so that

∂ũR
∂θ

=
∂wR
∂r
·
(
−∂g
∂θ

1
Rs

)
,

and similarly for the second derivatives.

Now we consider the functional

IR(u) =
1
2

∫
ΩR

|∇u|2 − 1
p+ 1

∫
ΩR

|u|p+1

and observe that for p > 1, and p+ 1 ≤ 2∗ = 2N
N−2 if N ≥ 3, IR is well defined

and of class C2 in H1
0 (ΩR). It is well known that in this case the solutions of

(1.1) correspond to the critical points of IR(u) and that for any u ∈ H1
0 (ΩR)

the derivative I ′R(u) can be represented by the element gradIR(u) ∈ H1
0 (ΩR)

given by
gradIR(u) = u−

(
−∆−1

) (
|u|p−1u

)
(5.1)

We have

Lemma 5.2. If p > 1, and p ≤ 2∗ − 1 = N+2
N−2 if N ≥ 3, then

‖gradIR(ũR)‖H1
0 (ΩR) ≤

C1

Rα
(5.2)

with α = 5−N+2s
2 > 0, s as in (1.2) and C1 independent of R.
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Proof. Setting
zR = gradIR(ũR) = ũR −

(
−∆−1

)
(ũpR)

we have
−∆ũR − ũpR = −∆zR

and hence, using Lemma 5.1,∫
ΩR

|∇zR|2 =
∫

ΩR

(−∆ũR − ũpR) zR ≤
(∫

ΩR

|−∆ũR − ũpR|
2

) 1
2

·
(∫

ΩR

|zR|2
) 1

2

≤ C

[∫
ΩR

(
1

R2+s

)2
] 1

2

P0

(∫
ΩR

|∇zR|2
) 1

2

,

where P0 is the constant of the Poincaré inequality which is independent of R
(see [A, Lemma 5.14]). Consequently

‖zR‖ ≤ C1
1

R2+s
R
N−1

2 =
C1

Rα

because meas ΩR = O
(
RN−1

)
.

The previous estimates imply that ũR are approximate solutions to (1.1). In
order to prove that near ũR there is a true solution of (1.1) we need to prove that
the linear operator I ′′R(ũR) is invertible. To do this we need some preliminary
results.

Lemma 5.3. Let v be any function in H1
0 (AR) and set ṽ := v ◦ T : ΩR → R

with T from (1.3). Then ṽ ∈ H1
0 (ΩR) and∫

ΩR

|∇ṽ|2dx =
∫
AR

|∇v|2dy +O

(
1

Rs+1

∫
AR

|∇v|2dy
)
. (5.3)

Proof. Using spherical coordinates (ρ, θ1, . . . , θN−1) in RN , N ≥ 2, we have

|∇ṽ|2 =
(
∂ṽ

∂ρ

)2

+
1
ρ2

N−1∑
i=1

|ai(θ)|2
(
∂ṽ

∂θi

)2

, (5.4)

where (θ1, . . . , θN−1) and ai(θ) are bounded functions independent of ρ. More-
over, by the definition of the diffeomorphism T given in (1.3),

∂ṽ

∂ρ
=
∂v

∂r
, r = ρ− g(θ)

Rs
,

∂ṽ

∂θi
=

∂v

∂θi
− 1
Rs

∂v

∂r

∂g

∂θi
.

(5.5)
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Hence (5.4) yields

∫
ΩR

|∇ṽ|2dx =
∫
AR

(∂v
∂r

)2

+
1(

r + g(θ)
Rs

)2

N−1∑
i=1

|ai(θ)|2
(

1
R2s

(
∂v

∂r

)2(
∂g

∂θi

)2

+
(
∂v

∂θi

)2

− 2
Rs

∂v

∂r

∂v

∂θi

∂g

∂θi

)]
dy

=
∫
AR

[(
∂v

∂r

)2

+
1
r2

N−1∑
i=1

|ai(θ)|2
(
∂v

∂θi

)2
]
dy

+
∫
AR

1(
r + g(θ)

