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I Introduction

I.1 Motivation

Over the last centuries scientists succeeded in describing the physical world with only four different

foces: gravitation, electro-magnetism, the weak nuclear force and the strong nuclear force, known as

Quantum Chromo Dynamics [QCD]. While the study of each of these forces yields interesting questions,

this work will focus on some of the peculiar aspects of QCD.

The first property, which is much more prominent for QCD, than for the other fundamental forces, is the

strong scale (or energy) dependence of its coupling strength. At high energies QCD becomes very weak

(objects interact only weakly), resulting in the asymptotic freedom of elementary particles, while at low

energies its coupling strength increases drastically, giving rise to the concept of ‘colour confinement’.

This confinement forces all low energy observables to come as ‘colourless’ states, such as hadrons and

mesons. The curious energy dependence of QCD has a tremendous influence on theoretical treatment of

this force in different energy regimes. At high energies, where the force is weak, the well established

tools of perturbation theory can be used. With this advantage all related questions can be approached

conceptually in a relatively simple setting. On the other hand, in the low energy region, the sharp rise

of the involved strong coupling constant leads to a complete breakdown of the perturbative concepts. To

arrive at (qualitatively and quantitatively) meaningful predictions for this realm, theoretical physicists

have developed various concepts of effective field theories [EFT] over the last sixty years. While the

conceptual progress concerning effective descriptions of fundamental theories has been very impressive

in the preceding decades, there are still many open and interesting questions concerning various aspects

of low energy (non-perturbative) QCD.

The second aspect that will be interesting in the context of this work, is not a unique feature of QCD,

but is in principle inherent to many non-abelian theories. In the nineteen seventies it was found that non-

abelian theories, like QCD, have a non-trivial vacuum configuration, |θ〉. It turned out that it was possible

to make a transition from one vacuum, |θ1〉, to another, |θ2〉, by means of certain field configurations, Acl
µ .

These fields were found by Belavin as explicit solutions of a pure Yang-Mills theory that minimised the

Euclidean action. Later they became known as ‘instanton’ solutions. In the present context especially

the unique interactions of instantons with fermions and scalar fields will be of interest. Ultimately these

interactions allow to construct an instanton induced contribution, Vinst, to the effective scalar potential,
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V, in the context of a given, effective model.

This work now will investigate a possible generalisation of a very successful effective low energy model

in QCD, the ‘linear σ-model’. In 1960 Gell-Mann and Lévy developed this model to capture the low

energy ‘isospin’ structure of QCD. They employed relevant low energy fields (scalar and pseudo-scalar

mesons) as effective variables of their model, instead of the fundamental degrees of freedom of QCD

(quarks and gluons). This effective description makes the linear σ-model much more tractable, than

dealing with the full theory of QCD at low energies. Originally they used the (scalar, iso-scalar) σ-meson

and (pseudo-scalar, iso-vector) π-mesons as effective fields. These were assembled into a combined

field, Φ = (σ,πT)T, on which the effective Lagrange density depended, Leff = Leff(Φ). In this model the

pions are characterised as Goldstone bosons of the effective model, while the scalar σ-meson becomes a

massive, broad resonance state. Apart from these structural features another advantage of the σ-model

is its large range of applicability. Essentially it can be used from the description of quarks up to the

treatment of effective nucleon interactions.

The generalisation which will be pursued in this work, concerns the isospin structure of the σ-model.

The effective Φ field incorporates a (scalar, iso-scalar) and a (pseudo-scalar, iso-vector) contribution.

Going one step further one could generalise this structure to allow also for another combined field Λ =

( η̃, δT)T1), which incorporates the remaining two possibilities, namely a (pseudo-scalar, iso-scalar) and

a (scalar, iso-vector) part. The model that will be developed in chapter III will depend on a combined

field Ω = (ΦT,ΛT)T, which then incorporates the generalisation of the isospin structure of the original

σ-model.

Understandably this generalisation does not come for free. The original linear σ-model seperated the

degrees of freedom into a 3-dimensional Goldstone mode and one massive field contribution. A simple

generalisation, which just replaces Φ with the generalised Ω field would produce seven Goldstone modes

and still only one massive field. As there is no experimental evidence for a physical realisation of such

a model, another ingredient will be needed, if a generalisation of the σ-model in the indicated direction

shall be developed. In the present work the induced scalar potential contribution from the instanton sector

will be used to fill this conceptual gap. This approach is not entirely new, as it was first pursued by Saito

and Shigemoto in 1979 Ref. Ref. [1]. In their paper the important mesonic mass relations, that will also

be presented here have already been worked out in the context of a ‘pure’ instanton model2). In later years

it was found that these original ‘pure’ instantons had to be replaced by something named ‘constrained’

instantons in the context Saito’s and Shigemoto’s paper. Therefore this work will rederive the findings of

Saito and Shigemoto in the ‘constrained’ instanton context and in addition further relations concerning

fermions and gauge field couplings will be presented.

In the final model of chapter III the combination of the generalised σ-model with a Lagrange density

1)In the nomenclature of the PDG the δ-meson is usually called the a0 resonance. The (pseudo-scalar, iso-scalar) part η̃ cannot
directly be identified with the physical η-meson, which will be part of the discussion in chapter III.

2)The exact differences of instantons or ‘pure’ instantons on the one hand and ‘constrained’ instantons on the other will be
worked out explicitly in Sec. II.9.

2
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Leff = Leff(Ω) with the instanton induced potential part, Vinst, will lead to an effective model, which

consists of a 3-dimensional pionic Goldstone mode and up to three different massive contributions: the

σ-meson, the δ-meson and one remaining contribution of η̃.

Naturally, before arriving at the complete, generalised Lagrange density of the linear σ-model at the end

of chapter III, many aspects concerning instantons and the scalar field generalisation (Φ→ Ω) have to be

worked out explicitly. As the treatment of all related subjects incorporates well known parts of modern

physics as well as partly new areas, the next section will clarify the exact structure of this work, in order

to offer an effective guideline to the interested reader.

I.2 Structure

As already indicated in the previous section this work will derive a possible generalisation of the ‘linear

σ-model’ in the context of constrained instantons. A rigorous treatment of this generalisation has to rely

on various concepts of modern physics. Of course all these theoretical concepts have been treated in

great detail in many excellent textbooks and papers. Nevertheless, as the discussion in this work shall be

as self-contained as possible, all subjects that are important to the derivation of the model in chapter III

will be presented and briefly discussed beforehand in the theoretical background chapter II. It is inherent

to such types of presentations, that the chapter concerning the background informations mixes parts that

are original to the present work with those that have a more recitative character. Therefore this section

will provide a brief outlook on the various subjects in chapter II.

• In general chapter II deals with three different aspects of modern theoretical physics. The first

part, from Sec. II.1 to Sec. II.5, introduces concepts from group and representation theory that led

to very successful descriptions of physical phenomena throughout the last hundred years. These

sections are included for the reader’s convenience as well as to clarify later notations. Thus they

give a short summary of known textbook knowledge.

• The second part about effective field theories (Sec. II.6 and Sec. II.7) gives a brief summary of

this large area of modern field theory. It also reports background knowledge that has only been

collected here from sources that present the subject in great detail.

• Finally the last part of Sec. II.8 and Sec. II.9 introduces many ideas and results on the physics of

instantons. As the model from chapter III relies heavily on the influence of instantons, this subject

is presented in a more detailed fashion. While Sec. II.8 still completely relies on presentations

of the subject given in literature, the situation is slightly different in Sec. II.9. Here only the first

part of the section, which deals with explicit results for ‘pure’ instantons, is completely based on

already known results. The second part, starting from Sec. II.9.8.1 mixes findings from other

author’s with calculations explicitly derived for the model of chapter III.

3
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• After the loosely connected theoretical background part chapter III gives a well sorted presentation

of the generalised linear σ-model. In the Sec. III.1 and Sec. III.2 the general structure of the model

is discussed, including a list of preliminary assumptions, a presentation of the used effective fields

and a discussion of the induced instanton potential,Vinst.

• The consecutive sections then derive the Lagrange densities for the included effective fields. The

derivations will include a discussion of kinetic parts, mass terms, interactions and current contribu-

tions. In addition two possible schemes will be presented, that allow to identify the free parameters

of the effective model with physical observables.

Therefore the reader, already familiar with the topics from chapter II might want to progress swiftly to

chapter III. If one feels uneasy at some point with the used concepts or nomenclature, this should not

lead to any problems, since chapter III will provide many back references to the corresponding sections

in chapter II.

On the other hand, readers, unfamiliar with the concepts from chapter II are of course invited to read

through the sections of this background chapter. Although most entries have a more recapitulating char-

acter, the sections always provide references to the literature, which was found to be most comprehensible

to the author.

Finally, for notational conventions and abbreviations see App. A.1 and A.2.

4



II Theoretical background

This first chapter will set the theoretical basis for the effective model, which will be discussed in chapter

III. Therefore topics in this part are chosen in order to present all important and needed concepts for the

later model. Naturally this choice forestalls a closed introduction of the different subjects of discussion.

Another obvious introductory remark concerns the completeness of the presented derivations in this

chapter. While a full presentation and derivation of all basic concepts would surely be helpful, it would

also transform this work to a full grown textbook. Instead of giving a full description, most aspects in

this chapter are only briefly introduced and for further background information each section provides the

important references to the literature.

II.1 Lorentz group

An important topic of this work is the Lorentz group (or symmetry) and the implications that its impo-

sition yields for physical systems. Therefore this paragraph shall give a short introduction on the basic

properties of this group. It will heavily rely on various concepts from group and representation theory.

As the complete treatment of these fundamentals would blur the focus of this work, the corresponding

introductory part is banned to the appendix App. B and a general treatment can found for example in

Ref. [2] or [3].

Coming back to the Lorentz group its success story started with Einstein’s discovery of special relativity.

Since then all theories and models that do not restrict themselves to the regime of classical mechanics

have to leave the speed of light c invariant. Mathematically this invariance can be expressed in terms of

a group, which is named the Lorentz group. The elements of this group, {Λµ
ν}, have to leave the metric

of space-time, ηµν = diag(−1, 1, 1, 1), invariant, or in a formula:

(ηµν)′ = Λ
µ
αΛν

βη
αβ (2.1.1)

This is equivalent to forcing the speed of light to be a constant. As mentioned in the introduction indices

in Minkowski space are only contracted if they appear on different levels. A reason for this distinction

can be found in the appendix App. A.5. The question is of course what the elements of this group are

and how they can be characterised. In principle this information can completely be gained from Eq.
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(2.1.1). A derivation of the various relations can be found in Ref. [4, p.55-62] or [5, p.15-19]. The most

important results are summarised throughout this section.

It turns out that the Lorentz group is a continuous 6 parameter Lie group which consists of four discon-

nected parts: {1, P,T, PT }. As it leaves the (semi-) scalar product1) of Minkowski space invariant, so to

say the length of a 4-vector, it is the mathematical group O(3,1). Close to the identity its elements can be

represented by

Λ
µ
ν = δ

µ
ν + δω

µ
ν ∀ ||δω|| < 1. (2.1.2)

It can be shown that δωµν = −δωνµ is antisymmetric2). Analysing the allowed structure of Lorentz trans-

formations, Λ
µ
ν, gives a more concrete meaning to the four disconnected parts3). First the determinant of

all possible Lorentz transformations is det(Λ) = ±1 (compare the group O(n) in App. B.5.3). Apart from

this another constraint turns out to be that the 00-component of Λ is either Λ0
0 ≥ 1 or Λ0

0 ≤ −1. These

conditions lead exactly to the four disconnected parts. They are listed in Tab. 2.1.1. In the second column

the o symbol is the semidirect product of group theory4). It allows to construct the full Lorentz group

from the combination of the ‘normal subgroup’, S O+(3, 1), and the ‘discrete subgroup’, {1, P,T, PT }.

Further details of the underlying mathematical aspects are not important here, so the interested reader is

referred to Ref. [7, p.38-69].

Table 2.1.1: Constituent of the Lorentz group

symbol mathematical structure conditions name
1 1 o S O+(3, 1) det(Λ) = +1, Λ0

0 ≥ +1 restricted Lorentz group
P P o S O+(3, 1) det(Λ) = −1, Λ0

0 ≥ +1 parity reversed part
T T o S O+(3, 1) det(Λ) = −1, Λ0

0 ≤ −1 time reversed part
PT (PT ) o S O+(3, 1) det(Λ) = +1, Λ0

0 ≤ −1 parity-time reversed part

The decomposition from Tab. 2.1.1 into the disconnected parts allows to simply study the restricted

Lorentz group and to examine the discrete transformations of parity and time reversal separately.

Compared to the full Lorentz group the S O+(3, 1) subgroup is a connected six parameter Lie group

and so, close to the identity, it can be represented via its generators, Mµν. These generators satisfy the

1)It is a semi-scalar product since ||a||2 = aµaµ = −a2
0 + a2 is not positive-definite in Minkowski space.

2)For this use Eq. (2.1.1) and the relation (Λ−1)µν = Λ
µ
ν

3)In this context disconnected means that all four parts of the Lorentz group are pairwise disconnected. Each part in itself is
connected and this is why the parts are called the connected parts of the Lorentz group in mathematics.

4)o should really be oϕ, where ϕ specifies how elements of S O+(3, 1) are combined. It is only included here for completeness
but for a correct definition of the semidirect product see Ref. [6, p.236-237].

6
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following algebra:

[Mµν,Mρσ] = i~
(
ηµρMνσ − ηνρMµσ) − (ρ↔ σ) . (2.1.3)

While being true the algebra is not directly intuitive, but by using two identifications it can be split up

into the well known generators of boosts and rotations. Take Ji ≡
1
2εi jkM jk to be the generators of spatial

rotations and Ki ≡ Mi0 = −M0i to be the generators of ‘Lorentz boosts’ (for {i, j, k} ∈ {1, 2, 3}). These

six new generators fulfil the commutation relations

[Ji, J j] = i~εi jkJk, (2.1.4)

[Ki,K j] = −i~εi jkJk, (2.1.5)

[Ji,K j] = i~εi jkKk. (2.1.6)

So, by using the Ki and the Ji generators, restricted Lorentz transformations can be built out of three

spatial rotations and three boosts. From the generators (either Ki and Ji or Mµν) a unitary representation,

UL (Λ), of the Lorentz group can be built5), which realises the action of the Lorentz group. If one is

interested in the action of the Lorentz group on another group S then an operator generating this action

close to the identity can be written in the form

UL (1 + δω) = I +
i

2~
δωµνMµν. (2.1.7)

Here 1 represents the unit element in Minkowski space, whereas I is the unit element in S space. While

it is helpful for the physical interpretation of the Lorentz group to rewrite the original generators, Mµν,

in terms of boosts and rotations, there is an even more elegant way to choose them. The following linear

combination of J j and K j turns out to be useful:

Ni =
1
2

(Ji − iKi), (2.1.8)

N†i =
1
2

(Ji + iKi). (2.1.9)

This set of generators has no easy physical interpretation but working out the algebra, by using Eq.

(2.1.4)-(2.1.6), shows a crucial advantage:

[Ni,N j] = iεi jkNk, (2.1.10)

[N†i ,N
†

j ] = iεi jkN†k , (2.1.11)

[Ni,N
†

j ] = 0. (2.1.12)

5)In the language of App. B.5.2 this is the exponential map.
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II.1. Lorentz group

Comparing this algebra to the one for S U(2) (Eq. (B.18)) shows that Ni and N†i are just the generators of

two S U(2) algebras and Eq. (2.1.12) implies that the algebras do not mix at all. So, this reformulation

of generators allowes to identify the original, unintuitive, Mµν algebra with either boosts and rotations

or, more importantly, with two non interacting S U(2) algebras. Mathematically speaking, the S O+(3, 1)

algebra is isomorphic to S U(2) � S U(2) and so this ‘simpler’ structure can be studied instead of the

whole S O+(3, 1) algebra. Any object, which transforms under S O+(3, 1), can be written in terms of

irreducible representations of two seperate S U(2) groups.

In App. B.6.1 and B.6.2 it is shown that these representations are uniquely labelled by their highest

weight, j, or equivalently by the dimension of representation, ` = 2 j + 1. How an object transforms

under Lorentz transformations is therefore specified by two numbers, that correspond to the dimensions

of the two S U(2) representations. The most important objects are:

Table 2.1.2: Lorentz group indices of various sets of objects

(`1, `2) name total weight J3

(1, 1) scalar =̂ singlet 0
(2, 1) left-handed spinor 1/2
(1, 2) right-handed spinor 1/2
(2, 2) vector {0, 1}

The last column simply gives all possible J3 weights for the combined system (J3 = j31 + j32, compare Eq.

(B.21)). It is listed here since it is another simple connection to a well known physical quantity - the spin.

With this identification scalars are spin 0 objects (bosons), spinors have spin 1/2 and will be identified

with fermions and vectors are simply identified with the (2, 2) objects as only these have the correct spin

numbers (0 and 1). Some basic facts about spinors will be mentioned in the following section.

Taking it all together, a remarkable simplification in the study of the Lorentz group is possible. Instead of

studying the whole group it is sufficient to analyse the action of the four discrete Lorentz transformations

1, P, T and PT separately and in addition to study the group S U(2) � S U(2) instead of S O+(3, 1).

II.1.1 Left- and right-handed parts

In the last section it was shown, that the connected subgroup of the Lorentz group, S O+(3, 1), falls apart

into two independent S U(2) subgroups. To distinguish these two representations, the first (which was

called (2, 1) in Tab. 2.1.2) is typically named ‘left-handed’, or with a group symbol S UL(2) and the

second one (being (1, 2) in Tab. 2.1.2) ‘right-handed’, with the symbol S UR(2). In this context, left- and

right-handed are only names. From this point of view, it is not helpful to identify this handedness with

some familiar connotation.
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II.1. Lorentz group

Left-handed and right-handed spinors live in different representations of S U+(3, 1) and so they are la-

belled with different indices. Typically the indices of right-handed spinors get an extra ‘dot’, while

left-handed spinors have an ‘undotted’ index. This dot is just part of the name, to label elements that

transform under S UL(2) or S UR(2).

The action of a Lorentz transformations on a left-handed spinor shall be called L b
a throughout this work.

Accordingly the change of right-handed components is done via a ‘right-handed’ transformation Rȧ
ḃ

6).

The contraction of indices in the two S U(2) spaces works exactly as in Minkowski space. To get some

acquaintance with this notation the transformation of a left-handed spinor, χa(x), and a right-handed

spinor, ξ†ȧ(x), is given here as

U−1
L (Λ) χa(x) UL (Λ) = L b

a χb(Λ−1x), (2.1.13)

U−1
L (Λ) ξ†ȧ(x) UL (Λ) = Rȧ

ḃ
ξ†ḃ(Λ−1x)7). (2.1.14)

There is one other important fact about spinors, which can be seen from the definitions of the generators

Ni and N†i (see Eq. (2.1.8)). Following the introduction of Sec. II.1, the Ni span the algebra of S UL(2),

while the N†i generate the algebra of S UR(2). This means that hermitian conjugation transforms the

generators Ni and N†i into each other and so the same has to be true for elements that transform according

to their representations. That is (χa)† = χ†ȧ and vice versa. This is the reason why the right-handed field

in Eq. (2.1.14) has been written with a dagger. As every left-handed field, ξa, can be turned into its right-

handed partner, ξ†ȧ, one can express everything only in terms of left-handed fields and their hermitian

conjugates.

II.1.2 Lorentz invariants and spinor notations

In Tab. 2.1.2 the most important objects and the dimensions of their S UL(2) and S UR(2) representations

were listed. Using this table and the results on S U(2) tensor products (App. B.6.3.1), one can derive

various objects that are invariant under Lorentz transformations. In principle all objects that transform as

the trivial representation are invariant (under group transformations) by definition. In this case, all objects

that transform like a (1, 1) under S UL(2) � S UR(2) representations fall into this category. Therefore the

first invariant object can be taken as an alternative definition of the scalar (see Tab. 2.1.2).

For the second invariant object a little work needs to be done. The tensor product of two Lorentz vectors

gives:

(2, 2) � (2, 2) = (3s � 1a, 3s � 1a) = (3, 3)s � (1, 3)a � (3, 1)a � (1, 1)s (2.1.15)

6)In the notation for spinor indices the same distinction between left- vs. right- and up- vs. down-indices is used as in the
notation of space-time indices. In addition left- and right-handed indices are distinguished. This is not crucial throughout
this work, but as it is the standard notation it is adopted here as well.

7)The transformation of the spinor field argument x is explained in App. A.3.

9



II.1. Lorentz group

In the final result the subscript means (anti-) symmetric with respect to exchanging the elements of both

S U(2) representations. Ignoring all the higher dimensional terms the (1, 1)s element shows that there

is an invariant object which can be used to connect two vectors. This is again a well known object,

the metric tensor, ηµν. It does not change under Lorentz transformations by construction (compare Eq.

(2.1.1)).

So far it appears that this section only states well known relations in a fancy language, but of course there

is a last one coming. The combination of a vector with a left- and a right-handed spinor yields:

(2, 1) � (1, 2) � (2, 2) = (2, 2) � (2, 2) = (3, 3)s � (1, 3)a � (3, 1)a � (1, 1)s (2.1.16)

So there is an invariant symbol combining a vector with two spinors. This means that a left- and a

right-handed spinor can be combined to form an ordinary vector and there is an invariant symbol, which

realises the ‘translation’ (mapping).

The invariant object indicated by Eq. (2.1.16) must be an object which carries a left-handed and a right-

handed spinor index and, in addition, one vector index: σµaȧ. With this Lorentz invariant object a vector

can be translated into spinors and vice versa: Aaȧ = σ
µ
aȧAµ. As an explicit representation σµaȧ can be

expressed in terms of (2 × 2) matrices in the following way:

σ
µ
aȧ = (Iaȧ, (σaȧ)T)T, (2.1.17)

σ̄aȧµ = (Iaȧ, (−σaȧ)T)T = εabε ȧḃσ
µ

bḃ
. (2.1.18)

Here σ are the Pauli matrices, a and ȧ are their row and column indices and the transpositions only refers

to the corresponding vectors. The derivation of this relation is a bit lengthy and so it can be reviewed in

Ref. [5, p.209-217]. Eq. (2.1.18) is listed in the above equations, as it will show up in the free Lagrange

density for spinors, but the derivation of both symbols is not crucial to this work. The correctness of the

last equality can simply be checked numerically8) and gives the connection between both symbols.

The introduced invariant symbols can be used to reexpress combinations of fields in different representa-

tions (spinor vs. vector, or co- vs. contravariant vector). This will show up again in Sec. II.4. Apart from

this translation into different representations the invariant symbols themselves stand in a direct relation

to each other. This can be worked out explicitly using Eq. (2.1.17) and (2.1.18). The result is:

1
2

trs
(
σ̄aȧµσν

bḃ

)
=

1
2
σ̄aȧµσνaȧ = −ηµν9). (2.1.19)

The check if this equation is correct, is probably the quickest test to see, if the numerical choice of the

σ-symbols is possible. As the righthand side consists only of the invariant symbol ηµν the left hand side

must be invariant as well. How this argument works exactly can be seen in Ref. [5, p.209-217].

8)The group theoretical argument is neat but not necessary at the moment and can be reviewed Ref. [5, p.209-217] as well.
9)trs means that the trace is taken to be over spinor indices only.
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II.2. Quaternion groups

II.2 Quaternion groups

Originally quaternions were found by W.R. Hamilton as an extension to complex numbers. From the

group theoretical point of view it turns out that the quaternion group forms a four element subgroup of

GL(2) (for a definition compare App. B.5.3). Historically this group is labelled as H = {±I,±i, j, k}

and the group multiplication law in the shortest way is given by i2 = j2 = k2 = i jk = −I. While all

properties of quaternions are characterised by this equation, there is a particularly useful representation

of this group for the purpose of this work. This is a representation, which gives a complete basis of C2×2:

I =

1 0

0 1

 , i =

 i 0

0 −i

 , j =

 0 1

−1 0

 , k =

0 i

i 0

 . (2.2.1)

These elements form a 4-dimensional, irreducible basis of the quaternion group. As each element is an

S U(2) matrix, it acts on 2-dimensional vectors in a spin j = 1/2 representation. For later convenience

and to distinguish them from the Lorentz spinors these spin 1/2 objects will be called ‘Iso-spinors’

(which again is only a name!).

Objects, that are invariant under the group H, can be expressed in terms of this "vector-iso-spinor" basis

(see App. B.1). For this define the quaternion symbols:

qαI ab := (I, i, j, k)T = (Iab, (−iτab)T)T, (2.2.2)

q̄abα
I := (I, i, j, k)? = (Iab, (iτab)T)T =

(
qα ab

I

)†
= εacεbdqµI cd. (2.2.3)

In the second line ? stands for complex conjugation, τ is a vector of Pauli matrices, all Latin subscripts

are the S U(2) matrix indices and the index α labels the four elements of the vector. The additional

subscript I is a reminder that the object qαI acts in iso-spinor space. This additional distinction will be

important, once instantons are examined in Sec. II.9, as there will be quaternion symbols in iso-spinor

space (=̂qαI ) and in ‘euclideanised Minkowski space’ (=̂qα) as well.

Both iso-spinor symbols (qαI ab and q̄abα
I ) look very similar to the ones from the previous section (σµaȧ

and σ̄bḃµ) and indeed they have corresponding properties. But notice that, unlike the σµaȧ symbols, qαab

does not distinguish between two different S U(2) representations (there are no dots). The reason for this

is that, in contrast to the Lorentz group spinors, there is no additional label that introduces a distinction

between different S U(2) representations here. In the previous section σµaȧ could be used to translate a

combination of a left- and a right-handed spinor into an object in Minkowski space. To see the connection

of the quaternion symbols one can calculate the trace over the iso-spinor components of qαI ab, in analogy

to Eq. (2.1.19). Using the definitions of qαI ab one finds the relation

1
2

trI(q̄cd α
I qβI ab) =

1
2

q̄abα
I qβI ab = δαβ10). (2.2.4)
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II.3. Noether theorem

So, in contrast to the Lorentz group symbol, qαI ab establishes a connection between two iso-spinors and

an element in ordinary Euclidean space (α, β ∈ {0, 1, 2, 3}). The analysis that the choice of qαI ab is a

correct invariant symbol can be done just as for Eq. (2.1.19).

From a group theoretical point of view, the existence of an invariant symbol, qαI ab, can be shown as well.

This symbol transforms as 2 � 2 in iso-spinor space and the combination of four 2-dimensional S U(2)

representations yields a scalar object:

2�4 = 5s � 3a � 3sa � 3as � 1s � 1s (2.2.5)

The lines under the indices mark completely (anti-) symmetric elements. For the derivation of this

equation check App. A.4 and for the general procedure see App. B.6.3.1. The existence of a singlet,

1s, in the tensor product shows that there is a 2 � 2 object, which takes two other iso-spinors in a ‘2’

representation into a scalar. This object is the already introduced qαI ab.

Using the invariant symbol, a scalar (or inner) product in quaternion space can be defined in analogy to

the scalar product in 4 Euclidean dimensions. For x, y ∈ R4, the vectors can be translated to iso-spinor

space as: xab = xαqαI ab and yab = yαq̄abα
I and the following definition of the scalar product gives all the

needed properties:

(y, x)H =
1
2

Tr(yabxcd) = yαxβ
1
2

Tr(q̄cd α
I qβI ab) =

∑
α

yαxα. (2.2.6)

In conclusion, one can use quaternions to relate two spin 1/2 objects to ordinary vectors in four dimen-

sions. This connection to Euclidean space instead of Minkowski space is realised via the inclusion of

an extra factor of i in the definition of the invariant symbols (compare Eq. (2.2.2)). Once the objects

traditionally called iso-spinors will be included, this factor of i will play an important role (compare Sec.

III.3.2).

A more thorough introduction to the connection between various groups and the quaternion group is

given in the two following text books: Ref. [8, p.248-266] and Ref. [9, p.18-31].

II.3 Noether theorem

In Sec. II.1 and II.2 two symmetry groups have been introduced, which will be of utter importance in

all derivations to come (in the general context of instantons as well as for the explicit construction of an

effective model in chapter III). In a physical context these groups lead to certain continuous symmetries

(for example rotational invariance of systems is implied by the Lorentz group). In 1918 Noether showed

that continuous symmetries directly imply the conservation of an associated current and charge Ref.

10)trI is the trace over the matrix indices of the quaternion symbols. The I refers to isospin, as this concept will be related with
these indices later.
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II.3. Noether theorem

[10]. As these currents will be discussed for the model of chapter III a short derivation of the Noether

theorem shall be given here, which will be oriented along the lines of Ref. [5, p.132-139]. To approach

the theorem take a Lagrange density, L = L(A, ∂µA), that depends on some field, A, and its derivative

(x ∈ M(3,1) ≡Minkowski space). Take A = Aα(x)Tα to transform under the action of a symmetry group,

G, that leaves the action, S =
∫

d4xL[A(x), ∂µA(x)], invariant. Here Tα are the generators of G (compare

Sec. B.5.2). As the theorem deals with continuous symmetries it is sufficient to focus on infinitesimal

transformations. All derived results can be ‘lifted’ to large scale transformations by repeated infinitesimal

ones (compare App. B.2(ii)) in the end.

Suppose that Λε characterises the group action on Minkowski space,M(3,1), and that U(Λε) is an element

of the symmetry group. The index ε denotes a set of infinitesimal parameters which is needed to specify

the group transformations (for example rotations in a plane only need one parameter). The action of the

group on the S space shall be characterised through the matrix Dαβ(Λε). The transformation is now given

by

[Aα(x)]′ ≡ U−1(ε)Aα(x)U(ε) = Dαβ(ε)Aβ(Λ−1
ε x). (2.3.1)

Some comments on general transformation rules can be found in App. A.3. For the theorem, only the

change of Aα(x) under transformations will be needed: δεAα(x) = [Aα(x)]′ − Aα(x). With transformation

Eq. (2.3.1) the change of the Lagrange density becomes

δεL(x) = L′ − L =
∂L

∂Aα(x)
δεAα(x) +

∂L

∂(∂µAα(x))
δε(∂µAα(x)). (2.3.2)

The variation, δε, is defined at the same point x as the derivative ∂µ and so they commute in the second

term. Together with the product rule this leads to:

δL(x) =
∂L

∂Aα(x)
δεAα(x) − ∂µ

[
∂L

∂(∂µAα(x))

]
δεAα(x) + ∂µ

[
∂L

∂(∂µAα(x))
δεAα(x)

]
(2.3.3)

=

(
∂L

∂Aα(x)
− ∂µ

[
∂L

∂(∂µAα(x))

])
︸                               ︷︷                               ︸

=δS/δεAα(x)

δεAα(x) + ∂µ

[
∂L

∂(∂µAα(x))
δεAα(x)

]
. (2.3.4)
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The indicated equivalence in the first term can be seen by a short calculation:

δS
δεAα(x)

=

∫
M

d4y
δL(y)
δεAα(x)

(2.3.5)

=

∫
M

d4y
(
∂L(y)
∂Aβ(y)

δεAβ(y)
δεAα(x)

+
∂L(y)

∂(∂µAβ(y))
δε(∂µAβ(y))
δεAα(x)

)
(2.3.6)

=

∫
M

d4y
(
∂L(y)
∂Aβ(y)

δαβδ4(y − x) − ∂µ

[
∂L(y)

∂(∂µAβ(y))

]
δαβδ4(y − x)

)
(2.3.7)

=
∂L(x)
∂Aα(x)

− ∂µ

[
∂L(x)

∂(∂µAα(x))

]
. (2.3.8)

Line (2.3.7) is only correct if the field Aα(x) is sufficiently localised (in this case the boundary contribu-

tion from the partial integration does not contribute).

The second term of Eq. (2.3.4) is given the name of a current:

∑
a

εa jµa(x) =
∂L

∂(∂µAα(x))
δεAα(x). (2.3.9)

The sum on the left over a runs over all parameters ε. It is not obvious at the moment that the left-hand

side can actually be written in such a sum. Sec. III.3.3 and III.4.1 will pick this up and answer the

question for the important cases in this work. In fact it will be possible to drop εa completely from the

equation, as a similar sum will appear on the right-hand side as well. Using Eq. (2.3.4) and (2.3.9) gives

the Noether current: ∑
a

εa
[
∂µ jµa(x)

]
= δεL(x) −

δS
δεAα(x)

δεAα(x). (2.3.10)

While this equation is not too revealing in the general case it becomes very interesting if one finds

a symmetry transformation that leaves the Lagrange density unchanged. If, in addition, the Aα field

satisfies the Euler-Lagrange equations (2.3.8), then the whole right-hand side of Eq. (2.3.10) vanishes

leaving:

∂µ jµa(x) =
∂

∂t
j0a(x) + ∇ ja(x) = 0. (2.3.11)

This has exactly the form of a continuity equation. So, by just assuming that the Lagrange density

is invariant under a symmetry transformation of the group, G, one finds the existence of a continuity

equation. (Of course, Aα(x) needs to fulfil the Euler-Lagrange equation as well.) If the current jµa(x) is

localised in space (that is it does not extend to infinity), then an integration over Minkowski space yields
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another neat result:

∂

∂t

∫
M

d4x j0a(x)︸         ︷︷         ︸
=:Qa

=
∂

∂t
Qa = −

∫
M

d4x∇ja(x) = −

∫
∂M

d3xja(x)n(x) = 0. (2.3.12)

For the third equality, Gauss theorem has been used. The last integral vanishes as it is performed on

the boundary, where ja(x) vanishes. Eq. (2.3.12) means that an underlying symmetry, which leaves the

Lagrange density unchanged, implies the existence of a conserved quantity in time.

Even if this result comes a bit as a surprise it appears almost natural from a different perspective. Take

a symmetry to ‘live’ in some sort of plane and a physical system that is invariant under the symmetry.

The invariance implies that the physical system can only live within the symmetry plane, as well and,

in addition, the physical system cannot change within the plane. Therefore any physical quantity that

is related to symmetry transformations within the plane will keep its value for all time, as the system

cannot leave the plane and as it is constant within it. The topic of conserved currents and charges will be

picked up again for the explicit example in Sec. III.3.3 and III.4.1.

II.4 Important Lagrange densities

Using the ideas from Sec. II.1.1, one can construct all Lorentz invariant Lagrange densities by just

building combinations of representations (a, b) (according to Tab. 2.1.2) that produce a singlet, (1, 1)s,

in the tensor product. The simplest case of a Lorentz invariant model is the Klein-Gordon Lagrange

density:

L = −(∂µφ)†(∂µφ) − m2φ†φ. (2.4.1)

With φ ∈ (1, 1) (=̂ scalar), it is manifestly Lorentz invariant, as it contains only scalars and the invariant

combination ∂µ∂
µ. Of course the next step is to build a Lagrange density for the next object in the

Lorentz group - the spinor. But matters are significantly harder, as spinors themselves are transformed

under Lorentz transformations. In addition there is no pure scalar in the decomposition into irreducible

representations of the two spinor tensor products:

(1, 2) � (1, 2) = (1, 1)a � (1, 3)s, (2.4.2)

(2, 1) � (1, 2) = (2, 2). (2.4.3)

So another way of including an object that is bilinear in spinor fields has to be developed (bilinears

in the fields lead to linear equations of motion, which in turn can be used to describe free particles).

These complications lead to a lengthy construction of spinor Lagrangians which mostly consists of the
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derivation of a Lorentz invariant, hermitian, bilinear kinetic term and one corresponding to a mass term.

In full glory (following the group theoretical point of view) it is presented in Ref. [5, p.205-228] or

[11, p.65-78]. There are several aspects in this derivation that will be used throughout this work but

as a whole it is more a side note. One important aspect for physical systems is closely related to the

constraints (Lorentz invariance, hermiticity and scalar behaviour) on a Lagrange density. They imply

that any spinor Lagrangian incorporates a physical particle and its anti-particle as well. The simplest

model, in which the physical particle, Ψ, and anti-particle, Ψ, (defined in Eq. (2.4.7)) are not the same

is built out of a combination of two left-handed spinors (χa and ξa) and their right-handed partners (χ†ȧ
and ξ†ȧ). In addition to the transformation rules for spinors under the Lorentz group both, χa and ξa, are

forced to transform in a particular way under an additional U(1) symmetry:

U−1(α)χaU(α) = e−iαχa , U−1(α)ξaU(α) = e+iαξa. (2.4.4)

where U(α) is an element of the additional symmetry group, U(1). The resulting Lagrange density for

this example is discussed completely in Ref. [5, p.221-225] is:

L = iχ†ȧσ̄
ȧaµ∂µχa + iξ†ȧσ̄

ȧaµ∂µξa − m(ξaχa + χ†ȧξ
†ȧ). (2.4.5)

This is the Weyl formulation of the free Lagrange density of two left-handed ‘Weyl spinors’. As deriva-

tions in this work mostly rely on the separation into left- and right-handed fields all spinor Lagrangians

will be presented in this Majorana- or Weyl-representation. In this representation the Dirac γ-matrices

take a form that makes this separation very easy. The Lagrange density Eq. (2.4.5) can be reexpressed in

terms of the more familiar ‘Dirac spinors’ by introducing the four γ-matrices and the additional β-matrix

(in Weyl-representation):

γµ :=

 0 σ
µ
aċ

σ̄µȧc 0

 , β :=

 0 δȧ
ċ

δ c
a 0

 . (2.4.6)

The particular form of the above matrices comes as a surprise, if one is used to the common ‘Dirac’-

representation. The very different structure of the γ-matrices is only related to the different choice of

basis, which is used in the Weyl formulation and, again, a detailed introduction to the Weyl notation can

be found for example in Ref. [5, p.205-228]. In the now introduced Weyl representation the combined

spinors for physical particle and antiparticle are

Ψ ≡ (χa, ξ
†ȧ)T Ψ† = (χ†ȧ, ξ

a) , Ψ = Ψ†β = (ξa, χ†ȧ). (2.4.7)

Ψ is called the Dirac conjugate of Ψ. From the definition of the Dirac spinors (Eq. (2.4.7)) one can

see the advantage of this representation. The left- and right-handed components are separated in the

Dirac spinors. Of course, there is a completely understandable derivation for these definitions, which is

16



II.5. Chiral symmetry

simply too long for the present purpose. Nevertheless, using the above matrices and spinors the Lagrange

density of Eq. (2.4.5) can be rewritten to the standard form:

L = iΨγµ∂µΨ − mΨΨ. (2.4.8)

The U(1) symmetry from the Weyl Lagrangian turns into the relation for the Dirac spinors:

U−1(α)ΨU(α) = e−iαΨ , U−1(α)ΨU(α) = e+iαΨ. (2.4.9)

For the use in later sections, it is useful to introduce projection operators onto the left-handed component,

PL, and on the right-handed component, PR, of Ψ. Eq. (2.4.7) define how a Dirac spinor can be con-

structed out of left- and right-handed Weyl spinors. From time to time it is useful to split Dirac spinors

up into their left- and right-handed components. This can be done by introducing yet another matrix:

γ5 ≡

−δ c
a 0

0 δȧ
ċ

 . (2.4.10)

With this, the projection operator on the left-handed part becomes PL := (1−γ5)/2 and the right-handed

projection is PR := (1 + γ5)/2. Note that γ5 anticommutes with γµ and with β! In particular this leads to

the following relation for the Dirac conjugate of its left-handed component:

(PLΨ) = (PLΨ)†β = Ψ†
1
2

(I − γ5)β = Ψ†β
1
2

(I + γ5) = ΨPR. (2.4.11)

This is consistent with the change of a left-handed Weyl spinor into its right-handed partner under con-

jugation. By defining ΨL = PLΨ and ΨR = PRΨ the Lagrange density of Eq. (2.4.8) can be written in

terms of the left- and right-handed components:

L = i(ΨLγ
µ∂µΨL + ΨRγ

µ∂µΨR) − m(ΨRΨL + ΨLΨR︸             ︷︷             ︸
ΨRΨL+(ΨRΨL)†

). (2.4.12)

II.5 Chiral symmetry

In principle, the idea behind chiral symmetry is to take the additional U(1) symmetry of spinor La-

grangians and enlarge it in such a way, that left- and right-handed spinors transform differently under

it. That way, the single U(1) symmetry is turned into two different ones
[
UL(1) and UR(1)

]
just like the

two S U(2) subgroups of the Lorentz group, and from the group theoretical point of view this enlarges[
S UL(2) � S UR(2)

]
to

[
UL(2) � UR(2)

]
. The implications of such an assumed additional symmetry

are most conveniently analysed in the Weyl Lagrangian (Eq. (2.4.5)), or in the form of Lagrangian Eq.

(2.4.12). Take Uch(α`,r) to be an element of UL,R(1), so that the spinors transform under the correspond-
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II.5. Chiral symmetry

ing UL,R(1) symmetry as:

U−1
ch (α`)ψLUch(α`) = e−iα`ψL ≡ LΨ =̂ U−1

ch (α`)χaUch(α`) = e−iα`χa, (2.5.1)

U−1
ch (αr)ψRUch(αr) = e−iαrψR ≡ RΨ =̂ U−1

ch (αr)ξ†ȧUch(αr) = e−iαrξ†ȧ. (2.5.2)

Here the linear operators L = e−iα`PL and R = e−iαr PR have been introduced just as an abbreviation for

later convenience. The projection operators, PL and PR, correspond to the ones from previous section.

From now on the chiral symmetry will be discussed using the Dirac Lagrangian Eq. (2.4.12). The

transformations of the Weyl spinors are only listed to show how the formalism can be translated into the

Weyl picture.

Applying the UL,R(1) transformations Eq. (2.5.1) to the Lagrange density Eq. (2.4.12), one sees right

away that the kinetic part is unchanged, as left- and right-handed fields do not mix there. But the situation

is different for the mass term. Under chiral transformations it becomes

U−1
ch (α`,r)ΨΨUch(α`,r) = ΨRR†LψL + ΨLL†RψR (2.5.3)

= ΨRe−i(α`−αr)ψL + ΨLe+i(α`−αr)ψR (2.5.4)

= Ψe−i(αr−α`)γ5Ψ . (2.5.5)

As chiral symmetry does not provide a condition that sets α` = αr, a simple mass term like in Eq.

(2.4.12) violates a general chiral symmetry in such a model. The only possibility to include an invariant

mass term into the model is to include another object, w, which neutralises the chiral transformations.

This means that w has to transform under UR,L(1) as U−1
ch (α`,r)wUch(α`,r) = LwR†. With this object a

combined term

U−1
ch (α`,r)

[
ΨLwΨR + h.c.

]
Uch(α`,r) = (ΨL L† L︸︷︷︸

=1

w R† R︸︷︷︸
=1

ΨR + h.c.) = (ΨLwΨR + h.c.) . (2.5.6)

is invariant under UL,R(1) transformations and therefore could qualify for a mass term in the model. A

mass term has to be invariant under normal Lorentz transformations as well and so one still needs to

specify how w does change under these. As w couples to a left- and to a right-handed Dirac spinor, it has

to compensate their S UL,R(2) transformations as well and so w goes into

U−1
L ,chwUL ,ch = e−iα`τ︸︷︷︸

∈S UL(2)

LwR† eiαrτ︸︷︷︸
∈S UR(2)

. (2.5.7)

under a chiral Uch(α`,r) and Lorentz UL (Λ) transformation labelled by the unitary operator UL ,ch :=

UL ,ch(Λ, α`,r). Of course, in this situation the physical meaning of the newly introduced object w has

to be identified. This topic will be picked up again in the construction of the model Lagrangian in Sec.

III.3.2.
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II.6. Non-perturbative QCD

Typically, in chiral models the two different U(1) transformations are not labelled by left and right, but

by a ‘vector’ αV and an ‘axial’ αA component. The linear connection between these labels is:

αV =
1
2

(α` + αr) , αA =
1
2

(αr − α`) . (2.5.8)

The reason for this type of labeling can be seen from Eq. (2.5.4). The vector transformation, UV(1),

contains all transformations that leave a simple mass term (ΨRΨL + h.c.) invariant and the axial transfor-

mations, UA(1), correspond to the remaining possibilities.

II.6 Non-perturbative QCD

So far, the examples of Lagrange densities from the two previous sections could be applied to any kind

of model, ranging from elementary particles up to the description of any kind of object that satisfies the

symmetry demands. So Eq. (2.4.1) could be used to describe any scalar-like object and Eq. (2.4.12) suits

to any object that transforms as a Dirac spinor.