Rs

)2

N−1∑
i=1

|ai(θ)|2
[

1
R2s

(
∂v

∂r

)2(
∂g

∂θi

)2

− 2
Rs

∂v

∂r

∂v

∂θi

∂g

∂θi

]
dy

+
∫
AR

 1(
r + g(θ)

Rs

)2 −
1
r2

N−1∑
i=1

|ai(θ)|2
(
∂v

∂θi

)2

dy

=
∫
AR

|∇v|2 dy + I1 + I2,

having denoted by I1, I2 the last two integrals. Now (5.3) follows from

|I1| ≤
C

R2s+2

∫
AR

(
∂v

∂r

)2

dy +
∫
AR

C

r2Rs

N−1∑
i=1

[
r

(
∂v

∂r

)2

+
1
r

(
∂v

∂θi

)2
]
dy

≤ C

R2s+2

∫
AR

(
∂v

∂r

)2

dy +
C

Rs+1

∫
AR

(
∂v

∂r

)2

dy

+
C

Rs+1

∫
AR

N−1∑
i=1

1
r2

(
∂v

∂θi

)2

dy

≤ C

Rs+1

∫
AR

|∇v|2 dy

and

|I2| ≤
∫
AR

∣∣∣2r g(θ)Rs + g2(θ)
R2s

∣∣∣(
r + g(θ)

Rs

)2

r2

N−1∑
i=1

|ai(θ)|2
(
∂v

∂θi

)2

dy

≤ C

Rs+1

∫
AR

1
r2

N−1∑
i=1

(
∂v

∂θi

)2

dy ≤ C

Rs+1

∫
AR

|∇v|2 dy.

Let us define the functionals

QR(v) =

∫
AR
|∇v|2 dy∫

AR
pwp−1

R v2dy
, v ∈ H1

0 (AR), v 6≡ 0,
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and

Q̃R(u) =

∫
ΩR
|∇u|2 dx∫

ΩR
pũp−1

R u2dx
, u ∈ H1

0 (ΩR), u 6≡ 0.

Then we consider the eigenvalue problem{
−∆v = ν̃pũp−1

R v in ΩR
v = 0 on ∂ΩR

(5.6)

and denote by φR1 , . . . , φ
R
k and ψ̃R1 , . . . , ψ̃

R
k the eigenfunctions of (3.1) and (5.6)

respectively, with ‖φRi ‖L2(AR,pw
p−1
R ) = ‖ψ̃Ri ‖L2(AR,pw

p−1
R ) = 1, and by νR1 , . . . , ν

R
k ,

ν̃R1 , . . . , ν̃
R
k the corresponding eigenvalues.

Lemma 5.4. Let V Rk be the subspace of H1
0 (AR) spanned by φR1 , . . . , φ

R
k , then

Q̃R(ṽ) = νRk +O
(
R−1

)
νRk as R→∞ (5.7)

for any ṽ ∈ Ṽ Rk where Ṽ Rk is the space spanned by φ̃R1 = φR1 ◦T, . . . , φ̃Rk = φRk ◦T .
Conversely if W̃R

k is the subspace of H1
0 (ΩR) spanned by ψ̃R1 , . . . , ψ̃

R
k we have

Q̃R(v) = ν̃Rk +O
(
R−1

)
ν̃Rk as R→∞ (5.8)

for any v ∈WR
k which is the space spanned by ψR1 = ψ̃R1 ◦ T, . . . , ψRk = ψ̃Rk ◦ T .

Proof. We start by observing that the functions φR1 , . . . , φ
R
k are linearly inde-

pendent and the same is true for φ̃R1 , . . . , φ̃
R
k . Writing ṽ as

∑k
i=1 αiφ̃

R
i we have

Q̃R(ṽ) =

∑k
i,j=1 αiαj

∫
ΩR
∇φ̃Ri ∇φ̃Rj dx∑k

i,j=1 αiαj
∫

ΩR
pũp−1

R φ̃iφ̃jdx
.

As in (5.4), using spherical coordinates we have

∇φ̃Ri ∇φ̃Rj =
∂φ̃Ri
∂ρ

∂φ̃Rj
∂ρ

+
1
ρ2

k∑
l=1

a2
l (θ)

∂φ̃Ri
∂θl

∂φ̃Rj
∂θl

,

and analogously

∇φRi ∇φRj =
∂φRi
∂r

∂φRj
∂r

+
1
r2

k∑
l=1

a2
l (θ)

∂φRi
∂θl

∂φRj
∂θl

.

Moreover, by the definition of the diffeomorphism T , formulas analogous to (5.5)
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hold. Therefore we have

∇φ̃Ri ∇φ̃Rj =
∂φRi
∂r

∂φRj
∂r

+
1(

r + g(θ)
Rs

)2

k∑
l=1

a2
l (θ)

(
− 1
Rs

∂φRi
∂r

∂g

∂θl
+
∂φRi
∂θl

)
·

·

(
− 1
Rs

∂φRj
∂r

∂g

∂θl
+
∂φRj
∂θl

)

=
∂φRi
∂r

∂φRj
∂r

+
(

1
r2

+O
(
R−3−s)) k∑

l=1

a2
l (θ)

[
∂φRi
∂r

∂φRj
∂r

(
∂g

∂θl

)2

+

+
∂φRi
∂θl

∂φRj
∂θl
− ∂φRi

∂r

∂φRj
∂θl

∂g

∂θl
− ∂φRi

∂θl

∂φRj
∂r

∂g

∂r

]

≤ ∇φRi ∇φRj +O
(
R−1

)
∇φRi ∇φRj + C

(
1
r2

+O
(
R−3−s)) ·

·
k∑
l=1

r(∂φRi
∂r

)2

+ r

(
∂φRj
∂r

)2

+
1
r

(
∂φRi
∂θl

)2

+
1
r

(
∂φRj
∂θl

)2


≤
(
1 +O

(
R−1

))
∇φRi ∇φRj + C

(
1
r2

+O
(
R−3−s)) r (∣∣∇φRi ∣∣2 +

∣∣∇φRj ∣∣2)
=
(
1 +O

(
R−1

))
∇φRi ∇φRj +O

(
R−1

) (∣∣∇φRi ∣∣2 +
∣∣∇φRj ∣∣2) .

On the other hand we have that

p

∫
ΩR

ũp−1
R φ̃Ri φ̃

R
j dx = p

∫
SN−1

∫ R+1+g(θ)

R+g(θ)

ũp−1
R φ̃Ri φ̃

R
j ρ

N−1b(φ)dρdθ

= p

∫
SN−1

∫ R+1

R

wp−1
R φRi φ

R
j

(
r +

g(θ)
Rs

)N−1

b(θ)drdθ

= p

∫
SN−1

∫ R+1

R

wp−1
R φRi φ

R
j r

N−1b(θ)drdθ

+
∫ R+1

R

∫
SN−1

wp−1
R φRi φ

R
j

[(
r +

g(θ)
Rs

)N−1

− rN−1

]
b(θ)drdθ

= p

∫
AR

wp−1
R φRi φ

R
j dy +O

(
R−1−s) ∫

AR

wp−1
R |φRi ||φRj |dy

with O
(
R−1−s) > 0. Hence, using also (5.3), the Rayleigh quotient becomes

Q̃R(ṽ) =

k∑
i,j=1

αiαj
∫
AR
∇φRi ∇φRj dy +O

(
R−1

) k∑
i,j=1

αiαj
∫
AR

[
|∇φRi |2 + |∇φRj |2

]
dy

k∑
i,j=1

αiαjp
∫
AR

wp−1
R φRi φ

R
j dy +O (R−1−s)

k∑
i,j=1

αiαjp
∫
AR

wp−1
R |φRi ‖φRj |dy

.
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Recalling that φR1 , . . . , φ
R
k are orthogonal in H1