As mentioned in the introductory part, this work will be concerned with particular questions in QCD.

Due to the drastic energy dependence of the coupling constant, gQCD, of strong interactions, this theory

behaves very differently at different energy scales. At very high energies (well above the binding energy

of nuclear matter) gQCD becomes small and so the general concepts of perturbation theory are applicable

in this regime. On the other hand, going to lower energies, gQCD increases rapidly, making it first te-

dious and then impossible to use perturbative expansions of the theory. This particular behaviour poses

huge problems on detailed investigations of the nature of QCD. Throughout the history of physics, most

problems that people were interested in could be approached by identifying a certain ‘minimum config-

uration’ and then finding approximate solutions in terms of this minimum and small deviations from it.

Thus, historically, many mathematical tools have been developed, which could be used in a perturbative

context only and, in contrast, general techniques to deal with non-perturbative phenomena are still very

rare. This uneven distribution is of course, also due to the fact that usually non-perturbative phenomena

cannot be dealt with on a general footing, but have to be investigated in each particular aspect separately.

For questions concerning QCD physicists have come up with mainly two and a half different approaches

to arrive at qualitative and/or quantitative results for the non-perturbative regime (corresponding to the

low energy regime). In some sense, the ‘brute force’ way to low energy QCD is the so called lattice

QCD. It is not an effective field theory [EFT] from the usual point of view and is briefly mentioned here

for completeness. In lattice QCD the appearance of large coupling constants does not introduce any

difficulties, as the direct numerical evaluation of scattering amplitudes and bound states does not rely on

a particular numerical range for the coupling constants. In principle this evaluation can be achieved by

discretising space-time to a lattice and then explicitly calculating the whole partition function. While
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this idea has the advantage to produce testable quantitative results, it has a significant drawback in the

present context. Through the disrictisation of space-time one explicitly breaks the Lorentz invariance of

the underlying theory and so all effects that are directly connected to the symmetry will be very hard to

identify in any final result.

II.7 Effective field theories

The remaining one and a half approaches are, what is generally referred to as effective field theories. They

have in common that they divide the theory of interest into different parts (energy regimes), that should

be treated differently. The reason for this separation is quite intuitive: If there are effects (particles,

resonances, etc.) which only occur above a given threshold energy, µ0, then physics well below this

energy should, loosely speaking, not depend on these phenomena, as the energy available is not sufficient

to produce the effects. Thus one could replace the fundamental degrees of freedom, F, of the theory with

effective ones, F(µ0), that capture the most important implications of the theory up to the separation scale,

µ0. As indicated, the effective degrees of freedom loose their generality and become inherently scale

dependent. The demands on such effective variables are that they have to simplify calculations (as their

introduction is rather pointless otherwise) and that their scale dependence has to be unambiguous. How

the scale dependence is specified turns out to be the main practical difference between the mentioned EFT

approaches. It will be discussed after a rough sketch of the ‘landscape’ of QCD particles and resonances

is drawn. Over the last sixty years this landscape has been studied quite well from the very low energy

scales of hadron physics up to the realm of perturbative QCD. On the high energy side quarks and gluons

have been found to be the relevant degrees of freedom. In going to lower energies, the growing coupling

constant and the concept of confinement forces quarks and gluons to form compound, colourless objects

(mesons and baryons). So, instead of describing the theory in terms of the fundamental quark and gluon

fields (which cannot be seen at low energies anyway), the compound objects can be used as effective

low energy degrees of freedom. While this idea is conceptually appealing, as it allows focussing on

the relevant variables, there are problems concerning the mathematical approach. The experimentally

observed spectrum of mesons, baryons and resonances thereof has been found to be spread out over all

energy regimes. Therefore, it is hard to identify a suitable cutoff scale, that clearly seperates regimes of

different phenomena in low energy QCD. In order to discuss the methods of EFT, suppose for now that

one has identified a suitable cutoff energy, µ0, for the questions one is interested in. In addition, assume

that the energy range of interest lies in the non-perturbative part of QCD, as otherwise perturbation

theory could simply be applied. The exact way how to simplify the original theory by the use of µ0 is

what seperates the remaining two approaches.
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II.7. Effective field theories

II.7.1 Wilson EFT

First take the EFT methods introduced by Wilson (Ref. [12]). They are well summarised in Ref. [5,

176-187] and here only some key ideas will be presented. Wilsons’ idea was to use the additional energy

scale to rewrite a given theory with the action, S (ϕ), in terms of low energy fields, ϕ<(k) := ϕ|(|k|<µ0), and

the remaining high energy part, ϕ>(k) := ϕ|(|k|≥µ0), so that the partition function can be given as

Z =

∫
Dϕ<e−S eff(ϕ,µ0) , e−S eff(ϕ,µ0) =

∫
Dϕ>e−S (ϕ). (2.7.1)

If all energies of interest are well below the cutoff (E << µ0), then all directly observable fields have to

be from the low energy region. In a diagrammatic picture this means that all external lines have to be

ϕ< fields, whereas any off-shell contribution in closed loops can come from a high energy field as well.

Unfortunately the loop contributions cannot, in principle, be discarded here, since perturbation theory is

not applicable at the energy scale, E, and therefore it is not guaranteed that the value of loop diagrams

becomes small. This allows to construct new effective terms in the low energy Lagrange density with

arbitrary numbers of external fields, ϕ<, via loop diagrams11). So by using the above separation into low

and high energy fields one produces a low energy Lagrange density, whose parameters become cutoff

dependent and in addition one produces an infinite series of new low energy terms:

Leff = L(ϕ<, µ0) +
∑

d

cd(µ0)Od. (2.7.2)

Here L indicates the Lagrange density from the original theory but augmented with the µ0 dependence.

This should be understood as all parameters becoming cutoff dependent [for example masses m→ m(µ0)

and coupling constants λ → λ(µ0)]. The operators Od represent terms with d external ϕ< field lines and

cd(µ0) is the corresponding coefficient. So far the discussed consequences don’t seem very appealing,

since the original theory in a non-perturbative regime has been replaced by a scale dependent one, which,

in addition, incorporates an infinite series of new contributions.

The power of this representation becomes visible, if only a little bit of physics is added in the description.

After all, one knows that the low energy fields correspond to the relevant degrees of freedom at the

energy scale E << µ0. Therefore, if one believes in the minimisation principle of the action, the physical

observables that correspond to the relevant degrees of freedom must lie in a (local) minimum of the

action. This observation now allows a reintroduction of perturbation theory through the back door. By

simply taking the parameters of Leff: {m(µ0), λ(µ0), cd(µ0), ...}, and tying them to physical observables,

one can make a perturbative expansion of the partition function in terms of the effective parameters.

Of course, in doing so all observables become scale dependent, which is somewhat bothersome at first

glance. On the other hand, assuming that any theory is exact at every energy scale is a very tough demand.
11)In fact the only constraint on new terms is that they have to fulfil the symmetry requirements imposed by the original

Lagrangian.
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If observables are not strongly cutoff dependent, it might very well be, that every known physical theory

is an effective low energy approximation to some underlying, more general concept that simply has not

been found, yet. So, in general a cutoff dependent theory or model is really not the surprising case, but

rather the contrary. In Ref. [5, 176-187], a general investigation of cutoff dependencies is presented along

with many mathematical details and, as mentioned, here only the conceptual ideas have been presented.

II.7.2 ‘Matching’ EFT

This section is mainly inspired by Georgi’s paper Ref. [13] and the reader is referred to this paper for

detailed derivations and further analyses. Compared to the introduced Wilson EFT, the procedure of

‘matching’ EFT is in some sense even more radical than the ideas that led Wilson to his effective theory.

By allowing physical observables to become energy (or scale) dependent Wilson succeeded in rewriting

QCD in terms of the relevant parameters only - in a given energy regime. In this sense he found a very

suitable, scale dependent representation of QCD, which still incorporates every aspect of the full theory.

By altering the cutoff scale, µ0, Wilson EFT can be adapted to any energy range and in the limit of

µ0 → ∞ the effective description recovers the full theory.

While this is perfectly fine one could ask the question if it is actually necessary to keep every detail of the

complete theory. In an effective low energy description one is essentially only interested in low energy

phenomena and it is not a primary concern if the description can be changed smoothly to describe any

other energy regime. Following this idea leads to a drastic concept: Instead of studying the theory of

QCD, one could as well study any other model, which only captures the low energy behaviour of the

theory. The expressions in the effective description don’t even have to match the structure of QCD. Only

observables calculated from the effective description have to find their correspondence in the low energy

observables of the full theory. In this sense, if a given, complete theory, LH(χ, φ), consists of heavy

particles, χ, with mχ ≈ µ0 and light ones, φ, with mφ << µ0, then one can ‘invent’ a low energy effective

model, L(φ), which only incorporates the light particles. Of course, in doing so one makes a mistake,

as all (off-shell) high energy contributions are ignored in this description. In coming closer to the cutoff,

this mistake should become more apparent, since any high energy effect becomes “less off-shell”. By

introducing an additional contribution, δL, to the effective Lagrangian this error can be remedied. δL

has to be adjusted such that the low energy description of light particles coincides with the description

from the full theory at the cutoff energy. Schematically this is represented in Fig. 2.7.1.

22



II.7. Effective field theories

Figure 2.7.1: Matching procedure to consistently connect an effective description Leff with a full theory
LH. This figure is adopted from Ref. [13, p.21].

In essence δL corresponds to the operators Od from the previous section. It incorporates all possibilities

how high energy off-shell loops can lead to a d-point vertex in the low energy fields (=̂ light particles).

In his paper, Ref. [13, 20-27], Georgi derives the mathematical relations, that have only been captured

in words here.

The renormalisation group indication in Fig. 2.7.1 highlights another necessary aspect for a rigorous

treatment of matching EFT. It was already mentioned that the meson and hadron spectrum of QCD is

wildly spread out over all energy ranges. Just like Wilson EFT, the matching procedure allows for a

treatment of all energy regimes as well12), only the procedure to arrive at effective expressions is slightly

different. Here one has to start with the full (known) theory at high energies. The renormalisation group

can then be used to capture the energy dependence of observables as the energy scale, µ0, is lowered.

As soon as the scale arrives at the mass, M, of a physical observable (bound state or resonance) one

12)In Wilson EFT simply the cutoff, µ0, was altered to describe different energy regimes.

23



II.7. Effective field theories

changes the theory to an effective model, which does not incorporate the heavy observable anymore.

The consistency of the effective model and the high energy description is guaranteed by the matching

procedure at the energy µ0 = M. From there on the renormalisation group is used once again to keep

track of energy dependencies of the remaining observables. As soon as the next heaviest mass is hit by

the cutoff, µ0, the procedure starts again and next effective description is used (now excluding the next

heaviest particle). This goes on until one arrives at the lightest observables of the theory and thus one

arrives at an effective description of QCD at every scale of interest.

II.7.2.1 Consequences

Having talked about different concepts of effective low energy descriptions and approximations to QCD

the question is naturally what to make of it for the remaining parts of this work.

• The main focus of the upcoming theoretical background discussions lies on the concept of instan-

tons and their implications. As this area of QCD is generically a non-perturbative effect within

the theory, it can in principle be present at all energy scales. Therefore Sec. II.8 will give a gen-

eral, non-perturbative introduction to instanton physics. Afterwards explicit results concerning

instantons will be discussed in Sec. II.9. There, the descriptions will rely on expansion techniques

around classical field configurations13). This expansion cannot be seen as an application of per-

turbative QCD. The reason for this lies in the arguments from Sec. II.7. Since instantons are

non-perturbative effects the configuration which minimises their action can lie at any energy scale,

and thus as well within the range of non-perturbative QCD. In this sense, the expansions in Sec.

II.9 can be understood as expansions of an effective model in the sense of the Wilson EFT.

• Later, the discussion of constrained instantons in Sec. II.9.8-II.9.10 will introduce additional con-

straints on the involved parameters, which ultimately lead to energy dependent instanton contribu-

tions. Thus, the constrained instanton effects become scale dependent and in principle they have to

be treated in an EFT environment. Conceptually this is much easier to assess in the matching EFT

picture. At a given energy scale, E, only those constrained instanton effects, that lie in the range

of this scale have to be included and all contributions. While this is rather cryptic at the moment,

the meaning will become clear at the end of Sec. II.9.10, when the exact energy dependencies of

constrained instantons are given.

• Finally, in the model part of this work, yet another approach will be pursued. Historically, to gain

a practical understanding of the possibilities of instanton physics in effective models, the simplest

contribution from the instanton sector was included in conceptual studies. While the results from

Sec. II.9.8-II.9.10 will suggest that this is an oversimplified approach, it will still be used in the

model calculations, as further studies are very involved and thus have to be postponed. In this

13)Configurations that locally minimise the action.
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sense the model calculations are a mere appetizer for future analyses.

II.8 Degenerate vacua and instantons

This section shall provide the quickest path to the idea of instantons in non abelian gauge theories. As

always, when choosing the highway, there are countless sights along the road that one will miss for the

sake of velocity. Not that this analogy is of any help in finding those sights, but the reader should be

aware that the subject is much richer than the path presented in this section. More detailed introductions

in the topic can be found in Ref. [5, p.576-609], [14, p.421-472], [15, p.277-289] and finally [16, p.340-

344]14) and of course, these references are the main sources for the following sections.

The key idea behind instantons is to re-examine known models in field theory and look for new, time

independent solutions of the classical field equations. The reason to look for time independent configu-

rations is that one already knows dynamical solutions, which can be gained via perturbation theory. The

time independence now allows focusing on configurations that have their origin not in the dynamics of

a system, but in its topology. Fortunately the topology of a system can be studied in the absence of any

particle - that is to say, for a start, it is sufficient to focus on the vacuum configurations of a system.

The easiest model, one could start with, is that of a massless scalar particle, L = ∂µφ∂
µφ. This is a rather

unexciting model (lacking all dynamics) and so is its vacuum configuration, φvac = const. The vacuum is

unique up to a constant, which can be fixed by imposing a boundary condition at infinity: φ(x = ∞) = 0.

Thus, it is not possible to relate something like a physical particle to the vacuum field configuration, as

it is not localised and as its energy is Evac =
∫

M d4x
∣∣∣∂µφvac

∣∣∣2 = 0. Here M is the manifold in which the

field, φ, lives, that is in the present case just 4-dimensional space-time.

Leaving this disappointing example, the situation becomes much richer if the scalar fields are exchanged

for local gauge fields. The next natural step would be to talk about an abelian local gauge model (some-

thing like electro-magnetism), but as the non-abelian case will be of interest in later application this step

will be skipped if favour of the less intuitive non-abelian version15).

II.8.1 Euclidean and Minkowski spaces

Before going into the indicated discussion about non-abelian local gauge models some remarks on con-

ceptual difficulties are in order. Historically the concepts of degenerate vacuum configurations have been

studied in Euclidean spaces and not in the physically interesting Minkowski space. In order to relate any

insight from these studies to physical observables in Minkowskian space there are two logical approaches

14)While this is a ridiculously long list of citations, all sources have different approaches to the problem, which makes all of
them worth reading.

15)There are interesting phenomena connected with the abelian case, such as magnetic monopoles, but these are not the topic in
the present discussion.
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possible:

• First one could derive a complete theory in Euclidean space and in the end translate it to Minkowski

space via a ‘Wick-rotation’. Any problem connected to this translation would of course have to be

taken into account in this approach.

• The other possibility is to directly formulate the complete theory in Minkowski space, which cir-

cumvents the problem of translations between spaces. Unfortunately the very definition of path

integrals is questionable in Minkowki space from a mathematical point of view. In addition - to

the author’s knowledge - the concepts that shall be studied in this chapter are not yet formulated

from scratch in a Minkowskian topology.

The difficulty indicated above is actually not restricted to the area of degenerate vacuum configurations,

but is a general problem of modern field theory. Usually the physicists approach is to take Minkowskian

theories and translate space-time into the Euclidean pendant, which leads to well defined path integrals.

This is unproblematic as long as scalar fields are treated. The situation becomes difficult as soon as spinor

fields shall be described. In Sec. II.1 spinors have been introduced as objects that transform under one

of the two S U(2) subgroups of the Lorentz group, S O+(3, 1) ' S UL(2) � S UR(2). In the same section it

was shown that left- and right-handed spinors could be related to each other via hermitian conjugation.

By going from Minkowski to Euclidean space the symmetry group changes S O+(3, 1) → S O(4). This

means that, instead of taking the relation between left- and right-handed spinors from Minkowki space

one needs to use the corresponding relations from Euclidean space. The catch now is that, in Euclidean

space, there are still two subgroups S O(4) ' S UA(2) � S UB(2), but they are independent of each other

this time. Therefore the reformulation of Minkowskian theories really should include a reformulation of

spinor relations.

This problem is usually dealt with by ignoring it, using the following argument: As one is not really

interested in the ‘in between’ results in Euclidean space, one simply translates the physically meaningful

Minkowski theory into Euclidean space, calculates everything and then - before interpreting it - one

relates the results back to the physically useful Minkowski space theory. This procedure implicitly

assumes that the change between Minkowski and Euclidean space is only a technicality to simplify

calculations and that (for the physically interesting content) there is no difference between S O+(3, 1) and

S O(4). While it is very well possible that this assumption is true, to the author’s knowledge no-one so

far managed to prove it.

While the formulation of the above problem might be seen as mathematical snootiness, it gains immediate

importance, if concepts are investigated that can only be formulated in Euclidean or Minkowki space.

Degenerate vacuum configurations, as will be discussed in this chapter, are connected to the topology

of the underlying space and therefore it is not trivial to find equivalent concepts in spaces with different

topologies, such as S O+(3, 1) and S O(4).

Now, having indicated these severe problems, the line of thought in this work will be that of faithful
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ignorance: The concepts of degenerate vacua and all related subjects will be presented in Euclidean

space under the assumption that the final translation back to Minkowki space is in fact possible and does

not yield further problems.

II.8.2 Winding number in Yang-Mills models

For the next model - a local S U(n) Yang-Mills gauge model - take ta to be the generators of S U(n)

and Aµ(xµ) = taAa
µ(xµ) as the corresponding gauge field. As discussed in the previous section all coming

derivations (unless explicitly indicated differently) in this chapter will be presented in Euclidean space:

xµ with µ ∈ {1, 2, 3, 4} and x4 as the time component. The model, as before, shall only incorporate a

kinetic contribution, so it is a pure Yang-Mills gauge model with the Euclidean action:

S E(Aµ) =
1
2

∫
M

d4xE Tr
(
AµνAµν

)
. (2.8.1)

Here, the trace runs over the generator indices of S U(n), M again refers to the manifold in which the

integrant lives and take Aµν = Aa
µνt

a as the field tensor of the non-abelian gauge field16). The field strength

tensor has the form:

Aµν = ∂µAν − ∂νAµ − ig[Aµ, Aν] (2.8.2)

=
(
∂µAc

ν − ∂νA
c
µ + g f abcAa

µAb
ν

)︸                              ︷︷                              ︸
≡Ac

µν

tc . (2.8.3)

For a derivation of this expression see App. A.6. For the S U(n) gauge transformation,

U(xµ) = e2igtaαa(xµ), a local gauge theory is invariant under the transformation:

taAa
µ(xµ)→ U(xµ) taAa

µ U†(xµ) +
i
g

U(xµ)∂µU†(xµ) . (2.8.4)

where the arrow gives the mapping of the field under the S U(n) gauge transformation. Any field config-

uration can be gauged via this transformation and in particular the vacuum Aµvac can be gauged as well.

As boundary condition for this model one can therefore not impose Aµvac(xµ = ∞) = 0, but only has the

weaker ‘pure gauge’ condition holds:

Aµvac(x, x4) −−−−−→
xµ→∞

i
g

U(x, x4)∂µU†(x, x4) = 2ta∂µα
a(x, x4) . (2.8.5)

At this point it is convenient to assume that the gauge transformations approach a time independent limit

for xµ → ∞, which leads to a temporal gauge condition at infinity (A4(xµ = ∞) = 0)17). This choice

16)In mathematics this is often called the curvature form F = dA + A ∧ A.
17)This is equivalent to the earlier restriction on time independent solutions of the field equations.
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II.8. Degenerate vacua and instantons

leads to the temporal, pure gauge condition:

Aµvac(x, x4) −−−−−→
xµ→∞

i
g

U±(x)∂µU†±(x) = 2ta∂µα
a
±(x) . (2.8.6)

where U+(x) = U(x)|x4=+∞ and U−(x) = U(x)|x4=−∞ and analogusly α±18).

The question is now, if there is a unique vacuum state in this theory, so that all other vacuum states can

be reached via gauge transformations from this state. In other words: can every Aµvac(U1) be transformed

smoothly into every other Aµvac(U2)? It turns out that this is not the case, but that there are different

vacuum configurations and all of them are separated by finite energy barriers. To derive this, at first

sight astonishing fact, some concepts from differential geometry are needed. First define the ‘dual field

strength tensor’ as

Ãµν ≡
1
2
εµνστAστ . (2.8.7)

with the Euclidean antisymmetric tensor, ε1234 = +1. Note that the following equality holds: ÃµνÃµν =

AµνAµν and with this one finds:

0 ≤
1
2

Tr
(
Ãµν ± Aµν

)2
= Tr(AµνAµν) ± Tr(ÃµνAµν) . (2.8.8)

The nonnegativity follows, since it is just the trace over a real square19) and thus one can conclude:∫
M

d4x Tr(AµνAµν) ≥
∣∣∣∣∣∫

M
d4x Tr(ÃµνAµν)

∣∣∣∣∣ . (2.8.9)

Here, the integral over the manifold has just been added to make the connection to the Euclidean action

and so combining Eq. (2.8.9) with (2.8.1) one gets a lower bound for the action. From this one already

knows that, if the right-hand side of Eq. (2.8.9) is nonzero, then the vacuum action, corresponding to the

vacuum energy, of the Yang-Mills model is nonzero, as well. For further insights on this lower bound

the following identity is of help:

Tr(ÃµνAµν) = ∂µε
µνστTr

(
AνAστ +

2
3

igAνAσAτ

)
≡

1
2
∂µJµCS . (2.8.10)

Here, the Chern-Simons current, JµCS, has been introduced. The derivation of the above identity (Eq.

(2.8.10)) is possible by brute force ‘index calculation’ but it is more conveniently done in the framework

of differential forms. This derivation can be reviewed in Ref. [15, p.218-235; 493]. A general, very

‘applied’ introduction on forms can be found in Ref. [17, p.1-11] and for a more advanced introduction

Ref. [18] is helpful. Wether deriving Eq. (2.8.10) one way or another, it can be used to reexpress the

18)Since the gauge condition only holds in the xµ → ±∞ limit, U+ does not have to equal U−.
19)To see that the square is real compare Eq. (2.8.3), using f abc ∈ R and Aa

µ ∈ R. This is called the Bogomolny inequality.
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integral over Tr(ÃµνAµν):∫
M

d4x Tr(ÃµνAµν) =
1
2

∫
M

d4x ∂µJµCS =
1
2

∫
∂M

dS 3
µJµCS (2.8.11)

=

∫
∂M

dS 3
µ ε

µνστTr
(
AνAστ +

2
3

igAνAσAτ

)
. (2.8.12)

In the first line the volume integral over the divergence of JµCS was converted into a 3-dimensional surface

integral (with the oriented measure dS 3
µ) by the means of Stokes theorem and the second line is just the

definition of the Chern-Simons current. The clue is now that the integral is evaluated at the boundary,

∂M, of the manifold so that Aµ is in a pure gauge and therefore Aa
µν(x = ∞) vanishes (compare Eq.

(2.8.6)) from Eq. (2.8.12). With this, the ‘winding number’ is defined as:

n± :=
g2

2Nπ2 lim
x∞→∞

∫
M

d4x Tr(ÃµνAµν)
(
δ(4)(x4 − t−∞) − δ(4)(x4 + t+∞)

)
(2.8.13)

=
ig3

3Nπ2

∫
∂M

dS 3
µ ε

µνστTr (AνAσAτ)

∣∣∣∣∣∣
x4=±∞

(2.8.14)

=
1

3Nπ2

∫
∂M

dS 3
µ ε

µνστTr
[
(U±∂νU

†
±)(U±∂σU†±)(U±∂τU

†
±)

]
. (2.8.15)

Note that the integration over x4 in the first line is just a fake integration as the value of the Euclidean

time is fixed. The prefactor g2/(N2π2) is just a normalization constant, which depends on the particular

choices of Aµ(x), the gauge transformation U± = U±(x) and the dimension of the manifold. In the present

case, g2 is included as the self-interactions of the gauge fields are scaled by a coupling constant in the

covariant derivative, N = 2dim(∂M) since a factor of 2 was included in the definition of U(x)20) and the

remaining S 3 = 2π2 is the surface of the unit-sphere in 3 dimensions. The exact origin of this prefactor

can be reviewed in Ref. [14, p.450-451].

Regarding Eq. (2.8.15), a lot of effort was put into rewriting the model, to get a lower bound on the

action S E, which looks not any better than the original action. Yet there is an important catch hidden

in the winding number: it is a topological invariant! Therefore it cannot be changed by continuous

gauge transformations, which in return means that any two vacuum configurations with different winding

numbers correspond to inequivalent vacua.

The derivation of the invariance of Eq. (2.8.15) is a bit tricky. It is presented in a neat (but also short

way) in Ref. [14, p.445-447].

20)This factor will be dropped when explicit instanton contributions are calculated from Sec. II.9 onwards. It is included here,
to see how normalisations change the result.
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II.8.3 Instantons

Combining Eq. (2.8.15) with (2.8.9) and (2.8.1), the lower bound of the Euclidean action for a given

winding number, n, at x4 = ±∞ is given as S E ≥ Nπ2 |n±| /g2. If one is interested in the transition from

an initial state at x4 = −∞ to a final state at x4 = +∞ then the bound is given by:

S E =
1
2

∫
M

d4xE Tr
(
AµνAµν

)
≥

Nπ2

g2 |n+ − n−| . (2.8.16)

This follows from the derivation of Eq. (2.8.15). Solutions that minimise the transition action are those

field configurations that saturate the lower limit of Eq. (2.8.9). They obey the relation:

Ãµν = sign(n+ − n−)Aµν21) . (2.8.17)

If n+ − n− = 1 the solution is called the instanton and if n+ − n− = −1 it is called the anti-instanton

(later n-instantons will refer to solutions of Eq. (2.8.17) with winding number n). If an explicit symmetry

group is chosen then Eq. (2.8.17) can be used to derive the exact functional form of the instanton solution,

Acl(xµ). It turns out, as will be presented in Sec. II.9, that this solution is localised in space. Via Lorentz

transformations it can then be boosted to any frame of reference, so that Acl(xµ) has the exact properties

of a particle in the Lagrange formalism.

II.8.4 θ-vacuum

While this settles the topic of the unique vacuum, it directly leads to the question, which vacuum should

be included in the calculation of physically measurable quantities. As there is no apparent reason that

excludes any configuration with a particular winding number, it is reasonable to assume that the physical

vacuum is a superposition of all possible vacua, |n〉, with winding number, n, times a spectral function:

|vac〉 =
∑

n f (n)|n〉. To find the exact form of f (n), it is useful to think about the expectation value of

a localised physical observable O(A), with A being a short-hand notation for all involved fields. If this

observable is first measured in a large volume Ω1 and then in an even larger volume Ω = Ω1 + Ω2, where

Ω1 is just the same volume as before, then this change of the volume should not affect the outcome of

the expectation value, if the volumina are much larger than the actual ‘size’ of the observable. Take n j

as the winding number in Ω j. Then the winding number of Ω is simply n = n1 + n2 and with this the

21)Inserting Eq. (2.8.17) into (2.8.16) gives an equality with fascinating mathematical properties. It connects an integral over
smooth functions with the difference of two natural numbers and thus constrains the integral significantly. This equality,
derived in a slightly different setting is an explicit example of the Atiyah-Singer index theorem. The derivation is shown in
Ref. [14, p.362-370] and a general, mathematical introduction on the theorem is given in Ref. [19].
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expectation value in the path integral formalism is:

〈O〉Ω =

∑
n1,n2 f (n1 + n2)

(∫
DAn1 e−S E(A,Ω1)O(A)

) (∫
DAn2 e−S E(A,Ω2)

)
∑

n1,n2 f (n1 + n2)
(∫

DAn1 e−S E(A,Ω1)
) (∫

DAn2 e−S E(A,Ω2)
) . (2.8.18)

The index in the functional measure DAn means that only those fields are included in the integral that

result in the correct winding number, n. This is a rather long expression to point out a rather simple fact

and it is possibly easier to visualise the situation, as in Fig 2.8.1 than to frame it in a formula.

��� �� ��� ����� ��

Figure 2.8.1: First, there is some physical configuration (blue vector field in volume Ω1) shown. Then,
the second figure shows the same event, only in the larger volume (Ω = Ω1 + Ω2).

If 〈O〉Ω = 〈O〉Ω1 , as one needs on physical grounds, then the weight function has to be of the form

f (n1 + n2) = f (n1) f (n2), in order to cancel out all dependencies on n2 in Eq. (2.8.18). This means that

f (n) = eiθn for an arbitrary phase θ ∈ R and so the θ-vacuum state becomes:

|θ〉 :=
∑

n

e−iθn|n〉 . (2.8.19)

Now the final step is at hand. So far the topological invariant, n, has been derived, the lowest possible

energy difference for the change of n− to n+ was found and, finally, a consistent vacuum state with a

new parameter, θ, for the Yang-Mills model was constructed. What remains to be done is the consistent

inclusion of the new parameter into a minkowskian path integral formalism. For this suppose that a

system starts out in a vacuum, |θ〉|x4=−∞, and ends in a state, 〈θ′|x4=+∞. Using n ≡ n+ − n− the partition
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function (in the Euclidean path integral formalism) is:

Zθ′,θ = 〈θ′|

∫
DA e−S E |θ〉 =

∑
n−,n+

ei(θ′n+−θn−)
∫

DA(n+−n−)〈n+|e−S E |n−〉 (2.8.20)

=
∑
n−,n

ei(n−(θ′−θ)+nθ′)
∫

DAn e−S E (2.8.21)

=
∑

n

einθ′δ(θ′ − θ)
∫

DAn e−S E . (2.8.22)

The δ-distribution is proportional to the n− sum over the exponential22) and the index in the functional

measure again labels the fields that are included in the integral (for all other values of n+ − n− the

integrant vanishes). The δ-distribution in the last line shows that Zθ′,θ is over-defined. This can be fixed

by accepting that the partition function only depends on θ and defining:

Zθ ≡
∑

n

einθ
∫

DAn e−S E =
∑

n

∫
DAn exp

∫
d4xE Tr

[
−

1
2

FµνFµν + i
g2θ

16π2 F̃µνFµν

]
. (2.8.23)

For the second equality the definitions of n and n± were used. Now, all that is left to do is to reexpress

everything in Minkowski space. This can be done by replacing x4 = ix0 and ε1234 = −ε1230, where the

index 0 labels a variable inM(3,1). Note that the term of the winding number contains an integration and a

derivative with respect to x4
23), so that it only catches a factor of −1 from the ε-tensor. As the other term

does not have the additional derivative it gets an additional factor of i. The following partition function

can then be given in Minkowski space:

Zθ =

∫
DA exp i

∫
d4x Tr

[
−

1
2

FµνFµν −
g2θ

16π2 F̃µνFµν

]
. (2.8.24)

Here the sum over n is included in the functional measure, DA =
∑

n DAn, as it is the only term that still

depends on n. Having a closer look at the final result (Eq. (2.8.24)) one might get second thoughts about

the inclusion of the new term into the Yang-Mills action. As discussed (Eq. (2.8.10)), this term is actually

a ‘total divergence’ and usually these terms are dropped by the argument that field configurations are

sufficiently localised so that they have no contribution from the boundary of space-time. But don’t panic,

the last pages were not just an afternoon entertainment, since, in this special case, the field configurations

at the boundary do have a direct influence on the physics involved (compare Eq. (2.8.15)).

In fact, instantons have a neat connection to the idea of chiral field theory. The first is that instantons can

solve the so called ‘U(1) problem’ by explicitly violating the axial chiral UA(1) symmetry. While this is

an interesting topic, it is subject to the same fate as so many (in fact almost all) interesting things: It is

not crucial for this work and thus has to be treated someplace else, for instance Ref. [14, p.243-246,450-

22)As partition functions can be scaled by arbitrary constant, the replacement is correct in this context.
23)To see this compare Eq. (2.8.15). n can be gained by dropping the constraints on x4.
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455]. But nevertheless in the model, introduced in chapter III, the explicit breaking of UA(1) will be

used.

The second connection to chiral theories allows including a fermionic mass term in a chiral model, if

instantons are included in the model as well. In Sec. II.5 it was discussed that such a term violates

the chiral gauge invariance U−1
ch |m|ΨeiφΨUch = |m|Ψe−i(φ+2αA)γ5Ψ. By analysing the change of a θ-term

in the Lagrange density (see Eq. (2.8.24)) under chiral transformations, it turns out that θ → θ + 2αA

changes by the same amount as the pure mass term. If one therefore takes the fermion mass to be

mF = |m| ei(φ−θ), then this term becomes gauge invariant. Unfortunately, there is a price to pay for this

newly introduced mass term, which is known as the ‘strong CP problem’24) By studying effective QCD

Lagrangians including the instanton effect, one finds that these models allow for CP violating terms. So

far, QCD is known to preserve CP up to very high energy scales. This constraint ultimately leads to

the following contidion on the vacuum angle: |θ| < 10−9. This is an extreme fine tuning problem and

one would like to have a convenient explanation that sets θ = 0. A solution to this problem can be the

introduction of yet another field - the axion. Now, as this leads too far, here are two references, where the

just mentioned study of chiral models and the implications are discussed in detail: Ref. [5, p.601-608]

and [14, p.455-461].

II.9 Explicit results related to instantons

So far, the concept of instantons and the implications of their existence have been discussed on very

general grounds to provide an insight into the richness of the topic. Unfortunately, for the later use, one

has to get ones hands dirty and the general picture has to be filled with countless details. This section

will provide some of the bare necessities and naturally the references to literature, where the subject is

treated in full glory25).

First, important instanton results for a free Yang-Mills model will be presented, concerning solutions,

degrees of freedom and direct changes of the path integral measure. After this, the model will be en-

hanced with an additional scalar Higgs field and the inevitable changes, related to the altered model, will

be discussed.

II.9.1 Conventions for Euclidean space calculations

In the beginning it should be mentioned that all the calculations to come will be done for the anti-

instanton (n = −1). There is no physical reason for this choice. It is simply the standard convention in

literature to do explicit calculations for the anti-instanton and translate everything to the instanton later.

24)A discussion of the ‘strong CP problem’ from the time of the instantons’ discovery can be found in Ref. [20].
25)This is just another alteration of yet so often repeated theme: There is not enough space (and time) to give a sufficiently

complete introduction to every topic used in this work, and I apologise for the inconvenience related to any incompleteness.
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These analogous calculations for the instanton are easy to reach by changing the gauge field solution from

anti-instanton to the corresponding instanton. The solutions, and what changes explicitly is explained

in Sec. II.9.2. The most important difference is that anti-instantons couple only to left-handed fermions

and instantons only to right-handed ones. The contributions to measures and other spinor-independent

quantities are the same for all (anti-) instantons, which will become apparent from the later discussions.

II.9.1.1 Gauge group conventions

For explicit calculations it is very convenient to rescale the gauge field, so that its coupling constant and

the factor of −i is incorporated into the field (this means that coupling constants appear only in front of

the kinetic term of the gauge field). In addition the generators of the involved S UI(2) gauge group are

taken to be

Ta = −
i
2
τa ; [Ta,Tb] = fabcTc ⇒ trI(TaTb) = −

1
2
δab

26) . (2.9.1)

With these conventions the covariant derivative (including a gauge field, Aµ), acting on some field, X,

becomes: DµX = ∂µX + [Aµ, X]. Finally the field tensor of the gauge field is

Aµν = [Dµ,Dν] = ∂µAν − ∂νAµ + [Aµ, Aν] . (2.9.2)

The rescaling of the gauge fields means that its Euclidean action incorporates a factor of the coupling

constant: S E = 1
g2

∫
d4xEAµνAµν.

II.9.1.2 Spinor conventions

In analogy to the minkowskian spinor matrices γµ, γ5 and β from Sec. II.4 one can define the equivalent

matrices for Euclidean space-time27). Instead of the invariant σµȧb symbols (Sec. II.1.2) these matrices

are formed from the quaternion symbols, qµȧb (Sec. II.2):

γ
µ
E :=

 0 iqµaċ

−iq̄µȧc 0

 , βE = β , γE 5 = γ5 . (2.9.3)

26)trI(·) refers to a trace over the gauge group indices.
27)In principle this change means that the governing symmetry group is not S O(3, 1) anymore but pure S O(4). Therefore the

underlying generators, Mµν, of Sec. II.1 are replaced by the Euclidean equivalence, Mµν
E , and this in turn implies a change

of the spinor matrices.
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These are the most crucial identities for the Euclidean spinor algebra. For the explicit instanton solution

the two following objects are needed as well:

qµν :=
1
2

(
qµq̄ν − qνq̄µ

)
, q̄µν :=

1
2

(
q̄µqν − q̄νqµ

)
. (2.9.4)

These can be expressed in terms of the ‘t’ Hooft-symbols’ 28):

q̄µν = iηaµντ
a , qµν = iη̄aµντ

a . (2.9.5)

Of course, there are many more details to be discussed for this algebra, but as they are merely a side note

in the later topics, the interested reader is referred to Ref. [21, p.18-21;97-100] for further investigations.

As indicated in Sec. II.8.1, Euclidean space consists of two linearly independent subgroups
[
S O(4) '

S UB(2) � S UA(2)
]

in contrast to Minkowski space
[
S O+(3, 1) ' S UL(2) � S UR(2)

]
, where they are

related to each other via hermitian conjugation. Therefore the left- and right-handed spinors (ψL, ψR)

turn into independent spinors
[
ψL=̂ψB = λ and ψR=̂ψA = χ̄

]
. This difference has to be kept in mind,

when translating the spinor formalism into Euclidean space.

II.9.2 The (anti) instanton solution

For the later model, instanton fields in a S U(2) gauge group will be of importance and so all solutions

will be restricted to this special case. To be completely clear, the instanton solutions will be derived

in Euclidean space-time [S O(4) ' S UB(2) � S UA(2)], augmented with the S UI(2) gauge group (cor-

responding to ‘isospin’). In Sec. II.8 it was shown that a n-instanton field, Acl
µ has to solve the (anti-)

selfduality equation, F̃µν = sign(n)Fµν. In 1975, the BPST29) solution for this equation was found (Ref.

[22]) for the special case of n = 1 (normal instantons). The derivation of a more general solution is given

in Ref. [21, p.17-25]. Both derivations make use of the so called ‘hedge hog’ map for the S UA/B(2)

gauge transformations. If xα = (x4, x1, x2, x3)T is taken as an Euclidean 4-vector and qα as the quater-

nion symbol of Sec. II.2, then the S UB(2) gauge transformation is given by U(x̂) =
∑
α xαq̄α/ρ and

the S UA(2) transformation has the form U(x̂) =
∑
α xαqα/ρ. With this, the topological solution for an

anti-instanton (n = −1) was found to be:

Areg
µ (x; x0, ρ) =

(x − x0)2

(x − x0)2 + ρ2 U(x̂)∂µU†(x̂) =
−qµν(x − x0)ν

(x − x0)2 + ρ2 for (n = −1) , (2.9.6)

Asing
µ (x; x0, ρ) =

ρ2

(x − x0)2 + ρ2 U†(x̂)∂µU(x̂) =
−ρ2 q̄µν(x − x0)ν

(x − x0)2[(x − x0)2 + ρ2]
for (n = −1) . (2.9.7)

28)ηaµν := εaµν + δaµδν4 − δaνδ4µ and η̄aµν := εaµν − δaµδν4 + δaνδ4µ
29)Belavin, Polyakov, Schwartz, Tyupkin
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Here x0 is an arbitrary parameter, marking the instanton’s position and ρ is another parameter, which

gives the size of the instanton solution. The second equation is called the singular configuration and can

be reached from the regular solution via a simple gauge transformation Asing
µ = Areg

µ − i/g U∂µU†. As n

is negative the instanton solves the anti-selfduality equation (Eq. (2.8.17)). The gauge orientation term

scales like U†∂µU ∼ (x − x0)µ/(x − x0)2, which means that the solution Asing
µ is highly localised around

x0
30). This makes it the preferable choice for calculations, as terms fall off rapidly for |x| → ∞. For

the instanton (n = 1) the solutions are almost the same. The only difference is that the q-tensors are

exchanged (q̄µν ↔ qµν), which means that the instanton solves the corresponding selfduality equation.

From Eq. (2.9.6) one could get the impression that instanton solutions depend on five variables (size and

position), but this is not the whole truth. Even after a gauge is fixed, there will remain a global S UI(2)

(‘isospin’) gauge freedom transforming the instanton field to:

Aµ(x; x0, ρ, θ) = UI(θ)Aµ(x; x0, ρ)U†I (θ) . (2.9.8)

Here UI(θ) = e−iθaτa/2 is a constant S UI(2) transformation with θ = (θ1, θ2, θ3)T. And so there is another

set of three variables, that the instanton solution depends on31). A derivation of this additional freedom

can be found in Ref. [23, p.3441-3444] and the corresponding group theoretical approach in Ref. [21,

p.11-13].

The model will be presented in the presence of a so called ‘background gauge’ which does not violate

this S UI(2) symmetry and therefore the three additional variables of the instanton solution have to be

included in all derivations. A general result shows that the (n = 1)-instanton solutions depend on 4N

variables, if Aµ ∈ S U(N). A rather detailed derivation of the free instanton solution is given in Ref. [21,

p.21-25].

II.9.3 Zero-modes

Having found the instanton solutions (Eq. (2.9.6)), the question is how instantons effect QCD calcula-

tions. Maybe the easiest way to address this question is to expand the gauge fields in a given QCD-model

around the instanton solution: Aµ = Acl
µ + aµ, where Acl

µ is the ‘classical’ instanton solution and aµ is a

perturbation of order O(~) around it. In the path integral formalism this change of variables is not for

free, as one still has to change the integration measure accordingly (DAµ → Daµ). Some of the quan-

tum fluctuations around instanton solutions pose difficulties on this transition, as a number of ‘zeros’

will show up in inconvenient places in the partition function. The problematic quantum fluctuations are

related to the 4N degrees of freedom of Acl
µ and dealing with them leads to the concept of collective

30)For the same reason Asing
µ is singular at x = x0, which is not a problem since the fields only have to be square integrable in

R4.
31)In the following derivations the isospin symmetry will not play a major for a while and thus it will be picked up explicitly

again in Sec. II.9.8.1.
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coordinates.

Square integrable quantum fluctuations that preserve the (anti-) selfduality and the winding number of

an n-instanton can be shown to fulfil the condition

q̄ȧb µqν
aḃ

Dcl
µ aν = 0 (2.9.9)

in a background gauge (for an explanation of this condition compare Ref. [21, p.25-26]). The background

gauge is usually chosen in instanton calculations for convenience, as it allows for a different gauge of

quantum fluctuations compared to the chosen gauge of a classical background field. The general concept

of this gauge is reviewed in Ref. [5, p.478-485]. The number of solutions of Eq. (2.9.9) can be found

via the Atiyah-Singer index theorem32), as this equation can be related to the question of counting zero-

modes33) of the operator q̄ȧb µDcl µ. The general result, presented in Ref. [24], shows that there are exactly

4Nn solutions of Eq. (2.9.9), where, as before, N is the dimension of the underlying ‘isospin symmetry’,

S UI(N), and n is the winding number (n = −1 in the present case).

Now, one is in the position to analyse the expansion of the Euclidean action in a pure Yang-Mills gauge

model around Acl
µν:

S E =

∫
d4xE

[
trAµνAµν +Lgf +Lgh

]
(2.9.10)

=

∫
d4xE

[
tr

(
Acl + a

)µν (
Acl + a

)
µν

+Lgf +Lgh

]
(2.9.11)

=
8π2

g2 |n| + tr
∫

d4xE
[
aµMµνaν + c̄Mghc

]
+ O({a, c, c̄}3) . (2.9.12)

In the last line the minimum contribution has been rewritten, as it is a constant anyway (compare Sec.