0 (AR) and in L2(AR, w
p−1
R ), and

that

k∑
i,j=1

αiαjp

∫
AR

wp−1
R |φRi ||φRj |dy = p

∫
AR

wp−1
R

(
k∑
i=1

αi|φRi |

)2

dy ≥ 0

we have

Q̃R(ṽ) ≤

k∑
i=1

α2
i

∫
AR
|∇φRi |2dy +O

(
R−1

)( k∑
i=1

α2
i

∫
AR
|∇φRi |2dy +

k∑
j=1

α2
j

∫
AR
|∇φRj |2dy

)

p
k∑
i=1

α2
i

∫
AR

wp−1
R

(
φRi
)2
dy

,

and using p
∫
AR

wp−1
R |φRi |2dy = 1 we get

Q̃R(ṽ) ≤

k∑
i=1

α2
i

∫
AR
|∇φRi |2dy +O

(
R−1

)( k∑
i=1

α2
i

∫
AR
|∇φRi |2dy +

k∑
j=1

α2
j

∫
AR
|∇φRj |2dy

)

p
k∑
i=1

α2
i

≤ νRk +O
(
R−1

) k∑
i=1

α2
i

∫
AR
|∇φRi |2 +

k∑
j=1

α2
j

∫
AR
|∇φRj |2

k∑
i=1

α2
i

≤ νRk +O
(
R−1

)
νRk

which gives (5.7). The inequality (5.8) is obtained in the same way.

We conclude this section showing an analogue of Proposition 4.4 for the
eigenvalues of problem (5.6). Recall the values R1

k from Proposition 4.3.

Proposition 5.5. For δ > 0 let γ(δ) > 0 and k(δ) ∈ N be as in Proposi-
tion 4.4. Then there exists k̄(δ) ≥ k(δ) such that for any k ≥ k̄(δ) and any
R ∈

[
R1
k + δ,R1

k+1 − δ
]

we have

|ν̃R − 1| ≥ γ(δ)
2

(5.9)

for any eigenvalue ν̃R of (5.6).

Proof. Consider R ∈
[
R1
k + δ,R1

k+1 − δ
]

with k ≥ k(δ). Then (4.11) holds
and we denote by νR1 , . . . , ν

R
n(R) the eigenvalues of (3.1) smaller than 1 so that

νRn(R)+1 is the first eigenvalue of (3.1) larger than 1 and

νRn(R) < 1− γ, νRn(R)+1 > 1 + γ. (5.10)
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Consider the eigenfunctions φR1 , . . . , φ
R
n(R) of (3.1) corresponding to ν1, . . . , νn(R)

and the transformed functions φ̃Ri = φRi ◦T , i = 1, . . . , n(R), in ΩR. As observed
in the proof of Lemma 5.4 the functions φ̃Ri are linearly independent and hence
the space Ṽn(R) spanned by them is n(R)-dimensional. Computing the quotient
Q̃R for functions in Ṽn(R) and using (5.7) and (5.10) we have that

Q̃R(ψ) < 1− γ

2
for all ψ ∈ Ṽn(R)

for R sufficiently large, i.e. for k sufficiently large. By the variational character-
ization of the eigenvalues we have that the eigenvalue ν̃n(R) of (5.6) is smaller
than 1 − γ

2 . Hence, arguing by contradiction, if (5.6) has an eigenvalue ν̃m(R)

which contradicts (5.9) we must have m(R) > n(R). Now we consider the
eigenspace W̃m(R) corresponding to the eigenvalue ν̃m(R) for which

|ν̃m(R) − 1| < γ

2
. (5.11)

Computing the quotient QR on the space Wm(R) obtained from W̃m(R) by ap-
plying the inverse transformation T−1 and using (5.8) we see that the eigenvalue
νm(R) of (3.1) satisfies

νm(R) ≤ ν̃m(R) +
γ

2
for R, and hence k, sufficiently large. Since νm(R) > 1 we have νm(R) − 1 < γ
because of (5.11), contradicting (4.11).

6 Proof of Theorem 1.1

Let Rk := R1
k be the radii from Proposition 4.3 and recall from (4.10) that

Rk+1 −Rk → τ = |β1|−1/2 as R→∞. We start by proving Theorem 1.1 in the
case the exponent p in (1.1) is subcritical:

1 < p ≤ N + 2
N − 2

= 2∗ − 1 if N ≥ 3, any p > 1 if N = 2. (6.1)

As in Section 5 we consider the functional

IR(u) =
1
2

∫
ΩR

|∇u|2 − 1
p+ 1

∫
ΩR

|u|p+1

which is of class C2 in H1
0 (ΩR) and whose derivative I ′R(u) is represented by the

element gradIR(u) ∈ H1
0 (ΩR) given by (5.1). Analogously the second deriva-

tive I ′′R(u) can be identified with a linear continuous operator from H1
0 (ΩR) to

H1
0 (ΩR) as follows:

〈I ′′R(u), v〉 = v −
(
−∆−1

) (
p|u|p−1v

)
∀v ∈ H1

0 (ΩR). (6.2)
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Let ũR = wR ◦ T be the ”approximate solution” of (1.1) defined in Section 5.
The following lemma shows that for a certain range of R and that the norm of
the inverse operator in the space

LR =
{
T : H1

0 (ΩR)→ H1
0 (ΩR) | T linear and continuous

}
(6.3)

is bounded.

Lemma 6.1. Fix δ > 0, and let k̄(δ) ∈ N be given by Proposition 5.5. Then
for k ≥ k̄(δ) and R ∈ [Rk + δ,Rk+1 − δ] the operator I ′′R(ũR) is invertible and∥∥∥[I ′′R(ũR)]−1

∥∥∥
LR
≤ γ1(δ). (6.4)

where γ1(δ) > 0 is independent of k.

Proof. The linear operator I ′′R(ũR) is invertible if it does not admit zero as
eigenvalue i.e., using (6.2), if there does not exist a nontrivial solution of the
equation {

−∆v − pũp−1
R v = 0 in ΩR,

u = 0 on ∂ΩR.

In other words I ′′R(ũR) is invertible if 1 is not an eigenvalue of (5.6). By (5.9)
this is indeed the case for k ≥ k̄(δ), R ∈ (Rk + δ,Rk+1 − δ). Then, denoting by
µRh the eigenvalues of [I ′′R(ũR)]−1 we have∥∥∥[I ′′R(ũR)]−1

∥∥∥ = sup
{∣∣µRh ∣∣ , h ≥ 1

}
.

It is easy to see that µRh = eνRheνRh −1
, where ν̃Rh is an eigenvalue of the problem

(5.6). Hence
∥∥∥[I ′′R(ũR)]−1

∥∥∥
LR

is bounded if and only if the eigenvalues ν̃Rh are

bounded away from 1 which is precisely the result of Proposition 5.5.

We also need the following estimates.

Lemma 6.2. The map GR : H1
0 (ΩR)→ H1

0 (ΩR) defined by

GR(φ) = gradIR(ũR + φ)− gradIR(ũR)− 〈I ′′R(ũR), φ〉 (6.5)

satisfies for ‖φ‖2
H1

0
≤ 1

‖GR(φ)‖H1
0
≤

{
C3‖φ‖pH1

0
for 1 < p ≤ 2,

C3‖φ‖2H1
0

for p > 2,
(6.6)

with C3 a constant independent of R.
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Proof. By (5.1) and (6.2) we have

GR(φ) = ũR + φ−
(
−∆−1

) (
|ũR + φ|p−1(ũR + φ)

)
− ũR

+
(
−∆−1

) (
|ũR|p−1ũR

)
− φ+

(
−∆−1

) (
pũp−1

R φ
)

= −
(
−∆−1

) (
|ũR + φ|p−1 (ũR + φ)− ũpR − pũ

p−1
R φ

)
.