II.8.3). Here a gauge fixing term and the corresponding ghost Lagrangian have been included (for a

review on those two contributions see Ref. [5, p.430-434]). The concrete gauge fixing and ghost La-

grangian have to be specified according to the actual model and gauge choice. To bring the present

example into a background gauge (Dcl
µ aµ = 0) one would need:

Lgf = −
1
g2 tr

(
Dcl
µ aµ

)2
, Lgh = −c̄Dcl

µ Dµc . (2.9.13)

With these contributions to Eq. (2.9.12), the operators for the quantum fluctuations can be calculated.

The derivation is given in Ref. [21, p.35] leading to:

Mµν = (Dcl)2δµν + 2(Acl)µν + O({a}) , Mgh = −(Dcl)2 + O({a, c}) . (2.9.14)

32)Strictly speaking this is only correct if the space, in which q̄ȧb µDcl µ lives is compactified. There are various ways to do this -
one explicit compatification in the present case would be to fix the gauge at spacial infinity (Aµ(∞) = const).

33)A zero-mode, |Z j〉, is a normalisable solutions of an operator with eigenvalue, ε j = 0.
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For any one-loop calculation the correction terms in the above equation can be dropped, so that both

operators are purely built from the covariant derivative with the classical gauge field, Dcl. Now the

introductory problem of the section is at hand: One knows from the previous discussion that Dcl has

zero-modes and thus Mµν and Mgh have zero-modes, too. By performing a path integral over all fluc-

tuations one effectively produces - apart from finite contributions - an infinite sum over all zero-mode

contributions,
∫

(Daµ)0 e0 = ∞, where the subscript 0 means that the path integral is only performed over

zero-modes.

At this point it becomes clear that it is no coincidence that the instanton degrees of freedom exactly match

the number of zero-modes of the quantum fluctuations. A fluctuation, which changes Acl
µ in a direction

γk ∈ {(x0)i, ρ, θ j} does not change the total action of Eq. (2.9.12), as γk is an explicit degree of freedom

of the instanton solution with action, S E = 8π2/g2. So the contribution from the fluctuations, aµMµνaν,

has to vanish, leading to the divergence in the functional integration.

II.9.4 Collective coordinates

To better deal with the zero-mode fluctuations one can rewrite their functional integration into a direct

integration over the degrees of freedom γk. The γk are, what is conventionally known as ‘collective

coordinates’. The techniques to make the transition (Daµ)0 →
∏

k dγk are very similar to the Faddeev-

Popov concept to get rid of gauge redundencies in non-abelian gauge theories. Therefore many concepts

in the following paragraph can be found in greater detail in Ref. [5, p.430-434]. The idea is to artificially

include a constraint function f µi (γ) ≡ f µi (γ; x)34) for each collective coordinate into the path integral and

then integrate over all of them, such that the final partition function does not depend on the arbitrary

constraints, f µi (γ), anymore. The constraint can be included via the identity:

1 =

∫
d4Nγ∆γ

4N∏
i

δ
(
[Aµ − Acl

µ (γ)] f µi (γ)
)
. (2.9.15)

Here ∆γ is a needed Jacobian (see Ref. [5, p.432]). To leading order in the fluctuation (or equivalently

the coupling constant) it has the form:

∆γ =

∣∣∣∣∣∣∣det
i j

∫ d4x
∂Acl

µ (γ)

∂γi
f µi (γ)


∣∣∣∣∣∣∣ . (2.9.16)

34)For notational convenience the explicit dependence on x will not be mentioned anymore, just as it is already convention for
fields.
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In Eq. (2.9.15) the δ-distribution can be replaced by a gaussian via:

4N∏
i=1

δ

(∫
d4x aµ f µi

)
= lim

α→0

1
(2πα)n/2 exp

[
−

1
2

∫
d4x aµ

(
α−1 f µi × f νi

)
aν

]
. (2.9.17)

The indices of the constraint functions f µi has to be summed over. Using this, the zero-mode contribution

of the partition function can be rewritten to:

Z0 =

∫
(DAµ)0 e−S E(Aµ) ∼ e−S cl

E

∫
d4Nγ Zγ , (2.9.18)

Zγ = ∆γ lim
α→0

1
(2πα)4N/2

∫
Daµ exp

[
−

1
2

∫
d4x aµ

(
Mµν + α−1 f µi × f νi

)
aν

]
(2.9.19)

= ∆γ lim
α→0

1
(2πα)4N/2 det

(
Mµν +

1
α

f µi × f νi
)−1/2 . (2.9.20)

Here the sum over the index, i, has been left out as well as the entire ghost field part, since its functional

integral only gives the usual contribution. Notice that, without the constraint function, the partition

function would diverge (det(Mµν)=0, since it contains zero-modes), as expected. With the constraint in

place the situation is different. Now the modified determinant has to be evaluated. For this the reasoning

from Ref. [25] has been adopted. There, the general identity

det
(
Mµν + bµi × bνi

)
= det(Mµν) det

i j

(
δi j + bµi M−1

µν bνi
)
. (2.9.21)

was rewritten for the case where M has zero-modes. The arbitrary vectors, bµi , have been rescaled by

limiting factors of α, leading to:

lim
α→0

det
(
Mµν +

1
α

f µi × f νi
)

= det′(Mµν) det
ik

( f µi Zkµ)
[
det
kl

(Zµk Zlµ)
]−1 det

l j
(Zµl f jµ) . (2.9.22)

The prime denotes that the determinant is only to be taken over non-zero eigenvalues and the Zµj are the

zero-modes of Mµν. The zero-modes correspond to changes of the classical solution in a direction of

γ j and thus they have the form Z jµ ∼ (∂Acl
µ )/(∂γ j). Therefore the previously introduced Jacobian can

be written as ∆γ = deti j(Z
µ
i f jµ). Combining this with the equations Eq. (2.9.22), (2.9.18), (2.9.20) and

absorbing the divergent factor, limα→0 α
−4N/2, in the normalisation of the path integral one finally arrives

at a well defined expression for the partition function of quantum fluctuations around a classical instanton

solution:

Z =

∫
DAµe−S E (2.9.23)

= e−S cl
E

∫
d4Nγ

(2π)4N/2

[
det
kl

(Zµk Zlµ)
]1/2[det′(Mµν)

]−1/2 . (2.9.24)
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This equation incorporates the influence of all quantum fluctuations to the instanton partition function

and is the main result of this section. The fluctuations ‘perpendicular’ to the collective coordinates are

summed over in the ‘amputated determinant’ and the fluctuations along those coordinates are captured in

the remaining integral over d4Nγ. In the case of an S UI(2) gauge group the remaining integration is eight

dimensional: d4×2γ = d4x0 dρ d3θ. While the here presented derivation is very hasty, there is a much

deeper treatment of the subject given in Ref. [26]. The derivation given there also provides a solution, if

the point of expansion does not correspond to the exact classical solution Acl
µ .

II.9.5 Measure of zero-modes

In the last section the partition function of an instanton has been rewritten. What is still left to be

done, is to find the explicit form of the involved determinants of Eq. (2.9.24). The first of these gives

a contribution from all zero-modes and can be calculated once the explicit form of all those modes is

established. For this define

Ui j = 〈Zi|Z j〉 =
−2
g2 trI

∫
d4xZiµZµj , (2.9.25)

so that the determinant contribution becomes
(
deti j(Ui j)

)1/2
. The trace runs over the S UI(2) indeces of

the gauge group. It was aready mentioned in the previous section that the zero-modes are similar to

differentiations of the classical solution with respect to the collective coordinates. This would be already

the end of the story if it weren’t for the background gauge that still must be fulfilled. In a pure gauge

field model it has the form:

Dcl
µ aµ =

(
∂µ + Acl

µ

)
aµ = 0 , (2.9.26)

where the superscript cl refers to the classical instanton solution. Having this gauge, the zero-modes - as

they are quantum fluctuations - have to respect it as well and so the eight modes are of the form:

Ziµ =
∂Acl

µ

∂γi
+ Dcl

µ Λi . (2.9.27)

Here Λi are gauge parameters that can be used to reestablish the background gauge. Now all zero-modes

of a pure S UI(2) Yang-Mills model can be calculated. As this is a mere technical task, here simply the
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results are given. The complete derivation can be reviewed in Ref. [21, p.35-39].

Zρ µ = −2
ρq̄µνxν

(x2 + ρ2)2 with Λρ = 0 , (2.9.28)

Zxα0 µ = Fcl
µα with Λxα0 = Acl

α , (2.9.29)

Zθ j µ = Dµ

[
x2

x2 + ρ2 T j

]
with Λθ j = −

ρ2

x2 + ρ2 T j . (2.9.30)

Now the matrix Ui j can be calculated35) in terms of the instanton action S cl = (8π2)/g2:

Ui j =


δµνS cl

∣∣∣∣
4×4

2S cl
∣∣∣∣
1×1

1
2 gab(θ)ρ2S cl

∣∣∣∣
3×3


8×8

. (2.9.31)

The first entry (δµνS cl) is the 4-dimensional part from the x0-zero mode, the second entry comes from the

instanton size ρ and the last entry is the 3-dimensional contribution from the gauge group zero-modes.

gab(θ) is a 3-dimensional matrix that encodes the combination of any two generators Tα, Tβ of the gauge

group. This matrix is independent of the group representation (apart from a normalisation) and taking its

determinant gives the Haar measure of the S UI(2) group. Given all this, the determinant over zero-modes

in Eq. (2.9.24) turns out to be: √
det(Ui j) =

1
2

(S cl)4ρ3
√

det(gab(θ)) . (2.9.32)

If no entry in the partition function depends explicitly on the orientation in S UI(2) space, then the inte-

gration over the collective coordinates θ can be calculated right away:

vol(S UI(2)) =

∫
d3θ

√
det(gab(θ)) = 2π2 . (2.9.33)

The last equality is actually dependent on the chosen normalisation for the generators36) (here Ta =

−iτa/2). The derivation so far appears to be easily extendable to gauge groups with arbitrary dimensions

N. This is not true, as the S U(2) instanton solution has to be embedded into higher dimensional gauge

groups and this changes the overall factor of
√

U. The reason for the chosen notation is comparability

35)To see that
∣∣∣Zρ∣∣∣2 = 2S cl one needs the identity tr(q̄µνq̄µν) = 12, which can be derived from Eq. (2.9.5).

36)For an explicit calculation of various group volumina compare Ref. [21, p.100-106].
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with Ref. [21]. The zero-mode contribution to the measure of the partition function in the present case is√
det(Ui j)

(2π)4N/2 =
(S cl)4ρ3

2(2π)4 vol(S UI(2)) =
28π6

g8ρ5︸︷︷︸
=:m1(ρ)

ρ8 . (2.9.34)

In the definition of the collective coordinate measure, m1(ρ), a factor of ρ5 has been included, in order to

give a dimensionless integral (d4x0dρ ρ−5). The remaining factor of ρ8 will be subject to renormalisation

in Sec. II.9.7.

m1(ρ) is different by a factor of 22 in comparison with the literature37). Usually in literature N ≥ 3 gauge

models are analysed, where the mentioned embedding of the S U(2) instantons in the S U(N) gauge group

has to be taken into account. In Ref. [21, p.45], the difference is notable directly to be a factor of 4 in the

‘group volume’.

II.9.6 Fermionic zero-modes

This section represents a slight intermission in the derivation of the bosonic partition function. In a pure

gauge field model there are no fermions and thus there is no direct need to burden ones life with the

complications they bring along. Of course, as the final model in this work shall describe nucleons, there

is an obvious need to consider also this extended case. This section will give some basic concepts for the

treatment of fermions in the later model.

In general, if massless fermions are included in a chiral QCD-model, the influence of instantons becomes

unphysical38). The reason is, that the U(1) anomaly of these models allows to gauge the instanton

contribution in the θ-partition function (Eq. (2.8.24)) away39). In the path integral formalism this can

be understood as the appearence of zero-modes in the fermionic path integral. Take for example the

following generic model from Ref. [5, p.601]:

Z =

∫
D{ψ̄ψAµ} exp

[
i
∫

d4x ψ̄iD/ ψ −
1
4

AµνAµν −
g2θ

32π2 ÃµνAµν
]

(2.9.35)

=

∫
DAµ det(iD/ ) eiS einθ . (2.9.36)

The above example gives the partition function for the transition from the 0-angle to the θ-angle vacuum

and indeed this expression vanishes if the Dirac operator of the massless fermion ψ has zero-modes.

The Atiyah-Singer index theorem can be used to further evaluate these zero-modes. This general treat-

ment is presented for the present case in Ref. [21, p.28-34]. For now it is sufficient to know that fermions

37)For example: Ref. [21, p.45], [23, p.3445] (including erratum) and [27, p.8].
38)To see the full argument compare Ref. [5, p.601-602]
39)For more information on the U(1) anomaly see Ref. [5, p.456-477].
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in the fundamental representation have |n| zero-modes in the presence of an n-instanton field (Ref. [21,

p.34]). It was found that the anti-instanton (n = −1) leads to a zero-mode for the Euclidean Weyl-spinor,

λ ∈ S UB(2) (corresponding to the left-handed fermion ψL in Minkowski space), and the instanton (n = 1)

gives a zero-mode for the other Weyl-spinor, χ̄ ∈ S UA(2) (which translates to the right-handed fermion

ψR in Minkowski space). Here the S U j(2) groups correspond to the subgroups of S O(4) as they have

been introduced in Sec. II.9.1.2.

Anyway, having the explicit form of the instanton field, Acl
µ , (Eq. (2.9.6)), the fermionic zero-modes can

be calculated explicitly by solving the equation D/ cl Ψ0 = γ
µ
EDcl

µ Ψ0 = 0, where Ψ0 is a Euclidean Dirac-

spinor. Using the definitions of the Euclidean γ-matrices Ψ can be decomposed into the 2 independent

Weyl-spinors: λ = 1
2 (1 − γE 5)Ψ0 and χ̄ = 1

2 (1 + γE 5)Ψ0 and the zero-mode equation then gives the two

relations:

q̄µDcl
µ λ = 0 ; qµDcl

µ χ̄ = 0 , (2.9.37)(
q̄µ∂µ + q̄µAcl

µ

)
λ = 0 ;

(
qµ∂µ + qµAcl

µ

)
χ̄ = 0 . (2.9.38)

These equations can be solved by using the explicit form of Acl
µ and the identities for the combinations

of qµ, q̄µ and q̄µν (compare Ref. [21, p.97-100]). For the anti-instanton, one finds the following nor-

malised40) fermionic zero-mode:

λsing(x; x0, ρ,K) =
ρ

π

qµaċ(x − x0)µ[
(x − x0)2((x − x0)2 + ρ2)3]1/2 K , (2.9.39)

λreg(x; x0, ρ,K) =
ρ

π

εac[
(x − x0)2 + ρ2]3/2 K . (2.9.40)

Here K is a grassmann valued variable, which is the so called fermionic collective coordinate41). From

now on, often the explicit dependence on x0 will be dropped, if it is unimportant for explicit derivations.

The antisymmetric tensor, εac, in the regular gauge zero-mode can be understood from the group the-

oretical point of view, as the only possible invariant symbol in the combination of two 1/2 spinors

(2 � 2 = 1a � 3s). Apart from this formal mathematical argument the indices of εac can also be identi-

fied with the spin and ‘isospin’ dependence of the mode. They reflect the fact that instantons in general

depend on the symmetries of the space and thus this dependence is adopted in the zero-modes as well

(here the spin-space is coupled to the ‘isospin’-space). A clear derivation of this interpretation for λreg is

given in Ref. [28, p.283-285].

Note that the fermionic zero-mode does not have the correct units for a fermionic field in four dimen-

40)The norm is defined as:
[
〈λ|λ〉 = 1

2 trI

∫
d4 x λ†(x)λ(x)

]
.

41)This is not a collective coordinate as the ones introduced before, as it is not a degree of freedom of the instanton solution but
the name is conventional.
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sions, which is normally in powers of energy: [ψ] = 3/242). The reason for the (at first sight) wrong units

is a different normalisation. The correction of all involved units is explicitly performed in Sec. II.9.9.4.

λ is a zero-mode for every K and so the fermionic path integral can easily be split up into D{N̄N} →

D{K̄K}
(
D{N̄N}

)
,0

, where the subscript , 0 means that the fermionic zero-modes have been extracted.

Massless fermions, as already mentioned, nullify the effect of instantons, while massive fermions on the

other hand force the vacuum angle, θ, to be very close to zero (compare Sec. II.8.4), so the question

comes to mind what the significance of the last 15 pages could be in real physical models. Of course,

there is a way out of this dilema: One could apply perturbation theory. Suppose the fermionic La-

grangian in the partition function Eq. (2.9.35) is enhanced with an additional perturbative contribution:

LN = N̄(iD/ + gJ J)N. Then, to lowest order in perturbation theory the zero-mode contribution to the

determinant in the partition function of this model becomes:

det0(iD/ + gJ J) ≈ 〈N0|iD/ |N0〉 + g j〈N0|J|N0〉 = gJ〈N0|J|N0〉 . (2.9.41)

Here |N0〉 stands for a suitable zero-mode, depending on the explicit model and conventions and the

subscript 0 at the determinant means that only the zero-modes are included. The above expansion is

possible, as the Dirac operator, D/ , can be expanded in eigenfunctions. This perturbative concept for the

treatment of fermionic zero-modes will be used in the later model, as well.

II.9.7 Non-zero quantum fluctuations

Coming back to the calculation of the partition function of Eq. (2.9.24), the last contribution, still waiting

for evaluation is the amputated determinant from the non-zero quantum fluctuatioins
(
det′(Mµν)

)−1/2.

While one could start to find the eigenfunctions, and values of Mµν for an explicit evaluation of the

determinant, it is far more convenient to understand what this path integral over vacuum fluctuations

actually corresponds to: In the so far developed formalism a pure Yang-Mills model has been expanded

around a classical field configuration, Acl
µ . In the language of Feynman perturbation theory this means

that external lines in diagrams correspond to classical fields, while internal loops are produced by the

quantum fluctuations aµ. Thus evaluating the determinant of Mµν can be translated to calculating the one-

loop quantum correction to a background field in a Yang-Mills model. In principle this is already it and

one is almost done. There is just one conceptual difficulty, which should be mentioned: As the instanton

field Acl
µ depends crucially on the topology of the space one is working in, it is not straight forward to use

the standard tool of dimensional regularisation in the context of instantons. A way around this problem

is to use the Pauli-Villars regularisation scheme instead. Ultimately the results of different regularisation

procedures for renormalisable models are equivalent and do only alter by an overall constant. Therefore

42)This notation basically countes the powers of energy as a unit-dimension of objects and will be explained completely in Sec.
III.4.2. The full machinery for analysis in this notation is presented in Ref. [5, p.90-91].
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the final result derived via one scheme can easily be translated into another one. In his original work

’t Hooft presented a complete derivation of both schemes Ref. [23] and also gave the overall factor by

which they differ.

Before coming to the β-function, and by this the actual results for the quantum fluctuations, it is useful

to generalise the free Yang-Mills Lagrangian from Eq. (2.9.24). It is possible to give the one-loop β-

function for a model including nf Dirac fermions in some group representation, RDF , and ns complex

scalars in a group representation, RCS. Such a model has the Lagrange density:

Lgen = Lf
YM +Lf

N +Lf
Ω + gΩN̄ΩN +Lgf +Lgh . (2.9.42)

where the ‘free’ Lagrangians in order of appearance are: Yang-Mills, nucleon, N, scalar field, Ω, gauge

fixing and ghost field. The nucleon and scalar field are coupled to the gauge field via the covariant

derivative and the Ω-nucleon coupling is given explicitly. Only the free Lagrangians for Ω and N may

contain a mass term, as this will not change the final result. This model can be expanded around the

instanton field, Acl
µ , with all other fields only contributing as quantum fluctuations:

Zgen =

∫
D{N̄NΩAµc̄c} e−

∫
d4 xELgen (2.9.43)

=

∫
D{n̄naµ}0D{n̄nωaµc̄c},0 e−

∫
d4 xELgen . (2.9.44)

The second line already shows the expansion around the instanton solution in the integration measure (n,

ω and aµ stand for the fluctuation fields). As earlier the subscript , 0 means an integration over non-zero

modes and 0 stands for the integration only over zero-modes. Note that only the fermionic fields and the

gauge field have zero-modes. Now it is time to recollect the results from the previous sections, namely

equation: Eq. (2.9.24), (2.9.34) and (2.9.41). Using this and performing the standard gaussian path

integrals over bosonic and fermionic functionals gives:

Zgen =

∫
d4x0dρm1(ρ) e−S cl

E ρ8 det′(MN) det(Mc)[
det′(Mµν) det(MΩ)

]1/2︸                                  ︷︷                                  ︸
=:m2(ρ,µ0)

× det0(iD/ + gΩΩ) . (2.9.45)

Here M j stands for the operator that is sandwiched between the two quantum fields, j, before the func-

tional integration is performed. For the moment ignore the last zero-mode determinant, det0(iD/ + gΩΩ),

as it is actually zero in this example (Ω = 0 at the expansion point from the earlier assumption). Later this

will not be the case but there is still some work to be done, in order to promote Ω to non-zero expectation

values. The determinant fractional is actually the expression that just corresponds to the one-loop quan-

tum corrections to the classical solution, e−S cl
E . This can now be calculated, either following ’t Hoofts’
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derivation43) (Ref. [23]), or calculating the one-loop β-function of this generic model (Eq. (2.9.42)), like

it is presented in the background gauge formalism in Ref. [5, p.439-447;478-485]. The result for the

renormalised correction to the measure at the renormalisation scale µ0 is:

m2(ρ, µ0) = exp

− 8π2

(gD
R(µ0))2

+ log(ρµ0)̃β(N,Ω) + A − nfB −
∑

I

ns(I)A(I)

 (2.9.46)

β̃(N,Ω) =

22
3
−

2
3

nf −
∑

I

1
6

ns(I)C(I)

 44) (2.9.47)

The above equation is given in ’t Hoofts’ notation (Ref. [23, p.3448]). gD
R(µ0) is the dimensionally

renormalised coupling constant, ns(I) is the number of complex scalars in the isospin representation I,

nf is the number of I = 1/2 fermions and A, A(I), B and C(I) are numerical constants, whose values are

given in Tab. 2.9.1. They arise from the regularisation procedure. The summation runs over all appearing

isospin representations of the complex scalar field Ω.

Table 2.9.1: Numerical constants of the β-function for the present case of instanton calculations in a
‘background gauge’ without ‘higgs-like’ interactions. For a derivation, including the analyt-
ical dependencies compare Ref. [23, p.3445-3446].

I C(I) A(I) A B
0 0 0 6.998435 0.49412

1/2 1 0.239246
1 4 0.816799

3/2 10 1.786912

At first sight one might feel uneasy about the transition of the instanton radius from ρ8 to ρβ̃ in the cor-

rection to the measure. The simplest argument for this is a dimensional reasoning. The renormalisation

scale µ0 has the dimension of energy. So, in order to make m2(ρ, µ0) dimensionless, one needs another

dimensionfull quantity. The only options in the present model are the instanton position, x0, and its size,

ρ. As the model is translationally invariant it does not make sense to use x0 in the measure and so the only

meaning- and dimensionfull quantity that could multiply µ0 is ρ45). The model is explicitly renormalised

in ρ. This ends the discussion of free instantons and one has the final result of the renormalised partition

43)This derivation also gives explicitly the non-vanishing constant factors for the readers’ convenience.
44)The analog β-function in Ref. [5, p.484] has the form β̃(N,Ω) ∝

[
11T (A)

3 −
4T (RDF )

3 nf −
T (RCS)

3 ns

]
, where T ( j) is the representa-

tion index Ref. [5, p.422].
45)Carefully following the renormalisation procedure produces the correct factor of ρβ̃ as well.
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function for the generic model:

Zgen =

∫
d4x0dρm1(ρ)m2(ρ, µ0) × det0(iD/ + gΩΩ) . (2.9.48)

II.9.8 Constrained instantons

The previous sections gave a broad introduction to instantons starting from some general concepts over

instanton solutions and collective coordinates to the correction to the path integral measure for a generic

QCD model. Although the concepts are partly very technical, one has fine, analytic and (for the peresent

purpose) at first sight apparently useless solutions46). The problems with the so far presented techniques

are related to the purpose of the later model in chapter III and the role of the S UI(2) instantons in it. Later,

an effective model in terms of nucleons and mesons shall be built and therefore the degrees of freedom

should to be identified with fermionic- or suitable bosonic-fields. The (instanton) gauge field now is a

vector field with isospin I = 1, which would make it a suitable candidate for the %-meson, for example.

But the %-meson, like all effective low energy variables with vectorial properties, is quite massive (m% ≈

770 MeV) and so the instanton would have to be massive for this identification. A consistent way to

generate masses for gauge bosons is the Higgs-mechanism (Sec. III.5.2) but unfortunately the whole

concept of instantons breaks down, if a Higgs-Lagrangian is included in the generic model (Eq. (2.9.42)).

The reason for this direct breakdown lies in the intimate relation between instantons and topology. The

instanton solution is a minimum of the action, which is stabelised by the topology of the system. By

adding a Higgs-field with a non-zero expectation value, effectively the action can be lowered without

bounds and thus the instanton solution vanishes. This statement can be verified by taking a Yang-Mills-

Higgs [YMH] model (with H as Higgs field):

S E =
1
g2

∫
d4x trI


1
2

Aµν(x)Aµν(x) +
g2

λ2︸︷︷︸
=:̃g2

[∣∣∣DµH(x)
∣∣∣2 +

1
4

(
|H(x)|2 − 〈H〉2

)2
] . (2.9.49)

and rescaling it according to Aµ(x) → aAµ(ax) and H(x) → H(ax). This scaling preserves the correct

behaviour of both fields at infinity. If S E(a) is evaluated at the free instanton solution, it turns out that

taking a > 1 leads to a smaller value for the action and with this S E can be lowered without bounds. The

scaling argument is known as ‘Derrick’s theorem’ (Ref. [29]). It can be reviewed for the above example

in Ref. [30, p.439-440].

The transformation Aµ(x) → aAµ(ax) is nothing but a replacement of the instanton size with ρ →

ρ/a (compare Eq. (2.9.6)) and so the rescaling can be understood as diminishing the instanton’s size -

46)Now this is a drastic comment on 20 pages, which gives a strong hint that the author is still interested in saving the instanton
concept for the later model.
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ultimately to zero (this gives the whole contribution the appearance of a δ-distribution). For an S U(2)

instanton this is the only direction, in which the action can be lowered by a suitable rescaling. That is

to say, if it wasn’t for the size, ρ, degree of freedom, the instanton would still minimise the action of the

model. This is the crucial observation that led to the concept of ‘constrained instantons’. In principle

the above argument rules out ordinary instantons completely. So, if one would like to keep something

comparable to the instanton mechanism, the chosen model has to be changed via the inclusion of a

constraint that forbids the action to be lowered indefinitely in the ρ-direction.

The first to give a qualitative discussion of this very difficult area of instanton physics was Affleck in 1980

(Ref. [30]). It was already known that the free instanton solution exists, if the vacuum expectation value

[VEV] of the Higgs field is identically zero (compare Sec. II.9.7). From this he developed a formalism

that allowed preseving the free solution, at least in a small region, if the VEV was sufficiently small. For

this he introduced the following two constraints:

Lcon
A = σ1

∫
d4x

[
trA3 − c1ρ

−2
]
, (2.9.50)

Lcon
H = σ2

∫
d4x

[
(tr(H†H) − 〈H〉2)2 − c2ρ

−2
]
. (2.9.51)

for the gauge field, Aµ, and the Higgs field, H. The parameters σ j are functions, that have to be adjusted

order by order in perturbation theory, to meet the boundary conditions for the fields and the parameters

c j can be fixed such that the constrained instanton solutions still coincides with the free solution in a

small volume around the instanton position, x0. Outside this region the constrained instantons decay ex-

ponentially. The neatness of Affleck’s concept is, that it gives an expansion of the constrained instanton

solution, which leads to only one new term in the partition function - a gaussian cutoff. All other results

concerning the original instanton calculations are untouched to first order in Affleck’s expansion. On the

other hand it seems rather hard to give an analytic expression for the constrained instanton field in this

procedure.

Later, a slightly different point of view was proposed by Wang (Ref. [25]). He did not fix a constraint

in order to find a perturbative solution for the field equations, but in some sense took the opposite direc-

tion. He argued that the constrained instanton in a YMH model corresponds to a ‘valley direction’47),

parametrised by the instanton’s size, ρ, which has to be compatible with all constraint-independent results

of the model. To find the exact valley direction, he employed the ansatz for the constrained instanton,

Acon
µ (x)48), (in singular gauge) and the corresponding Higgs field, Hcon(x) (as Lagrangian he used Eq.

(2.9.49), as before):

Acon
µ (x) = B(|x|)

−q̄µνxν

x2
49) , Hcon(x) = (1 − h(|x|))〈H〉 . (2.9.52)

47)A given function varies slowly in the ‘valley direction’ compared to other possible directions.
48)For concistency with earlier results one has to replace x = x′ − x0.
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By expanding B(|x|) and h(|x|) with respect to the dimensionless parameters (ρ |x|−1, 〈H〉 |x|) and forcing

them to fulfil the limiting (constraint independent) cases of

B(|x|) =
ρ2

x2 + ρ2 , h(|x|) = 1 −

√
x2

x2 + ρ2 for |x| << ρ , (2.9.53)

B(|x|) = m2
Ax2K2(mA |x|) , h(|x|) =

mH |x|
2

K1(mH |x|) for |x| >> ρ . (2.9.54)

he ultimately gained an analytic expression for the "best" valley direction:

Acon
µ (x) =

−ρ2m2
AK2(mA |x|)

2 + ρ2m2
AK2(mA |x|)

q̄µνxν

x2 , (2.9.55)

Hcon(x) =

(
1 + ρ2mH

K1(mH |x|)
|x|

)−1/2

〈H〉 . (2.9.56)

Here K j(x) is the modified Bessel function of the second kind (and order j) and the masses are identified

as coefficients of the quadric terms in the Lagrangian: mA = (̃g/2)1/2〈H〉 and mH = 〈H〉. Note that

Hcon(x) is induced by the constrained instanton field. So the classical field configuration, around which

the model will be expanded has a non trivial space dependence. The expansion does not depend on

the last dimensionless parameter ρ〈H〉 and one has to assume independently that ρ〈H〉 is small in order

for the expansion to work. While this requirement will not be investigated any further, one can take it

inversely as an additional constraint on the instanton’s size: If the constrained instanton formalism is

correct for a given 〈H〉, then the instantons must have small radius such that ρ〈H〉 < ε << 1, for a given

ε.

There is a complication related to the dynamically generated instanton mass, mA. This mass, much like

a mass term for fermions (compare Sec. II.4), couples the instanton in the S UA(2) representation to the

anti-instanton in the S UB(2) representation. If complicated vacuum configurations for the scalar Higgs-

field are considered, then different combinations of instanton and anti-instanton parts can even acquire

different effective masses. This topic will be investigated in detail in Sec. III.5.3.

Wang then used the concepts from Ref. [26] to write down a partition function for quasi-zero modes

in the presence of a general constraint50) and used the explicit form of the solutions (Acon
µ , Hcon) to

determine the constraint that would be needed to construct them. The advantage of this procedure over

the somewhat more direct method by Affleck is that it allows a qualitative investigation of the new

pre-exponential factors in the partition function. Although it is possible, a detailed analysis of this

pre-exponential contribution will be postponed. In fact an analytic analysis of the upcoming measure

corrections is probably not possible in the non-perturbative regime and the reason to give the remaining

49)The ansatz for Acon
µ is actually slightly different, compared to Ref. [25, p.7], but this way it is consistent with the introduced

conventions.
50)This technique is similar to the concept introduced in Sec. II.9.4 only that now the constraint function does not vanish

completely anymore in the final expression, as one is not expanding around a real extremum of the functional anymore.
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results of this section is to provide a starting point for a detailed nummerical investigation of the important

contributions.

The constrained instanton also delivers a new contribution to the exponential part of the path integral

measure, which can be found by inserting the classical solutions Eq. (2.9.55) and (2.9.56) into (2.9.49)51):

mhiggs(ρ, λ) = e−S E(Acon
µ ,Hcon) (2.9.57)

= exp
[
−2π2λ−2(ρ〈H〉)2 − O

(
λ−2(ρ〈H〉)4 log(ρ〈H〉)

)]
. (2.9.58)

This relation indicates that the integration over all sizes of the constrained instanton is damped by an

exponential factor for large instantons. This damping resolves a general divergence problem in the ρ-

integral of the free instanton solution.

Finally it should be mentioned, that, to first order, the measure from the kinetic part of constrained

instantons coincides with the original measure for instantons

−S E(Acon) = −

∫
d4xEL

kin(Acon) = −

∫
d4xE(Acon)µνAcon

µν =
8π2

g2 |n| + O
(
(ρ4〈H〉)4) . (2.9.59)

and therefore the only direct change in the partition function is the inclusion of the discussed new Higgs

measure, mhiggs.

II.9.8.1 Approximate fermionic zero-modes

In Sec. II.9.6 the fermionic zero-modes in the presence of a free instanton have been discussed and

presented. Knowing that the free instantons have to be replaced with the constrained solution from Eq.

(2.9.55), one has to rederive the corresponding fermionic zero-mode in the constrained instanton context.

For the derivation the constrained instanton is assumed to be localised at the origin, x0 = 0. Any other

position can be gained, by a simple shift (compare Sec. II.9.6). Unlike before, the derivation is much

harder, as the equations to be solved are now coupled:

0 = −iq̄µ
[
∂µ + Acon

µ

]
ψB + g̃HHconψA , (2.9.60)

0 = iqµ∂µ ψA + g̃HHconψB . (2.9.61)

The factor of g̃H = gHλ
−1/2 is the ‘modified’ coupling of the Higgs field to the fermion fields. In it the

quadric Higgs coupling, λ, shows up, as the Higgs Lagrangian has been represented in a rescaled fashion

(compare Eq. (2.9.49), just like the modified gauge coupling, g̃, to the Higgs field). Before proceding any

further it is useful to add in another ingredient, which will be important in the later model. It was already

mentioned that the instanton concept, as presented here, relies on a Euclidean space-time, S O(4), and an

51)The explicit derivation of these factors is given in Ref. [21, p.62-65].
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additional S UI(2) symmetry, which was taken to be the ‘isospin’ symmetry group earlier. As some parts

of the solutions to the equations Eq. (2.9.60) and (2.9.61) will depend on particular isospin components,

it is necessary to give the explicit iso-spinor representations of all involved fields. The Higgs-field will

be replaced by a (2 × 2) iso-spinor field, H=̂Ωαqα ab, the fermionic zero-modes will have two iso-spinor

components and the gauge field will remain as it was - the S UI(2) gauge field in Euclidean space-time.

As the VEV of interest, 〈Ω〉 = diag(ω1, ω2), will have different diagonal entries and is therefore allowed

to explicitly break the isospin symmetry. This leads to different fermionic zero-modes in the iso-spinor

components, as will be shown in a moment. In addition the different VEV components imply gauge field

components with different masses for the long distance regime, ρ >> |x| (compare Eq. (2.9.54)), but the

exponential decay of the gauge field solution [∼ K2(mA |x|)] will help to circumvent dealing with this

complication.

There is not much hope to solve the coupled differential equations Eq. (2.9.60) and (2.9.61) analyticaly,

as the fields Acon
µ and Hcon have a nontrivial space dependence and so, in order to make any progress one

can at least give approximate solutions for important limits. The detailed derivation of these limits was

done by Espinosa in 1989 (Ref. [31]) and by Kastening two years later (Ref. [32]). In their analysis

they assumed to have a left-handed 2-component spinor field, ψB, and a right-handed 1-component field,

ψA. The situation in this context is slightly different, as both left- and right-handed fields are assumed

to be 2-component spinors. Nevertheless most steps of the derivation from Espinosa can be used in this

derivation as well, since the diagonal choice of the Higgs field VEV will decouple the different iso-spinor

components from one another. Take as a suitable iso-spinor approach:

〈H〉 =

h11 0

0 h22

 , ψB =

ϕ1 qαxα
ϕ2 qβxβ

 , ψA =

ω1
(x2) I

ω2
(x2) I

 , (2.9.62)

where h j := h j j are the just numbers, ϕ j := ϕ j(x2) and ω j := ω j(x2) are scalar functions and qα are the

quaternion symbols52). The unit matrix I in iso-spinor space was included for completeness in the ψA

field. The gauge field, Acon
µ , will have a more complicated structure. In the short distance (|x| << ρ) the

isospin symmetry will remain approximately valid and thus Acon
µ = (Acon

µ )ατα/2 will have the appearance

of an ordinary S UI(2) gauge field. In the other limit (|x| >> ρ) the VEV of the scalar field will lead to a

symmetry breaking, which induces different the gauge field components.

Now the first approximate solution of the coupled differential equations can be found in the small distance

limit (|x| << ρ). Combining Eq. (2.9.53) and (2.9.52) gives the approximate Higgs and gauge field in

52)These quaternion symbols have their origin in the euclidianisation of Minkowski space and are unrelated to the iso-spinor
space.
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this limit:

Aconα
µ (x) ≈

−ρ2

x2 + ρ2

q̄µνxν

x2

τα

2
, Hcon(x) ≈

(
x2

x2 + ρ2

)1/2 h11 0

0 h22

︸      ︷︷      ︸
=〈H〉

for |x| << ρ . (2.9.63)

In the expression for Acon
µ the S UI(2) generator τα/2 is given explicitly to show the exact isospin struc-

ture. In earlier derivations this was not necessary as this symmetry was explicitly integrated out leading

to a multiplicative factor in the functional deteminant of
√

det(Ui j) in Eq. (2.9.31). The isospin matrix

structure of the Higgs field is generated by 〈H〉. Comparing the approximate solution for the gauge field,

Acon
µ , with the free instanton solution (Eq. (2.9.7)) one can see that the constrained instanton indeed gives

the free instanton solution in a small area around the instanton location53). The expression for the Higgs

field shows that its influence is deminuished by factors of |x| /ρ 54). Therefore the Higgs field will be set

to zero in Eq. (2.9.60), which then turns into the differential equation for the fermionic zero-modes of

normal instantons (Eq. (2.9.38)). This gives the approximate fermionic zero-mode for ψB in the small

distance limit (in singular gauge):

0 = −iq̄µ
[
∂µ + Acon

µ

]
ψB + O

(
x
ρ

)
ψA , (2.9.65)

⇒ ψ
j
B(x) ≈

ρ

π

qµxµ[
x2(x2 + ρ2)3]1/2 for |x| << ρ . (2.9.66)

Here the ρ-dependence has been chosen to normalise the mode (〈ψ j
B|ψ

j
B〉 = 1), according to the earlier

results (compare Sec. II.9.6). In powers of energy the mode’s dimension is [ψ j
B] = 2. The concept of

‘energy power counting’ will be discussed in details in Sec. III.4.2 and can be reviewed in the literature

Ref. [5, 90-92]. Here the energy dimension is given, as it will be needed for a dimensional analysis in

Sec. II.9.9.3. In the approximate solution the superscript j labels the iso-spinor comonent. In this limit

both components coincide, which is expected from the earlier derivation for normal instantons. Using

53)As this was one of the original puproses of the constrained instantons this finding is actually mandatory.
54)To see this use the Taylor expansion of the square root:(

x2

x2 + ρ2

)1/2

=
|x|
ρ

[
1 −

x2

2ρ2 + O

(
x4

ρ4

)]
(2.9.64)
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the approximate result for ψB and Hcon in Eq. (2.9.61) leads to the approximation for ψA:

0 = iqµ∂µ ψA + g̃HHconψB , (2.9.67)

0 = qµ
(
i∂µ ψ

j
A + g̃Hh j

ρ

π

xµ
(x2 + ρ2)2

)
, (2.9.68)

⇒ ψ
j
A ≈ −i

(ρM j)
2π

1
x2 + ρ2 , (2.9.69)

≈ −i
(ρM j)

2π
1
ρ2

[
1 −

x2

ρ2 + O

(
x4

ρ4

)]
for |x| << ρ . (2.9.70)

Here the VEV of the Higgs field has been replaced with the fermionic mass: M j = g̃Hh j. So the solutions

for ψB and ψA are approximately the same as the earlier derived free fermionic zero-mode for normal

instantons in the singular gauge (although earlier one had ψA = 0). One sees that for |x| << ρ the solution

of Eq. (2.9.60) will be dominated by Acon
µ and the influence of Hcon is neglectible. This argument does

not hold for the second equation (Eq. (2.9.61)), as Acon
µ does not contribute here. This gives the slightly

different behaviour of ψA. Another observation concerns the VEV of the Higgs field. If 〈H〉 → 0 one

recovers the exact zero-modes from the free instanton sector, as it should be. In fact this could already be

deduced from the defining equations (Eq. (2.9.60) and (2.9.61)), so here it only gives a small consistency

check.

For the other limiting case - far away from the instanton - one can also give an analytic expression for the

approximate zero-modes, but this time a little more computation is necessary. First, the limiting Higgs

and gauge fields are:

Acon
j µ (x) ≈ −

ρ2m j 2
A

2
K2(m j

A |x|)

x2 q̄µνxν , Hcon
i j (x) ≈

1 − ρ2mi j
H

2
K1(mi j

H |x|)

|x|

 hi j for |x| >> ρ .

(2.9.71)

Both fields are given here in components for notational reasons and, as earlier, mi j
H = hi j. The instanton

mass, m j
A, and the general instanton/anti-instanton structure turns out to be a bit more difficult in the low

energy region. For the present derivation the exact instanton masses are not important, as long as they

are non-zero. Therefore details on the low energy instanton structure and masses will be dealt with in the

explicit model calculations (Sec. III.5.3) but for now it is sufficient to assume m j
A , 0.

To derive the corresponding fermionic zero-modes note that the Bessel function, for large arguments

has the limes: Kν(x) →x→∞
(
π
2x

)1/2
e−x. Using this, the limit (|x| >> ρ) for the gauge and Higgs fields

simplifies to: Acon
j µ (x)→ 0 and Hcon

i j (x)→ hi j. So one finds that far away from the instanton the solution

to the differential equations (Eq. (2.9.60) and (2.9.61)) is governed by the VEV of the Higgs field, while
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the gauge field contribution vanishes55). Using this simplification the coupled differential equations turn

into:

0 = −iq̄µ∂µψB + g̃H〈H〉ψA , (2.9.72)

0 = iqµ∂µ ψA + g̃H〈H〉ψB . (2.9.73)

The derivative in the first equation (Eq. (2.9.72)) can be evaluated with the ‘Ansatz’ of Eq. (2.9.62). In

spinor component notation one finds:

0 = −iq̄µqα
[
δµαϕ j(x2) + xα

(
∂µϕ

j(x2)
)]

+ gh jω j(x2)I , (2.9.74)

0 = −i
[
4ϕ jI + 2q̄µqαxµxα

∂ϕ j

∂(x2)

]
+ gh jω jI , (2.9.75)

ω j =
i

gh j

[
4ϕ j + 2x2(ϕ j)′

]
, (2.9.76)

⇒ (ω j)′ =
2i

gh j

[
3(ϕ j)′ + x2(ϕ j)′′

]
. (2.9.77)

To get the correct spinor structure remember that h j = h j j has a matrix character. In the second and third

line the identity for quaternion symbols has been used:
∑
µν q̄µqν = δµνI. The prime in the third and forth

line denotes the derivative a′ = (∂a)/(∂(x2)). This result can now be combined with Eq. (2.9.73), leading

to the differential equation:

0 = iqµ∂µω j + g̃Hh jϕ jqµxµ , (2.9.78)

0 = qµxµ
[
2i(ω j)′ + g̃Hh jϕ j

]
, (2.9.79)

⇒ 0 = x2(ϕ j)′′ + 3(ϕ j)′ −
(gh j)2

4
ϕ j . (2.9.80)

In the second line the derivative of ω j(x2) was taken, just as the ϕ j derivative before and, to arrive at the

last line, Eq. (2.9.77) was inserted. At this point the work by Espinosa Ref. [31, 328] can be adopted. In

addition, his solution for the remaining ω j field also applies, since all involved differential equations are

exactly the same, regardless of the different iso-spinor structure in Espinosa’s derivation. Including the

correct boundary conditions, he found the solutions to these equations to be:

ϕ j =
ρM2

j

2π
K2(M j |x|)

x2 ⇒ ψ
j
B(x) ≈

ρM2
j

2π
K2(M j |x|)

x2 qµxµ for |x| >> ρ , (2.9.81)

ω j =
−iρM2

j

2π
K1(M j |x|)
|x|

⇒ ψ
j
A(x) ≈ −

iρM2
j

2π
K1(M j |x|)
|x|

I for |x| >> ρ . (2.9.82)

55)The vanishing of the gauge field is in fact necessary, since it has to approach a ‘pure gauge’ transformation at infinity
(compare Eq. (2.8.6)).