We set
zR = |ũR + φ|p−1 (ũR + φ)− ũpR − pũ

p−1
R φ

and
ζR =

(
−∆−1

)
(zR)

so that {
−∆ζR = −zR in ΩR,
ζR = 0 on ∂ΩR.

(6.7)

Since the function ũR is uniformly bounded we have

|zR| ≤

{
C|φ|p if 1 < p ≤ 2,
C
(
|φ|p + |φ|2

)
for p > 2.

(6.8)

Now we distinguish two cases:
Case 1. N = 2 and p > 1, or N ≥ 3 and 1 ≤ p ≤ N

N−2 .
Case 2. N ≥ 3 and N

N−2 < p ≤ N+2
N−2 .

In Case 1 (6.7) implies∫
ΩR

|∇ζR|2 dx = −
∫

ΩR

zRζRdx ≤
(∫

ΩR

|ζR|2 dx
) 1

2
(∫

ΩR

|zR|2 dx
) 1

2

≤ P0‖zR‖L2‖ζR‖H1
0
,

where P0 is the Poincaré constant which is independent of R. Hence by (6.8),
if p ≤ 2,

‖GR(φ)‖H1
0

= ‖ζR‖H1
0
≤ C2

(∫
ΩR

|φ|2p
) 1

2

≤ C3‖φ‖pH1
0
,

having used the Sobolev inequality with a constant independent of R, because
2p > 2. If p > 2, from (6.8) we get in the same way ‖GR(φ)‖H1

0
≤ C3‖φ‖2H1

0
,

because ‖φ‖H1
0
≤ 1. In Case 2 by (6.7) we have

∫
ΩR

|∇ζR|2 ≤
(∫

ΩR

|ζR|
2N
N−2

)N−2
2N
(∫

ΩR

|zR|
2N
N+2

)N+2
2N

≤ 1
S
‖ζR‖H1

0
‖zR‖

L
2N
N+2

,
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where S is the best Sobolev constant for the embedding of H1
0 (ΩR) in L

2N
N−2 (ΩR)

which is independent of R. Hence, by (6.8), if p ≤ 2,

‖GR(φ)‖H1
0
≤ C2

(∫
ΩR

|φ|p
2N
N+2

)N+2
2N

≤ C3‖φ‖pH1
0
,

having used, as before, the Sobolev inequality with a constant independent of
R, because p 2N

N+2 > 2. If p > 2, from (6.8) and ‖φ‖H1
0
≤ 1 we obtain in the

same way
‖GR(φ)‖H1

0
≤ C3‖φ‖2H1

0
.

Lemma 6.3. Let GR be as in Lemma 6.2. Then for ‖φ‖1
H1

0
, ‖φ‖2

H1
0
≤ 1 there

holds:

‖GR(φ1)−GR(φ2)‖H1
0

≤

C4

(
‖φ1‖p−1

H1
0

+ ‖φ2‖p−1
H1

0

)
‖φ1 − φ2‖H1

0
if 1 < p ≤ 2,

C4

(
‖φ1‖H1

0
+ ‖φ2‖H1

0

)
‖φ1 − φ2‖H1

0
if p > 2.

Proof. The proof is similar to that of Lemma 6.2 using∣∣∣|ũR + φ1|p−1 (ũR + φ1)− |ũR + φ2|p−1 (ũR + φ2)− pũp−1
R (φ1 − φ2)

∣∣∣
≤

{
C
(
|φ1|p−1 + |φ2|p−1

)
|φ1 − φ2| if 1 < p ≤ 2,

C
(
|φ1|p−1 + |φ2|p−1 + |φ1|+ |φ2|

)
|φ1 − φ2| if p > 2,

with a constant C independent of R, because ũR is uniformly bounded.

Now we reformulate (1.1) as fixed point problem. We look for a solution u
of (1.1) in ΩR in the form

u = ũR + φR.

Hence we need to find φR ∈ H1
0 (ΩR) such that

gradIR(ũR + φR) = 0

which is equivalent to

φR = − [I ′′R(ũR)]−1 [gradIR(ũR) +GR(φR)] (6.9)

with GR defined as in (6.5).

Proof of Theorem 1.1 for p as in (6.1). We consider the map FR : H1
0 (ΩR) →

H1
0 (ΩR) defined by

FR(φ) = [I ′′R(ũR)]−1 [gradIR(ũR) +GR(φ)] , (6.10)
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so that (6.9) becomes the fixed point equation

φ = FR(φ). (6.11)

We fix δ > 0, and take R ∈ [Rk + δ,Rk+1 − δ] with k sufficiently large (to be
determined below) and prove that, for such R, the operator FR maps the set

Bδ,R :=
{
φ ∈ H1

0 (ΩR) : ‖φ‖H1
0
≤ A(δ)

Rα

}
to itself; here α is as in Lemma 5.2 and A(δ) = 2γ1(δ)C̄, with γ1(δ) as in
Lemma 6.1, C̄ = max {C1, C3, C4}, the constants from Lemma 5.2), Lemma 6.2
and Lemma 6.3. For k ≥ k̄(δ) as in Lemma 6.1 we have, by (6.10), (6.4), (5.2),
and (6.6)

‖FR(φ)‖H1
0
≤ γ1(δ)

[
‖gradIR(ũR)‖H1

0
+ ‖GR(φ)‖H1

0

]
≤ γ1(δ)

[
C1

Rα
+ C3 ‖φ‖qH1

0

]
where q := min{p, 2} > 1. Then we have

‖FR(φ)‖H1
0
≤ γ1(δ)C̄

Rα
+
γ1(δ)C̄A(δ)q

Rαq
<
A(δ)
Rα

if R is sufficiently large. Moreover from Lemmas 6.1 and 6.3 we deduce, for R
sufficiently large,

‖FR(φ1)− FR(φ2)‖H1
0
≤ γ1(δ)

[
‖GR(φ1)−GR(φ2)‖H1

0

]
≤ 2γ1(δ)C̄

(
A(δ)
Rα

)d
‖φ1 − φ2‖H1

0
<

1
2
‖φ1 − φ2‖H1

0

where d is either p− 1 or 1. Thus, for R ∈ [Rk + δ,Rk+1 − δ] and k ∈ N large,
the map FR is a contraction in the set Bδ,R and so the fixed point equation
(6.11) has a solution φR ∈ Bδ,R with

‖φ‖H1
0
≤ A(δ)

Rα

with α as in Lemma 5.2. Hence uR = ũR+φR is a solution of (1.1) in ΩR. That
the solution is positive will be shown below for general p > 1. 2

Proof of Theorem 1.1 in the supercritical case. We consider the map

FR : H1
0 ∩ L∞(ΩR)→ H1

0 ∩ L∞(ΩR)

defined in 6.10. Let zR = |ũR + φ|p−1 (ũR+φ)− ũpR−pũ
p−1
R φ be as in the proof

of Lemma 6.2. We start with the following
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Lemma 6.4. There exists C > 0 independent of R such that for R large

‖FR(φ)‖L∞(ΩR) ≤ C
(
‖FR(φ)‖L2(ΩR) + ‖zR‖L∞(ΩR) +

1
R2

)
.

Proof. The function

ωR := [I ′′R(ũR)]−1 [gradIR(ũR) +GR(φ)]

solves the problem{
−∆ωR − pũp−1

R ωR = ∆ũR + ũpR + zR(φ) in ΩR,
ωR ∈ H1

0 (ΩR).

By Lemma 5.1 we have for R large

‖∆ũR + ũpR‖L∞(ΩR) ≤
C

R2
.

Now we choose a point xR ∈ ΩR with

‖ωR‖L∞(ΩR) = ωR(xR),

and set BδR = B(xR, δ)∩ΩR where B(xR, δ) is the ball centered at xR and with
radius δ > 0. Applying [GT, Theorem 8.17] we obtain

sup
B1
R

|ωR| ≤ C
[
‖ωR‖L2(B2

R) + ‖∆ũR + ũpR‖L∞(B2
R) + ‖zR‖L∞(B2

R)

]
.