54



II.9. Explicit results related to instantons

Here the normalisation leads again to the same fermion field units, [ψ j
A/B] = 2 (in powers of energy).

This time the fermionic masses, M j = g̃Hh j, have been introduced. The dependence on the different

components of the scalar VEV of the fermionic zero-modes is explicitly visible in this limit. The ap-

pearance of the fermion mass couples the two subgroups S UA(2) and S UB(2) of Euclidean space-time

implicitly together (compare Eq. (2.4.12) for the Minkowski version of this effect). Therefore it is more

convenient to write the large distance zero-modes in a doubled dimensional ‘Dirac-spinor’-like structure,

which incorporates the contribution from the instanton and the anti-instanton56). This combination gives

a mode, which will correspond to a left-handed field, if translated back into Minkowski space (indicated

already by the subscript):

ψ
j
L(x) ∼ −i

ρM2
j

2π

[
K2(M j |x|)

x2 (γE µxµ) +
K1(M j |x|)
|x|

1

]
for |x| >> ρ . (2.9.83)

Here γµE
57) and 1 only act in Euclidean space-time and the superscript j labels the component in iso-

spinor space (the different iso-spinor components only differ by their masses M j). In later calculations

the approximate Fourier transforms of these expressions will be useful. These can be gained by the

means of the following integral identities:∫
d4x eipx f (x2) =

4π2

p

∫ ∞

0
dr J1(pr)r2 f (r2) , (2.9.84)∫

d4x eipxxµ f (x2) = −
4π2ipµ

p2

∫ ∞

0
dr J2(pr)r3 f (r2) , (2.9.85)∫ ∞

R
dr rJn(pr)Kn(Mr) =

∫ ∞

0
dr rJn(pr)Kn(Mr) −

∫ R

0
dr rJn(pr)Kn(Mr) (2.9.86)

=
pn

Mn(p2 + M2)
−

∫ R

0
dr rJn(pr)Kn(Mr) . (2.9.87)

Jn(x) are the Bessel functions of first kind and Kn(x), as before, are modified Bessel functions of second

kind (both of order n). As the functions ψA(x) and ψB(x) are not known over the entire x-domain,

it is not possible to compute the exact Fourier transforms, but only estimates for the low- and high

momentum region can be given. The regions can be identified by analysing the shape of the space

dependent functions.

56)For the instanton basically the zero-modes are interchanged (ψ j
B ↔ −ψ

j
A) and qµ turns into q̄µ.

57)For a definition of γµE compare 2.9.3.
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Figure 2.9.1: Schematic |x| dependence of the approximate fermionic zero-mode ψB.

For low momenta (corresponding to low frequencies in the Fourier transformation) the small values of

ψB(x) are supressed and the large x-approximation ψB ∼ K2(MN |x|) dominates the transformation. The

contrary is true for high momenta. There the ‘sampling rate’ is high enough to capture the contributions

from the (relatively small) |x| ≤ sρ << ρ region. In the integral this region (if not supressed) gives the

main contribution to the total result, as the function is peaked around x = 0.

The only scale to distinguish both regions is ρ and so the Fourier transform will be split up according

to the inverse of this scale, ρ−158). A similar argument holds for ψA. For the low momentum region the

58)The inverse has to be taken for dimensional reasons.
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II.9. Explicit results related to instantons

integral identities Eq. (2.9.84)-(2.9.87) give (in index notation):

ψ̂
j
B(p) = −2πρ

 iqµpµ

p2 + M2
j

−
M2

j

p2

∫ s−1ρ

0
dr rJn(pr)K2(M jr)

 ≈ −2πρ
iqµpµ

p2 + M2
j

for |p| << ρ−1 ,

(2.9.88)

ψ̂
j
A(p) = −2πρ

 M j

p2 + M2
j

−
M j

|p|

∫ s−1ρ

0
dr rJn(pr)K1(M jr)

 ≈ −2πρ
M j

p2 + M2
j

for |p| << ρ−1 .

(2.9.89)

And the corresponding terms for the high momentum part Eq. (2.9.66) and (2.9.70) are (although not

nicely analytic):

ψ̂B(p) = 4πρ
iqµpµ

p2

∫ ∞

0
drJ2(pr)

r3θ(sρ − r)[
r2(r2 + ρ2)3]1/2 for |p| >> ρ−1 , (2.9.90)

ψ̂
j
A(p) = −2πiρ

M j

p

∫ ∞

0
drJ1(pr)

r2θ(sρ − r)
r2 + ρ2 for |p| >> ρ−1 . (2.9.91)

Note that the energy dimensions of the Fourier transformed fields fit nicely to the original ones. In

momentum-space the zero-mode energy dimension is [ψ̂ j
A/B] = −2, compared to the earlier [ψ j

A/B] =

2. In the above equation the usual Heaviside function, θ(x), was used. Of course, the integrands are

only correct, if the Heaviside function is included. Analogously the approximation in Eq. (2.9.88) and

(2.9.89) are only useful, if the contribution from the neglected integrals is small. Knowing this, one can

approximate low energy phenomena by using the simplified low energy zero-modes and simultaneously

introducing an effective cutoff, Λρ ∼ s−1ρ. This cutoff will essentially label the minimal distance down

to which the low energy approximation is useful and from where on intermediate approximations are

needed. Going to extremely high energies the free instanton zero-modes can be used to approximate

physical contributions. For this regime the cutoff will label the inverse (Λρ ∼ sρ), which is a largest

distance, up to which the approximation makes sense.

As the final step, the low energy zero-modes can be retranslated to Minkowski space, just giving the free

fermion propagator:

ψ̂
j
L(p) ≈ 2πρ

(p/ + M j)

p2 − M2
j

PL
59) . (2.9.92)

If the derivation is done for the instanton instead, then one arrives at the right-handed fermion propagator.

The approximate low energy momentum space solutions (Minkowski space) for the gauge field and the

59)Here the West coast metric was chosen, as the original derivation relied on this convention.
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shifted Higgs field (H̃ = 〈H〉 − H)60) can be calculated in a similar fashion, giving:

ρ−1Âcon
µ (p) ≈

4π2

p2 − m2
A

σµν(ρpν) ; ρ−1 ˆ̃H(p) ≈ −
2π

p2 − m2
H

(ρmH) for |p| << ρ−1 . (2.9.93)

In the equation for Âcon
µ the object σ̄µν ∼ [γµ, γν] is the Minkowski space equivalent to the q̄µν from

Euclidean space. Both equations have been rescaled by a factor of ρ−1, so that their energy dimension is

symmetryic61) under Fourier transformation in this representation.

The above results are actually quite pleasant. They mean that all fields behave as free particles in the

low energy regime and do not see the constrained instanton effects. If one goes to higher energies

the situation is more complicated and the equations Eq. (2.9.90) and (2.9.91) have to be solved there,

explicitly encoding the influence of the instantons.

II.9.9 Zero-mode contributions

The last contribution to the partition function, that needs to be calculated is the determinant over fermionic

pseudo zero-modes det0(iD/ + gΩΩ). Here Ω = ΩαqαI is a matrix in iso-spinor space (and a scalar oth-

erwise). The subscript I at the quaternion symbol shall only label that this quaternion symbol acts in

iso-spinor space. The reason for this extra labeling is that there are also the quaternion symbols of eu-

clideanised space-time. These appear in the definition of the gauge fields and pseudo zero-modes from

the previous section (e.g. Eq. (2.9.81) or (2.9.83)). It is important to keep in mind that the fermionic

pseudo zero-modes carry a vector index in iso-spinor space and represent a matrix in S O(4) space-time.

The problem, indicated in the previous section, is that these pseudo zero-modes are only known ana-

lytically in two extreme regimes. So there is no hope to produce an exact analytic expression for the

determinant over these field solutions. This section will give an estimate of the determinant under the

assumption that the contribution from the non analytic regime is neglectible. Whether or not this simpli-

fication is justified is a topic to further numerical investigations.

In Sec. II.9.7 the partition function of a generic model was determined and given for the case of normal

instantons in Eq. (2.9.48). In the consecutive section the constrained instanton was discussed and this

led to a very complicated correction to the partition function (Eq. (2.9.57)). Taking this together the

partition function yields another correction to the measure:

Zgen =

∫
d4x0dρm1(ρ)m2(ρ, µ0)mhiggs(ρ, λ) × det0(iD/ + gΩΩ) . (2.9.94)

Here it is important that the determinant over zero-modes contains the classical field configurations Acon
µ ,

Ωcon from the previous sectioin as well as a fluctuation around these, indicated by aµ and ω.

60)This shifted field just represents the dynamical contribution of the Higgs field.
61)Symmetric in this situation means that if the original field has dimension [F] = 2, then the transformed field has [F̂] = −2.
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If the operator O = (iD/ + gΩΩ) is diagonalisable, its determinant is given by the product of all eigen-

values. For the present discussion it will be assumed that this decomposition is possible62). The ‘sub-

determinant’ det0(·) only incorporates the zero eigenvalues of O and therefore it vanishes if the operator

has exact zero-modes: O |N j〉 = 0 |N j〉. Now, as the scalar field has a non vanishing expectation value,

〈Ω〉 , 0, the situation is more complicated and only pseudo zero-modes exist, as discussed in the pre-

vious section. If |N j〉 is such a pseudo zero-mode where j incorporates all indices and variables that the

mode depends on, then one needs to calculate the eigenvalues of O acting on it:

det0(O) =
∏

j

〈N j| O |N j〉 = det
rem

∫
d4x

[
〈N((x − x0), ρ)| O(x) |N((x − x0), ρ)〉

]
. (2.9.95)

Here the constrained instanton is not at the origin anymore, but at position, x0 (leading to a space de-

pendence of (x − x0) for the pseudo zero-modes). The reason for the explicit inclusion of x0 is that the

operator, O = O(x), has a different space dependence. The detrem refers to any remaining symmetry

space of the operator, O (this will later be the isospin space and so it will be called detS U(2) from now

on). In the preceding section it was found that the pseudo zero-modes show a very different behaviour in

the two regions: (x − x0) << ρ and (x − x0) >> ρ. To better deal with this complication the integral in

Eq. (2.9.95) can be rewritten by substituting x̃ = (x − x0):

det0(O) = det
S U(2)

∫
d4 x̃

[
〈N(x̃, ρ)| O(x̃ + x0) |N(x̃, ρ)〉

]
, (2.9.96)

= det
S U(2)

{∫ sρ

0
d4 x̃

[
〈N(x̃, ρ)| O(x̃ + x0) |N(x̃, ρ)〉

]
(2.9.97)

+

∫ s−1ρ

sρ
d4 x̃

[
〈N(x̃, ρ)| O(x̃ + x0) |N(x̃, ρ)〉

]
(2.9.98)

+

∫ ∞

s−1ρ
d4 x̃

[
〈N(x̃, ρ)| O(x̃ + x0) |N(x̃, ρ)〉

]}
. (2.9.99)

The integral boundaries are meant to be boundaries of the radial part, if the integration is performed

in spherical coordinates. For a suitable scaling parameter s ∈ [0, 1] the above equation seperates the

integral into a short range part (Eq. (2.9.97)) and a long range contribution (Eq. (2.9.99)). The integral

in between from sρ to s−1ρ is not accessible to analytic considerations, as the pseudo zero-modes are

not known in this regime. In order to use the approximate zero-modes from the previous section (Eq.

(2.9.66), (2.9.70) and Eq. (2.9.81), (2.9.82)) one needs s << 1. This unfortunately means that the non-

analytic contribution (Eq. (2.9.98)) becomes larger. This work will not deal with an exact analysis of this

issue, but it will simply be assumed that a suitable value of s can be found, such that the approximate

zero-modes from the previous section are still usable in the analytic integrals and at the same time the

contribution from Eq. (2.9.98) is neglectible (compared to the other integrals). Nevertheless it should be

62)For all configurations of the scalar field Ω, which are interesting in physical situations, this operator will be diagonalisable.
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mentioned that the separation of these integrals is neither trivial nor unimportant and that it should be

subject to future investigations. Using the simplification the zero-mode determinant becomes:

det0(O) ≈ det
S U(2)

{∫ sρ

0
d4 x̃

[
〈N(x̃, ρ)| O(x̃ + x0) |N(x̃, ρ)〉

]
(2.9.100)

+

∫ ∞

s−1ρ
d4 x̃

[
〈N(x̃, ρ)| O(x̃ + x0) |N(x̃, ρ)〉

]} 63) . (2.9.101)

II.9.9.1 High energy contribution

The first line (Eq. (2.9.100)) can now be expressed using the short range approximation from the pre-

vious section (Eq. (2.9.66)), which is exactly the same as exanding the determinant in terms of the free

fermionic zero-modes from Sec. II.9.6 and treating the scalar field, Ω(x̃ + x0), as a small perturbation.

Taking |hNx̃〉 ≡ |
hN(x̃, ρ)〉 as the small distance (or equivalently high energy) approximation of the full

pseudo zero-mode, one has

q̄µDµ
(x̃+x0) |

hNx̃〉 = q̄µ(Dcon)µ(x̃+x0) |
hNx̃〉︸                  ︷︷                  ︸

=0

+q̄µaµ(x̃+x0) |
hNx̃〉

64) . (2.9.103)

Here the gauge field (and with it the covariant derivative, Dµ = ∂µ + Aµ) has been written as the con-

strained instanton contribution and a fluctuation around it: Aµ = [(Acon)c
µ + ac

µ](−iτc
I/2)65). In many ap-

plications (and in the later model as well) one can argue, that the fluctuation contribution is neglectible,

but as this argument depends on the expansion point of a given model, it will be kept in the following

analysis, to give a more general picture. With this the integral can be simplified to:

AO :=
∫ sρ

0
d4 x̃ [〈Nx̃| O(x̃ + x0) |Nx̃〉] =

∫ sρ

0
d4 x̃

[
〈hNx̃|

{
iq̄µDµ

(x̃+x0) + gΩΩ(x̃ + x0)
}
|hNx̃〉

]
(2.9.104)

=

∫ sρ

0
d4 x̃ 〈hNx̃|

[
iq̄µaµ(x̃+x0) + gΩΩ(x̃ + x0)

]
|hNx̃〉 . (2.9.105)

At this point it becomes crucial to keep track of the different spaces the various quaternion symbols live

in. The high energy pseudo zero-mode, |hNx̃〉, is identical for all iso-spinor components and therefore it

63)The ignored contribution is bound by the expression:∫ s−1ρ

sρ
d4 x̃ det

S U(2)

[
O(x̃, x0)

]
≤

(
ρs−1 − ρs

)
max

x̃

[
det

S U(2)
(O(x̃, x0))

]
(2.9.102)

64)The different arguments of the zero-mode and the derivative operator corresponds to the situation of Sec. II.9.6, only with a
constant shift of x0.

65)The strange appearance of the S UI(2) generator is due to the mathematical convention for gauge field generators (see Sec.
II.9.1.1).
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commutes with the iso-spinor matrix, qαI , from the scalar field, Ω. But as the zero-mode has a matrix

structure in Euclidean space-time |hNx̃〉 ∼ qνxν, it does not commute with the gauge field, q̄µaµ. Taking

the explicit form of the fermionic zero-modes in singular gauge from Eq. (2.9.39) the integral can be

rewritten to:

AO =

∫ sρ

0
d4 x̃

gΩ

∣∣∣∣∣∣ ρ

π
[
x̃2 + ρ2]3/2

∣∣∣∣∣∣2Ωα(x̃ + x0) qαI + 〈hNx̃| iq̄µaµ(x̃+x0)|
hNx̃〉

 (2.9.106)

=

∫ sρ

0
d4 x̃

[
gΩ

∣∣∣hNx̃
∣∣∣2 Ωα(x̃ + x0) qα + 〈hNx̃| iq̄µaµ(x̃+x0)|

hNx̃〉

]
. (2.9.107)

Here it is also possible to rewrite the gauge field part further, but as the later model will focus mainly on

the scalar sector, the gauge field contribution will mainly be listed throughout this part to allow futher

investigations in the future. To arrive at a consistent expression (for the scalar part) later it is useful to

already introduce a slightly different notation. First define

hGi j(x, s, ρ) :=
∣∣∣hNx

∣∣∣2 θ(sρ − |x|) , (2.9.108)

|hNx̃,s〉 := |hNx̃〉θ(sρ − |x|) . (2.9.109)

where θ(x) is the Heaviside function. The second line is meant as a replacement of the old approximate

zero-mode with the one that is enhanced with the Heaviside function (this part is only included, to clear

up the notation concerning the gauge field fluctuations). The iso-spinor indices, i, j, are not yet important,

as
∣∣∣hNx

∣∣∣2 is the same for all entries of the iso-spinor matrix, qα i j
I . Only in the later discussed low energy

regime they will have a distinct meaning. Now the scalar field can be splitt up into two parts, just as the

gauge field before. It was mentioned that the scalar field consists of a VEV and a fluctuation Ω = Ωcon+ω

and so Eq. (2.9.107) turns into:

AO = gΩ qα i j
I

∫ ∞

0
d4 x̃ hGi j(x̃, s, ρ)

[
Ωcon
α (x̃ + x0) + ωα(x̃ + x0)

]
+i

∫ ∞

0
d4 x̃ 〈hNx̃,s| q̄µaµ(x̃+x0)|

hNx̃,s〉 . (2.9.110)

The indices of hGi j are not to be traced out with qα i j
I . They only mean that the (i j) entry of qα i j

I is

multiplied by the corresponding term, hGi j. This may seem as a weird notation at the moment, but it will

help to identify the meaning of x0 after the low energy contribution is included in the next section.

II.9.9.2 Low energy contribution

Now the second determinant contribution (line Eq. (2.9.101)) has to be brought to a more explicit form.

In this long distance (or low energy) regime the approximate pseudo zero-mode, |lNx̃, j〉 ≡ |
lN(x̃, ρ,M j)〉,
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is given by Eq. (2.9.83) or equivalently Eq. (2.9.92) and solves Eq. (2.9.60) and (2.9.61). This means

that the classical gauge field, Acon, and the scalar Higgs field, Hcon=̂Ωcon, solve the zero-mode equation:[
iq̄µ(Dcon)µ(x̃+x0) + gΩΩcon(x̃ + x0)

]
|lNx̃, j〉 = 0 . (2.9.111)

Compared to the previously discussed high energy contribution, the low energy zero-modes do depend

on the fermion mass, M j, as well. The reason for this, as mentioned in Sec. II.9.8.1, is that the scalar

field approaches its VEV and thus generates a fermionic mass term in the equations of motion.

Using the separation into a classical part and the fluctuations around it [ω = ωαqαI and aµ = aβµ(−iτβI /2)],

as mentioned in the previous section, Eq. (2.9.111) can be used to evaluate the action of O on the

zero-mode:

O(x̃ + x0) |lNx̃, j〉 =
[
iq̄µ(Dcon)µ + gΩΩcon]

(x̃+x0) |
lNx̃, j〉 +

[
iq̄µaµ + gΩω

]
(x̃+x0)

|lNx̃, j〉 (2.9.112)

=
[
iq̄µaµ + gΩω

]
(x̃+x0)

|lNx̃, j〉 . (2.9.113)

As before the fluctuation of the gauge field, q̄µaµ, is listed here for reasons of completeness and its

influence has to be determined in later works.

While the analogous expression for the high energy could directly be used to evaluate the integral in the

zero-mode determinant (Eq. (2.9.100)) the situation is now a bit more complicated. Earlier, due to the

high energies, one could treat the whole influence of the scalar field as a perturbative contribution and use

standard expansion techniques for eigenvalue equations. In the low energy regime the eigenfunctions are

significantly influenced by the scalar VEV, 〈Ω〉, which leads to different fermionic masses for different

iso-spinor components. Therefore in Sec. II.9.8.1 the Dirac-like low energy zero-mode was given as (Eq.

(2.9.83)):

|lNx̃, j〉 ∼ −i
ρM2

j

2π

[
K2(M j |x|)

x2 (γE µxµ) +
K1(M j |x|)
|x|

1

]
. (2.9.114)

where the index j labels the iso-vector components of the mode. The exact structure in the Dirac-like

space will only be evaluated after Fourier transforming the above expression into momentum space,

where the approximate zero-mode has a much nicer appearance (Eq. (2.9.92)). Now, the following

expression can be calculated:

〈lNx̃,i|O(x̃ + x0) |lNx̃, j〉

∣∣∣∣
aµ=0

= gΩ〈
lNx̃,i|ω(x̃ + x0) |lNx̃, j〉 (2.9.115)

= 〈lNx̃,i|
lNx̃, j〉ω

α(x̃ + x0) qα i j
I . (2.9.116)

Just as before the indices, i, j, are not traced out, but it means that the (i j)-element of qα i j
I gets the new

factor of 〈lN |lN〉i j. Here, the reason for this strange notation can be given. In principle one needs to find
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the eigenvalues of ωαqαI in iso-spinor space. As not all Pauli matrices are diagonalisable at the same time

one needs to specify a basis. The above notation now allows to attribute the correct zero-modes to the

corresponding elements of ω and simply taking the normal determinant of a (2 × 2)-matrix later. The

fluctuation gauge field was set to zero, to eleminate it from the equation. It will be added back into the

final expression later. Now the low energy part of the weight function can be defined as:

lGi j(x, s, ρ) := 〈lNx,i|
lNx, j〉θ(|x| − s−1ρ) , (2.9.117)

|lNx,i,s〉 := |lNx,i〉θ(|x| − s−1ρ) . (2.9.118)

and, as promised, this part gives different contributions to the different elements of the iso-spinor matrix.

In addition one finds that the classical solution, Ωcon, does not get a contribution from the low energy

regime. The low energy contribution to the scalar field determinant (Eq. (2.9.101)) can be given as:

BO : =

∫ ∞

s−1ρ
d4 x̃

[
〈N(x̃, ρ)| O(x̃ + x0) |N(x̃, ρ)〉

]
(2.9.119)

=

∫ ∞

0
d4 x̃

[
gΩ

(
qα i j

I

)
lGi j(x̃, s, ρ)ωα(x̃ + x0) + i〈lNx̃,i,s| q̄µaµ(x̃+x0) |

lNx̃, j,s〉
]

(2.9.120)

= gΩqα i j
I

∫ ∞

0
d4 x̃ lGi j(x̃, s, ρ)

[
Ωcon
α (x̃ + x0)θ(sρ − |x|) + ωα(x̃ + x0)

]︸                                            ︷︷                                            ︸
=:Ω̃α(x̃+x0)

+ i
∫ ∞

0
d4 x̃ 〈lNx̃,i,s| q̄µaµ(x̃+x0) |

lNx̃, j,s〉 . (2.9.121)

For notational reasons in the third line the zero term, Ωconθ(sρ− |x|), was added. This term becomes zero

with the Heaviside function from the low energy weight function Eq. (2.9.117). The newly introduced

scalar field, Ω̃, can also be used in the earlier discussed high energy part (Eq. (2.9.110)). In this regime

the additional Heaviside function at Ωcon is the same as in the high energy weight and therefore doesn’t

change the integral anymore66) (Eq. (2.9.108)).

II.9.9.3 Full determinant

Now the results from the two previous subsections can be combined. Taking the Eq. (2.9.110) and

(2.9.121) in terms of the redefined field, Ω̃, the approximate zero-mode determinant of Eq. (2.9.100)

66)Upon Fourier transforms into momentum space this additional Heaviside function generates some problems and so one
should switch back to the normal Ω field beforehand.
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turns into:

det0
(
O
)
≈ det

S U(2)

{
AO + BO

}
(2.9.122)

≈ det
S U(2)

{
gΩ q̄α i j

∫ ∞

0
d4 x̃

[
hGi j(x̃, s, ρ) + lGi j(x̃, s, ρ)

]︸                              ︷︷                              ︸
=:Gi j(x̃,s,ρ)

Ω̃α(x̃ + x0) (2.9.123)

+ i
∫ ∞

0
d4 x̃

[
〈hNx̃,s| q̄µaµ(x̃+x0)|

hNx̃,s〉︸                     ︷︷                     ︸
=: hAc

(x̃+x0)(−iτc
I/2)

+ 〈lNx̃,i,s| q̄µaµ(x̃+x0) |
lNx̃, j,s〉︸                        ︷︷                        ︸

=: lAc
(x̃+x0)(−iτc

I/2)

]}
(2.9.124)

≈ det
S U(2)

{
gΩ q̄α i j

∫ ∞

0
d4 x̃ Gi j(x̃, s, ρ)Ω̃α(x̃ + x0) (2.9.125)

+
τc

I

2

∫ ∞

0
d4 x̃

[
hAc

(x̃+x0) + lAc
(x̃+x0)

]}
67) . (2.9.126)

The above equation is not exact, as the middle part of the integration, [sρ, s−1ρ], is explicitly left out.

The indices, i, j, are not traced out and the lines concerning the gauge fields, aµ, will not be analysed

further, just as before. The rewriting of the gauge fields in iso-spinor components, h/lAc
(x̃+x0), was done

as a reminder, that the determinant over isospin space elements also includes elements of the gauge field

fluctuation. So, in examinations beyond this work the induced coupling of gauge and scalar fields via

the fermionic pseudo zero-modes could give further insights in the underlying structure of instantons in

a Higgs field environment.

The scalar part of the equation can be brought into a nicer form by using the definition of the convolution(
a(x0)∗b(x0) :=

∫
dxa(x)b(x− x0)

)
. Again, this rewriting is only approximately correct, as a convolution

needs an integral over the whole domain. So, the smaller the contribution from the omitted part is, the

smaller is the error by expressing the above expression in a convolution (indicated by the symbol ∗). One

finds:

det0
(
iD/ + gΩΩ

)
aµ=0
≈ det

S U(2)

{
gΩ qα i j

I Gi j(−x0, s, ρ) ∗ Ω̃α(−x0)
}

(2.9.127)

≈ g2
Ω det

S U(2)

{
G11 ∗

[
Ω̃0 + iΩ̃3

]
G12 ∗

[
Ω̃2 + iΩ̃1

]
−G21 ∗

[
Ω̃2 − iΩ̃1

]
G22 ∗

[
Ω̃0 − iΩ̃3

]}
(−x0)

(2.9.128)

≈ g2
Ω

{
(G11 ∗ Ω̃0)(G22 ∗ Ω̃0) + (G11 ∗ Ω̃3)(G22 ∗ Ω̃3)

+(G12 ∗ Ω̃1)(G21 ∗ Ω̃1) + (G12 ∗ Ω̃2)(G21 ∗ Ω̃2)
}

(−x0)
. (2.9.129)

67)The missing coupling constant gA in front of the gauge field contribution is due to the chosen normalisation for gauge fields.
It is simply absorbed in the field. So in a ‘symmetric’ notation this factor can just be put in front of the gauge field integral.
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In the second and third line the arguments of the involved functions have been dropped for apparent

notational reasons and only the final subscript of x0 indicates the point of evaluation. Using the definition

of the weight function (Eq. (2.9.124)) one can use that G12 = G21. To evaluate the four products of

convolutions in Eq. (2.9.129) the following abbreviation will be employed: Ga(x) := Gi j(x, s, ρ), where

the superscript a ∈ {1, 2, 3, 4} labels the elements of the (2 × 2)-matrix above. In addition, one needs to

include the integral over the collective coordinate x0. Combining all this, one can work through some

tedious algebra [remember the definition of Ω̃ (Eq. (2.9.121)), of hGa(x) (Eq. (2.9.108)) and of lGa(x)

(Eq. (2.9.117))] to arrive at:

CO : =

∫
d4x0 (Ga ∗ Ω̃α)(−x0)(Gb ∗ Ω̃β)(−x0) (2.9.130)

=

∫
d4x0d4yd4z

{
Ga(y)

[
Ωα

0 (y + x0)θ(sρ − |y|) + ωα(y + x0)
]

×Gb(z)
[
Ω
β
0(z + x0)θ(sρ − |z|) + ωβ(z + x0)

]}
(2.9.131)

=

∫
d4x0

{([ hGa ∗Ωα
0
]
+

[
( lGa + hGa) ∗ ωα

])([ hGb ∗Ω
β
0
]
+

[
( lGb + hGb) ∗ ωβ

])}
(−x0)

(2.9.132)

=

∫
d4x0

{([ hGa ∗Ωα] +
[ lGa ∗ ωα

])([ hGb ∗Ωβ] +
[ lGb ∗ ωβ

])}
(−x0)

(2.9.133)

=

∫
d4k

(2π)4

{(
hĜaΩ̂α + lĜaω̂α

)
∗
(

hĜbΩ̂β + lĜbω̂β
)}

k
. (2.9.134)

In line Eq. (2.9.132) the Heaviside function was absorbed in the weight function and the definitions of the

partial weight functions were used. Line Eq. (2.9.133) is simply a rearrangement, using the definition of

Ωα = Ωα
0 +ωα and the final expression (Eq. (2.9.134)) can be reached by performing a Fourier transform

and using that convolutions turn into products in the process. Before proceeding, the role of x0 should

be discussed briefly. Line Eq. (2.9.130) shows that the determinant only depends on the position of

the instanton, x0, and this translates nicely into the momentum representation (transition from line Eq.

(2.9.133) to (2.9.134)). So the zero-mode contribution in total gives a local contribution to the partition

function. Later this can be exploited to form a contribution to the effective potential in Sec. III.2. Now
CO can be further transformed to:

CO =

∫
d4kd4u
(2π)8

[
hĜa

(k)
hĜb

(k−u) Ω̂α
(k)Ω̂

β
(k−u)

]
(2.9.135)

+

∫
d4kd4u
(2π)8

[(
hĜa

(k)
lĜb

(k−u) + lĜa
(k−u)

hĜb
(k)

)
Ω̂α

(k)ω̂
β
(k−u)

]
(2.9.136)

+

∫
d4kd4u
(2π)8

[
lĜa

(k)
lĜb

(k−u) ω̂
α
(k)ω̂

β
(k−u)

]
. (2.9.137)
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Here it was only used that the convolution is symmetric (a ∗ b = b ∗ a). The first term (the high energy

contribution) is in fact independent of the super-scripts a and b, since hG ≡ hGa ∼
∣∣∣hN∣∣∣2 is identical for all

a. For the low energy part (Eq. (2.9.137)) and the cross term (Eq. (2.9.136)), mixing low and high energy

contributions, this is not true, as the approximate zero-modes are not the same, in general68). Combining
CO with the determinant (Eq. (2.9.129)) gives the final result for the fermionic zero-mode determinant in

the scalar sector:

DO := F
{∫

d4x0 det0
(
iD/ + gΩΩ

)
aµ=0

}
(2.9.138)

≈

∫
d4kd4u
(2π)8

{
hG(k)

hG(k−u)

∑
α

Ω̂α
(k)Ω̂

α
(k−u) (2.9.139)

+ hĜ(k)

[(
lĜ11

(k−u) + lĜ22
(k−u)

)(
Ω̂0

(k)ω̂
0
(k−u) + Ω̂3

(k)ω̂
3
(k−u)

)
+ 2 lĜ12

(k−u)

(
Ω̂1

(k)ω̂
1
(k−u) + Ω̂2

(k)ω̂
2
(k−u)

)]
(2.9.140)

+

[
lĜ11

(k)
lĜ22

(k−u)

(
ω̂0

(k)ω̂
0
(k−u) + ω̂3

(k)ω̂
3
(k−u)

)
+ lĜ12

(k)
lĜ12

(k−u)

(
ω̂1

(k)ω̂
1
(k−u) + ω̂2

(k)ω̂
2
(k−u)

)]}
. (2.9.141)

This lengthy expression represents the main result of this section. It encodes the contribution to the

partition function from approximate fermionic zero-modes interacting with a scalar field, Ω. Line Eq.

(2.9.139) gives the part of the determinant, which depends on high energies, the last line (Eq. (2.9.141))

gives the low energy contribution and the line in between (Eq. (2.9.140)) gives an effective interaction

of the low and high energy regime. This part is naturally generated, as the determinant gives products of

two convolutions (Eq. (2.9.129)). The low energy contribution only modifies the fluctuation ω without

changing the VEV part and so in this sector only the fluctuations acquire the quadratic correction (Eq.

(2.9.141)). With the concepts of effective field theories from Sec. II.6 in mind DO nicely seperates the

constrained instanton contributions into terms at different energy scales. To arrive at an explicit equation

the G-functions have to be inserted, which have been defined as:

hG(x) = hGa
(x) =

∣∣∣hN(x)
∣∣∣2 θ(sρ − |x|) =

∣∣∣∣∣∣∣ ρ

π
[
x2 + ρ2]3/2

∣∣∣∣∣∣∣
2

θ(sρ − |x|) , (2.9.142)

lGi j
(k) = F

[
〈lNx,i|

lNx, j〉θ(|x| − s−1ρ)
]

=

(
2πρ

k/ + Mi

2πρ
k/ + M j

)
∗ F

[
θ(|x| − s−1ρ)

]
(k)
. (2.9.143)

This ends the general derivation of the fermionic zero-mode contribution and only as a reminder, the

fluctuation contribution from the gauge field is missing in the above equation, as it has been set to zero.

Before turning to the complete, instanton induced, partition function one can make the connection to the

work by Saito and Shigemoto (Ref. [1]). If one focusses only on the high energy contribution to the

68)If the VEV of Ω is simply given by a constant σ0I, then all low energy approximate zero-modes are in fact the same, as the
masses of the iso-spinor M j are the same.
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zero-mode determinant, one is left with the terms that they proposed in their work in 1979:

DO
∣∣∣∣
high
∼

∫
d4kd4u
(2π)8

hĜ(k)
hĜ(k−u)

∑
α

Ω̂α
(k)Ω̂

α
(k−u) (2.9.144)

The only difference, compared to their results, are the Fourier transformed Heaviside functions (compare

Eq. (2.9.142)). But as these are directly induced by the constrained instantons and their different zero-

modes in different energy regimes, this is an expected deviation. In their derivation, they split the weight

function up into a constant part and a momentum dependent remainder. The constant term they used to

explicitly construct an effective quadratic contribution to the scalar Lagrangian, Linst = a2

2 (Ωα)2.

When their paper was published the implications of constrained instantons and the importance of their

employment instead of normal instantons was not yet known. The above derivation shows that the basic

idea of their paper is still applicable but it turns into a high energy effect, if one believes in the existence

of constrained instantons.

Due to the limited time resources the later model will only make use of the constant high energy contri-

bution (Eq. (2.9.144)), as it was already used by Saito and Shigemoto. Nevertheless future works should

of course, include investigations of the momentum dependent parts and of the effects from the low energy

contributions, which are explicitly excluded when focussing only on Eq. (2.9.144).

II.9.9.4 Dimensional analysis

As a final step in the calculation of approximate zero-mode determinants a short dimensional analysis

is in order. When the whole business of constrained instantons was started the original question was to

calculate the generic partition function

Zgen =

∫
d4x0dρm1(ρ)m2(ρ, µ0) mhiggs(ρ, λ) × det0(iD/ + gΩΩ) . (2.9.145)

Using this equation it is relatively straight forward to check the dimensionful quantities. The analysis will

be done in terms of powers of energy and further details can be reviewed in Sec. III.4.2 and in Ref. [5, 90-

92]. The ‘energy-power’ of a quantity will be labelled by [·], so a mass for example has [M] = 1. Using

this, the dimension of the partition function is [Zgen] = 0, as it is just the total number of configurations

of the system. For the right-hand side one already knows that the second measure correction and the

‘Higgs correction’ have zero energy dimension as well.: [m2(ρ, µ0)] = [mhiggs(ρ, λ)] = 0. (compare Sec.

II.9.7 and Sec. II.9.8). Thus one knows:[∫
d4x0dρm1(ρ) det0(iD/ + gΩΩ)

]
= 0 . (2.9.146)
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Further, using the definition of m1(ρ) (Eq. (2.9.34)) one finds
[∫

d4x0dρm1(ρ)
]

= −4 − 1 + 5 = 0. So,

all parameters have been normalised such that the determinant must have zero energy dimension as well.

In terms of the original fields (not Fourier transformed) the determinant is a sum of various terms of the

following form (compare Eq. (2.9.129)):∫
d4xd4yGa(x − x0)Gb(y − x0)Ω̃α(x)Ω̃α(y) . (2.9.147)

where Ga = Gi j = 〈Ni|N j〉 and Ω̃α have the same definitions as in the previous section. The energy

dimension of a scalar field is known69) to be [Ω̃] = 1 and this now allows to determine the needed

dimension of Ga and with this the normalisation of the fermionic pseudo zero-modes:

0 =

[∫
d4xd4yGa(x − x0)Gb(y − x0)Ω̃α(x)Ω̃α(y)

]
(2.9.148)

=

[∫
d4xd4y

]
+ 2

[
Ga] + 2

[
Ω̃α

]
= −8 + 2

[
Ga] + 2 , (2.9.149)

⇒
[
Ga] =

[
〈Ni|N j〉

]
= 3 , (2.9.150)

⇒
[
|N j〉

]
= 3/2 . (2.9.151)

So the zero-modes need to have an energy dimension of 3/2, which does not agree with the so far used

normalisation. In Sec. II.9.8.1 the dimension of the zero-modes was found to be [| hN〉] = [ψ j
B] = 2

and thus the modes have to be rescaled by an additional factor of ρ1/2, to maintain a dimensionless

determinant. So, in a final step the zero-modes have to be replaced by:

| h/lN〉 → | h/lÑ〉 = ρ1/2| h/lN〉 . (2.9.152)

This analysis is correct for all contributions to the zero-mode determinant. The rescaled pseudo zero-

modes can be used throughout the whole derivation of instantons, as no result depends on their normali-

sation. The dimensional analysis does also apply to the Fourier transformed expression, if the integration

over the instanton position is included with the correct measure contribution,
∫

d4x0 ρ
−4. In fact the

final result of the determinant in momentum space from the previous section (Eq. (2.9.141)) does only

change by a factor of ρ−2 since the new normalisation generates a factor of ρ2 which is absorbed by the

normalised x0 integration.

II.9.10 The full partition function

After a long derivation of all contributions to the partition function that are generated through the in-

clusion of instantons, one is now in the position to write down the complete partition function. In the

69)This will be explained in detail in Sec. III.4.2.
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derivation of explicit results (Sec. II.9-II.9.9.3) a partition function of the form

Zgen =

∫
d4x0dρm1(ρ)m2(ρ, µ0) mhiggs(ρ, λ) × det0(iD/ + gΩΩ) (2.9.153)

was used. This function was motivated by the expansion of a gauge field model around the classical

anti-instanton (n = −1) solution with a nonzero VEV of the scalar field. Before this, in the introductory

part, a slightly different point of view was used. There the starting point was a pure gauge field model

which has been enriched with a sensible vacuum state (Sec. II.8.4) leading to a partition function of the

form:

Zθ =
∑

n

∫
DAn exp

∫
d4xE Tr

−1
2

FµνFµν + i
g2

Aθ

16π2 F̃µνFµν

 . (2.9.154)

To bring both ideas together the derived Zgen for one (n = −1) anti-instanton has to be generalised to

arbitrary winding numbers, n (which then includes instanton terms with positive n as well), and in addi-

tion the earlier discussed vacuum state has to be included. The inclusion of the vacuum is very straight

forward, by just adding in a phase for the corresponding vacuum angle, einθ, as it was done in Sec. II.8.4.

Before discussing the treatment of different winding numbers it is useful to reorganise the generic parti-

tion function slightly, so that different contributions can be separated nicely:

Zgen =

∫
d4x0dρm1(ρ) mhiggs(ρ, λ) det0(iD/ + gΩΩ) m2(ρ, µ0) (2.9.155)

=

[∫
d4x0dρm1(ρ) mhiggs(ρ, λ) det0(iD/ + gΩΩ) e−8π2/g2

Aρ8
] ∫

D
{
NNaµΩcc

}
,0e−S E . (2.9.156)

Here the measure contribution, m2, has been written out explicitly, as its treatment varies strongly in

different applications. So far all results of the constrained instantons have been presented from a per-

turbative approach, as mathematical tool are very developed in this field. In this context the measure

contribution, m2, represented a renormalised correction due to quantum fluctuations of order O(~). If one

leaves the perturbative regime this is no longer true. In hadron physics one works with the so called chiral

condensate and the fluctuations around this VEV can be taken to be observable resonances. Therefore,

in this field, the assumption that fluctuations around classical solutions are small is not justified for all

fields70). Of course, there are many mathematical difficulties in this low energy regime. One needs a

different renormalisation procedure and the effective cutoff contribution from the Higgs field mhiggs turns

out to be problematic. In fact the Higgs field measure leads to an upper bound on the size of constrained

instantons, as mhiggs → 0, if 〈H〉ρ ≥ 1. To see this compare the definition of mhiggs (Eq. (2.9.58)).

70)Later only the scalar field will be assumed to have ‘large’ fluctuations around the VEV (Ω = 〈Ω〉 + ω), while the gauge field
will still only have quantum fluctuations around the instanton configuration (Aµ = Acon

µ +O(~)). The reason for this unequal
treatment is, that the mathematical tools in the derivation of instantons become invalid, if fluctuations around Acon

µ become
‘larger’ than O(~).
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But as the instanton formalism yields many promising features, and as the QCD vacuum ‘demands’ its

inclusion on a fundamental level, it is tempting to ‘guess’ an effective low energy Lagrangian (or parti-

tion function) and see what kind of physics can be modeled with it. The reason behind these scentences

of motivation is, that the later model will not bother with a mathematically sound derivation of correct

low energy measures from the Higgs field, mhiggs(〈H〉, ρ), and the renormalisation procedure, m2(µ0, ρ),

but simply assume that both can be adjusted to reproduce any connected observable. If explicit equa-

tions were worked out from this demand, one would arrive at constraints on the maximal allowed size

of instantons in this model and at an explicit renormalisation scale, µ0. While the perturbative regime

will mostly be left behind from now on, the earlier presented results can easily adopted into the general

equations to come and their treatment is rather straight forward.

Now back to the generalisation to arbitrary winding number instantons. This will be done by following

the ‘historical’ approach. The inclusion of other winding numbers becomes very simple, if one employs

two assumptions. First, suppose that the distribution of instantons throughout space corresponds to a

dilute gas and secondly take all higher winding number configurations as multiple times (n = ±1) wind-

ing number configurations. Looking at Eq. (2.9.156), one sees, that the instanton part has been nicely

separated from the fluctuation contribution. If one now goes to a (n = n−) configuration, this means that

the part in square brakets appears n− times. In addition one needs to include a symmetry factor of 1/n−!

as the order of the n− instanton terms does not matter. If one now includes the vacuum angle eiθn, and

allows n to be positive as well as negative, the generic partition function becomes:

Zgen(n+, n−) =
1
|n−|!

[∫
d4x0dρM det0(iD/ + gΩΩ) e−iθ

]|n− |
×

1
n+!

[∫
d4x0dρM det0(iD/ + gΩΩ) eiθ

]n+

×

∫
D

{
NNaµΩcc

}
,0e−S E . (2.9.157)

Here M = m1 mhiggse−8π2/g2
Aρ8 incorporates all measure contributions. Naturally, if n becomes positive,

one has to switch from the anti-instanton to the corresponding instanton equations. It was implicitly

assumed that the remaining fluctuation contribution is independent of the winding number. The terms

with positive and negative winding number have been separated, as the instanton configurations with

negative winding number couple to ψB ∈ S UB(2) fermionic modes and the ones with positive winding

number couple to fields from the group S UA(2). In Minkowski space this translates to anti-instantons

only coupling to left-handed fields and instantons only coupling to right-handed ones. Therefore the

fermionic zero-modes are different in both contributions and thus the determinants are, as well.
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If one now sums over all winding numbers the partition function just gets two new exponential factors:

Zgen =
∑

n+,n−

Zgen(n+, n−) (2.9.158)

= exp
{∫

d4x0dρM
[
e−iθDET

∣∣∣∣
n−

+ eiθDET
∣∣∣∣
n+

]} ∫
D

{
NNaµΩcc

}
,0e−S E (2.9.159)

= exp
{∫

dρM
[
e−iθ DO|n− + eiθ DO|n+

]} ∫
D

{
NNaµΩcc

}
,0e−S E . (2.9.160)

In the first expression DET := det0(iD/ + gΩΩ) is just an abbreviation and in the third line the definition

from Eq. (2.9.141) was used. The subscripts n± are a reminder, which zero-modes have to be chosen

(instanton or anti-instanton). If one now rewrites S E into an effective action plus a quantum perturbation

around it S E = S eff
E + δS E, then one finds that the instanton contributions give a contribution to the

effective action:

Zgen = exp
{
−S eff

E +

∫
dρM

[
e−iθ DO|n− + eiθ DO|n+

]} ∫
D

{
NNaµΩcc

}
,0e−δS E . (2.9.161)

This generic partition function will be the starting point for the model in the next chapter. As for the

model most aspects of this equation will be dropped right away (to arrive at tractable equations), they

should be mentioned at least once to give possible starting points for future explorations.

• The measure contribution, M , incoporates a Higgs contribution from the interaction of Higgs and

instanton field (see Sec. II.9.8), the classical instanton action, e−8π2/g2
A , and a renormalisation, that

has to be specified according to the fluctuation action, δS E.

• The factor DO is given in Eq. (2.9.141). This term explicitly gives the zero-mode contribution for

the anti-instanton in the case of vanishing gauge field fluctuations (aµ = 0). If these fluctuations

shall be included as well then one has to revert to Eq. (2.9.126) and work out the additional terms.

In the other direction Eq. (2.9.144) gives an estimate of the determinant under the assumption, that

low energy phenomena and gauge field contributions can be neglected. In principle the ideas from

Sec. II.6 suggest that the low energy part of DO should be included in an effective model at very

low energies, while the high energy contribution and the mixed terms should be included, if the

cutoff scale is shifted to higher energies.

• Then, there is the path integral over the fluctuation contributions, δS E. This part of the partition

function has to be adjusted according to the specific needs of the model one is interested in. In

effective field theories this adjustment will be hard in general, as, on the one hand, one needs to

find a separation scale, that cuts off phenomena that are regarded as unimportant and on the other

hand all remaining processes have to be important and make physical sense.

• Finally, if one is interested in the earlier discussed perturbative regime of instanton physics, then
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II.9. Explicit results related to instantons

one can come back to Eq. (2.9.155) and follow the steps with the original measure correction m2

in place. In the final expression this will mean that S E = 0, as its contribution has already been

absorbed in m2, and the factor is changed to M = m1 m2 mhiggs.
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III The model

Finally, after a long theoretical journey, enough bits and pieces have been accumulated to build a model

that simulates the interaction of fermionic and bosonic degrees of freedom based on certain symmetry

assumptions, the concept of instantons and other appealing prerequisites. In principle nuclear matter is

almost completely characterised by the nature of the ‘strong force’, that is Quantum Chromo Dynamics.

In Sec. II.6 it was discussed that the high energy behaviour of QCD is accessible via perturbation theory,

while the low energy phenomena have to be handled using some kind of effective model. The exact

point, from which on perturbative methods are a legitimite tool is not of importance for the present

model. As it shall give an effective description of systems in, or near the ground state it is certainly in

the non-perturbative regime of QCD. The model as it will be built in this chapter is originally designed

to describe nuclear matter and therefore all examples will be discussed concerning this application but

it should be mentioned that, in principle, it is as well suited for the description of other fermionic and

bosonic systems in a non-perturbative context. Further ‘initial assumptions’ are discussed below.

III.1 Defining assumptions

The following ‘initial assumptions’ are chosen for mainly two reasons. The first category incorporates

assumtpions that are widely to believed true among physicists (like for example Lorentz invariance) while

the second category assembles all assumptions that are chosen for convenience reasons, as calculations

would become significantly more involved if they weren’t included.

EFT: In Sec. II.6 the concepts of effective field theories have been briefly introduced. The reason

for this has of course been that the model in the following sections will be built as an effective

approximation to QCD. While the general concepts for a vigoreous design of an effective model

have been discussed in the introductory section (Sec. II.6), the needed steps will not be performed

here. Naturally this lacking detail should be investigated in later studies.

Chiral symmetry: In Sec. II.1 the structure of the Lorentz group, S O+(3, 1) ' S UL(2) � S UR(2),

was presented and in Sec. II.5, as a possible extension of this symmetry, the chiral symmetry was

presented. This symmetry enlarged the Lorentz group to: UL(2)�UR(2). Later, in the introductory

part to instantons in Sec. II.8.4 it was found that the concept of instantons explicitly violates the
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axial UA(1) part of a general chiral symmetry. Therefore, in the model the underlying group

structure of space-time will be assumed to have the broken chiral symmetry:

UV(2) � S UA(2) ' UV(1) � S UV(2) � S UA(2) ' UV(1) � S UL(2) � S UR(2) (3.1.1)

Transformations in the combined Lorentz and partial chiral symmetry space will be named UL ,ch,

in agreement with Sec. II.5.

Isospin symmetry: In addition to the symmetry of space-time an additional local isospin symmetry,

S UI(2), will be assumed to hold for the model. This assumption fits exactly to all derivation parts

about instantons and so it simply establishes one of the prerequisits for an inclusion of instantons.

As the symmetry is local, an additional gauge field, Aµ ∈ S UI(2), will be needed, which will give

the instanton contributions.

Spontaneous symmetry breaking: The mass generation of all constituents of the model will be done

via a spontaneous symmetry breaking in the scalar sector. Some cornerstones for this have already

been carved in Sec. II.9.8 for the instanton sector. The implications for fermionic, scalar and

dynamical gauge field parts will be presented as the model is developed.

Degrees of freedom: In principle the relevant degrees of freedom for this model in a generic model

setting are: a number of nf fermions, N, and ns scalars, Ω, that transform under isospin transfor-

mations. In addition a gauge field, Aµ, is needed to account for the local character of the isospin

symmetry. As a concrete application to a physically relevant case the model will be presented as

an effective nucleon model.

Fermion structure: The fermion iso-spinor in the model will be taken to be N = (p, n)T, where the

constituents are proton and neutron Dirac-spinors. Thus N will live in isospin space and p and n

will transform under combined Lorentz and chiral transfromations, UL ,ch.

Scalar field structure: The scalar degrees of freedom will be taken to be σ, π, η and δ (=̂a0(980)

in particle data group notation)1). In the model it will be assumed that they obey an overall

rotational symmetry. This means they can be assembled in one vectorial structure of the form

Ωα = (σ,πT, η, δT)T and one has an eight dimensional rotational symmetry, Ω ∈ S O(8). Later, in

Sec. III.2.1, this structure will be reassembled in a more convenient biquaternion representation.

With this the scalar field, Ω, will transform under isospin and transformations and UL ,ch.

Apart from this it will be assumed that Ω can be separated into a VEV contribution, 〈Ω〉, and a part

that captures the the dynamical (physical) mesonic contributions.

Gauge field structure: Finally the effective gauge field, Aµ, will be expanded around the classical

field configuration - that is the constrained instanton solution. So the gauge field can be written

1)σ(x), η(x) ∈ R and π(x), δ(x) ∈ R3.
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III.2. General model structure

as Aµ = Acon
µ + aµ, where Acon

µ represents the constrained instanton solution, as introduced in Sec.

II.9.8 (equation Eq. (2.9.55)) and aµ is a fluctuation of order O(~). Writing the gauge field in this

form allows to use the main results of (constrained) instanton calculations from chapter II.

‘Large’ fluctuations (which are larger than the quantum fluctuations of order O(~)) around Acon
µ

will not be included, as fluctuations of this magnitude would lead to a complete breakdown of the

instanton calculations. For example the calculations in Sec. II.9.3-II.9.5 explicitly relied on the

expansion Aµ = Acon
µ + aµ and thus would not be usable in the context of ‘large’ fluctuations.

Euclidean/Minkowski space: In Sec. II.8.1 the conceptual problems with the transition between eu-

clideanised Minkowski space and ordinary Minkowski space have been discussed (Usually this

transition is called a ‘Wick-rotation’). As path integrals are only well defined in the mathematical

sense in Euclidean space-time and as the concept of instantons is only rigorously accessible in

Euclidean space, it is sensible to start out with a model in eudclideanised Minkowski space. Later,

in order to relate any finding from the Euclidean model to physical observables, one needs to make

the transition to Minkowski space, even if this is not well defined from a mathematical perspec-

tive. Therefore, the general structure of the model (Sec. III.2) will be presented in Euclidean

space-time, but from there on all Lagrange densities of interest will be taken to be in Minkowski

space. Sec. III.5.2 will explicitly discuss the related problems for the gauge field Lagrangian, as

the conceptual problems are most apparent there.

III.2 General model structure

Combining the assumptions, discussed in the previous section allows writing down the partition function

in Euclidean space of the model. For this suppose that the contributing fields, F, can be splitt up into a

classical part and a quantum fluctuation of order O(~) around it (indicated by δF):

Nfull = N + δN , (3.2.1)

Ωfull
α = Ωα + δΩα = 〈Ωα〉 + ωα + δΩα , (3.2.2)

Afull
µ = Acon

µ + δaµ . (3.2.3)

The Euclidean action, S E, is then minimised by the fields without the fluctuations, δF. It can then be

written into an effective part and a perturbation around it:

S E = S eff
E (N,N, A,Ω, c, c) + δS E (3.2.4)

=

∫
d4xE

[
Leff

N +Leff
Ω +Leff

A +Leff
gfh

]
+ δS E (3.2.5)
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Here the effective nucleon Lagrangian, Leff
N = Leff

N (N,N,Ω, A), incorporates all nucleon contributions -

that is to say the free nucleon Lagrangian and the coupling terms to scalar and gauge fields. In analogy

Leff
Ω

contains all scalar terms and their coupling to the gauge field and finally the effective gauge field

Lagrangian, Leff
A , only consists of the kinetic term from the gauge field. The part Leff

gfh is the combined

gauge fixing and ghost Lagrangian, which will depend on the gauge, scalar and ghost field later.

Apart from the ordinary terms in the particular contributions, Leff
K , which will be discussed in the sec-

tions to come, there are in principle high energy contributions, δLK ∼
∑

d cd(µ0)Od, in each effective

Lagrangian. They are part of the EFT formalism, how it was discussed in Sec. II.6. Here these terms

are only listed as a reminder, but from now on any such contribution will be ignored, as the exact EFT

formalism is not worked out in the present model (corresponding to setting cd(µ0) = 0 and ignoring EFT

renormalization corrections).

Now the action of the effective nucleon model can be inserted into the earlier derived expression of the

partition function in Sec. II.9.10. In the form of Eq. (2.9.161) this expression already contains the full

dependence on instanton induced effects:

Zgen = exp
{
−S eff

E

∣∣∣∣
Acon
µ =0

+

∫
dρM

[
e−iθ DO|n− + eiθ DO|n+

]} ∫
D

{
NNaµΩcc

}
,0e−δS E . (3.2.6)

Here DO was given in Eq. (2.9.141) and the definition of the measure is M = m1 mhiggse−8π2/g2
Aρ8. Notice

that above the instanton contribution, Acon
µ , is set to zero in the effective action, S eff

E . The reason for this is

that the kinetic term of a (constrained) instanton can be calculated explicitly, leading only to an effective

contribution to the measure:

mhiggse−8π2/g2
A = exp

{
−

∫
d4xE

[
Leff

Ω (Acon
µ , 〈Ω〉) +Leff

A (Acon
µ )

]}
. (3.2.7)

For the measure contribution from the Higgs sector compare Eq. (2.9.58) and for the effect of constrained

instantons (instead of ordinary ones) compare Eq. (2.9.59). The reason why the instanton action occurs as

a measure in the effective action was discussed in Sec. II.9.10. For the purpose of the model presentation

in the remaining sections of this work the influence of quantum fluctuations will be left out and thus the

remaining path integral over the fluctuations will be set to one.

The last thing to specify is, what part of the fermionic zero-mode contribution will be included in the

model. In the end of Sec. II.9.9.3 it was already indicated, that only the high energy contribution will be
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(partly) included in the model. In Eq. (2.9.144) this high energy part of DO was found to be:∫
dρ ρ2 M e−iθ DO|n− = e−iθ

∫
dρ ρ2 M

∫
d4kd4u
(2π)8

hĜ(k)
hĜ(k−u)

∑
α

Ω̂α
(k)Ω̂

α
(k−u) (3.2.8)

= e−iθ
∫ sρ

0
d4x

∫ sρ

0
d4y

∫
dρ ρ2 M

∫
d4x0 |

hN(x−x0)|
2| hN(y−x0)|

2︸                                               ︷︷                                               ︸
=:G(x,y)

∑
α

Ωα
(x)Ω

α
(y) . (3.2.9)

The additional factor of ρ2 is included to produce the correct normalisation of the zero-modes (compare

Sec. II.9.9.4). In the second line only the definition (Eq. (2.9.142)) has been inserted to get to the earlier

used spacial representation. In order to find the part of the introduced function, G(x, y), which alters an

ordinary effective potential assume that it can be separated into a local and a non-local contribution:

G(x, y) =
a2

4
δ(4)(x − y) + G2(x, y) . (3.2.10)

Here the constant factor of a2/4 is only chosen for later convenience reasons. The remaining function,

G2(x, y), incorporates all non-local contributions. Inserting this in the above expression gives:∫
dρ ρ2 M e−iθ DO|n− = e−iθ

∫ sρ

0
d4x

∫ sρ

0
d4y

[
a2

4
δ(4)(x − y) + G2(x, y)

]∑
α

Ωα
(x)Ω

α
(y) (3.2.11)

=

∫
d4x e−iθθ(sρ − x)

∑
α

a2

4
(
Ωα

(x)
)2

+
(
non-local

)
. (3.2.12)

Now, dropping the non-local contributions and repeating the procedure for the n+ expression, all terms

of Eq. (3.2.6) can be inserted. For n+ note that the only difference is that the approximate zero-modes

are the ones of instantons, instead of anti-instantons. This will only change Ω to its hermitian conjugate

Ω†, as will become clear at the end of Sec. III.3.2.

Zmodel = exp
{
−

∫
d4xE

[
Leff

N +Leff
Ω +Leff

gfh +
a2

4

(
e−iθΩ2

α + e+iθΩ† 2
α

)
θ(sρ − x)︸                                   ︷︷                                   ︸

=:Linst

]}
. (3.2.13)

As a final change the Heaviside function in Linst will be dropped, in order to simplify calculations.

Effectively this sets the status of the model back to a model that uses ordinary instead of contrained

instantons. Thus once the calculations for this ‘over-simplfied’ version of an effective instanton model are

completed, one should really investigate the differences that occur if one employs constrained instantons

instead of the ‘older version’. In the remaining sections the different parts Leff
K of the effective partition

function Zmodel will be worked out explicitly.
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III.2.1 Scalar field structure generalisation of the σ-model

Before coming to the explicit effective Lagrange densities, it is sensible to translate the vectorial structure

of the scalar field, Ωα = (σ,πT, η, δT)T, from Sec. III.1 into a corresponding structure in iso-spinor space.

The reason for this is that a local isospin symmetry was among the defining assumptions. Therefore one

needs to work out how all constituents transform under this symmetry and it turns out that working in

iso-spinor space is very convenient for most questions concerning the effective Lagrange densities2).

In Sec. II.2 it was discussed at length that a (2 � 2) invariant symbol in iso-spinor space could be used

to produce a mapping, qαI ab, from a matrix valued element in iso-spinor space to a 4-dimensional vector

in Euclidean space. So, as a start, focus on the first four components of Ω. If one takes these to be

Φα := (σ,πT)T, then this Euclidean vector is translated to iso-spinor space via: Φab = ΦαqαI ab.

In 1960 Gell-Mann and Lévy presented the key ideas to a model which became known as the ‘(linear)

σ-model’ Ref. [33, p.717-719]. For the σ-model they assumed that the effective Lagrange density is

invariant under an additional symmetry, which rotates four meson fields into each other. They combined

the three pseudo-scalar pions, π, with an additional scalar particle, σ. In other words they used the

4-dimensional Φα field and assumed that the Lagrange density would be invariant under S O(4) transfor-

mations acting on Φα.

In order to generalise the scalar structure of the 4-dimensional σ-model to the present (8-dimensional)

case it is useful to have another look at the definition of the scalar product in iso-spinor space, given in

Eq. (2.2.6):

(A, B)H =
1
2

trI
[
(AαqαI ab)†BβqβI cd

]
= (Aα)†Bβ

(
1
2

q̄abα
I qβI ab

)
=

4∑
α=1

(Aα)?Bα . (3.2.14)

The last equality in the above equation shows that, if the vectors are complex (Aα, Bα ∈ C4), instead of

real, then (A, B)H simply gives the regular scalar product in a complex, 4-dimensional vector space. As

a 2n-dimensional real vector space can be identified with a n-dimensional complex one, this observation

allows to rewrite the 8-dimensional scalar field into a 4-dimensional complex one: Ω ∈ R8 ↔ Ω ∈ C4.

Thus the 4-dimensional scalar field structure of the σ-model can ‘natrually’ be generalised to an 8-

dimensional structure by an identification of the form Φ = (σ,πT)T and Λ = (η, δT)T. This gives for the

2)In fact, the only the gauge fixing and thus the ghost Lagrangian are easier to work out in a different representation (compare
Sec. III.5.5).
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complete scalar field:

Ωα = Φα + iΛα =

σ
π

 + i

η
δ

 , (3.2.15)

Ωab = ΩαqαI ab , (3.2.16)

⇒ ||Ω||2 = (Ω,Ω)H =
1
2

trI
[
(Ωab)†Ωcd

]
=

4∑
α=1

(Ωα)?Ωα (3.2.17)

= |Φ|2 + |Λ|2 = σ2 + π2 + η2 + δ2 . (3.2.18)

From the calculation of the ||Ω||2 one finds that the scalar product, defined in Eq. (3.2.14), preserves the

assumed S O(8) symmetry of Ω. Thus it is possible to reexpress Ω in a terms of the iso-spinor represen-

tation. The only difference, compared to the ordinary σ-model is, that now the iso-spinor representation

Ωab = ΩαqαI ab = (Φα + iΛα)qαI ab is complex, instead of real.

How the scalar field transforms under the imposed symmetries (isospin, chiral and Lorentz) of the model

will be discussed in the context of its coupling to nucleons (Sec. III.3.2).

III.3 The Nucleon Lagrangian

With the initial conditions being set in Sec. III.1, it is time to lay the cornerstone of the upcoming model.

At the end of the day one would like to describe fermions interacting with mesons and so the first part

of the full action to be worked out will be the effective nucleon Lagrangian, Leff
N . As mentioned, the

fermions are combined in a nucleon iso-spinor of the form N = (p, n)T, where the proton and neutron

fields are Dirac-spinors with the detailed structure:

p = (pχa,
pξ†ȧ)T = pL + pR , (3.3.1)

n = (nχa,
nξ†ȧ)T = nL + nR . (3.3.2)

The separation into left- and right-handed parts of p and n directly gives a corresponding decomposi-

tion of the nucleon spinor into NL and NR
3). To construct a Lagrange density, which is invariant under

the Lorentz, chiral and isospin group one needs to find terms that are invariant under all these symme-

tries. Apart from the symmetry requirements the terms that will be included have to be identifiable with

important physical quantities, such as kinetic, mass and interaction terms of physical fields.

3)Formally the decomposition into left- and right-handed fields is not entirely correct as long as one works in euclideanised
Minkowski space, since there the S U(2) subgroups are independent of each other (compare the discussion in Sec. II.8.1).
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III.3.1 Kinetic contribution

For a start the kinetic contribution of nucleons with the mentioned symmetry properties shall be included.

Using the work in Sec. II.4 and II.5 the simplest realisation is:

Lkin
N =

∑
iso−
spin

N(iγµ∂µ)N = i(pγµ∂µp + nγµ∂µn) (3.3.3)

= i
∑

j∈{L,R}

(p jγ
µ∂µp j + n jγ

µ∂µn j) . (3.3.4)

The invariance under the Lorentz and Chiral group has been discussed in Sec. II.4 and II.5. For the

invariance under the isospin group one has to know that the operator iγµ∂µ does not transform under

S UI(2) and NN is just the scalar combination of two vectors in iso-spinor space. Therefore the kinetic

term is invariant under S UI(2) as well. If one goes to the local isospin symmetry, this means that ordinary

derivative has to be replaced by a covariant one (∂µ → Dµ = ∂µ − igAAµ). The details of this transition

will be discussed in context of the gauge field Lagrangian in Sec. III.5.

III.3.2 Nucleon masses and interactions

Having the kinetic term of the nucleon Lagrangian, the question is what other gauge invariant terms

could be included. The simplest idea is to take the already derived vectorial structure NγµN and couple

it to another Minkowski space vector. This term would be invariant following the same lines of thought

as for Eq. (3.3.3). While being conveniently effortless, the coupling to Minkowsky space vectors means

that one needs this vectorial structure in the first place. In Sec. III.5 this idea leads to the coupling of

the gauge field but for now scalar couplings shall be discussed, as these ultimately lead to possible mass

terms.

Sec. II.5 already raised the subject of a mass term in a chirally symmetric model. There it was found,

that an ordinary fermionic mass term is prohibited in chirally symmetric systems. Instead one needed

an additional field, that could compensate the chiral symmetry transformations (NLwNR + h.c.)4). In the

present case Ω qualifies for the role of the unspecified w field. So, using the notation from Eq. (2.5.7), if

Ω transforms as

U−1
L ,chΩ†UL ,ch = e−iε j

`
T j

LΩ†R†eiε j
rT j

. (3.3.5)

then the term (NLΩ†NR + h.c.)5) becomes manifestly invariant under chiral and Lorentz symmetries.

Here T j = τ j/2 are the generators of the left- and right-handed chiral/Lorentz transformations. For the

4)By including the conjugate field the expression becomes directly hermitian.
5)The choice of Ω† instead of Ω is arbitrary. It is only used here, as it matches earlier conventions.
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isospin symmetry the group theoretical point of view allows a quick analysis. In terms of representations

NLΩ†NR corresponds to the product of four fundamental S U(2) representations and in App. A.4 it

is shown, that this tensor product of four ‘2’-representations contains the trivial representation (2�4 =

1s � ...). Therefore, out of NLΩ†NR an object can be constructed, which is invariant under isospin

transformations.

Having the needed symmetry properties, one can work out the explicit couplings between the constituent

fields of Ω = Φ + iΛ and the nucleons. The choice that Ω lives in a Euclidean space (positive metric

δµν = diag(1, 1, 1, 1)), rather than in a Minkowsky-like space (ηµν = diag(−1, 1, 1, 1)) is directly related

to the fact that some parts of Ω show pseudo-scalar and other parts scalar behavior inM(3,1). To see this,

take the scalar field in its iso-spinor representation Ωab = ΩαqαI ab = Ω0Iab − iΩτab
6) and combine it

with the left- and right-handed nucleon spinors. The iso-spinor indices are not strictly necessary at the

moment, but are added here, as a reminder of the full structure contained in the scalar field, Ω. Before

writing down the explicit fermion-scalar coupling, it is helpful to clarify on what spaces all involved

operators act. There are the projection operators, PL and PR, which act only on spinors inM(3,1) (here the

Dirac-spinors, p and n) and there are the isospin operators Iab and τab. These act only on 2-dimensional

iso-spinors, N. As all operators act on different spaces, they commute and knowing this, the expansion

comes down to:

gΩ(NLΩ†NR + h.c.) = gΩ

∑
α

[
N

a
L Ωαq̄αI ab Nb

R +
(
N

a
L Ωαqαab Nb

R

)†]
(3.3.6)

= gΩN
a
PR

[
Ω? 0Iab + iΩ?τab

]
PRNb + gΩN

a
PL

[
Ω0Iab − iΩτab

]
PLNb (3.3.7)

= gΩN
a [

Ω? 0Iab + iΩ?τab
] 1

2
(1 + γ5)Nb + gΩN

a [
Ω0Iab − iΩτab

] 1
2

(1 − γ5)Nb

(3.3.8)

= gΩN
a
{

Iab1<
[
Ω0] + iτabγ5<

[
Ω

]
− iIabγ5 =

[
Ω0] + τab1=

[
Ω

]}
Nb (3.3.9)

= gΩN
{

(I � 1)<
[
Ω0] − i(τ� γ5)<

[
Ω

]
− i(I � γ5)=

[
Ω0] + (τ� 1)=

[
Ω

]}
N .

(3.3.10)

In the third line the commutativity of Minkowski- with S UI(2)-operators was used and in addition the

basic properties of the projection operators, PL,R. After that, in the fourth line the definition of real and

imaginary part were used (<[Z] = (Z + Z?)/2 and =[Z] = (Z − Z?)/2). The last line represents the

mathematical notation for operators that act on different spaces. For matrices a and b the tensor product

a � b can be understood as if every component of a is (scalar-) multiplied by the matrix b and so line

3.3.10 is the mathematically unique notation of line 3.3.9. Typically in physics, one does not bother with

the notation of line 3.3.9 but writes for example in the linear σ-model N
[
σ + iτγ5π

]
N and the reader is

6)Here Ω = (Ω1,Ω2,Ω3)T was used as a shorthand notation.
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obliged to translate this colloquial expression into the meaning of equation 3.3.10.

Through the transformations of different spaces and the production of invariants maybe the focus of

this section has fallen slightly out of sight. To remedy this, the derived interaction in terms of the

‘fundamental’ meson fields shall be given (in colloquial notation):

Leff
NΩ = gΩ(NLΩ†NR + NRΩNL) = gΩN

[
(σ − iγ5η) + τ(δ + iγ5π)

]
N (3.3.11)

= gΩN
[
(σ + τδ) − iγ5(η − τπ)

]
N . (3.3.12)

This expression gives the complete coupling of nucleons to all mesons {σ, η, π, δ} under the assumption

of an overall rotational symmetry in the space of the mesons. The coupling term is hermitian and invariant

under chiral, Lorentz and isospin transformations. So, by now a model can be constructed that contains

a kinetic term for nucleons and a coupling to the meson field, Ω.

In addition a mass term for nucleons is almost at hand. The coupling of the σ-meson and nucleon has the

correct structure to qualify for a mass term. If one assumes that the σ-meson in the model contains of a

static part, 3, and a variation (in other words σ(x) = 3 + σ̃(x)), then the σ-nucleon coupling becomes:

gΩN(3 + σ̃)N = gΩ3NN + gΩNσ̃N . (3.3.13)

The dependence on space-time of N and σ̃ has been suppressed to simplify the notation. Only the Ω-

nucleon coupling, gΩ, and the static 3 are constants. So, by this expansion the nucleon acquires the mass,

MN = gΩ3. If also the third component of the δ-meson has a non-vanishing VEV (δ3(x) = 3δ + δ̃3(x)) in

a physical realisation, then one is in the peculiar situation, that the iso-spinor, N, has different masses in

the first and second component, since δ3 couples to the third Pauli matrix in iso-spinor space. How the

expansion of the σ- and potentially δ3-field comes about will be discussed, once the scalar Lagrangian

will be investigated closely in Sec. III.4.

Gernerally the connection between the nucleon mass and the theσ-nucleon coupling leads to the Goldenberger-

Treimann relation. This is nicely presented in Ref. [34, p.126-128] or Ref. [5, p.516-523]. Finally,

combining the kinetic and interaction term, the full effective Lagrangian becomes:

Leff
N = NiγµDµN + gΩ

[
NRΩNL + NLΩ†NR

]
(3.3.14)

= N
[
iγµ∂µ + gAγµAµ

]
N + gΩ

[
NRΩNL + NLΩ†NR

]
. (3.3.15)

Now one is in the position, to clarify the postponed issue concerning Eq. (3.2.13). There it was stated,

that the fermionic zero-mode contribution leads to the term Linst ∝
(
e−iθΩ2

α + e+iθΩ
† 2
α

)
and it wasn’t

further explained, why the instanton contribution comes with the conjugate scalar field and the anti-

instanton field with the ordinary field, Ω. Having the explicit nucleon Lagrangian (equation Eq. (3.3.14)),

the answer to this question is at hand. For this remember how the zero-mode determinant was calcu-

lated. In Sec. II.9.8.1 the approximate fermionic zero-modes for anti-instantons were derived. As the
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anti-instantons couple to fermions of the S UB(2) subgroup, or equivalently to left-handed fermions in

Minkowski space, this means that the zero-modes of anti-instantons are left-handed. Therefore, with an

eye on Eq. (3.3.14), one finds, that anti-instantons lead to the ordinary Ω field in Linst. Correspondingly

instantons have right-handed zero-modes and thus their contribution leads to the conjugate field, Ω†, in

Linst.

III.3.3 Nucleon currents

This subsection will only give the first contribution to the complete currents of the model. While other

parts of the model will be derived the corresponding current contributions will be given along the way.

In the introductory (Sec. III.1) it was stated that the model should be invariant under the Lorentz group,

S UL(2) � S UR(2). In addition the whole model contains a UV(1) symmetry, which treats left- and

right-handed parts equally. This symmetry will be called UV(1), where the V stands for vectorial. The

invariance of the fermionic Lagrangian under this symmetry can be seen directly from Eq. (3.3.4)7). In

the following derivations this symmetry will mostly be left out, since its inclusion is conceptually much

easier than the S U(2) symmetries - the UV(1) transformation simply multiplies the same complex phase

to every fermionic spinor.

Noether’s theorem implies, that any field which transforms non-trivially under the symmetry and fulfils

the Euler-Lagrange equation leads to a conserved current (for a derivation of the theorem compare the

original publication Ref. [10] or in Sec. II.3). The conserved currents connected to the model Lagrangian

can be deduced by using the general relation Eq. (2.3.9):

∑
a

εa jµa =
∂L

∂(∂µAα)
δεAα , (3.3.16)

where Aα refers to any involved field and ε represents a small variation in direction a in the symmetry

space. So far these fields are only the left- and right-handed nucleon fields. The only part missing

to determine the conserved current is the variation of the nucleon fields under the Lorentz group. In

Sec. II.1.1 the transformations of left-handed spinors have been presented to be N′L = U−1
L NLUL =

LNL, where UL was a general Lorentz transformation and L = L(α`) = e−iα`τ/2 an element of the

S UL(2) group8). Analogously the right-handed transformed field transformed into N′R = RNR. Using the

7)In complete chiral models there is in fact another UA(1) symmetry, which treats left- and right-handed parts differently, but
this symmetry will be explicitly broken once instantons are included in the picture (compare Sec. II.8.4 and later Sec.
III.5.2).

8)The actual equations in Sec. II.1.1 looked slightly different, but the connection can be made by noting that the χa fields are
left-handed and the ξȧ right-handed.
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transformations for the nucleon fields the variations under the Lorentz group can be determined:

δε`NL = L(ε`)NL − NL = −
i
2
εa
`τ

aNL , (3.3.17)

δεr NR = R(εr)NR − NR = −
i
2
εa

rτ
aNR . (3.3.18)

Here the exponential has been expanded in a power series and truncated after the first term as ε can be

assumed to be small9). Now, using the kinetic part of the nucleon Lagrange density (Eq. (3.3.3)), the

components of the left- and right-handed nucleon currents are at hand:

jaL µ = NLiγµ

(
−

i
2
τaNL

)
=

1
2

NLγµτ
aNL , (3.3.19)

jaR µ = NRiγµ

(
−

i
2
τaNR

)
=

1
2

NRγµτ
aNR . (3.3.20)

Here the factors of εa
`/r have been left out. They are arbitrary and appear on both sides. Therefore, in

order to preserve the equality the prefactors of each εa have to match. This is exactly guaranteed by the

above equations.

The left- and right-handed currents can be reexpressed into a vectorial and an axial part, as these ex-

pressions can nicely be identified with physical observables. To do this, the U(1) connection between

of vectorial/axial vectors and left/right elements can be employed (Eq. (2.5.8)), giving the two linear

combinations:

ε` = εV − εA , εr = εV + εA . (3.3.21)

From this the vector and axial currents become:

εa
` jaL µ + εa

r jaR µ =
1
2

( εa
`︷     ︸︸     ︷

(εa
V − ε

a
A) NLγµτ

aNL +

εa
r︷     ︸︸     ︷

(εa
V + εa

A) NRγµτ
aNR

)
(3.3.22)

=
1
2

(
εa

V

(
−NLγµτ

aNL + NRγµτ
aNR

)
+ εa

A

(
NLγµτ

aNL − NRγµτ
aNR

))
(3.3.23)

= εa
V Nγµ

τa

2
N︸    ︷︷    ︸

=: jaV µ

+εa
A Nγµγ5

τa

2
N︸       ︷︷       ︸

=: jaA µ

. (3.3.24)

In the last line the left- and right-handed components have been reassembled into the complete Dirac-

spinor, N = NL + NR. In the axial current the γ5 = diag(−I, I) matrix corrects for the extra minus sign in

the left-handed contribution (compare line Eq. (3.3.23) and for the definition of γ5 in Eq. (2.4.10)).

Before ending this section two direct examples of the conserved currents shall be given, as they will be

9)A general reason for using only the truncated exponentials in the context of group transformations can be found in Sec. B.5.1.
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important once the scalar currents are introduced in Sec. III.4.1 and III.4.1.1. As both, the vectorial and

the axial nucleon currents are conserved, one could for example focus on the third vectorial component:

( j3V)µ = Nγµ
τ3

2
N =

1
2

N†γ0γµτ
3N =

1
2

(p†γ0γµp − n†γ0γµn) . (3.3.25)

Of course, giving the explicit forms of the remaining two vectorial components, j±V µ, and the complete

axial current, jA µ, is also possible. They are left out here, as these currents will not be conserved, once

the scalar current contribution is calculated. The other conserved current of interest is connected to the

UV(1) symmetry and was not explicitly derived previously. But as it only multiplies a complex phase to

the nucleon spinors, N′ = e−iϕN, its current, jµB, follows almost directly:

( jB)µ = Nγµ I N = (p†γ0γµp + n†γ0γµn) . (3.3.26)

Now following the lines of thought from Sec. II.3 both currents can be included in seperate continuity

equations (Eq. (2.3.12)), giving the third component of the conserved vectorial charge and the UV(1)

charge:

0 = ∂t

∫
d4x( j3V)0 = ∂t

1
2

∫
d4x(p†p − n†n) ≡ ∂tQ3

V , (3.3.27)

0 = ∂t

∫
d4x( jB)0 = ∂t

∫
d4x(p†p + n†n) ≡ ∂tQB . (3.3.28)

Essentially the first equality means that the difference of protons and neutrons in the complete volume

is preserved and the second equality enforces a conservation of the corresponding sum (therefore it is

called baryon number, QB). Together, one finds that the number of protons and the number of neutrons

is conserved separately in this model.

The charged vectorial ‘charges’, Q±V, and the axial ‘charges’, Qa
A, are not given, as the corresponding

currents are not conserved in the complete model, and thus their charge conservation does not hold

either. For the moment this ends the discussion of conserved currents. The topic will be picked up again

once the scalar Lagrangian is developed.

III.4 The scalar Lagrangian

In Sec. III.3.2 the coupling between all scalar mesons and nucleons has been established. This section

will focus on the details of the purely scalar contributions, Leff
Ω

. The concepts that are used actually show

a great similarity to the ideas from the normal ‘linear σ-model’. The derivation of this model is presented

in a very educative fashion in Ref. [34, p.111-128] and most techniques applied in this section are very

similar. In general the model shall be expanded around a vacuum configuration and thus the first goal
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is to give a coherent representation of the model in a mean field context. For a start take the following

Lagrange density:

LΩ =
1
2
||∂µΩ||

2 − Ṽ
(
||Ω||2

)
=

1
2

trI
[
(∂µΩ)†(∂µΩ)

]
−

(
µ2

2
||Ω||2 +

λ2

4
||Ω||4

)
. (3.4.1)

Here, just as before, the norm is defined via the quaternion definition (2.2.6), giving: ||Ω||2 = trI
[
Ω†Ω

]
/2

and the scalar field is given as in Sec. III.2.1:

Ω = (Φα + iΛα)qαI , qαI = (I,−iτT)T , (3.4.2)

Φα = (σ,πT)T , Λα = (η, δT)T , (3.4.3)

⇒ ||Ω||2 = σ2 + π2 + η2 + δ2 . (3.4.4)

Up to now the given Lagrange density has a global S O(8) symmetry. This is why a factor of 1/2 was

included in the kinetic term10). The included potential has the ‘Mexican hat’ form and is usually used

for spontanious symmetry breaking11). In order to produce a well defined model one needs λ2 > 0.

If µ2 > 0 as well, then one has a unique vacuum state and nothing interesting happens. However if

µ2 < 0 is chosen, then the vacuum state does not preserve all the symmetries of the potential and one

gets the typical Mexican hat shape. In addition this choice for µ means that the original scalar fields are

massless, as the quadratic term in the Lagrangian comes with the wrong sign. Before performing the

usual expansion around the minimum some modifications of the above potential shall be introduced.

As the given Lagrange density depends only on the modulus of the scalar field, Ω, it follows that this

model is invariant under rotations in the 4-dimensional complex vector-space, or equivalently in the

corresponding 8-dimensional real vector-space12). This nice symmetry is disturbed in the effective model

due to two reasons, which are connected to the interactions with nucleons. The first disturbance has its

origin in the interaction of the scalar fields with the QCD instanton background, that was introduced

in Sec. II.8 and II.9. In Sec. III.2 it was qualitatively discussed that the zero-mode contribution from

the instanton sector gives rise to the additional contribution in the scalar potential, Linst (compare Eq.

(3.2.13)). As the explicit structure of Ω = Φ + iΛ was discussed in Sec. III.2.1 this can now be used, to

10)If one works with complex fields this factor usually shows up in the field definition, but as it is a mere convention in all
following derivations, it is given explicitly (as it is standard while dealing with real fields).

11)The spontanious symmetry breaking will be worked out here in a special case but for a general introduction see Ref. [34,
p.119-128], Ref. [5, p.188-202;538-541].

12)n-dimensional complex fields can be exchanged for 2n-dimensional real fields, just as in the typical analysis context.
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write down the explicit contribution of the instanton sector:

Linst =
a2

4

(
e−iθΩ2

α + e+iθΩ? 2
α

)
, (3.4.5)

=
a2

4

(
e−iθ(Φα + iΛα)2 + e+iθ(Φα − iΛα)2

)
, (3.4.6)

=
a2

2

(
cos(θ)(Φ2

α − Λ2
α) − 2 sin(θ)ΦαΛα

)
. (3.4.7)

Here θ is the vacuum angle from Sec. II.8.4. As mentioned earlier, there is experimental evidence that

this angle is very close to zero, as any other value would lead to CP violating terms in strong interactions.

Therefore, it will be assumed that it actually is zero from now on (θ ≡ 0). With this the correction arising

from instantons to the scalar potential becomes:

Vinst =
a2

2

(
||Λ||2 − ||Φ||2

)
. (3.4.8)

where the exact form of a can be found by solving Eq. (3.2.9) exactly. As Vinst treats the Φ and the Λ

part of the scalar field, Ω, differently, it explicitly breaks the overall S O(8) rotational symmetry down to

2 decoupled S O(4) rotational symmetries (one for the ||Φ|| part and the other for the ||Λ|| part).

The other symmetry spoiling contribution arises from the nucleon background in a vacuum configuration.

If a vacuum configuration which contains a certain density of protons, np, and neutrons, nn, shall be

described, then this background acts as a source term in the equations of motion for all neutral scalar

mesons, namely the σ- and δ3-meson. All other mesons will not be changed, if the vacuum configuration

of the system is parity even, charge neutral and not direction dependent. In a potential such a source can

be represented by introducing a linear term in the field with a suitable arbitrary, but fixed parameter. This

means the nucleon background gives rise to the symmetry breaking contribution:

Vnucl = −ασ − βδ3 , (3.4.9)

α ∼ 〈NIN〉 = 〈(pp + nn)〉 , (3.4.10)

β ∼ 〈Nτ3N〉 = 〈(pp − nn)〉 . (3.4.11)

Here the parameters α and β correspond to the source influences. They will be adjusted later in this

section, by forcing the model to realise the effective physical nucleon masses and certain meson masses.

With this the variations of the original potential are complete and one now has:

V = Ṽ +Vinst +Vnucl (3.4.12)

=
µ2 − a2

2
||Φ||2 +

µ2 + a2

2
||Λ||2 +

λ2

4

(
||Φ||2 + ||Λ||2

)2
− ασ − βδ3 . (3.4.13)
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To shorten the notation it is useful to replace µ2
± = µ2±a2. In Fig. 3.4.1 an example of the effective scalar

potential in the (σ, δ3)-plane is visualised for extreme parameter values. Originally (setting a = α = β =

0) one has the usual ‘Mexican hat’-potential (App. A.1a), which is then deformed into the present shape.

To see the influence of the parameters a, α and β, there are further examples in App. A.9.

Figure 3.4.1: Example potential for extreme parameter values. The units are arbitrary and are just in-
cluded for reasons of comparability.

Having the potential, now the expansion around the minimum configuration has to be obtained. Due to

the nucleon source terms the vacuum expectation value (VEV) has only non-vanishing contributions in

the σ- and δ3-direction and so the derivation will be focused on these directions. The conditions on the

minimum are most readily obtained in spherical coordinates in the (σ, δ3)-plane:

σ = r · cos(ϕ) , δ3 = r sin(ϕ) , (3.4.14)

r2 = σ2 + δ2
3 , ϕ = arctan

(
δ3

σ

)
. (3.4.15)
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Using this, the potential reads:

V =
µ2
−

2

[
r2 cos2(ϕ) + π2

]
+
µ2

+

2

[
r2 sin2(ϕ) + δ2

1 + δ2
2 + η2

]
+
λ2

4

[
r2 +

=:F2︷               ︸︸               ︷
π2 + δ2

1 + δ2
2 + η2

]2

− αr cos(ϕ) − βr sin(ϕ) . (3.4.16)

To find the minimum take π j = η = δ1 = δ2 = 0 and search for the points, where the derivative (actually

the 2-dimensional gradient) vanishes:

∇2 =

(
∂

∂r
,

1
r
∂

∂ϕ

)T

, (3.4.17)

⇒
∂V
∂r

=
[
µ2
− cos2(ϕ) + µ2

+ sin2(ϕ)
]
r + λ2||Ω||2r − α cos(ϕ) − β sin(ϕ) , (3.4.18)

⇒
1
r
∂V
∂ϕ

=
[
µ2

+ − µ
2
−

]
r cos(ϕ) sin(ϕ) + α sin(ϕ) − β cos(ϕ) . (3.4.19)

Suppose that the minimum lies at the coordinates, (r0, φ0). At the moment it is not helpful to give a more

explicit form of the minimum, as all other parameters of the model aren’t fixed anyway. For a suitable

choice of parameters (in fact any choice that is of interest later) one can ensure that the extremum is an

actual minimum. Then, in the minimum, one has ||Ω||2min = r2
0 and with this, the above equations translate

to the following two conditions:

0 =
[
µ2
− cos2(ϕ0) + µ2

+ sin2(ϕ0)
]
r0 + λ2r3

0 − α cos(ϕ0) − β sin(ϕ0) , (3.4.20)

0 =
[
µ2

+ − µ
2
−

]
r0 cos(ϕ0) sin(ϕ0) + α sin(ϕ0) − β cos(ϕ0) . (3.4.21)

Going back to cartesian coordinates

Rσ ≡ r0 cos(ϕ0) , Rδ ≡ r0 sin(ϕ0) . (3.4.22)

the minimum conditions can be rewritten, by multiplying with r0, to a form which will be convenient

later:

0 = µ2
−R2

σ + µ2
+R2

δ + λ2r4
0 − αRσ − βRδ , (3.4.23)

0 =
[
µ2

+ − µ
2
−

]
RσRδ + αRδ − βRσ . (3.4.24)

Now the potential can be expanded around the minimum, R = (Rσ,Rδ)T, by defining the variations,

ρ = (ρσ, ρδ)T, and plugging the expansion (R +ρ) back into the potential (Eq. (3.4.13)). The fluctuations
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in the other directions are included as well and one gets:

V =
µ2
−

2

[
(Rσ + ρσ)2 + π2

]
+
µ2

+

2

[
(Rδ + ρδ)2 + δ2

1 + δ2
2 + η2

]
+
λ2

4

[
(Rσ + ρσ)2 + (Rδ + ρδ)2 + F2

]2
− α(Rσ + ρσ) − β(Rδ + ρδ) (3.4.25)

=
µ2
−

2

[
R2
σ + 2Rσρσ + ρ2

σ + π2
]

+
µ2

+

2

[
R2
δ + 2Rδρδ + ρ2

δ + δ2
1 + δ2

2 + η2
]

+
λ2

4

[
r2

0 + ρ2 + 2(Rσρσ + Rδρδ) + F2
]2
− α(Rσ + ρσ) − β(Rδ + ρδ) . (3.4.26)

In the last line it was used that R2 = r2
0. The quadric term can now be simplified alone to:

λ2

4

[
...
]2

=
λ2

4

{
r4

0 + ρ4 + 4
(
R2
σρ

2
σ + R2

δρ
2
δ + 2RσRδρσρδ

)
+ F4

+2r2
0

[
ρ2 + F2 + 2

(
Rσρσ + Rδρδ

)]
+ 4

(
Rσρσ + Rδρδ

)[
ρ2 + F2

]
+ 2ρ2F2

}
(3.4.27)

=
λ2r4

0

4
+
λ2

4

[
ρ2 + F2

]2
+ λ2(Rσρσ + Rδρδ

)[
ρ2 + F2

]
+ λ2(R2

σρ
2
σ + R2

δρ
2
δ + 2RσRδρσρδ

)
+
λ2

2
r2

0

[
ρ2 + F2

]
+ λ2r2

0
(
Rσρσ + Rδρδ

)
. (3.4.28)

In this rather ugly looking expression the real trick of spontanious symmetry breaking is hidden13).