The claim follows from ‖ωR‖L∞(ΩR) = ‖ωR‖L∞(B1
R).

As for the subcritical case we fix δ > 0 and take R ∈ [Rk + δ,Rk+1 − δ]. We
now set for 0 < β < α,

Cδ,R =
{
φ ∈ H1

0 ∩ L∞(ΩR) : ‖φ‖H1
0 (ΩR) ≤

A(δ)
Rα

, ‖φ‖L∞(ΩR) ≤
1
Rβ

}
where A(δ) and α are the same as in the proof of Theorem 1.1 with p as in (6.1).
For M > 0 we choose wM ∈ C2(R) with

wM (s) =

{
|s|p+1 if |s| ≤M,

M + 1 if |s| ≥M + 1,

and consider the functional IR,M : H1
0 (ΩR)→ H1

0 (ΩR) defined by

IR,M (u) =
1
2

∫
ΩR

|∇u|2 − 1
p+ 1

∫
ΩR

wM (u).

For M ≥ M0 := 2 ||ũR||L∞(ΩR) the linear operators I ′R,M (ũR) and I ′′R,M (ũR)
coincide with I ′R(ũR) and I ′′R(ũR), respectively. We denote by FR,M the coun-
terpart of the operator FR. In the following we always assume that M ≥ M0.
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As in the proof of Theorem 1.1 in the case p ≤ N+2
N−2 we will show that FR,M is

a contraction mapping from Cδ,R to itself for R large enough. Indeed, repeating
the same proof we obtain

%labelf6‖φ‖H1
0 (ΩR) ≤

A(δ)
Rα

=⇒ ‖FR,M (φ)‖H1
0 (ΩR) ≤

A(δ)
Rα

.

Also we have by (6.8), for ‖zR‖L∞(ΩR) ≤ 1
Rβ

,

‖zR‖L∞(ΩR) ≤ C
(
‖φR‖2L∞(ΩR) + ‖φR‖pL∞(ΩR)

)
≤ C

(
1
R2β

+
1
Rpβ

)
.

Hence Lemma 6.4 implies

‖FR,M (φ)‖L∞(ΩR) ≤ C
(

1
Rα

+
1
R2β

+
1
Rpβ

+
1
R2

)
≤ 1
Rβ

for R large, because 0 < β < α ≤ 2. This proves that FR,M maps Cδ,R into
itself. In the same way it is possible to show that for R ∈ [Rk + δ,Rk+1− δ] and
k ∈ N large,

‖FR,M (φ1)− FR,M (φ2)‖H1
0
≤ γ ‖φ1 − φ2‖H1

0

with γ < 1, and similarly with the L∞-norm. Hence the contraction mapping
theorem applies and yields a solution uR = ũR + φR of{

−∆uR = |uR|p−1uR in ΩR,
uR = 0 on ∂ΩR,

(6.12)

with ũR as in (1.4) and φR ∈ Cδ,R.
We complete the proof of Theorem 1.1 by showing that uR is positive in

ΩR. Since ũR > 0 in ΩR and φR → 0 in H1
0 (ΩR) it is easy to show that if DR

is any regular set such that uR ≤ 0 in DR then meas(DR) → 0 as R → ∞.
Multiplying (6.12) by u−R and integrating on DR we get∫

ΩR

|∇u−R|
2dx =

∫
ΩR

|uR|p−1
(
u−R
)2
dx,

from which, using the Poincaré inequality, we deduce

λ1(DR)
∫

ΩR

(
u−R
)2
dx ≤ ‖uR‖p−1

∞

∫
ΩR

(
u−R
)2
dx (6.13)

where λ1(DR) is the first eigenvalue of −∆ in DRd with homogenous Dirichlet
boundary conditions. From (6.13) we get

λ1(DR) ≤ ‖uR‖p−1
∞ ≤ C

which is impossible because λ1(DR) should tend to ∞ as meas(DR)→ 0. 2
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