Through the quadric interaction it is possible to couple the varying fields quadratically to the VEV of

the model. Thus the special shape of the potential allows an originally massless field to acquire a mass

in the transition to a stable vacuum configuration. Now the equations Eq. (3.4.26) and (3.4.28) can be

combined and ordered in powers of the various fields by using ρ2 = ρ2
σ + ρ2

δ.

V =
λ2

4

[
ρ2
σ + ρ2

δ + F2
]2

+ λ2(Rσρσ + Rδρδ
)[
ρ2
σ + ρ2

δ + F2
]

+
1
2

[
µ2
− + λ2r2

0

]
π2 +

1
2

[
µ2

+ + λ2r2
0

]
(δ2

1 + δ2
2 + η2)

+
1
2

[
µ2
− + λ2r2

0 + 2λ2R2
σ

]
ρ2
σ +

1
2

[
µ2

+ + λ2r2
0 + 2λ2R2

δ

]
ρ2
δ

+ 2λ2RσRδρσρδ

+
[
µ2
−Rσ + λ2r2

0Rσ − α
]
ρσ +

[
µ2

+Rδ + λ2r2
0Rδ − β

]
ρδ . (3.4.29)

Before proceding any further the minimum conditions (Eq. (3.4.20) and (3.4.21)) can be used to get

rid of the last line. This line has to vanish as the expansion is performed around the minimum of the

13)The reason for the ugliness actually come from the introduced symmetry breaking contributions. In the pure Mexican hat
potential the situation is much cleaner.
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potential. Around an extremum the linear variation in the expansion variables, ρσ and ρδ, vanishes and

so this is a nice check for the previous calculations. By multiplying Eq. (3.4.23) with Rδ and adding Eq.

(3.4.24) times Rσ one obtains:

0 = (3.4.23) · Rδ + (3.4.24) · Rσ = µ2
−Rδ(R2

σ − R2
σ) + µ2

+Rδ(R2
δ + R2

σ) + λ2r4
0Rδ − β(R2

s + R2
σ) , (3.4.30)

0 = r2
0

[
µ2

+Rδ + λ2r2
0Rδ − β

]
. (3.4.31)

And thus the coefficient in front of ρδ vanishes as required. Similarly the coefficient for ρσ vanishes by

calculating:

(3.4.23) · Rσ − (3.4.24) · Rδ = r2
0

[
µ2
−Rσ + λ2r2

0Rσ − α
]

= 0 . (3.4.32)

Now all the work is completed and some useful replacements are at hand. The parameters in front of the

quadratic terms are identified with the corresponding mass terms, ρ j is identified with the actual physical

meson, j, and the tilde means that the corresponding field is the physical field this time:

σ̃ ≡ ρσ , δ̃3 ≡ ρδ , (3.4.33)

m2
σ :=

[
µ2
− + λ2(r2

0 + 2R2
σ)

]
, m2

δ :=
[
µ2

+ + λ2(r2
0 + 2R2

δ)
]
, (3.4.34)

m2
π :=

[
µ2
− + λ2r2

0
]

, m2
δη :=

[
µ2

+ + λ2r2
0
]
, (3.4.35)

α = m2
πRσ , β = m2

δηRδ . (3.4.36)

The last line was just added for later convenience. It is just a rewriting of Eq. (3.4.32) and (3.4.31) and

relates the symmetry breaking factors with the pion and the pseudo η mass. In the original σ-model Rσ
would correspond to the pion decay constant fπ. More on this connection can be found for example in

Ref. [34, p.126-128].

For calculations it may be useful to reexpress the cartesian VEV’s back into spherical coordinates: Rσ =

r0 cos(ϕ0) and Rδ = r0 sin(ϕ0). Note that there is already a flaw apparent in the definitions of the mass

terms. In Eq. (3.4.35) the masses of the η, δ1 and δ2 mesons are all forced to the same value, which is

simply incorrect in the vacuum. This problem is lessened if one trades the η- for the η′-meson, but the

difference is still large enough to pose difficulties in later parameter fixings (compare Sec. III.4.3.1). In

addition, to make matters worse, the mass of δ3 differs from the other δ-meson masses, which directly

spurns all concepts of representation theory. So in total this seems like a bad idea, if it wasn’t for two

different ways out: First the violation of the symmetries in the potential was motivated from background

vacuum configurations in the nucleon sector. Now if, as stated in the beginning of the section, the

vacuum is charge neutral and parity-even, then all charged and parity-odd meson contributions will

vanish anyway. So to say the evident flaws of the model are neatly swept below the rug in the vacuum

configuration. Problems that are related to leaving this vacuum configuration are very intersting, but
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unfortunately beyond the scope of this work.

The second way to approach the problem is to abandon the strict enforcement of the η-meson mass. As

the final model shall give an effective description of nucleons rather than meson it is somewhat more

useful to fix all parameters of the model such that the effective nucleon masses in nuclear matter are

reproduced. In Sec. III.4.3 all relevant relations for this are derived and discussed. It will turn out that

it is sufficient to change the mass, mδη, such that it is close to mδ in order to meet the requirements of

physical nucleon masses.

For now the potential can be rewritten in terms of the physical meson fields and the so far undetermined

parameters:

V =
1
2

[
m2
σσ̃

2 + m2
δ δ̃

2
3 + m2

ππ
2 + m2

δη(δ
2
1 + δ2

2 + η2)
]

+ λ2(Rσσ̃ + Rδδ̃3
)
||Ω̃||2 +

λ2

4
||Ω̃||4 + 2λ2RσRδσ̃δ̃3 . (3.4.37)

While the correct notion for the physical fields is given above (with the tilde), this notation is dropped

after this section again, as it does not reveal further insights. In comparison with the perturbed linear

σ-model the last term in Eq. (3.4.37) is conceptionally new. This term comes from the double expansion

in σ and δ3 direction and gives a direct coupling between the fields with non vanishing VEV. Apart from

this it should be mentioned that the limit of the normal perturbed σ-model (without the contribution from

Λ) is completely regained if the VEV lies exactly in the σ-direction, corresponding to ϕ0 → 0 (and of

course taking Λ→ 0).

Having a second look at Eq. (3.4.37), the last term is somewhat disturbing, as it mixes σ and δ3 linearly.

This leads to an effective coupling in the quadratic terms for the scalar fields, as will be shown in a

moment. The mixing indicates, that one might not have chosen the most convenient set of variables

and that it is potentially possible to define a linear combination of σ and δ3, which then decouples the

quadratic mass terms of the fields. To find this linear combination, one has to insert the definitions from

the equations Eq. (3.4.34) and (3.4.35) into the potential (Eq. (3.4.37)), leading to:

V =
1
2

[
m2
π

(
σ2 + π2) + m2

δη

(
δ2

1 + δ2
2 + δ2

3 + η2) + 2λ2(Rσσ + Rδδ3
)2
]

+ λ2(Rσσ + Rδδ3
)
||Ω||2 +

λ2

4
||Ω||4 . (3.4.38)

If one now defines the combined field, Γ := [σ+ tan(ϕ0)δ3], where tan(ϕ0) = Rδ/Rσ and a corresponding

mass term, m2
Γ

:= 2(λRσ)2, then the potential turns into:

V =
1
2

[
m2
π||Φ||

2 + m2
δη||Λ||

2 + m2
ΓΓ2

]
+

m2
Γ

2Rσ
Γ ||Ω||2 +

1
4

m2
Γ

2R2
σ

||Ω||4 . (3.4.39)

Note that the combined Γ field incorporates one free parameter ϕ0 and with this, the total number of
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paramters ist still five, {mπ,mδη,mΓ,Rσ, ϕ0}, as in the original representation. The above representation

was introduced for completeness, but the following sections will mainly make use of the earlier found

part (Eq. (3.4.37)).

III.4.1 Conserved scalar currents

As the potential part of the scalar Lagrangian has been presented in the previous section one could

directly work out explicit (more detailed) relations for the model parameters. But just as for the fermionic

sector the conserved currents should be included before going into detailed parameter fixing schemes.

For further introductory comments on the conserved currents and for nomencalture conventions compare

Sec. III.3.3 or the general introduction in Sec. II.3. To establish the scalar contribution to the current, the

change of the scalar field under small symmetry transformations is needed. In Sec. III.3.2 it was found

that the scalar field has to change under left- and right-handed transformations as

Ω′ = U−1
L ,chΩUL ,ch = LΩR† . (3.4.40)

The additional UV(1) symmetry, which was briefly introduced in Sec. III.3.3 will be included here in

the same ignorant fashion as before. Eq. (3.4.40) immediately shows that Ω is invariant under a UV(1)

transformation, as it treats left- and right-handed parts equally and as the scalar phase commutes with

the internal iso-spinor structure of Ω. Therefore the scalar Lagrangian does not contribute to the UV(1)

current ( jB = 0). The fact that jB = 0 for scalar fields (e.g. mesons) nicely fits to the interpretation of jB
as the baryon current.

For the S U(2) part (as earlier) the expansion of the symmetry group elements yields the change δΩ :=

δε`/r Ω under the group action. The only difference this time is that Ω changes under simultaneous action

of left- and right-handed parts. To find the explicit change of all constituent fields (σ, π, η, δ), it is useful

to use the index notation Ω = ΩαqαI , where qαI = (I,−iτT)T is the quaternion symbol of the isospin group

and α ∈ {0, 1, 2, 3}.

δΩ = L(ε`)ΩR†(εr) −Ω (3.4.41)

= −
i
2
εa
`Ω

ατaqαI +
i
2
εa

r ΩαqαI τ
a + O(εa

`ε
b
r ) (3.4.42)

= −
i
2

(εa
V − ε

a
A)ΩατaqαI +

i
2

(εa
V + εa

A)ΩαqαI τ
a + O(εa

`ε
b
r ) (3.4.43)

= εa
AΩα i

2
{τa, qαI } − ε

a
VΩα i

2
[τa, qαI ] + O(εa

`ε
b
r ) (3.4.44)

= ε
j
AΩ j︸︷︷︸

(δΩ)0

−i
(
εa jkεa

VΩ j + Ω0εk
A

)︸                  ︷︷                  ︸
(δΩ)k

τk . (3.4.45)
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In the third line ε`/r have been replaced with the vectorial and axial variations from Sec. III.3.3. In

the last line the Latin superscripts only run over the ‘spacial’ components {1, 2, 3}. Also the following

relations were employed {−iτa, I} = −2iτa; −i{τa, τb} = −2iδab and −i[τa, τb] = 2εabcτc.

Comparing line Eq. (3.4.45) with the definition of ΩαqαI shows that it is possible to identify a vector

δΩ = (δΩ)αqαI with the same structure as the original Ω field. So the changed scalar field becomes:

(Ωα)′ = (Ω + δΩ)α=̂

Ω0

Ω

 +

 εAΩ

−Ω0εA

 +

 0

εV ×Ω

 . (3.4.46)

Here the vectorial notation for Ω was used. The ‘spacial’ components are written as Ω = (Ω1,Ω2,Ω3)T

and ‘×’ labels the usual vector product: (a × b)γ := εαβγaαbβ. What is worth noting about this transfor-

mation behaviour is, that the six arbitrary parameters εA and εV are real and thus the real and imaginary

parts of Ω = (Φ + iΛ)14) don’t get mixed under the action of the left- and right-handed transformations.

Therefore the constituent fields (Φ and Λ) transform in the same way as the whole field (Ω). Now the

original σ-model would be regained by setting Λ = 0. Thus Eq. (3.4.46) reveals that the extended

model transforms just as its ancestor and even more importantly its imaginary part Λ tranforms as the

original σ-model, as well. In other words the extension from the quaternion description of the σ-model

(Φ = ΦαqαI ) to the biquaternion description with the field Ω = (Φ+iΛ)αqαI gives essentially a double copy

of the original model. The only difference is that the roles of scalars and pseudo-scalars is exchanged

in the new Λ part, which is essential for the structural similarity of the extended model and the original

σ−model.

With this knowledge the needed variations of the constituent fields can be gained from Eq. (3.4.46).

σ′ = σ + εAπ , η′ = η + εAδ , (3.4.47)

π′ = π − εAσ + εV × π , δ′ = δ − εAη + εV × δ . (3.4.48)

14)A detailed definition of the components of Ω was given in the previous section (3.4.2-3.4.4).
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Now, using the kinetic part of the scalar Lagrange density from the previous section (Eq. (3.4.1)) the

vectorial and axial scalar currents can be constructed in analogy to the construction in Sec. III.3.3:

εa
A ja µA = εa

A

{
{∂µσ}πa − {∂µπa}σ + {∂µη}δa − {∂µδa}η

}
, (3.4.49)

⇒ jµA = <

{
{∂µΩ0}Ω

? −Ω0{∂
µΩ?}

}
, (3.4.50)

εa
V ja µV =

{
{∂µπa}(εabcεb

Vπ
c) + {∂µδa}(εabcεb

Vδ
c)
}

(3.4.51)

= εa
V

{
εabc

(
πb{∂µπ

c} + δb{∂µδ
c}
)}
, (3.4.52)

⇒ jµV = <

{
Ω × {∂µΩ?}

}
. (3.4.53)

In line Eq. (3.4.52) the cyclicality of εabc was used. The last line for vectorial or axial current is just

convenient, short notations for the corresponding first line, which will simplify the comparission with

the results from Sec. III.5.4. ? stands for the complex conjugation and <(·) gives the real part of the

argument. The equality can be verified by using the component definitions for Ω from the previous

section.

The equations Eq. (3.4.49) and (3.4.51) reveal another detail of the so far derived model. There is no

term in the vectorial or axial currents that connects the Φ = (σ,πT) part with the Λ = (η, δT)T part of the

model. Therefore, if current conservation holds, it must be satisfied independently for the the original

σ-model (Φ) and for the new part (Λ). Also this was not mentioned so far, this feature is important for the

model, since the effective instanton interaction in the potential (Eq. (3.4.8)) does not preserve the overall

S O(8) symmetry of the original Higgs potential (Eq. (3.4.1)), but breaks the model into a ||Φ||2 and a

||Λ||2 dependent part. At this point one can be relieved, as the underlying symmetries are compatible with

this explicit symmetry breaking [S O(8)→ S O(4) � S O(4)].

III.4.1.1 Violation of conservation laws

So far only the nice features of preserved symmetries and related conserved currents in the scalar sector

have been discussed, but as often there is another side to the presented model. Throughout the pre-

sentation of the scalar potential in Sec. III.4 there was also a contribution presented, which explicitly

violated the underlying symmetries. This was done via a presumed nuclear background contribution in

Eq. (3.4.9).

Using the results from the previous section one can now determine how this symmetry breaking affects

the conserved vectorial and axial currents. As discussed in Sec. II.3 both currents would be conserved if
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the symmetry breaking terms would not be included in the model, leading to two continuity equations:

∂µ jµV = δL = 0 , ∂µ jµA = δL = 0 . (3.4.54)

Here the notation from Sec. II.3 was adopted. If one includes the symmetry breaking factors, then

the righthand side of both equations changes, as the Lagrangian will not be invariant under symmetry

transformations anymore. By assembling all symmetry preserving parts in a Lagrangian, L0, and the

symmetry breaking contributions in L′ = −ασ − βδ3
15), a general continuity equation becomes:

∂µ jµ = δL = δL0 + δL′ = δL′ . (3.4.55)

For the present case it is most convenient to analyse the symmetry breaking of the σ- and δ3-meson

separately. Starting out with the σ part, one finds the known result for the σ-model, that the axial current

is broken by the VEV:

εA
(
∂µ jµA

)∣∣∣∣
δ3=0

= −α(δεAσ) = εA(−απ) , (3.4.56)

εV
(
∂µ jµV

)∣∣∣∣
δ3=0

= 0 . (3.4.57)

In the normal σ-model this equation is used to derive the Goldenberger-Treimann relation, which con-

nects the pion decay constant fπ with the nucleon mass. A derivation for this context can be found in

Ref. [34, p.106-110;p.126-128]. As the vectorial variation of σ vanishes (Eq. (3.4.47)), the vectorial

current is still preserved in this model.

Now the symmetry breaking δ3 term can be analysed similarly. The main difference is, that δ3 transforms

under axial and vectorial transformations (Eq. (3.4.48)), leading to

εA
(
∂µ jµA

)∣∣∣∣
σ=0

= −β(δεAδ3) = βε3
Aη , (3.4.58)

εV(∂µ jµV)
∣∣∣∣
σ=0

= −β(δεVδ3) = −β(ε1
Vδ2 − ε

2
Vδ1) . (3.4.59)

Combining these two results with the earlier terms (Eq. (3.4.56) and (3.4.57)) the complete breaking of

the conserved currents turns out to be:

∂µ jµA = −απ + βη ê3 , (3.4.60)

∂µ j1 µV = −βδ2 , (3.4.61)

∂µ j2 µV = βδ1 . (3.4.62)

15)This approach and notation was mainly adopted from Ref. [34, p.121-128].
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So in the full model the three axial symmetries are broken by the σ VEV, Rσ, and (the third component)

by the δ3 VEV, Rδ, as well. In contrast to the ordinary σ-model the first two vectorial symmetries are

also broken by the VEV of δ3. The only remaining symmetry is the third vectorial component.

Remembering the final results from Sec. III.3.3, it is very helpful that the third component of the vectorial

current, j3 µV , is still conserved. As the conservation of this component, combined with the conserved

UV(1) current, jµB, lead to the conservation of proton and neutron numbers, it would be very disturbing

for an effective nucleon model, if those symmetries would break down. Phrased differently, the scalar

model as it was presented so far, preserves the two crucial symmetries in the context of an effective

nucleon model. The combined scalar and nucleon Lagrangian preserves independently the number of

protons and neutrons.

Finally, it its useful to rewrite the non-conserved currents (Eq. (3.4.60)-(3.4.62)) in terms of the physical

(ladder operator) fields instead of the ‘euclidean’ representations. For this use the identification of the

generators τ± = (τ1 ± iτ2)/2 and τ0 = τ3. The same relation holds then for the fields and so for example

the divergence of jµV +
becomes:

2∂µ jµV +
= ∂µ

(
jµV 1 + i jµV 2

)
= −β

(
δ2 − iδ1

)
= βi

(
δ1 + iδ2

)
= 2iβ δ+ . (3.4.63)

For this rewriting the equations Eq. (3.4.61) and (3.4.61) have been used. Analogously the remaining

current components can be calculated. In the ladder operator representation all non-conserved current

components then become:

∂µ jµA +
= −m2

πRσ π+ , ∂µ jµV +
= +i m2

δηRδ δ+ , (3.4.64)

∂µ jµA− = −m2
πRσ π− , ∂µ jµV− = −i m2

δηRδ δ− , (3.4.65)

∂µ jµA 0 = −m2
πRσ π0 − m2

δηRδ δ0 . (3.4.66)

Here the symmetry breaking factors α and β were replaced using Eq. (3.4.36). In doing so, one finds that

the breakdown of the axial current conservation is related to the pion mass and the partial breakdown of

the vectorial conservation law is connected to the pseudo-scalar meson with mass, mδη.

This representation allows in addition to compare the very similar structure of the charged components of

the non-conserved vectorial and axial currents (Eq. (3.4.64) and (3.4.65)). The only conceptual difference

seems to be the factor ±i. This factor can be understood by rewriting the vectorial (Eq. (3.4.53)) and

axial (Eq. (3.4.50)) currents from the previous section in the ladder operator basis. By expanding the

equations Eq. (3.4.49) and (3.4.52) in terms of the {±, 0}-basis and collecting all survivng terms the

97



III.4. The scalar Lagrangian

currents turn into:

jµA± = −<

{
Ω0
←→
∂µΩ?

±

}
, jµV± = ±i<

{
Ω3
←→
∂µΩ?

±

}
, (3.4.67)

jµA 3 = −<

{
Ω0
←→
∂µΩ?

3

}
, jµV 3 = 2i<

{
Ω+

←→
∂µΩ?

−

}
. (3.4.68)

The symbol
[
a
←→
∂µb := a(∂µb) − (∂µa)b

]
was only introduced for notational reasons. Now, comparing the

prefactors of the charged currents (vectorial and axial) with the prefactors in Eq. (3.4.64) and (3.4.65),

one observes, that indeed, the breaking factors for vectorial and axial components simply give contribu-

tions to the non-conserved currents at the corresponding terms.

In the normal σ-model the non-conserved axial symmetry allows pions to decay via the processes of the

type:

〈vac|∂µ( jiA)µ|π j〉 ∝ −δi j fπm2
πe−ikx . (3.4.69)

A full discussion and derivation of this aspect can be found in Ref. [34, p.106-110]. In the nomenclature

from Sec. III.4 the pion decay constant is fπ = Rσ. Enlarging this picture to the present model means

that here not only the pions are allowed to decay, but also the charged δ±-mesons, leading to the non-

conserved vectorial current components. Note that a detailed derivation of these processes still needs to

be done, but the general trend can already be observed.

III.4.2 Parameter conventions and dimensions

In Sec. II.9.8 a slightly different choice of parameter conventions for the Mexican hat potential was

chosen for reasons of comparability. This small paragraph shall give the connection the two conventions

and, in addition, gives the corresponding dimensional analysis for the used parameters.

Using the Lagrangian from Eq. (2.9.49) the connection can easily be made to the Lagrangian from the

previous section (Eq. (3.4.1)) by the means of the following replacement:

H → λΩ , 〈H〉 → 3λ =

√
−µ2

λ2 λ . (3.4.70)

Here 3 means the VEV of the model, which is for the ‘free’ Mexican hat potential given above. For the

final potential from Eq. (3.4.13) one gets 3 = r0, where r0 is the minimum of the potential, defined in the

previous section.

In addition one needs to make the analytic continuation from Euclidean to Minkowski space, as Eq.

(2.9.49) is given in Euclidean and Eq. (3.4.1) in Minkowski space. Depending on the conventions this
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directly reproduces the sign difference between both equations:

−S E = −

(∫
dd xH

)
E
↔ i

(∫
dd xL

)
M

= iS . (3.4.71)

Here, as earlier, the index E refers to Euclidean and M means Minkowski space. The analytic continua-

tion is done (using the ‘east coast metric’) by replacing the time component with x0 = iτ. This leads to

the above equation (compare Ref. [5, p.176-177]).

The dimensional analysis of the introduced parameters will be done in the ‘natural units’ of energy. In

these units one only needs to count the powers of energy, giving for fundamental quantities:

energy: [m] = +1 , length: [`] = −1 , (3.4.72)

time: [t] = −1 , derivatives: [∂µ] = +1 . (3.4.73)

With this one knows that the Lagrange density has the units of inverse volume, [L] = d = 4, and thus

one can use [(∂Ω)2] = [µ2Ω2] = [λ2Ω4] = [ασ] = d to find the dimensions of the involved parameters.

This leads to

[Ω] = 1 , [µ] = [a] = 1 , (3.4.74)

[λ] = 0 , [α] = [β] = 3 . (3.4.75)

In the above list the dimensions of a and β follow by analogy (compare Eq. (3.4.13)). The dimensions of

the two missing parameters can be found directly as well from Eq (3.4.15), giving: [r0] = 1 and [φ0] = 0.

For more information on dimensional analysis see also Ref. [5, p.90-91].

III.4.3 Parameter fixing

In the preceding three sections all important parameters for the scalar sector of the model have been

introduced. In this context it only remains to fix the new model parameters by the means of some

physical observables. It was briefly mentioned that one could either choose to tie them to the vacuum

masses of the involved mesons or enforce the in medium proton and neutron masses plus some of the

four possible meson masses. In the following both possibilities will be discussed.

III.4.3.1 Pure scalar model

Starting out with a pure scalar meson model, one would fix the model parameters via the meson masses

{mσ, mπ, mδ, mη}. The equations Eq. (3.4.34), (3.4.35), (3.4.32) and (3.4.31) can be used to find the

effective values. As there are four conditions (the physical meson masses), but a total of five parameters
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(e.g.: µ, a, λ, r0 and ϕ0)16), one parameter will stay free. In this calculation the 4-point parameter λ

will be chosen to be free. In principle this parameter can be fixed by adjusting it to a measured 4-point

coupling strength of the involved mesons17). To arrive at relations that only depend on the meson masses

the six equations Eq. (3.4.34), (3.4.35) and (3.4.36) have to be combined. In the following all relevant

parameters will be rewritten, also only four are needed. For this, the pion mass and the η-δ mass can be

substituted in all other equations, leading to:

m2
π = (µ2

− + λ2r2
0) , m2

δη = (µ2
+ + λ2r2

0) , (3.4.76)

m2
σ = m2

π + 2λ2R2
σ , m2

δ = m2
δη + 2λ2R2

δ , (3.4.77)

α = m2
πRσ , β = m2

δηRδ . (3.4.78)

The second line can be used to find Rσ = r0 cos(ϕ0) and Rδ = r0 sin(ϕ0). From these r0 and ϕ0 can be

constructed as well:

R2
σ =

m2
σ − m2

π

2λ2 , R2
δ =

m2
δ − m2

δη

2λ2 , (3.4.79)

r2
0 = R2

σ + R2
δ =

1
2λ2

[
(m2

σ + m2
δ) − (m2

π + m2
δη)

]
, (3.4.80)

tan2(ϕ0) =
R2
δ

R2
σ

=
m2
δ − m2

δη

m2
σ − m2

π

. (3.4.81)

With the equations for Rσ, Rδ and r0 now the remaining parameters can be determined. Eq. (3.4.78)

turns into

α2 =
1

2λ2 m4
π(m2

σ − m2
π) , β2 =

1
2λ2 m4

δη(m
2
δ − m2

δη) (3.4.82)

and finally µ and a the (anti-)symmetric combination of the equations Eq. (3.4.76) can be used including

the earlier definition µ2
± = (µ2 ± a2):

µ2 =
1
2

(m2
δη + m2

π) − λ2r2
0 =

[
(m2

δη + m2
π) −

1
2

(m2
σ + m2

δ)
]
, (3.4.83)

a2 =
1
2

(m2
δη + m2

π) . (3.4.84)

In Tab. 3.4.1 the effective couplings for the present case are given, as calculated from these conditions.

λ is taken to be the remaining free parameter.

16)Equivalently one could choose the original parameters of Eq. (3.4.13), or another suitable set.
17)The 4-point term in the Lagrangian is λ2|Ω̃|4/4.
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Table 3.4.1: Effective coupling constants for the scalar sector of the model. (The units for λ and ϕ0 differ
from the over all indication.)

conditions [MeV] mη = 548 mπ = 140 mσ = 571 mδ = 962
parameters I [MeV] µ = i 553 a = 375 α1/3 = 197 λ−1/3 β1/3 = 552 λ−1/3 λ

parameters II [MeV] µ+ = i 407 µ− = i 668 r0 = 682 λ−1 ϕ0 = 0.96 rad λ

Some words are in order, concerning the calculated parameters from Tab. 3.4.1.

• The factor of i in the effective quadratic coupling, µ j, might be surprising at first sight, but it is

actually mandatory, in order for the potential Eq. (3.4.13) to have a non zero minimum.

• Also the parameter a is in a convenient numerical range. This parameter shall be interpreted as an

effective instanton contribution. As it is related to a particular contribution in the partition function,

it has to be real. Right now there are no further constraints on the parameter range and so the above

result has to be used to fix the remaining parameters in instanton calculation (compare Eq. (3.2.9)).

• The radial position of the minimum in the effective potential, r0, still depends on the quadric

potential parameter, λ. As the actual minimum position is not connected to a direct observable

or physical constraint, there is not much to do about this at the moment. For the same reason the

angular position of the minimum, ϕ0, is left out of the focus as well.

• The λ dependence of the symmetry violating terms on the other hand is very useful at the moment.

Right now λ is only a free parameter and can be adjusted in a suitable fashion. Therefore it can

be used to define the degree of symmetry breaking, which takes place in the model. For this note,

that higher values of λ pronounce the overall ||Ω||4 symmetry, while scaling down the values of α

and β.

• Finally the symmetry breaking factors, α and β, do introduces some problems with the so far

introduced interpretations. As one finds that the symmetry breaking factor of the δ-meson is

larger than that of the σ-meson (β > α), there is a conceptual problem with the argument that

the breaking terms have their origin in the background nucleon condensate. Such a relation

would enforce the symmetry breaking factors to be proportional to the scalar nucleon densities:

α ∝ 〈N I N〉 = [〈pp〉 + 〈nn〉] and β ∝ 〈N τ3 N〉 = [〈pp〉 − 〈nn〉]. As the scalar densities indepen-

dently fulfil 〈N jN j〉 ≥ 0, the condensate interpretation is only possible if α ≥ β. As seen in Tab.

3.4.1 this is not the case.

Therefore either the interpretation of the symmetry breaking factors has to be altered, or (at least)

one of the meson masses has to be changed in order to fulfil α ≥ β. Eq. (3.4.82) provides the infor-

mation, how the masses can be changed to achive this goal. In principle it is sufficient to change

the value of the, so far, unphysical mass combination, mδη, for the first two δ-meson components
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and the η-meson. One possible way to adjust the symmetry breaking factors conveniently will be

presented in the next section.

III.4.3.2 Nucleon induced scalar model

In the previous section it was found that the interpretation of the symmetry breaking parameters α and β

as nucleon condensates is incompatible with the found parameter values, if the physical meson masses

are used to adjust them. In this section a slightly different approach shall be presented, which will remedy

the previous problem at the cost of a changed mδη mass. Therefore, in contrast to the previous parameter

fixing, this time the physical ‘observables’ {mσ, mπ, mδ, Mp, Mn} will be used. Here Mp/n refers to the

proton or neutron mass (more generally the masses of the two isospin components of the fermion spinor).

Using this parameter set means, that all values which do not depend on mδη will keep the earlier derived

dependencies.

Compared to the earlier parameter fixing one now has an additional parameter and thus might be tempted

to fix all five model parameters (compare Eq. (3.4.13)). But this is not possible18) as the fermionic mass

term comes with an additional parameter - the scalar coupling constant, gΩ - which has to be determined.

When the coupling between scalar mesons and fermions was discussed, it was already indicated in Eq.

(3.3.13) how the fermions can obtain a mass through the VEV of the scalar field. In Sec. III.4 this VEV

was found to be 〈Ω〉 = RσI + Rδτ3 (compare for example Eq. (3.4.22)). Remember that Eq. (3.4.79)

showed that Rσ is independent of mδη, while Rδ = Rδ(mδη). This equation can also be used to calculate

the fermion masses, depending on the condensates Rσ and Rδ:

Mi jN
i
N j = gΩN〈Ω〉N = gΩN

Mi j︷          ︸︸          ︷
[RσI + Rδτ3] N , (3.4.85)

⇒ Mp = gΩ(Rσ + Rδ) , (3.4.86)

⇒ Mn = gΩ(Rσ − Rδ) . (3.4.87)

To get the proton and neutron masses the explicit iso-spinor structure of N was used. In order to fix the

remaining parameters of the model it is useful to define two combined quantities from the seperate proton

and neutron masses. In an ideal nucleon model the proton and neutron masses are exactly degenerate and

thus one would only have a common, single valued nucleon mass. In contrast, if the densities of protons

and neutrons are different, this leads to different effective masses for both iso-spinor components. Both

18)In fact it would be strange if the introduction of an additional, purely fermionic constraint would fix the ambiguities of a
purely scalar model.
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effects can be captured in the quantities:

M :=
1
2

(Mp + Mn) = gΩRσ , (3.4.88)

εM :=
Mn

Mp
=

Rσ − Rδ
Rσ + Rδ

. (3.4.89)

M represents the isospin symmetry and can be used to adjust the scalar coupling constant gΩ, while εM is

directly related to the effective mass difference of protons and neutrons and thus to the isospin symmetry

breaking. If εM = 1, then Mp = Mn and from the definition one sees immediately that Rδ = 0. This is

the natural case of symmetric nuclear matter. If the ratio of neutrons to protons changes, then εM will

change. In the extreme of vanishing neutron mass one has εM = 0. In terms of formulas the definition of

εM can be used to replace the mδη-dependence in the equations for Rδ, β, ϕ0 and mδη itself. Starting out

with the vacuum angle, from Eq. (3.4.81) one finds:

εM =
1 − RδR−1

σ

1 + RδR−1
σ

=
1 − tan(ϕ0)
1 + tan(ϕ0)

, (3.4.90)

⇒ tan(ϕ0) =
1 − εM

1 + εM
. (3.4.91)

Note that the second line fits nicely in the general interpretation of ϕ0, as ϕ0 = 0 means that the VEV

lies completely in the σ-direction (compare Eq. (3.4.79)). Now the relation for tan(ϕ0) can be employed

to solve for the remaining parameters:

R2
δ = R2

σ tan2(ϕ0) = R2
σ

(
1 − εM

1 + εM

)2

, (3.4.92)

m2
δη = m2

δ − 2λ2R2
δ = m2

δ − (m2
σ − m2

π)
(
1 − εM

1 + εM

)2

, (3.4.93)

β2 = m4
δηR

2
δ =

m2
δ − (m2

σ − m2
π)

(
1 − εM

1 + εM

)22

R2
σ

(
1 − εM

1 + εM

)2

. (3.4.94)

To arrive at these relations the equations Eq. (3.4.79) and (3.4.82) were used. Naturally the parameters

r0, µ and a have to be changed as well, since they depend on m2
δη but this replacement is trivial using

Eq. (3.4.93). This equation also delivers a very convenient feature of this type of parameter fixing.

Beforehand, it was discussed that the difference of the masses mδ and mδη are very unnatural from a

group theoretical point of view. Especially the different masses for the components of the δ-meson gave

a strange picture of this triplet. Now, in the parameter fixing of Eq. (3.4.93) one sees, that the problem

with different masses vanishes for εM = 1 (in symmetric matter) and only increases with the asymmetry

of the nuclear matter sector. Thus, for applications that only deal with small proton-neutron asymmetries

the mass difference of δ1,2 compared to δ3 can be treated as a small perturbation. This would effectively
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state that the original symmetry, leading to the η singlet and the δ triplet, is only approximately realised,

with some correction effects of order εM. This idea of approximate symmetries is a well established

concept in various fields of modern theoretical physics and this would be another explicit example in a

long list of applications.

Another advantage of the nucleon induced parameter fixing is related to the values of β in Eq. (3.4.94).

Now, the limit of equal proton and neutron mass does not yield a problem concerning the value of α and

β anymore. As εM goes to zero, β vanishes as well. This gives the correct behaviour, if the origin of

β shall be related to the difference of proton and neutron densities. So, in this description, the original

argument for the symmetry breaking factors α and β is applicable.

While this gives indeed a very neat interpretation of the original parameters in the scalar potential, there

arises also an upper limit for the symmetry breaking. To see this compare Eq. (3.4.94) with the defining

equation for the other breaking factor, α2 = m4
πR2

σ. If one insists on the constraint α ≥ β, both equations

can be combined and lead to a limit for εM:

α2 ≥ β2 ⇒ m4
π ≥

m2
δ − (m2

σ − m2
π)

(
1 − εM

1 + εM

)22 (
1 − εM

1 + εM

)2

. (3.4.95)

Solving this equation for εM gives the desired limit, up to which the above equations are compatible with

the discussed interpretation of α and β.

The reason that not all symmetry breaking values of εM are applicable in this description is that the

parameters are not only tied to fermionic observables, but also to the meson masses mδ, mσ and mπ.

As these masses are kept fixed at their in-vacuum values the above interpretation should break down at

some point. Of course, the presented argument gives room for more elaborate schemes to fix the free

parameters of the so far presented model.

III.4.3.3 Conclusion

Conclusively one can state that there are various possible applications for the so far developed model. If

one allows for example the in-medium masses of all involved mesons to change and takes as absolute

input parameters only the proton and neutron masses, then various self-consistency methods could be

used to determine the parameters of the model (and with these the effective meson masses as well).

Also the pure meson model, for which a possible parameter fixing was presented in Sec. III.4.3.1 yields

interesting applications, as it allows studying various interacting scalar mesons in a group theoretical

environement with incuded effective instanton interactions. Especially the different constrained instanton

effects from Sec. II.9.9 and II.9.10, which have been ignored so far, could lead to interesting relations.

In this context the clear advantage of the scalar model is, that it allows these kind of investigations in an

otherwise relatively simple environment of the scalar Lagrangian from Sec. III.4.
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III.5 The gauge field Lagrangian

Having introduced the scalar sector of the model, one still needs to develope the concrete connection to

the instanton part - that is to say the connection to the gauge field sector has to be implemented.

Gauge fields are commonly introduced in order to maintain a certain invariance in a given model. Sup-

pose a Lagrange density [e.g. L = L(||Ω||2)] is invariant under a symmetry transformation, U(θ),

with a set of real parameters, {θ j}. If the parameters, θ j, are constant in space-time, then the sym-

metry is said to be a global symmetry. In this case the dynamics of the model are directly invariant

under the symmetry transformation, as the constituents of the Lagrange density ||Ω||2 = 1
2 trI[Ω†Ω] and

||∂Ω||2 = 1
2 trI[(∂µΩ)†(∂µΩ)] are invariant themselves. This situation was treated in the previous sections

(Sec. III.3 - III.4.1.1).

In contrast, if the parameters change in space-time [θ j = θ j(x)], the model has a ‘local symmetry’

and is not directly gauge invariant with respect to the given symmetry transformation, U(θ(x)). The

reason is that the kinetic part now produces a gauge dependent derivative contribution [∂µ(UΩ) =

(∂µU)Ω + U∂µΩ]. In order to restore the desired gauge invariance one needs to include explicitly a

gauge field that absorbs the additional derivative contribution, (∂µU)Ω, under gauge transformations.

The inclusion of such a gauge field is a standard procedure in modern physics and can be reviewed

nicely in Ref. [34, p.135-146] and more formal for non-abelian symmetries in Ref. [5, p.416-434]. In

App. A.7 a natural reason for the existence of gauge fields is briefly discussed. Gauge field models

are invariant under local symmetry transformations, if the ordinary derivative is replaced by the gauge

covariant derivative, Dµ = ∂µ + igAAµ, which was already extensively used in chapter Sec. II.8. The

instanton sector, which originates from considering local gauge symmetries, can be included in the so

far derived model if a covariant derivative is identified, which fits to the assumed local symmetries (for

the explicit symmetries compare Sec. III.1).

Although this is a nice way to establish the needed connection, there is one catch to the procedure. In

Sec. III.4 there were two terms included, which explicitly violated certain symmetries. Therefore, stricly

speaking, if the terms are included, then the global symmetries do not exist, which directly implies that

their local equivalences do not exist either. The general approach to circumvent this issue is to assume

an underlying symmetry, which is broken by explicit physical realisations. Thus in this final part the

influence of the symmetry breaking terms, Vnucl (Eq. (3.4.9)), will be explicitly ignored to derive the

‘underlying’ symmetry relations.

III.5.1 Flavour or colour gauge fields

As previously mentioned the present model shall be an effective low energy approximation to QCD. Ide-

ally an effective model only depends on observables, that are accessible at the defining low energy scale

and high energy contributions should only give corrections as the cutoff is approached. Any explicit
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dependence on high energy parameters corresponds to an ‘imperfection’ of the model. These parameters

are not predictable in a low energy approximation and thus have to be adjusted using external inputs

(such as experiments or high energy models). Problems connected with the exact high energy parameter

fixing have to be adressed in a Wilson or ‘matching’ EFT approach (for the concept compare Sec. II.6).

In 1979 Saito and Shigemoto built an effective Lagrangian for (pseudo-)scalar mesons by using a mass-

less S U(2) colour gauge field as instanton field in Ref. [1]. Conceptually this idea is appealing as the

absence of mass in the instanton sector significantly simplifies all related calculations (compare Sec.

II.9.8). On the other hand the experimental evidence stands in sharp contrast to this point of view. The

only ‘observed’ massless, non-abelian gauge fields so far correspond to the gluons (the S U(3) colour

gauge fields). Explicit gluon induced terms in a Lagrange density are high energy contributions, as con-

finement sets a lower energy bound on their influence. By using the colour gauge field they effectively

introduced (high energy) gluonic contributions at all energy scales. So Saito’s and Shigemoto’s idea

gives a nice conceptual argument for the different masses of σ−, π−, δ− and η−meson (in the context of

the linear σ−model), but its explicit realisation does not seem to appear in nature. In addition there is an-

other reason against this particular realisation, which was already discussed in the context of constrained

instantons in Sec. II.9.8. As soon as the gauge field is coupled to a scalar field with non vanishing VEV,

instantons have to be replaced by their constrained relatives, if one is interested in (partly) preserving the

instanton features. Using constrained instantons with a non-trivial VEV in the scalar sector, one obtains

an effective gauge field mass in the process, which will become apparent in the following sections.

Due to these reasons a slightly different approach is pursued in this work. If the effective instanton gauge

field originates from a flavour instead of the colour symmetry, then explicit gluonic degrees of freedom

can be left out of the picture completely. In this picture the effective mass of the gauge fields turns into an

advantage, as the flavour gauge fields ultimately lead to vector meson contributions such as the %-meson.

As these are indeed very heavy, the effective gauge field mass, due to spontaneous symmetry breaking

in the scalar sector, does not lead to any conceptual complications this time. While this is a very neat

feature, explicit vector meson calculation for the model will not be discussed in detail in this work, as the

correct implementation of the pure constrained instanton mechanism is already involved enough. Any

analysis on the inclusion of explicit vector meson contributions thus has to be postponed to future works.

For the present model the non-abelian gauge field lives in a S UI(2) iso-spinor space instead of the S U(2)

colour space from Saito and Shigemoto.

III.5.2 Gauge field couplings

There is no kinetic term for constrained instantons, as was discussed in Sec. III.2 and so one can directly

come to the couplings between the gauge field with fermion or scalar fields. The different aspects of

these couplings will be worked out in the following sections (until Sec. III.5.5) for the situation, where

the gauge field consists of the constrained instanton and a quantum fluctuation around it Aµ = Acon
µ + aµ.
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But before going into the details of new terms in the Lagrange density another leeway has to be taken

care of.

The concept of instantons emerged from the euclidianisation of Minkowski space combined with the

demand of a local Lorentz symmetry. The locality of the symmetry group gave rise to a gauge field, Aµ,

and the eucidianisation allowed a calculation of the instanton field as classical configuration Aclas
µ

19) of

the gauge field (compare the first part of chapter Sec. II.8 and II.1 for properties of the restricted Lorentz

group). But so far the actual coupling of the gauge field, Aµ, to the various fields of the model have not

been discussed.

Recall that 4-dimensional Euclidean space can be represented via two independent S U(2) groups (S O(4) '

S UA(2) � S UB(2)). Therefore, in the iso-spinor representation, the gauge field, Aµ = AµA � AµB, consists

of 2 sub-fields - one for each S U(2) subgroup. As the gauge fields shall be connected to physical observ-

ables it is most convenient to switch back to Minkowski space at this point. Again one has to emphasise

that this alteration of the underlying symmetry group is non-trivial. Some issues concerning this topic

have already been discussed in Sec. II.8.1. Nevertheless (ignoring all possible problems), in Minkowski

space the two S U(2) subgroups are (S O+(3, 1) ' S UL(2) � S UR(2)). In the spirit of chiral approaches

(as briefly introduced in Sec. II.5) the symmetry group is promoted to UL(2)�UR(2)20). This would lead

to a total of 8 symmetry generators (3 for each S U(2) and 1 for each U(1) group). In the introductory

part to the model (Sec. III.1) and at the end of Sec. II.8.4 it was mentioned that instanton interactions

explicitly violate the abelian axial symmetry, UA(1). So, before running through the whole machinery

this symmetry is directly excluded again, leading to the subgroup:

UL(2) � UR(2)→ S UL(2) � S UR(2) � UV(1) , (3.5.1)

where the subscript V means a vectorial symmetry, UV(1)21). This symmetry group will be assumed

in the following derivations. Using the Minkowski space iso-spinor representation, now the covariant

derivatives can be derived. The derivation is related to a derivation concerning the electroweak interac-

tions for hadrons in Ref. [5, p.562-571]. Take the local symmetry transformations to be:

L ≡ L(ε`(x)) := exp
[
−iε j

` (x)T
j
]

, R ≡ R(εr(x)) := exp
[
−iε j

r (x)T
j
]
. (3.5.2)

Note that the definition for left- and right-handed symmetry transformations has been slightly modified

compared to Sec. II.5, as this notation is a bit more convenient. The ε`,r(x) ∈ R3 are the six gauge

parameters and the S U(2) generators, T j = τ j/2, have the same normalisation as the instanton generators

19)The superscriptclas refers to ordinary instantons, whereas the label con indicates constrained instantons.
20)Compared to S UL(2) � S UR(2) this symmetry group incorporates additional U(1) symmetries: UL(2) � UR(2) ' UL(1) �

UR(1) � S UL(2) � S UR(2).
21)In vectorial symmetries the left- and right-handed transformations are equal (e.g.: U(αV) = U((α` + αr)/2) = e−i(α`+αr )). See

also Sec. II.5.
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from Sec. II.9. The lacking factor of (−i) is just a different convention22). One already knows how the

scalar and fermion fields transform under the action of the S UL,R(2) groups:

NL = (pL, nL)T , (NL)′ = LNL , (3.5.3)

NR = (pR, nR)T , (NR)′ = RNR , (3.5.4)

Ω = ΩαqαI , (Ω)′ = LΩR† . (3.5.5)

Here the primes denote the action of the symmetry group: (Z)′ = U−1ZU, where U is the unitary

operator realising the group action according to Eq. (3.5.1). This notation is adopted throughout the

whole section. If one now defines the gauge fields to have the following transformation law under

S UL(2) � S UR(2) � UV(1):

`µ = `a
µT a + bµI , (`µ)′ = L`µL† + iL∂µL† , (3.5.6)

rµ = rb
µT b + bµI , (rµ)′ = RrµR† + iR∂µR† , (3.5.7)

then the covariant derivatives can be constructed such that the Lagrangian becomes gauge invariant under

Eq. (3.5.2). Here bµ is the gauge field corresponding to the UV(1) group, while `a
µ and ra

µ are the

components of the left- and right-handed S U(2) symmetries. Inserting all transformation rules (Eq.

(3.5.3)-(3.5.7)) one finds that

DµNL = (∂µ − igA`µ)NL , (DµNL)′ = L(DµNL) , (3.5.8)

DµNR = (∂µ − igArµ)NR , (DµNR)′ = R(DµNR) , (3.5.9)

DµΩ = ∂µΩ − igA`µΩ + igAΩrµ , (DµΩ)′ = L(DµΩ)R† , (3.5.10)

(DµΩ)† = ∂µΩ
† + igAΩ†`µ − igArµΩ† , [(DµΩ)†]′ = R(DµΩ)†L† (3.5.11)

lead to gauge invariant kinetic terms for the fermionic and scalar fields. Note that these are of the form

Lkin
N = (NLD/NL + NRD/NR) = N[D/ PL + D/ PR]N , (3.5.12)

Lkin
Ω =

1
4

trI[(DµΩ)†(DµΩ)]23) . (3.5.13)

22)The local gauge field formalism has lots physics related roots, while the instanton formalism was developed in Euclidean
space-time, which is historically closer to the mathematitians approach to field theory. The mathematical convention is to
absorb all prefactors into the gauge fields, whereas phycisists tend to factor out a coupling constant and a factor of −i.
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Looking at line Eq. (3.5.10) also reveals that the bµI part of the gauge fields explicitly drops out, since I

commutes with Ω.

DµΩ = ∂µΩ − igA`
a
µT aΩ + igAΩra

µT a − igAbµ(IΩ −ΩI) = ∂µΩ − igA`
a
µT aΩ + igAΩra

µT a . (3.5.14)

As gauge fields in a Higgs formalism only acquire masses via the kinetic term of the Higgs field (here

Ω), one can directly conclude that bµ remains massless in this picture. Using Eq. (3.5.8) to (3.5.11) all

interactions between the gauge fields and the other constituents of the model can be worked out explicitly.

Just to keep the connections in mind, remember that the action minimising configuration of (left-) right-

handed gauge fields corresponds to the (anti-) instanton field. So all couplings for `µ and rµ essentially

describe instanton and fluctuation couplings.

III.5.3 Gauge field masses

While the coupling to fermions will be important if conserved currents are of interest, the coupling

between the scalar field, Ω, and the gauge fields, rµ and `µ, leads to the effective gauge field masses. To

find these masses the covariant kinetic term of the scalar fields has to be expanded:

Lkin
Ω =

1
4

trI
[
(DµΩ)†(DµΩ)

]
=

1
4

trI
[(
∂µΩ

† + igAΩ†`µ − igArµΩ†
) (
∂µΩ − igA`

µΩ + igAΩrµ
)]

(3.5.15)

=
1
4

trI
[
(∂µΩ)†(∂µΩ)

]
(3.5.16)

+
g2

A

4

(
trI

[
ΩΩ†`µ`

µ
]

+ trI
[
Ω†Ω rµrµ

]
− 2trI

[
Ω†`µΩrµ

])
(3.5.17)

−
igA

4

(
trI

[
`µ

[
Ω(∂µΩ†) − (∂µΩ)Ω†

]]
+ trI

[
rµ

[
Ω†(∂µΩ) − (∂µΩ†)Ω

]])
. (3.5.18)

To arrive at the final result the cyclicality of the trace was used and the fact that aµbµ = aµbµ. In this

expansion line Eq. (3.5.16) just gives the kintetic energy of the scalar fields, the second line (Eq. (3.5.17))

gives the quadratic interactions between gauge and scalar fields (and through the VEV the gauge field

masses as well) and the last line (Eq. (3.5.18)) leads to the current contributions from the scalar fields.

As the title of this section indicates line Eq. (3.5.17) will be in the focus for the remaining paragraph.

The currents of the present model will be discussed in Sec. III.5.4.

As discussed in the previous section, the contribution from the UV(1) gauge field, bµ, vanishes from

the covariant derivative, DµΩ, and therefore in this section the field will be set to zero (bµ = 0). To

analyse the quadratic interaction between gauge and scalar fields some traces in iso-spinor space need to

be calculated. The derivations can be reviewed in App. A.8 and here only the results will be employed.

23)Using the cyclic permutivity of the trace gives the invariance of the term. The factor of 1/4 combines the 1/2 from a kinetic
term with the 1/2 from the isospin trace.
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The different terms in line Eq. (3.5.17) turn out to be:

1
4

trI
[
ΩΩ†`µ`

µ
]
bµ=0

=
1
8

Ωα(Ω?)β `a
µ`

b µ 1
2

trI
[
qαq̄βτaτb

]
(3.5.19)

=
1
8

Ωα(Ω?)β `a
µ`

b µ
(
δαβδab

∣∣∣3
α,β=0 +

[
−δα0εβab + δβ0εαab − δαaδβb + δαbδβa

]3

α,β=1

)
=

1
8

Ωα(Ω?)α `b
µ`

b µ =
1
8
||Ω||2`µ`

µ . (3.5.20)

Here ? denotes the complex conjugation (remember that Ωα ∈ C1) and the vectorial gauge field, `µ =

(`1
µ, `

2
µ, `

3
µ)T, contains just the S UL(2) contribution. The additional factor of 1/4 in the second equality

comes from the generators of (`µ = `a
µτ

a/2 + bµI). To arrive at the third line it was used, that `a
µ`

b µ

is symmetric in the iso-spinor indices, a and b, while the part in square brackets in the second line is

antisymmetric in a and b. Therefore this contribution vanishes and only the product of ‘norms’ survives.

The quadratic term in rµ can be calculated completely analogously, since the only change takes place in

the antisymmetric part, which vanishes anyway. One finds:

1
4

trI
[
Ω†Ω rµrµ

]
bµ=0

=
1
8
||Ω||2 rµrµ . (3.5.21)

The final contribution to the quadratic interaction comes from the remaining mixed term. Due to this

mixing and the slightly different structure, this contribution is a bit more tedious.

−
1
2

trI
[
Ω†`µΩrµ

]
bµ=0

= −
1
4

(Ω?)αΩβ `a
µ rb µ 1

2
trI

[
q̄ατaqβτb

]
(3.5.22)

= −
1
4

(Ω?)αΩβ `a
µ rb µ

((
δα0δβ0 − δαβ

∣∣∣3
α,β=1

)
δab

+
[
δα0εaβb + δβ0εaαb + δαaδβb + δαbδβa

]3

α,β=1

)
(3.5.23)

= −
1
4

[
(|Ω0|

2 − |Ω j|
2)`k

µrk µ + 2<
[
Ω?

0 Ω jε jab + Ω?
a Ωb

]
`a
µrb µ

]
. (3.5.24)

In the last line the indices of Ω have been changed from upper to lower ones only for notational reasons

and all Latin indices run from 1 to 3. 2<[Z] = (Z +Z?) is the real part of the argument. One can get from

the second to the third line by noticing that this time the bracket is symmetric in α and β24). Combining

this with the fact that α and β connect a complex scalar field, Ω j, with its complex conjugate, Ω?
j , leads

to the above identification with the real part.

Now the complete quadratic interaction between the gauge fields and the scalar field, Ω, can be written

24)The reason for the symmetry in indices rather than the previously encountered antisymmetry is the different structure of Pauli
matrices in the trace.
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down explicitly. Combining Eq. (3.5.20) with (3.5.21) and (3.5.24) leads to:

Lquad =
g2

A

4

(
trI

[
ΩΩ†`µ`

µ
]

+ trI
[
Ω†Ω rµrµ

]
− 2trI

[
Ω†`µΩrµ

])
(3.5.25)

=
g2

A

4
trI

[(
`µΩ −Ωrµ

)†(
`µΩ −Ωrµ

)]
(3.5.26)

=
g2

A

2
|Ω0|

2
∣∣∣∣12(`k

µ − rk
µ)

∣∣∣∣2 +
g2

A

2
|Ω j|

2
∣∣∣∣12(`k

µ + rk
µ)

∣∣∣∣2 − g2
A

2
<

[
Ω?

a Ωb + Ω?
0 Ω jε jab

]
`a
µrb µ . (3.5.27)

The second line is just inserted here as it is a neat abbreviation of the first line, which can be gained

by using the cyclicality of the trace. In addition it may help to understand the structural complications

that will show up in the final mass terms (Eq. (3.5.29)). In line Eq. (3.5.27) the absolute value of the

gauge field is just an abbreviation standing for: |(`k
µ − rk

µ)/2|2 = (`k
µ − rk

µ)(`k µ − rk µ)/4. Again all indices

are to be summed over. Using this result (Eq. (3.5.27)) it is possible to work out all allowed quadratic

interactions between scalar fields and the gauge fields25). While the interactions are interesting in any

later calculation, for now it is only important, that no prohibited interactions, such as charge creating

terms, occur. As any explicit derivation of the vanishing problematic terms would directly result in

calculating all of them, the reader is left with the unpleasant comment: "Rest assured, they all vanish."

Of course, everyone is invited to check these calculations.

In contrast to this slightly ignorant comment, there is still the gauge field mass, which is crucial in

the presented model. The gauge field mass is considered as an intersting topic, as this mass led to the

complications of constrained instantons in the earlier presentations (Sec. II.9.8) and so the outcome for

this mass in the present model is of interest. It can be calculated by analysing Eq. (3.5.27) in the case

where Ω going to its VEV. As in Sec. III.4 the vacuum is assumed to be charge neutral and parity even.

This means that the only possible contributions come form the σ- and the δ3-fields: 〈Ωαqα〉 = RσI+Rδτ3.

In complex vector notation one has: 〈Ω0〉 = Rσ, 〈Ω3〉 = iRδ and 〈Ω1〉 = 〈Ω2〉 = 0. Using this, Eq.

(3.5.27) gives the following masses for combined gauge fields:

Lquad(〈Ω〉) =
g2

A

8

(
R2
σ|`

k
µ − rk

µ|
2 + R2

δ |`
k
µ + rk

µ|
2 − 4R2

δ`
3
µr3 µ

)
(3.5.28)

=
g2

A

2
(R2

σ + R2
δ)

∣∣∣∣`3
µ − r3

µ

2

∣∣∣∣2 +
g2

A

2
R2
σ

(∣∣∣∣`1
µ − r1

µ

2

∣∣∣∣2 +
∣∣∣∣`2
µ − r2

µ

2

∣∣∣∣2)
+

g2
A

2
R2
δ

(∣∣∣∣`1
µ + r1

µ

2

∣∣∣∣2 +
∣∣∣∣`2
µ + r2

µ

2

∣∣∣∣2) (3.5.29)

=
1
2

(gARσ)2 |Aµ|2 +
1
2

(gARδ)2
(
|Aµ3 |

2 + |Vµ
1 |

2 + |Vµ
2 |

2
)
. (3.5.30)

25)For this the ladder operator representation A+ ∼ (A1 + iA2); A− ∼ (A1 − iA2) is useful.
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Note that only one term survives, which mixes left- and right-handed fields from Eq. (3.5.27). This is

due to the particular choice of the VEV, that leads to
(
2<

[
〈Ω〉?a 〈Ω〉b + 〈Ω〉?0 〈Ω〉 jε jab

]
(a,b) = 0

)
. In the last

line (Eq. (3.5.30)) the (axial-) vector basis has been introduced, A j
µ := (` j

µ − r j
µ)/2 and V j

µ := (` j
µ + r j

µ)/2.

The mixing of scalar and gauge fields gives rise to the masses of `µ, rµ and some linear combinations of

them. As the instantons parts can be constructed from the general left- and right-handed gauge fields, the

above equations determine their mass spectrum and effective low energy structure.

One sees that the strict separation into instanton and anti-instanton (which would be `con
µ and rcon

µ here)

breaks down and both parts become coupled through the scalar field VEV. This does not lead to new

complications, as it is just the already expected low energy behaviour of constrained instantons - compare

Sec. II.9.8.1 and Eq. (2.9.71). While the constraints that produced the constrained instanton solution

guaranteed the existence of instanton-like structures for small distances (|x| << ρ), they implicitly forced

these structures to break down at large distances (|x| >> ρ). Ultimately this meant that the gauge fields

behaved as free, massive particles in the low energy regime (compare Eq. (2.9.71)). So, just as for

fermions (Sec. II.5), the left- and right-handed gauge field parts become coupled through the mass term.

To get some acquaintance with the mass terms first focus on the case of vanishing δ-meson VEV (Rδ →

0). This scenario establishes the connection of the present model to its ancestor - the linear σ-model.

In Eq. (3.5.30) only the first term survives, which means that only the axial gauge field acquires a

mass of Max = Rσ. In the language of group theory the axial generators, T i j
ax, are broken by the VEV[

T i j
ax〈Ω〉 j , 0

]
and the vector generators, T i j

vec, remain unbroken
[
T i j

vec〈Ω〉 j = 0
]26). So by expanding the

model around its VEV the axial symmetry is lost, while the vectorial part remains a symmetry of the

model. The general structure of spontaneously broken gauge symmetries is very interesting itself, but

unfortunately more details on this analysis have to be discussed in one of the introductory textbooks of

field theory (e.g. Ref. [5, p.526-542]). For now it is sufficient to observe that the six gauge fields are

grouped into two triplets - the massive axial fields and the massless vectorial fields.

The situation significantly changes if one allows for a nonzero VEV of the δ-meson (Rδ , 0). In this

case the well ordered structure of the σ-model gets somewhat messed up. Now the nice triplet separation

vanishes. In the axial sector the third component couples to both VEV contributions, leading to a mass

of Max
3 = gA

√
R2
σ + R2

δ, while the other two axial components only couple to the σ-meson VEV, which

gives them only a mass of Max
1,2 = gARσ. In the vectorial sector the triplet breaks down as well. Here the

generators of Vµ
1 and Vµ

2 are broken by the δ-meson VEV and thus get a mass of Mvec
1,2 = gARδ. The third

component of the vectorial gauge field remains the only massless field in this model. So the V3-direction

26)The VEV breakinging of the generators for the linear σ-model is nicely accessible in a 4 dimensional S O(4) representation.
Here the VEV is 〈Ω〉 = (σ0, 0, 0, 0)T and the generators are given in the following matrix:

T 4 =


0 a1 a2 a3

−a1 0 v3 v1

−a2 −v3 0 v2

−a3 −v1 −v2 0

 (3.5.31)
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corresponds to the symmetry, which remains intact in the transition to the VEV of the model27).

III.5.4 Currents and gauge fields

In the previous section the quadratic interaction between gauge and scalar fields was discussed. Looking

at Eq. (3.5.15), one finds that the last contribution (Eq. (3.5.18)) still has to be discussed. This part

couples the scalar currents to the gauge fields, `µ and rµ. With the two relation Eq. (A.12) and (A.13)

the terms can be evaluated in a similar way as the quadratic contributions in the previous section. Just

as before, bµ does not contribute in the final result, as all terms are still part of the scalar kinetic term

(compare the discussion in Sec. III.5.2).

Lcur
Ω,` : = −

igA

4
trI

[
`µ

(
Ω{∂µΩ†} − {∂µΩ}Ω†

)]
bµ=0

(3.5.32)

= −
igA

4
`a
µ

{
Ωα{∂µ(Ω?)β} − {∂µΩα}(Ω?)β

}
1
2

trI
[
τaqαq̄β

]
(3.5.33)

= −
igA

4
`µ i

{(
Ω0{∂

µΩ?} −Ω{∂µΩ?
0 }

)
−

(
{∂µΩ0}Ω

? − {∂µΩ}Ω?
0

)
+Ω × {∂µΩ?} − {∂µΩ} ×Ω?

}
(3.5.34)

=
gA

2
`µ<

{
−
[
{∂µΩ0}Ω

? −Ω0{∂
µΩ?}

]
+Ω × {∂µΩ?}

}
. (3.5.35)

From the third line on a vector notation was used to prevent a cluttered index notation. As in Sec. III.4.1,

bold symbols correspond to a ‘3-vector’ (e.g.: Ω = (Ω1,Ω2,Ω3)T) and the symbol × stands for the cross

product28). To arrive at line Eq. (3.5.35) it was used, that the components of Ω are scalars and thus

commute. Analogously the right-handed current from Eq. (3.5.15) can be evaluated. One finds a very

similar result:

Lcur
Ω,r : = −

igA

4
trI

[
rµ

(
Ω†{∂µΩ} − {∂µΩ†}Ω

)]
bµ=0

(3.5.36)

=
gA

2
rµ<

{
{∂µΩ0}Ω

? −Ω0{∂
µΩ?} +Ω × {∂µΩ?}

}
. (3.5.37)

27)The present jargon is heavily based on the standard treatment of spontaneous symmetry breaking in the electroweak Higgs
model, which can be reviewed in Ref. [34, p.147-155] or [5, p.526-542].

28)(a × b)i := εi jka jbk
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Compared to the left-handed current the only difference is the sign of the ‘bracket part’. Now Eq. (3.5.35)

and (3.5.37) can be combined to find the total scalar current:

Lcur
Ω := Lcur

Ω,l +Lcur
Ω,r (3.5.38)

= gA
1
2

(rµ − `µ)︸      ︷︷      ︸
=Aµ

<

{
{∂µΩ0}Ω

? −Ω0{∂
µΩ?}

}
+ gA

1
2

(`µ + rµ)︸      ︷︷      ︸
=Vµ

<

{
Ω × {∂µΩ?}

}
. (3.5.39)

In Sec. III.4.1 the conserved scalar currents (Noether currents) where derived in the case of a global

S UL(2) � S UR(2) � UV(1) symmetry. Now, comparing Eq. (3.4.50) and (3.4.53) with the result above

(Eq. (3.5.39)), shows that the local gauge model in this section has a nice connection to the model

with a global symmetry discussed in Sec. III.4.1. This time the symmetry transformations are local

(ε`/r = ε`/r(x)), leading to the left- and right-handed gauge fields and ultimately to their vectorial and

axial equivalences. The above equation (Eq. (3.5.39)) now shows that these gauge fields couple to

currents of the same form as the earlier found Noether currents of the global symmetry case. From Sec.

III.4.1.1 one knows that the currents connected to global symmetries where directly connected to the

symmetry breaking terms in the scalar Lagrangian (Eq. (3.4.9)). Therefore this connection gives a nice

starting point to examine the influence of the symmetry breaking terms on a gauge field model with local

symmetries.

Before ending the discussion of the gauge field coupling terms it should be mentioned that a derivation

of conserved currents in this (local gauge) model is not as straight forward as it was before in the global

symmetry case. The reason for this is that one has to choose a particular gauge in order to remove gauge

redundancies from the model. This gauge fixing contribution complicates things slightly and makes it

more difficult to identify the complete conserved currents. The next section will give the most important

relations to fix a gauge for the derived model.

III.5.5 Gauge fixing and ghost fields

In preceding sections from Sec. III.5 up to this point, the global gauge model from Sec. III.3 to III.4.1.1

was step by step promoted to its local counter part. This was done in the left- and right-handed spinor

basis, as the scalar and nucleon sector of the model was explicitly constructed in this representation. The

last step that remains to be done is to fix a gauge for the non-abelian gauge fields, Aµ and Vµ. Compared

to the abelian case there are some complications, when chosing a gauge for a non-abelian gauge model.

The reason for this is directly connected to the non commutiativity of the gauge field generators in such

a model. They lead to additional contributions, that will spoil the advantages of a naively chosen gauge.

The procedure, that leads to a suitable, convenient gauge in non-abelian models is nicely introduced in

Ref. [5, p.430-434]. For the present discussion only the main general results will be adopted.
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• If a particular gauge fixing term Lgf is included in the Lagrangian, then this leads to another

additional term in the Lagrange densitiy, which is usually called the ghost Lagrangian Lgh.

• Take a gauge fixing term Lgf = −KkKk/(2ξ), with some gauge fixing function Kk = Kk(x). Then

the corresponding ghost Lagrangian has the form:

Lgh = −(c†)k δKk

δϑl cl . (3.5.40)

• Here (c†)k and cl are the ghost fields. They are complex grassmann valued fields. They are no

physical particles, but in the formal derivation of the gauged Lagrangian they show up (and affect

observables, like scattering amplitudes of physical particles) and thus they have to be included.

• The transformation of a gauge field, Aa
µ, under a symmetry transformation with the parameters

ϑc = ϑc(x) can be written as:

U−1(ϑc)Aa
µU(ϑc) = Aa

µ − (Dµ)acϑc . (3.5.41)

With these tools the gauge of the earlier presented model can be fixed and the corresponding ghost

Lagrangian can be found. For this procedure only the interactions of the gauge fields and the scalar

sector will be of interest.

Earlier the spinor basis was chosen to derive all terms in the Lagrange density. For the present task it

is more convenient to rewrite the spinor representation into a higher dimensional real representation of

the same symmetry group. The non-abelian gauge symmetries of interest have their generators in iso-

spinor space (`µ = `a
µτ

a/2 and rµ analogously). From the construction of the field Ω = (Φ + iΛ)αqαI and

the complete scalar Lagrangian one knows that the model is invariant under a 4-dimensional rotational

symmetry acting on the real or on the imaginary part of Ω (compare the first part of Sec. III.4). This

symmetry corresponds to a translation of the iso-spinor representation into a real 4-dimensional one

(S O(4) ' S U(2) � S U(2) compare Sec. II.2).

But, since Ωα = (Φα + iΛα) is a complex prefactor to the quaternion symbol qαI , the translation into

a 4-dimensional space is not sufficient to generate a real representation of the symmetry group in the

present case. For this one has to enlarge the 4-dimensional representation to an 8-dimensional one. In

the first four elements of the space lives the ordinary σ-model (Φ-field) and in the second set lives the

newly introduced Λ-field: Ωv = (ΦT,ΛT)T. Unfortunately in the 8-dimensional representation one does

not know the correct generators of the symmetry group, S UL(2)�S UR(2). To find them the results from

Sec. III.5.3 and III.5.4 come in quite handy. Eq. (3.5.27) and (3.5.39) show, that there are no interactions

between the Φ- and the Λ-part of the model. On the other hand, looking at the appearing terms in these

equations reveals that they just correspond to the ordinary linear σ-model interactions. As one already

knows that this model has a S O(4) symmetry, one can now construct the 8-dimensional generators. Take
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all generators of 4-dimensional rotations in the vectorial/axial-representation as:

G̃4 = iTS O(4) =


0 a1 a2 a3

−a1 0 v3 v1

−a2 −v3 0 v2

−a3 −v1 −v2 0


29) ai = vi = 1 . (3.5.42)

From this define a single generator as G̃4
j , with j ∈ {1, 2, ..., 6}. This shall be understood as G̃4

1, G̃4
2, G̃4

3

being the axial generators and G̃4
4, G̃4

5, G̃4
6 the vectorial generators. The 8-dimensional generators are

then:

Gk =

G̃4
k 0

0 G̃4
k

 = G̃4
k � G̃4

k ; k ∈ {1, 2, ..., 6} . (3.5.43)

Each entry here represents a (4 × 4)-matrix. The off-diagonal zeros reflect the fact that there are no

interactions between the Φ and the Λ part of the model. With the 8-dimensional generators of the

symmetry group the six gauge field, `k
µ and rl

µ, in this representation are: Aµ = −iAk
µGk. The factor of

−i is included, to compensate the additional factor of +i in the generators (Eq. (3.5.42)). And now the

covariant derivative becomes:

Dab
µ = (∂µ − igAAµ)ab = δab

8 ∂µ − gAAk
µ(Gk)ab (3.5.44)

= δab
8 ∂µ − gA[(Acon)µ + aµ]k(Gk)ab = D̄ab

µ − gAak µ(Gk)ab . (3.5.45)

As usually the unit matrix in front of the derivative will be left out from now on. In the second line the

gauge field has been splitt up into an instanton contribution, (Acon)k µ, and a fluctuation, ak µ. For the final

equality the abbreviation D̄µ := ∂µ−gA(Acon)µ was introduced. Using such a separation allows to express

the model in an extended background gauge. The pure background gauge for the instanton formalism

(without a scalar VEV) was introduced in Sec. II.9.3. The results from that section will also be used, but

in the present case the presence of Ω makes the situation a bit more complicated.

Note that all terms in the covariant derivative are real in this representation. This is a general property of

the real S O(N) representation and the reason, why it is convenient to work out the explicit gauge fixing

terms in this picture. The scalar field in the vectorial representation is: |Ω〉 := Ωv = (σ,πT, η, δT)T. For

the calculations to come it is useful to split the field up into a VEV contribution, |3〉 := (σ0ê1 + δ0ê8), and

a space-time dependent part, |ω〉, which incorporates the physical meson fields. The covariant derivative

29)The factor of i was included to make the matrices purely real (the generators of rotations are purely imaginary).
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acting on the scalar field then becomes

(Dµ)ab|Ωb〉 = Dµ|Ω〉 =
[
∂µ − gAAµkGk

](
|3〉 + |ω〉

)
(3.5.46)

= D̄µ|ω〉 − gA(Acon
k )µGk|3〉 − gAaµk

(
Gk|3〉 + Gk|ω〉

)
(3.5.47)

= |D̄µω〉 − gA(Acon
k )µ|Fk〉 − gAaµk (|Fk〉 + |ω〉) . (3.5.48)

In the last line the definitions |Fk〉 := Gk|3〉 and |D̄µω〉 := D̄µ|ω〉 have been used. As this expression is

completely real, the kinetic energy is just given by the scalar product of this expression with itself:

Lkin
Ω =

1
2

(
Dab
µ Ωb

v

)(
(Dµ)acΩc

v

)
=

1
2
〈Ω|
←−
D T
µ Dµ|Ω〉 (3.5.49)

=
1
2

(
〈D̄µΩ| − gA〈Ω|aµ

)(
|D̄µΩ〉 − gAaµ|Ω〉

)
(3.5.50)

=
1
2
〈D̄µΩ|D̄µΩ〉 + gAaµk 〈Ω|Gk|D̄µΩ〉 +

g2
A

2
ak µaµl 〈Ω|GkGl|Ω〉 (3.5.51)

=
1
2
〈D̄µω|D̄µω〉 (3.5.52)

+
g2

A

2
ak µaµl

(
〈Fk|Fl〉 + 2〈Fk|Gl|ω〉 + 〈ω|GkGl|ω〉

)
− gAaµk 〈ω|Gk|D̄µω〉 (3.5.53)

+
1
2

g2
A〈Fk|Fl〉 (Acon

k )µAcon
l µ︸                        ︷︷                        ︸

→mhiggs

−gA
(
(Acon

k )µ + aµk︸        ︷︷        ︸
=Aµk

)
〈Fk|D̄µω〉 . (3.5.54)

To arrive at the last equality only fundamental algebra was used30), and everything was rearranged such

that the different constituents of scalar and gauge field are well separated. The above equation is in fact

already well known from Eq. (3.5.15) and does only come in a little disguise here. The advantage of

this representation is the separation into distinct contributions. Line Eq. (3.5.52) gives the kinetic term

of the physical scalar mesons, ω, and, via the covariant derivative, D̄µ, their interactions with instantons,

Acon
µ . In the next line (Eq. (3.5.53)) the interactions with the gauge field fluctuations, aµ, are treated and

the final line incorporates the somewhat special contributions. By integrating over the first term of line

Eq. (3.5.54), this gives the Higgs measure contribution, mhiggs, discussed in Sec. II.9.8. The final term in

line Eq. (3.5.54) is slightly odd, as it couples the gauge field via the VEV to the derivative of the scalar

field. Fortunately this contribution will not spread confusion for too long, since it can be gauged away,

using the so called Rξ gauge. Before doing this, the ‘mass matrix’, Mkl
A = g2

A〈Fk|Fl〉, can be introduced,

which generates the masses of instantons and the fluctuations aµ. Also the earlier discussed coupling of

the gauge field to currents (Eq. (3.5.39)) can be identified: Lcur
Ω
∼ −gAAµk 〈ω|Gk|∂µω〉.

30)For this note that

〈D̄µΩ|D̄µΩ〉 = 〈D̄µω|D̄µω〉 − 2gAAcon
k µ 〈Fk |D̄µω〉 + g2

A(Acon
k )µAcon

l µ 〈Fk |Fl〉 (3.5.55)
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Now, as the new aspects of this representation are discussed, the Rξ gauge can be introduced. For this

take the gauge fixing functional, Kk =
(
D̄µAµk − ξgA〈ω|Fk〉

)
, to construct the gauge fixing Lagrangian.

Again D̄µ is the covariant derivative only containing the instanton gauge field. This gauge corresponds

to the so called background gauge, which was already discussed (in the absence of a scalar VEV in Sec.

II.9.3). As gauge fixing Lagrangian one obtains

Lgf =
1
2ξ

KkKk =
1
2ξ

(
D̄µaµk − ξgA〈ω|Fk〉

)(
D̄µAµk − ξgA〈ω|Fk〉

)
(3.5.56)

=
1
2ξ

(D̄µAµk )(D̄νAνk) +
ξg2

A

2
〈ω|Fk〉

2 −gAD̄µAµk 〈ω|Fk〉︸               ︷︷               ︸
=gAAµk 〈D̄µω|Fk〉

. (3.5.57)

The last term now nicely compensates the last contribution in line Eq. (3.5.54). The parameter ξ is an

arbitrary gauge parameter, which means on the one hand that it can be adjusted to simplify calculations

and on the other hand no physical quantity can depend on it, as it is arbitrary. To arrive at the gauge from

Sec. II.9.3 one needs ξ = −1/2.

Finally, as a last step, the ghost Lagrangian can be calculated. For this, one needs the transformation of

the gauge fixing term, Kk, under the symmetry group. From Eq. (3.5.41) one knows how the gauge field

transforms under symmetry transformations and one only needs find the transformation of the scalar field.

In Eq. (3.5.43) the 8-dimensional generators of the symmetry group where given and so |ω〉 transforms

under an infintessimal transformation as:

|ω〉 → |ω〉 − gAϑkGk|Ω〉 . (3.5.58)

With this, the derivative of the gauge fixing term, Ka, with respect to ϑb becomes

δKa

δϑb
= −D̄µ(Dµ)ab + g2

Aξ〈Fa|Gb|3〉 + g2
Aξ〈Fa|Gb|ω〉 (3.5.59)

= −D̄µ(Dµ)ab + ξ(M2
A)ab + ξg2

A〈Fa|Gb|ω〉 . (3.5.60)

and thus the ghost Lagrangian is at hand using Eq. (3.5.40):

Lgh = −(D̄µc† a)(Dµ)abcb − ξc† a(M2
A)abcb − ξg2

Ac† a〈Fa|Gb|ω〉cb . (3.5.61)

This closes the calculation of the Lgf and Lgh. If the fluctuation field aµ only has the size of quantum

fluctuations (that is to say there is no dynamical vector meson contribution), then
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III.6 The complete model

As a closing step the different parts of the effective model, which have been developed throughout the

previous sections, are reassembled to give the complete Lagrange density. As all details, concerning any

contribution have been discussed in detail already, this section will only give a very brief summary on

the different parts. The purpose of this ‘rediscussion’ of the complete Lagrange density is to emphasise

the main aspects of the introduced model without cluttering everything with too many details.

As a starting point of the model the Lagrange density from Eq. (3.2.13) was used:

Lmodel = LN +LΩ +Lgfh +
a2

4

(
e−iθΩ2

α + e+iθΩ† 2
α

)
θ(sρ − x) , (3.6.1)

where a was an effective parameter, due to induced instanton zero-mode interactions. Of course, al-

though not explicitly indicated, all terms were effective contributions. For calculatory reasons the Heav-

iside function was dropped and from experimental observations (there are no observed parity violating

contributions to strong interactions) the vacuum angle was set to θ = 0. With these simplifications the

instanton related term in the Lagrange density turns into an effective contribution to the scalar potential

and thus the effective Lagrange density becomes:

Lmodel = LN +LΩ +Lgfh (3.6.2)

= Lf
N +Lf

Ω +Lgfh +LNA +LNΩ +LΩA +LΩΩ . (3.6.3)

In the first line the instanton part is absorbed in LΩ and the second line is only a rearrangement. Here

the superscript f stands for the ‘free’ Lagrange densities, while the parts with two subscript fields are the

interaction parts between ‘nucleons’, N, scalars, Ω, and the (instanton) gauge field, Aµ. By scavenging

through the previous sections all different parts in Eq. (3.6.3) can be identified.

The nucleon Lagrangian was given in Eq. (3.3.14) and with this one finds:

Lf
N = N

[
iγµ∂µ + MN

]
N , (3.6.4)

where MN = gΩ diag(Rσ + Rδ,Rσ − Rδ) is the nucleon’s mass matrix with the VEV contributions from

the scalar sector, as it was introduced in Sec. III.4. This mass matrix leads to a generalisation of the

Goldenberger-Treimann relation for the case of non-vanishing δ−meson VEV.

The free scalar Lagrangian can be obtained from the final effective potential (expanded around the mini-

mum) of Eq. (3.4.37):

Lf
Ω =

1
2

[
∂µσ∂

µσ + ∂µπ∂
µπ + ∂µη∂

µη + ∂µδ∂
µδ

]
−

1
2

[
m2
σσ

2 + m2
δδ

2
3 + m2

ππ
2 + m2

δη(δ
2
1 + δ2

2 + η2)
]
. (3.6.5)
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The intimate relations between the different parameters of the free nucleon and scalar Lagrangian can be

reviewed in Sec. III.4 and in more detail, for explicit parameter fixing schemes in Sec. III.4.3. As earlier,

one has to keep in mind, that the mesons, indicated above, could be identified with various physically

observable states. So far the lowest lying meson states have been used, but in principle one is free to

choose other states, as long as the particular mass splitting is maintained (mσ > mπ and mδ > mη).

Especially the here labelled η−meson cannot be identified naively with its physical counterpart. The

problems, connected to this identification were discussed in Sec. III.4.3.1.

The interactions between fermionic and scalar fields were chosen in a very simple fashion in Eq. (3.3.11):

LNΩ = gΩ(NLΩ†NR + NRΩNL) = gΩN
[
(σ − iγ5η) + τ(δ + iγ5π)

]
N (3.6.6)

and there is not much more to say about these. Coming to self-interactions of the scalar field, there

is again not too much to say about them. In principle they are a direct consequence of the employed

‘Higgs-mechanism’ in the scalar sector and their coefficients were found in Eq. (3.4.37).

LΩΩ =λ2(Rσσ + Rδδ3
)(
σ2 + π2 + η2 + δ2) +

λ2

4
(
σ2 + π2 + η2 + δ2)2

+ 2λ2RσRδσδ3 . (3.6.7)

While the first line, with the cubic and quadric interactions, is just a standard form for ‘Higgs-like’

potentials, the second line is slightly strange. It gives a quadratic interaction between the σ− and the

δ3−meson. The reason for its appearance lies in the structure of the VEV configuration, which explicitly

connects both mesons. At the end of Sec. III.4 this topic was discussed and an alternative representation

of the scalar potential was presented (Eq. (3.4.39)).

The coupling of the scalar and gauge fields consists of two components. While the current coupling

is most conveniently presented together with the fermionic current coupling, there is also a quadric

interaction between gauge and scalar fields, arising from the covariant kinetic term for scalar fields. All

possible interactions where given in the most compact form in Eq. (3.5.27)

L
quad
ΩA =

g2
A

2
|Ω0|

2
∣∣∣∣12(`k

µ − rk
µ)

∣∣∣∣2 +
g2

A

2
|Ω j|

2
∣∣∣∣12(`k

µ + rk
µ)

∣∣∣∣2 − g2
A

2
<

[
Ω?

a Ωb + Ω?
0 Ω jε jab

]
`a
µrb µ , (3.6.8)

where Aµ = (`µ − rµ)/2 is the axial gauge field and Vµ = (`µ + rµ)/2 the vectorial one. Apart from

interactive contributions this term, in combination with the scalar VEV led to the effective gauge field

masses, which were summarised in Eq. (3.5.30) and turned out to be Max
3 = gA

√
R2
σ + R2

δ, Max
1,2 = gARσ,

Mvec
1,2 = gARδ and Mvec

3 = 0. The label ax and vec distinguishes axial and vectorial parts of the complete

gauge field.

Coming to the current interactions, in the sections Sec. III.3.3 and III.4.1 the nucleon and scalar currents

in the case of a global symmetry where presented. Later, in Sec. III.5.4 it was explicitly shown for the
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scalar part, that the gauge fields couple to the found Noether currents from the global symmetry case

(Eq. (3.5.39)). While not derived explicitly, the definitions of the covariant derivatives (Eq. (3.5.8) and

(3.5.9)) can be used to find the analogous result for the coupling between gauge fermionic fields. Thus

the gauge field coupling terms can be split up into an axial, a vectorial and a UV(1) contribution.

LΩA +LNA = Lax +Lvec +LB , (3.6.9)

Lax = gA Aµ

[
Nγµγ5

τ

2
N +<

{
{∂µΩ0}Ω

? −Ω0{∂
µΩ?}

}]
, (3.6.10)

Lvec = gAVµ

[
Nγµ

τ

2
N +<

{
Ω × {∂µΩ?}

}]
, (3.6.11)

LB = gAbµNγµ N . (3.6.12)

Here the nucleon currents have been adopted from Eq. (3.3.24) and (3.3.26) and the scalar currents come

from Eq. (3.5.39). Aµ stands for the axial gauge field, Vµ for the vectorial one and bµ is the UV(1) gauge

field. In Sec. III.4.1.1 it was discussed that the VEV of the scalar field leads to an explicit violation

of conserved currents and it was found that only the third vectorial and the baryon number currents

remained conserved in the presence of 〈Ω〉 = (σ0I + δ0τ3). Thus the conserved charges in the model are:

Q3
V = ( j3V)0 = (p†p − n†n) + 2i

(
π+

←→
∂t π− + δ+

←→
∂t δ−

)
, (3.6.13)

QB = ( jB)0 = (p†p + n†n) . (3.6.14)

The first equation is obtained by combining Eq. (3.3.27) with (3.4.68) and the second equality was given

in Eq. (3.3.28). The effects of breaking the current conservation in the remaining components of the

vectorial and axial currents where discussed in Sec. III.4.1.1 and summarised in Eq. (3.4.64)-(3.4.66).

Now the remaining contribution to the effective Lagrangian (Eq. (3.6.3)) is the gauge fixing and ghost

term. These contributions have been discussed in Sec. III.5.5. The results for an extended background

field gauge were found to be:

Lgf(ξ) =
1
2ξ

(Dcon
µ Aµk )(Dcon

ν Aνk) +
ξg2

A

2
〈ω|Gk|3〉

2 − gAD̄µAµk 〈ω|Gk|3〉 , (3.6.15)

Lgh(ξ) = −(Dcon
µ c† a)((Dcon)µ)abcb − ξc† a(M2

A)abcb − ξg2
Ac† a〈3|GaGb|ω〉cb . (3.6.16)

Here the notation has not been translated back to the earlier used conventions. Some important connec-

tions are the VEV, |3〉 = 〈Ω〉, the physical scalar fields, |ω〉, the generators of the gauge transformations

(in a real representation), Gk, the mass matrix, (M2
A)ab = g2

A〈3|GaGb|3〉, and the covariant derivative con-

taining only the instanton field, Dcon
µ . For further clarifications one should have another look into the

derivations of Sec. III.5.5.

With this, the main aspects of the model, derived in this chapter, are summarised and of course further

details concerning interpretations and derivations can be found in the corresponding sections.

121



IV Conclusive remarks

This work has picked up on an old topic of non-perturbative QCD. In the late nineteen seventies the

isospin structure of the linear σ-model was generalised in the context of instantons for the first time

by Saito and Shigemoto (Ref. [1]). Their generalised model included four degrees of freedom: the

pionic Goldstone mode, π, (pseudo-scalar, iso-vector), the σ-meson (scalar, iso-scalar) with mass, mσ,

a (pseudo-scalar, iso-scalar) contribution, η̃, and the (scalar, iso-vector) part, which was named δ-meson

in the present context. In their derivation the η̃- and the δ-field acquired the same mass via an induced

potential contribution from the instanton sector. At the time, the generalisation was done with ‘pure’

instantons.

In the present work the old derivation has been redone by the means of the later found constrained

instanton fields. In addition the formalism was enlarged to accomodate fermionic contributions as well

and a detailed analysis of the involved interactions and current contributions was presented.

IV.1 Summary

In chapter II the theoretical concepts have been presented that are needed for the generalisation of the

linear σ-model in the context of instanton physics. In the general introduction of Sec. II.8 instantons

were introduced as explicit gauge field configurations that minimised the Euclidean action, S E. Later, in

Sec. II.9.8, it was found that the coupling of instanton fields to scalars with non-vanishing VEV opened

the possibility to lower S E without bounds and therefore this kind of coupling led to a breakdown of

the concept of instantons. This observation is the key argument against Saito’s and Shigemoto’s gener-

alisation of the linear σ-model. Since the linear σ-model explicitly includes a VEV contribution in the

scalar sector, its coupling to instanton configurations inevitably destabelises the instanton and forces it

to vanish.

In order to save the general ideas, concerning Saito’s and Shigemoto’s extended σ-model, in Sec. (II.9.8)

suitable constraints were added to the original model that prevented the destabelisation of the instanton

solution. This gave rise to the concept of constrained instantons, Acon
µ . These field configurations are

constructed such that the original instanton field is maintained in a small neighbourhood around the posi-

tion, x0, of Acon
µ and then falls off exponentially at large distances. This behaviour allows to give analytic

expressions for constrained instantons in the ‘small’ and ‘large’ distance limit.



IV.1. Summary

In the remaining sections of chapter II (from Sec. II.9.8 onwards) the contribution to the partition func-

tion, which arises from constrained instantons was calculated. For this derivation the scalar field was

explicitly assumed to have the iso-spinor representation Ω = ΩαqαI = (Φα + iΛα)qαI , with the quaternion

symbol, qαI , as it was defined in Sec. II.2. The scalar field components, Ωα, Φα and Λα were given

in Eq. (3.2.15). In addition, the VEV configuration of the scalar field was needed to be of the form

〈Ω〉 = Ω0I − iΩ3τ3 = diag
[
(Ω0 − iΩ3), (Ω0 + iΩ3)

]
. Under these assumptions the complete partition

function of a generic model, including constrained instanton effects in the context of the scalar field, Ω,

was derived in Eq. (2.9.161).

In chapter III the findings from chapter II were combined to rederive the generalised σ-model in the

context of constrained instantons, including an exemplary fermionic contribution, which was realised in

terms of the nucleon iso-spinors, N. In order to arrive at computationally tractable expressions some

simplifying assumptions concerning the constrained instanton contribution, Linst, had to be introduced.

Effectively these assumptions supressed all contributions that weren’t compatible with the interpretation

of Linst as a dynamical, local contribution to the scalar potential of the form: Linst = Vinst(Φ,Λ).

In Sec. III.3 the nucleon Lagrangian was discussed. Important results of this discussion were the dy-

namically generated proton and neutron masses, Mp = gΩ(Rσ + Rδ) and Mn = gΩ(Rσ − Rδ), where Rk

was the VEV contribution from the scalar field, k. Additionally the fermion-scalar interactions, given in

Eq. (3.3.11) and the fermionic contributions to the axial and vector currents (Eq. (3.3.24)) were derived.

While the fermionic current contributions exactly matched the findings from the ordinary σ-model, the

dynamical nucleon masses experienced an alteration compared to the σ-model. This alteration arose

naturally as a consequence of the new contribution to the scalar VEV from the (scalar, iso-vector) field,

δ.

Subsequently, in Sec. III.4, the scalar sector of the Ω-field was investigated. As the induced instanton

contribution, Vinst(Φ,Λ), directly gave a new term in the scalar potential, the effects of instantons on

the scalar sector were very prominent. The scalar potential incorporated a ‘Higgs-like’ potential, as it is

standard for the ordinary σ-model, the instanton part,Vinst(Φ,Λ), and a linear perturbation from nucle-

onic source terms, Vnucl(σ, δ3). Expanding this potential around its minimum configuration generated

the final effective potential of Eq. (3.4.37). This expansion dynamically generated four different masses,

mσ, mπ, mδ, mδη, and various cubic and quadric interaction terms. Later, in Sec. III.4.3, two different

approaches were proposed to identify the effective parameters of the derived model with physical ob-

servables. The first was focussed on a pure scalar model, in which parameters were tied to the in-vacuum

meson masses. In contrast to this ‘scheme’, the second approach was designed produces an effective, low

energy nucleon model, where the parameters were coupled to the effective proton and neutron masses

and three additional meson masses.

While the evaluation of the scalar currents led to similar structures as already known from the ordinary

σ-model (Eq. (3.4.50) and (3.4.53)), the parts that produced violations of conserved currents introduced

new terms in the generalised model. In the original σ-model current violating terms only appear in the
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IV.1. Summary

axial sector, but the situation is different in the generalised model from chapter III. The reason for this

has been found to be connected to the newly introduced linear potential term, Vnucl ∼ βδ3, which cou-

pled the third component of the δ-meson (scalar, iso-vector) to an external source. This term produced

additional current violating contributions in the first two vectorial components of the current, so that,

in the complete generalised model, only the third vectorial component of the current, ( j3V)µ, remained

conserved. All equations indicating current conservation violations are listed in Eq. (3.4.64)-(3.4.66).

To complete the discussion of the generalised σ-model the gauge field sector was investigated. As in-

stantons do not have a kinetic contribution, this analysis was limited to the derivation of the effective

gauge field masses and the interactions between instantons and fermionic or scalar fields. In the pre-

sented model interactions, as well as the mass terms, had their origin in the covariant derivative, which

couples the gauge fields (and with these the instantons) to the remaining fields of the model. The intro-

duction of the correct covariant derivatives, which rendered the complete model locally gauge invariant,

was presented in Sec. III.5.2. Using these relations, the covariant kinetic term of the scalar field pro-

duced the instanton-Ω coupling (compare Eq. (3.5.27)), and via the VEV of the scalar field, 〈Ω〉, the

dynamical gauge field masses were generated. Only the third direction of the vectorial gauge field in

iso-spinor space remained a symmetry, if the model was expanded around the scalar VEV and therefore

only this component remained massless. The remaining five gauge field components acquired the masses

Max
3 = gA

√
R2
σ + R2

δ, Max
1,2 = gARσ and Mvec

1,2 = gARδ.

Finally the three-body interactions between gauge fields and fermions or scalars were discussed in Sec.

III.5.4. In the model they were realised via current couplings which had the same structure as in the

original σ-model. Most conveniently these interactions were given in Eq. (3.6.9)-(3.6.12). In the closing

part of the gauge field discussion (Sec. III.5.5) also the gauge fixing Lagrangian and the corresponding

ghost terms were derived for an extended background gauge formalism.

With this final contribution the conceptual derivation of the generalised σ-model was ended. Many im-

portant aspects concerning the generalisation procedure, the applicability and general implications of

the resulting model have been presented and discussed. Of course, as has been indicated from time to

time throughout this work, there are still open questions concerning the generalised σ-model and various

details still have to be worked out explicitly. In a nutshell, the proposed generalisation of the linear σ-

model in the context of constrained instantons incorporates interesting possibilities to study a generalised

isospin structure in the low energy regime of QCD. Hopefully, in the future the presented formalism can

be extended to a rigorous effective field theory description including constrained instantons, nucleons

and scalar fields.
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IV.2 Outlook

Throughout the derivations and presentations of chapter II and III some interesting parts had to be left

out of the focus to make room for more pressing topics. All these parts present natural starting points for

future investigations. While any left out derivation was directly mentioned in the corresponding section,

this outlook will give a brief summary of the most important aspects that should be studied in future

investigations.

The derivation of the approximate fermionic zero-mode determinant of Sec. II.9.9 led to the very in-

volved analytic expression of Eq. (2.9.139). For the explicit calculations of chapter III only the high

energy contribution of this expression was used (Eq. (2.9.144)). In addition this high energy part was

assumed to give contributions at all energies and not only at the correct high energy scale. Therefore, an

important subject in further analyses is to improve the oversimplified expression for the fermionic zero-

mode determinant, det0
(
iD/ + gΩΩ

)
. If a more accurate expression for this determinant can be derived,

this will directly affect the effective instanton contribution, Linst, in the effective model (compare Eq.

(3.2.6)).

Another interesting topic for the future is the numerical analysis of the approximate fermionic zero-

modes. In Sec. II.9.8.1 analytic approximations for these modes have been given for the limiting cases

of extremely high, or low energies. The analysis on these modes can be approached, by using the ex-

pressions for the constrained instanton and Higgs field (Eq. (2.9.55) and (2.9.56)) to solve the set of

partial differential equations (Eq. (2.9.60) and (2.9.61)) for the fermionic modes numerically. A detailed

knowledge of the fermionic pseudo zero-modes would also allow to produce more accurate expressions

for the fermionic zero-mode determinant.

A final aspect for future investigations in the instanton sector is concerned with the correct pre-exponential

factor of the effective instanton contribution. In Eq. (3.2.6) this factor is summarised in the measure, M .

If one obtains a quantitative prediction on this factor, then it will be possible to determine the absolute

magnitude of instanton effects more acurately, as these are closely related to the parameter a in the in-

stanton induced potential,Vinst ∼ a2(||Φ||2−||Λ||2). To make progess concerning this question, one needs

to derive the constrained instanton parts in the context of a more thorough effective field theory approach.

The conceptual introduction on this approach have been introduced in Sec. II.7.

Concerning developments of the effective model from chapter III future works should derive a rigor-

ous inclusion of dynamical vector mesons (not only instanton-like contributions). In addition the exact

meaning of the (pseudo-scalar, iso-scalar) contribution, η̃, in a physical context needs to be investigated.

Finally the derived model should of course be tested and tuned in physical situations. As the generic

range of this model is rather large, starting from an effective quark model up to the description of nucle-

ons, there are many possible scenarios, to which the model could be applied.
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A Appendix

A.1 Abbreviations

Sec. - section
Tab. - tabular
Eq. - equation
Fig. - figure

VEV - vacuum expectation value
YMH - Yang-Mills Higgs (model)
QCD - Quantum Chromo Dynamics

System A is invariant under group G - A is invariant under the action of the group G.
Symmetry space - The space that a symmetry group acts on.



A.3. Reminder on transformations

A.2 Notation

ηµν = diag(−1, 1, 1, 1) - metric of Minkowski space (ηµν = (ηµν)−1 = ηµν)
{a} - set of all a (where a can contain any number of elements)

{a j}
N
j=1 - set of all a j (where j runs from 1 to N)

g({α}) ≡ g(α1, α2, α3, ...) - a function of a set, is to be understood as a function of all
elements of the set. Sometimes it is simply referred to as
g(α) instead of g({α}).

a � b = (a, b) - � means that a and b form an ordered pair (a, b)
M(3,1) - Minkowski space (Minkowski metric: ηµν = diag(−1, 1, 1, 1))

xµ ∈ M(3,1) - vector in Minkowski space or element of an vector in
Minkowski space (in index contractions)

x ∈ R3 - vector in 3-dimensional Euclidean space
f (x) ∈ O(g(x)) ⇔ 0 ≤ lim supx

∣∣∣∣ f (x)
g(x)

∣∣∣∣ < ∞ (definition)
O(α jαk) - term of order α jαk for arbitrary j and k

O({a1, a2, ...}
j) - term of order j in any combination of the elements of the set {·}

‘diagonalised’ - to diagonalise a matrix via a similarity transformation
(A→ S −1ΛS = diag(λ1, ...λn), where det(S ) , 0 and λ j are
eigenvalues of A)

Lie group - exponential representation of Lie group (D(α) = eiα jX j)
1 and I - if various spaces are treated in the same context then

typically for transformations the identity elements are distinguished.
Usually 1 is the identity in Minkowski space and I is the unit
element in the remaining space.

PL = (I − γ5)/2 - projection on the left-handed components of a Dirac-spinor.
Note that P2

L = PL.
PR = (I + γ5)/2 - projection on the right-handed components of a Dirac-spinor.

Note that P2
R = PR.

Uch(Λ) - unitary operator, which realises chiral gauge transformations.
UL (Λ) - unitary operator, which realises Lorentz transformations.

UL ,ch(Λ) - unitary operator, which realises Lorentz and chiral transformations.
L = e−iαL PL - linear operator, which realises the chiral transformation

on the left-handed parts.
R = e−iαR PR - linear operator, which realises the chiral transformation

on the right-handed parts.
â - unit vector in a-direction

A.3 Reminder on transformations

As confusion tends to spread as soon as functions with arguments in the transformation space are inves-

tigated here is a little reminder on the subject. For x ∈ M(3,1) let f (x) be a scalar function of a space-time
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A.4. S U(2) Tensor products

argument living in some space S . Now as usual let G be a group and Λ be the action of this group on

M(3,1). Take TΛ to be an operator acting on f (x) that realises the group transformation in the S space.

The question is how f (x) transforms under group transformations. One would like to have that the trans-

formed function of the transformed argument gives the same value as the original function of the original

argument, or short:

U−1(Λ) f (x)U(Λ) = TΛ f (Λx) !
= f (x) (A.1)

Here the first term is just the generic expression for the complete action of a group transformation on a

given argument. Using the similarity transformation x→ x′ = Λ−1x the standard result is at hand:

TΛ f (x) = f (Λ−1x) (A.2)

So the transformation of a function is realised by the inverse transformation of its argument.

In a similar manner functions in spaces that transform non trivially under group transformations can be

analysed as well. For this suppose that f (x) = f α(x) now lives not in the space of scalar functions but

some other space W whose elements transform under the group action according to some representation

Dαβ(Λ). In this case the complete action of the group becomes:

U−1(Λ) f α(x)U(Λ) = Dαβ(Λ) f β(Λ−1x) (A.3)

Note that Eq. (A.3) holds as well if f α(x) transforms as an element ofM(3,1) [e.g.: f µ(x) = ∂µφ(x)].

A.4 S U(2) Tensor products

Sec. B.6.3.1 gave an explicit example of the state construction via a highest weight decomposition. As

the results of several of these decompositions are needed for the construction of the presented model here

is a set of all used decompositions. All equations correspond to representations of the S U(2) group and

can be constructed in analogy to Sec. B.6.3.1.

2 � 2 = 3s � 1a (A.1)

3 � 2 = 4 � 2 (A.2)

3 � 3 = 5s � 3a � 1s (A.3)

4 � 2 = 5 � 3 (A.4)

The index in the direct sum only applies to tensor products of identical representations, as only in this

case it makes sense to speak about (anti-) symmetry under exchange of the constituent representations.
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Using equation A.1 to A.4 the combined results can be derived:

2�3 ≡ 2 � 2 � 2 = (3s � 1a) � 2 = 4s � 2a � 2a (A.5)

2�4 ≡ 2 � 2 � 2 � 2 = (3s � 1a) � (3s � 1a) (A.6)

= 5s � 3a � 3sa � 3as � 1s � 1aa (A.7)

Here a new label has been introduced: the ‘sub-bar’ in the indices. This additional information specifies

if the representation is completely (anti-) symmetric. This new distinction becomes necessary since there

are several ‘layers’ of exchange symmetry one is dealing with in the case of 2�3 and 2�4. As mentioned

in Sec. B.6.3.1 only the highest weight irreducible representation is guaranteed to be completely sym-

metric. Typically in tensor products of multiple constituents the other irreducible representations are then

partially (anti-) symmetric. This is denoted with the ordinary subscript (without a ‘sub-bar’). If there are

several indices this means that the states are symmetric under certain permutations and antisymmetric

under certain other ones.

Examining equation A.7 then reveals the delema that there is no completely symmetric singulett in the

tensor decomposition and thus it seems that there could not be a term combining 4 spin 1/2 objects in a

Lagrange density. Fortunately this statement is wrong. By working out all basis states of the symmetric

5s and the three partially antisymmetric 3a (these are 14 basis states) one findes that it is possible to

choose the two singuletts such that one of them is completely symmetric and the other one is partially

symmetric. So in this case (after a lot of calculations) one has:

2�4 = 5s � 3a � 3sa � 3as � 1s � 1s (A.8)

Working out the symmetry properties of states in higher tensor products already shows the limitations of

the highest weight scheme. There are more sophisticated methods to adress the problems of decomposi-

tions but their introduction leads even further away than the already time consuming introduction of the

highest weight scheme. The interested readet can learn more about the methods of representation theory

in Ref. [2] or Ref. [3].

A.5 Inner products in Minkowski space

The reason for the distinction of upper and lower indices lies within the mathematical structure of forms

in Minkowsky space. Suppose a system lives within a differentiable manifold. Then to every point in this

manifold a tangent space can be associated by taking all possible ‘directional derivatives’ at this point.

These derivatives form a vector space and eµ (with lower indices) denotes an unit vector in it.

The cotangent space is the dual space to this tangent space. So if the tangent space is a vector space V

over a field F, then the dual space V∗ is the set of linear maps from V to F (φ : V → F). It can now be
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guessed that eµ is a unit vector in the dual space - or cotangent space.

Now combining an element of the tangent space with one of the cotangent space gives exactly what one

is interested in - a scalar product on manifolds: 〈·, ·〉 : V∗ × V → F. With the Minkowski metric the

scalar product is:

〈a, b〉 =
∑
µν

ηµνaµbν (A.1)

This inner product is bilinear, symmetric and nondegenerate.

A.6 Non abilean field tensors

There are various approaches to construct the field or curvature tensor for non-abilean gauge fields. One

idea for the construction of this tensor is to take a vector field Aµ(x) at a given point x0 and to see how its

value changes, if one takes it around an infinitesimal placket back to the starting point. This can be done

with the parallel transport operator:

Pc(A) = e−
∫

c dd xA(x) (A.1)

P transports the field A(x) along the path c in d dimensions. If you choose an infinitesimal square of

size ε2 in the directions µ and ν as the path c then the integral can be approximated to third order with:∫ x0+ε

x0

dxA(x) · µ̂ = εAµ(x +
ε

2
µ̂) + O(ε3) (A.2)

130



A.6. Non abilean field tensors

Here a hat on the direction means an unit vector in this direction. Using this, the parallel transport along

the placket can be expressed via the expansion of the exponential

P�(A) = Px; x+εµ̂Px+εµ̂; x+εµ̂+εν̂Px+εµ̂+εν̂; x+εν̂Px+εν̂; x (A.3)

=
[
1 + εAµ(x +

ε

2
µ̂) +

ε2

2
A2
µ(x +

ε

2
µ̂) + O(ε3)

]
(A.4)

·
[
1 + εAν(x + εµ̂ +

ε

2
ν̂) +

ε2

2
A2
ν(x + εµ̂ +

ε

2
ν̂) + O(ε3)

]
(A.5)

·
[
1 − εAµ(x + εν̂ +

ε

2
µ̂) +

ε2

2
A2
µ(x + εν̂ +

ε

2
µ̂) + O(ε3)

]
(A.6)

·
[
1 − εAν(x +

ε

2
ν̂) +

ε2

2
A2
ν(x +

ε

2
ν̂) + O(ε3)

]
(A.7)

= 1 + ε2

 Aν(x̃ + εµ̂) − Aν(x̃)
ε

∣∣∣∣∣
x̃=x+ν̂ε/2

−
Aµ(x̃ + εν̂) − Aµ(x̃)

ε

∣∣∣∣∣∣
x̃=x+µ̂ε/2

 (A.8)

+ ε2
[
AµAν − AµAν + AµAν − AνAµ

]
(A.9)

+
ε2

2

[(
Aµ − Aµ

)2
+ (Aν − Aν)2

]
+ O(ε3) (A.10)

lim
ε→0

P�(A) = 1 + ε2
(
∂µAν − ∂νAµ + [Aµ, Aν]

)
(A.11)

For the third equality only the arguments for the derivative part have been given explicitly in order to

keep the notation as clear as possible. The arguments of the various Aµ are different, as can be seen from

the first equality, but they become equal in the limit ε→ 0. So equation A.11 describes how a vector Aµ
changes along an infinitesimal square and thus it encodes the curvature of the underlying manifold and

Rµν = ∂µAν − ∂νAµ + [Aµ, Aν] is the corresponding curvature tensor. In physics Aµ typically is rescaled

by a coupling constant, so that Aµ → Ãµ = −igAµ and the curvature tensor translates to the field strength

tensor as:

Fµν =
i
g

(
∂µÃν − ∂νÃµ − [Ãµ, Ãν]

)
= ∂µAν − ∂νAµ + ig[Aµ, Aν] (A.12)

An alternative and very elegant way to derive this object makes use of differential forms. So, to follow

this derivation, one needs a a small introduction to the mathematical concepts of these forms. A short,

and for this purpose sufficient one can be found in Ref. [15, p.217-230]. Without going into the details

one big advantage of forms should be mentioned (so to say as an advertisement) and that is: They allow

to study the structure of orientable manifolds in a basis-independent framework. Along these lines of

derivation (again, for details compare Ref. [15, p.217-230]) the field strenght tensor turns out to be:

Dµ = ∂µ − igAµ (A.13)

Fµν =
i
g

[Dµ,Dν] (A.14)
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This definition of Fµν is in agreement with the previous definition A.12.

A.7 Derivatives in curved spaces

In modern physics one often deals with local gauge field models. In these models gauge fields have

to be included in order to preseve a desired symmetry. From the mathematical point of view there is

a very natural explanation, why these fields (in mathematical contexts they are usually called connec-

tions) emerge, if one examins models with local symmetries. A local symmetry simply means that the

underlying space(-time), in which the model lives, is not flat anymore, but has a non-trivial topology1).

Compared to a flat (or globally symmetric) space the definition of derivatives has to be changed in this

space in order to give a meaningful quantity. In general derivatives shall give the change of a function,

if its argument undergoes a small change2). While in flat space the derivative is easily accessible as

the quotient ∆ f /∆x the situation is more complicated if the function lives in a topologically non-trivial

space. In the non-trivial space one can take the coordinates ξ = ξ(x) as functions of a flat space x. If

one compares the value of the function at a given point ξ0 with its value at another point ξ1, then the

difference [ f (ξ0)− f (ξ1)] depends on the change of the ‘space function’ ξ(x) and on the actual properties

of the function f (·). As derivatives shall give general properties of functions regardless of the space they

live in, one needs to correct for the additional, space-related change in the difference. In mathematics this

is done by redifining ordinary derivatives: Dab
µ := δab∂µ+Γab

µ , where Γab
µ is called the connection symbol.

This object is exactly constructed such that the undesired changes in ∆ f (related to the coordinates ξ(x))

are canceled. So, by using the new derivative Dab
µ instead of the normal one, all contributions vanish that

emerge from the non-trivial topology of the underlying space. In particle physics the connection symbol

is usually called ‘gauge field’, but it serves the very same purpose. So gauge fields are actually a direct

consequence of a non-trivial underlying space.

A.8 Iso-spinor traces

This section only provides some calculations of iso-spinor traces that are used throughout the work. In

all calculations of this section the following conventions are used:

• The sum convention is always used.

• ? means complex conjugation, while † means hermitian conjugation as usual.

• τ j is the jth Pauli matrix in iso-spinor space.

• I is a unit matrix in iso-spinor space.

1)Colloquial speaking the space is ‘hilly’. Take for example the surface of the earth (including local hills) as input space.
2)In flat space one has: ∂α f (x) := limε→0[ f (x + εêα) − f (x)]/[x + εêα]
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• qα = (I,−iτT)T is the component α of the quaternion symbol (introduced in Sec. II.2).

• q̄β = (I, iτT)T is the component β of the conjugate quaternion symbol (introduced in Sec. II.2).

• Quaternion symbols (including the conjugates) always carry greek indices. The index of the

quaternion symbol is adopted for its Pauli matrix components as well. For example:

3∑
α=0

qα = I − i
3∑
α=1

τα (A.1)

So if α runs from 1 to 3 or rather from 0 to 3 depends on the symbol it is connected to. Also

counterintuitive this abbreviation will help to keep notation clear.

• Latin indices belong to ‘pure’ Pauli matrices.

• The change from super- to subscripts is only introduced here to clear up notation.

In the calculations the following relations come in quite handy:

τaτb =
1
2
{τa, τb} +

1
2

[τa, τb] = δabI + iεabcτ
c (A.2)

trI[I] = 2 (A.3)

trI[τa] = 0 (A.4)

trI[τaτb] = 2δab (A.5)

trI[τaτbτc] = iεabxtrI[τxτd] = 2iεabc (A.6)

trI[τaτbτcτd] = δabtrI[τcτd] + iεabxtrI[τxτcτd] (A.7)

= 2(δabδcd − εabxεxcd) = 2(δabδcd − δacδbd + δadδcb) (A.8)
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The later relations can be deduced by using Eq. (A.2) through Eq. (A.4). This should be enough and

here are the promised traces:

1
2

trI
[
qαq̄β

]
=

1
2

trI
[
(δα0I − iτα)(δβ0I + iτβ)

]
= δαβ (A.9)

1
2

trI
[
τaqαq̄β

]
= δα0

1
2

trI
[
τa(δβ0I + iτβ)

]
− i

1
2

trI
[
τaτα(δβ0I + iτβ)

]
(A.10)

= iδα0
1
2

trI
[
τaτβ

]
− iδβ0

1
2

trI
[
τaτα

]
+

1
2

trI
[
τaτατβ

]
(A.11)

= i(δα0δaβ − δβ0δaα) + iεaαβ (A.12)
1
2

trI
[
τaq̄αqβ

]
= −i(δα0δaβ − δβ0δaα) + iεaαβ (A.13)

1
2

trI
[
qαq̄βτaτb

]
=

1
2

(
δα0trI

[
q̄βτaτb

]
− itrI

[
ταq̄βτaτb

])
(A.14)

=
1
2

(
δα0δβ0trI

[
τaτb

]
+ iδα0trI

[
τβτaτb

]
− iδβ0trI

[
τατaτb

]
+ trI

[
τατβτaτb

])
(A.15)

= δα0δβ0δab +

[
−δα0εβab + δβ0εαab + δαβδab − δαaδβb + δαbδβa

]3

α,β=1
(A.16)

= δαβδab

∣∣∣∣3
α,β=0

+

[
−δα0εβab + δβ0εαab − δαaδβb + δαbδβa

]3

α,β=1
(A.17)

1
2

trI
[
q̄αqβτaτb

]
= δαβδab

∣∣∣∣3
α,β=0

+

[
δα0εβab − δβ0εαab − δαaδβb + δαbδβa

]3

α,β=1
(A.18)

1
2

trI
[
q̄ατaqβτb

]
=

1
2

(
δα0trI

[
τaqβτb

]
+ itrI

[
τατaqβτb

])
(A.19)

=
1
2

(
δα0δβ0trI

[
τaτb

]
− iδα0trI

[
τaτβτb

]
+ iδβ0trI

[
τατaτb

]
+ trI

[
τατaτβτb

])
(A.20)

= δα0δβ0δab +

[
δα0εaβb − δβ0εαab + δαaδβb − δαβδab + δαbδβa

]3

α,β=1
(A.21)

=

(
δα0δβ0 − δαβ

∣∣∣∣3
α,β=1

)
δab +

[
δα0εaβb + δβ0εaαb + δαaδβb + δαbδβa

]3

α,β=1
(A.22)

A.9 Visualisations of the scalar potential

Here are some visualisations of the scalar potential for various paramters, that help to identify the role of

each parameter in this potential model. All values are given in arbitrary units.
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(a) Free ‘Higgs potential’ with a constant µ and λ. (a = 0,
α = 0, β = 0)
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(b) Complete scalar potential as in section Sec. III.4. (a ,
0, α , 0, β , 0)
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(c) Only instanton effects (a , 0, α = 0, β = 0)
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(d) Only the symmetry breaking in the σ-direction (a = 0,
α , 0, β = 0)
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(e) Only the symmetry breaking in the δ-direction (a = 0,
α = 0, β , 0)
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B Appendix (Group Theory)

Talking about group theory a physicist, unfamiliar with the subject, might ask: “Is this actually of any

importance in physics?” And throughout the last century a very decisive “YES!” has been found to be

the answer to this question.

What promotes group theory to such an useful tool in modern physics are (somewhat naturally) the

things that can be described with it. A closer look at the mathematical structure of groups (see B.1)

reveals that no viewer thing than symmetries can be characterised via groups. Now this should wake

up every last physicist. Symmetries have been exploited from the very beginning of physics research in

order to solve otherwise unsolvable problems. The idea behind the use of symmetries has always been

that symmetries in general put tremendous constraints on systems. If one finds a method to include these

constraints directly in the mathematical description of the system then this should simplify the problem.

A formalism derived like this would allow its constituents only to evolve into configurations that agree

with the symmetry of the system. In doing so the formalism itself would eliminate the huge number of

possible system configurations that do not agree with the given symmetry.

Even though symmetries have often been used in physics, mostly during the last century a mathematical

formalism has been developed and applied that allows to analyse general implications of symmetries on

physical systems.

While the subject of group theory itself is very interesting, the focus of this work is not a full presentation

of this field of research. Of course, the interested reader is invited to follow more complete introductions

to group theory. Two possible sources are Ref. [2] and Ref. [3]. Both are used intensively in this chapter.

B.1 Definitions and basic ideas

Definition B.1. (Group)

A group (G, .) is an object that consists of a set of elements G and an operation (group law) O(x, y) ≡ x.y

that specifies how group elements x and y are combined. The following relations have to be satisfied:



B.1. Definitions and basic ideas

(i) h = gi.g j ∈ G ∀gi, g j ∈ G (G is closed under O(·, ·))

(ii) gi.(g j.gk) = (gi.g j).gk ∀gi, g j, gk ∈ G (associativity)

(iii) G contains an identity element e such that e.g = g.e = g for every element g ∈ G.

(iv) For every group element g ∈ G there is an inverse g−1 within the group such that

g.g−1 = g−1.g = e .

Note that the group concept can be applied to finite sets of elements (finite groups) and infinite ones as

well (infinite groups). Both types of groups can be found in physics, or more exactly in the description

of symmetries. Finite groups usually are used for objects with discrete symmetries (such as crystals)

while infinite groups find their applications in the context of continuous symmetries (rotations, spatial

translations, internal symmetries in particle physics). The amount of examples already indicates what

kind of symmetries will be most important throughout this work. The reason why groups can be used

to describe symmetries lies within the structure of symmetry operations. Without giving a proof the

following example shall clarify how symmetry transformations obey all requirements from definition

B.1:

For a square there are several symmetry operations (rotations) that leave its shape invariant. Mathematical

speaking these transformations form a group which is called the dihedral group of order 8 (=̂D4). (The

order of the group G is the number of elements of G.) Fig. B.1 scetches all possible rotation axis for this

system.
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Figure B.1: Symmetry axis of a square (D4 ≡ dihedral group of order 8).
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There are four rotations by 180◦ (red lines) and four rotation by 90◦, 180◦, 270◦ and 360◦ = 0◦ ≡ e

(green dot). Using this little picture one can easily work out that performing any two rotations (symmetry

operations) is equivalent to just one other rotation.

For example rotating first around axis (1) and then around (3) is equivalent to a rotation of 180ř around

the green dot. By calculating all possible combinations of two rotations (creating the multiplication table

of the D4-group) one can verify that this system (symmetry transformations on a square) fulfils all parts

of definition B.1. This verification is tedious and not very enlightening so it is left out here. The key

point is that it is inherent to any symmetric system that its symmetry transformations fulfil definition B.1.

From here on ‘groups’ and ‘symmetry groups’ will be used synonymously.

Secondly representations shall be introduced. This concept allows to adjust the ideas of group theory

to typical situations in theoretical physics. Usually, in any quantum mechanics related field, physicists

are working with states and operators in some Hilbert space. So it would be neat to produce a coherent

picture that allows to talk about symmetries of Hilbert space systems using the results of group theory.

This is what representations allow to do:

Definition B.2. (Representation)

(a) A linear representation associates a set of linear operators D with the elements g of a group G,

thereby giving a map D(g) from the group elements to the linear operators. This map has to fulfil

the two relations:

(i) D(e) = 11)

(ii) D(gi)D(g j) = D(gi.g j)

In (i) the 1 is the identity in the space on which the linear operators act and (ii) basically means that

the multiplication law for group elements translates into an ordinary multiplication in this "linear

operator space".

(b) The dimension of a representation is the dimension of the space V it acts on.

Mathematically speaking, this means a representation D is a map from the group to the general linear

group on a given vector space GL(V) (even shorter: D is a group homomorphism D : G → GL(V)).

Note that the second condition in B.2 implies that the inverse of a representation element is given by

D−1(g) = D(g−1).

From the definition two very distinct types of representations can be constructed - the faithful represen-

tations, which associate a distinct linear operator to each element of the group and the unfaithful ones,

where this is not the case. The simplest example for an unfaithful representation is called the ‘trivial

representation’. It simply sets every element of the group to the identity and thereby one clearly looses

all informations on substructures of the group.
1)In the mathematical framework this postulate is obsolete but it is included here for for clarity.
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As an example for a faithful representations one could think about rotations in a two dimensional space

R2 (rotations around the third axis). Every rotation in two dimensions can be written as:

R(θ) =

cos(θ) − sin(θ)

sin(θ) cos(θ)

 (B.1)

It is easy to check that R(θ) satisfies B.2(i) with R(0) = 1 and B.2(ii) as R(α)R(β) = R(α + β) is cor-

rect. The rotation group is infinite and this property appears in its representation R(θ) as well (θ ∈ R).

Examples for finite groups are not any harder to do, but as they are not too relevant in this context and

therefore most examples will be on infinite groups.

It is important to understand that the dimension of a representation is by no means absolute. The just

given example could be represented in one dimension as well. In C1 rotations can be expressed simply

via the unitary operator R(θ) = eiθ. Of course, higher dimensional representations of a group are possible

as well as long as they satisfy B.2(i) and B.2(ii).

Throughout this work representations are limited to linear operators, which yields enormous simplifica-

tions. One can bring them into any desired form via simliarity transformations without changing any of

the multiplication rules of the underlying group structure. In other words if D(g) is a representation of the

group G then D′(g) := S −1D(g)S , with the similarity transformation S , is a representation of the same

group2). If the elements of S form a group themselves, then then the similarity transformation is said to

be the action of S on G in the representation D(g). In this example this seems to be just an uptight name

for an ordinary matrix multiplication, but as the expression is used very regularly and as the concept is

important in a slightly different context here is a formal definition.

Definition B.3. (Group action) Take G as a group and X as an arbitrary set. The (left) group action is

defined as the map l(g, x) ≡ g.x with the following properties:

(i) (gh).x = g.(h.x) ∀ g, h ∈ G and x ∈ X

(ii) e.x = x

Analogously the (right) group action r(x, g) ≡ x.g can be defined by a composition from the righthand

side with adapted conditions on the multiplication. It turns out that a left group action can be written in

terms of a right group action with the inverse group element: l(g, x) = r(x, g−1).

As there are no restrictions on the set X in definition B.3, one can study the action of groups on any kind

of set. In particular this allows to study the action of a group G (or its representation D(g)) on itself. This

action is given by:

D′(g) := D(h−1)D(g)D(h) ∀g, h ∈ G (B.2)

2)Mathematically S is an automorphism on the group structure.
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and will play an important role for the characterisation of representations in the next section.

B.2 Irreducible representations and direct sums

The freedom to change a representation of a group via a similarity transformation leads to the question

if there is a favourable basis in which a representation has an easy structure. The answer to that question

depends on the particular group one is interested in but still there are some general remarks at this point.

It is possible that a group G has an invariant subspace Gs. This means that the action of the group on itself

leaves elements of Gs in this subspace. For s ∈ Gs an g ∈ G this means for any explicit representation of

the group D(g−1)D(s)D(g) = D′(s) ∈ Gs (compare the previous section).

As an example think about 3-dimensional rotations in a 4-dimensional space R4. Any combination of

two rotations in the 3-dimensional space will still be in this subspace of R4. Therefore a representation

of this symmetry could be written in a form:

D(g j) =

1 0

0 3R(g j)

 (B.1)

where 3R(g j) would be some representation of 3-dimensional rotations. In general, if a representation has

an invariant subspace it is said to be reducible. If this is not the case it is called irreducible. Finally it

is called completely reducible if it can be written in a complete block diagonal form where every block

is an irreducible representation:

D(g) =


D1(g) 0 · · ·

0 D2(g) · · ·
... 0

. . .

 (B.2)

Such a block diagonal representation is referred to as a direct sum of irreducible representations:

D(g) = D1(g) � D2(g) � ... (B.3)

If a representation can be decomposed into a direct sum in the above fashion then one has found the

simplest possible building blocks in this representation (up to isomorphisms). This concept will find

many applications in later chapters Sec. II.1.2. The dimension of a direct sum representation is easy to

see from equation B.2:

dim(D(g)) = dim(D1(g)) + dim(D2(g)) + ... (B.4)
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B.3 Tensor products

Apart from slicing representation into irreducible building blocks, one could try to furnish something like

a product of representations. Of course, the question then is what this product should describe. Before

adressing it the mathematical concept of a tensor product shall be introduced:

Suppose there are two systems A and B that live in some configuration spaces ΓA with a complete basis

{a} and ΓB
3) with a complete basis {b}. To build a combined system, one needs a space where the

combination of A and B lives in. One space, built of ΓA and ΓB, is gained by simply arranging the basis

elements of the two subspaces as ordered pairs (a, b). The pairs of all basis elements form a basis in the

tensor space4) A � B:

(a, b) ≡ a � b (B.1)

where � is just a symbol saying: build a pair, where the order matters. The tensor product satisfies

rules that look like distributive and associative laws but obviously it does not satisfy something like a

commutative law (a � b , b � a). The dimension of the tensor product is

dim(A � B) = dim(A) · dim(B) (B.2)

It should be mentioned that the above situation is very common in physics. A � B simply describes

the configuration space of two non-interacting subsystems (particles). Each of the subsystems lives in a

space with a particular basis ({a} or {b}). A vector in tensor space in physics is typically denoted by:

|ab〉 = |a〉|b〉 = |a〉� |b〉 := a � b = (a, b) (B.3)

Now, (as the playground is defined) the initial question about the physical purpose of tensor products can

be adressed. For this take system A to be invariant under the action of a symmetry group GA (for brevity

call this: A is invariant under GA) and B invariant under the group GB. Working in a particular basis {a}

and {b} gives a fixed representation of the groups: D(gA) and E(gB). Here D(gA) only acts on elements

of ΓA and E(gB) likewise only acts on elements of ΓB. Then a tensor representation can be defined to be:

TD�E(gA, gB) := D(gA) � E(gB) (B.4)

It describes the combined action of both groups GA and GB on the combined states (tensor states). With

this, a symmetry transformation in the tensor space from a given initial state |my〉 to some final state 〈lx|

3)ΓA and ΓB are vector spaces.
4)Normally this space is called tensor product
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would look like:

〈lx|
[
TD�E(gA, gB)

]
|my〉 = 〈l|〈x|

[
D(gA) � E(gB)

]
|m〉|y〉 (B.5)

= 〈l|〈x|
[
D(gA)|m〉� E(gB)|y〉

]
(B.6)

= 〈l|D(gA)|m〉� 〈x|E(gB)|y〉 (B.7)

= 〈l|D(gA)|m〉 〈x|E(gB)|y〉 (B.8)

=
[
TD�E(gA, gB)

]
lm xy

(B.9)

It still needs to be shown that TD�E forms a representation but this is very easy as TD�E is constructed

such that the representations of the subspaces (D&E) are only combined with the fitting vectors of their

‘own’ subspaces (ΓD&ΓE). So as D and E form representations FD�E forms one as well.

Now having such a tensor representation, it is not at all clear if it is irreducible (and usually it is not). So

finding the direct sum decomposition of tensor products will be a very important task in most applications

that deal with combined systems (see Sec. II.1.2 and Sec. II.4).

B.4 Symmetries, states and operators

So far the concept of groups, symmetries and their representations has been introduced without the

direct need of physical observations. Nevertheless at this point it is already possible to state a subtle but

important implication for physical systems:

Theorem B.1. Let H be a hermitian operator and D(g) a representation of a symmetry group G. If the

commutator [H,D(g)] vanishes for all elements of D(g), then H can be written in terms of irreducible

representations of G and so the eigenstates of H transform according to irreducible representations of

G.

Without giving a proof the theorem is kind of natural in physical situations. If the hermitian operator H

describes an observable, then a symmetry of the system can be understood as a transformation that does

not change the eigenvalues and -vectors of the observables. This is exactly the case if [H,D(g)] = 0 for

all elements of the representation D(g)5). Now D(g) can be expressed in terms of irreducible representa-

tions and therefore this has to be true for H as well because otherwise [H,D(g)] = 0 would not hold for

the whole representation.

If the operator H can be written in terms of irreducible representations of G this means H =
∑

g HgDi(g)

for an irreducible representation Di(g) and scalar functions Hg. This on the other hand means that the

eigenstates of H transform according to the transformations Di(g).

For an abelian group the elements Di(g) and D j(g) commute and so H can be diagonalised completely.
5)D−1(g)HD(g) = D−1(g)D(g)H = H
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However the situation changes if the group is non-abelian. In this case there are at least some elements

of the representation that cannot be diagonalised simultaneously. Therefore the hermitian operator H

cannot be diagonalised completely and so not all its eigenvalues can be measured simultaneously. This

is an important consequence that explains for example why the quantum mechanical angular momentum

can only be measured in one direction. In Sec. B.6 an example of this situation will be picked up.

Notice that the theorem has an almost philosophical implication if one starts to think about it inversively:

If a system in nature possesses a certain symmetry then this alone restricts what kind of observable quan-

tities that can live within the system!

By remembering the introductory comments on the history of symmetries in physics on the other hand,

this statement is not very astonishing. As symmetries in general put huge constraints on systems they

better affect possible observables. At the core this is what is exploited, whenever symmetries are used to

simplify problems.

With the so far introduced concepts on group theory one is already in a position to derive the very impor-

tant Noether theorem, which connects continuous global symmetries in physical systems to conserved

currents and charges. A introduction to this theorem is given in Sec. II.3.

B.5 Lie Groups

Coming back to the introductory part on group theory the next topic of importance are Lie groups. These

groups are infinite (continuous) groups with certain properties. They are named after Sophus Lie, who

found the Lie algebras associated with continuous groups.

Non mathematical speaking: Lie groups are groups that depend smoothly on a set of continuous param-

eters α Ref. [2, p.43]. With smooth dependence is meant that the group operation and the inversion shall

be smooth maps. Now smooth itself means that whenever two elements of the group are close toghether

in ‘group space’ then the parameters that describe them {α j} are close together as well. (This closeness

leads to differentiability for Lie groups.)

Another way to define linear Lie groups is to see them as subgroups of Gl(V) that are (closed) C∞ mani-

folds as well Ref. [3, p.172-173].

B.5.1 Generators

Apart from these, at first glance, unfamiliar definitions Lie groups can be parameterised via ‘generators’

which gives them a very practical appearance. The key idea behind generators is that the closeness of

group elements can be exploited in order to express them all in terms of their ‘distance’ to the identity

e, at least in a small neighborhood. The identity is promoted to be the reference element as it appears in
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every group.

So using a set of N real parameters {α j}
N
j=1 that characterises the group elements g({α}) ≡ g(α), the

closeness of group elements allows to use a parameterisation such that

g(α)|{α}=0 = e (B.1)

For a representation D[g({α})] ≡ D(α) of the group this means that D(α)|{α}=0 = 1. Using the differen-

tiability of Lie groups (and therefore of their representations) D(α) can be expressed via a Taylor series

in a close neighborhood of the identity:

D(δα) = 1 + i(δα j)X j + O(δα jδαk) (B.2)

Here δα has to be within the radius of convergence of the Taylor series and X j is just the missing part of

the expansion, meaning:

X j = −i
∂

∂α j
D(α)

∣∣∣∣∣∣
{α}=0

(B.3)

These X j are called generators. As representations D(α) need to be linear operators, the X j have to be

linear operators as well. For practical purposes they can simply be thought of as matricies. The inclusion

of i in Eq. (B.2) is not necessary but it makes the generators hermitian if the whole representation is

unitary.

Equation Eq. (B.2) defines how the representation of a Lie group looks very close to the identity. So

this can be used to describe infinitesimal group transformations in a particular direction (namely the

α jX j-dircetion). If the group operation in (G, .) is given by a simple addition of group elements (this

depends on the parameterisation {α}) then this behaviour translates to the nice multiplication law for

representations: D(δα) · D(δα) = D(δα + δα) (compare B.2(ii)). Using this, one can get from the

infinitesimal transformation to large scale transformations by combining the multiplication law with Eq.

(B.2):

D(α) = lim
k→∞

(
1 + i

α j

k
X j

)k
= eiα jX j (B.4)

In the limit (1 + iα jX j/k) becomes an element of the representation as α j/k becomes small for constant

α j. Raising any element of D(α) to some power still is in the representation6) and so the exponential is

part of D(α) as well. Usually this parameterisation of Lie groups is called the exponential representation.

Close to the identity it has the nice feature that the group is completely specified by the behaviour of its

generators as Eq. (B.2) approximates all elements. So instead of studying the group elements themselves

one can study its generators which is extremely helpful as they form a vector space (unlike the group

6)Any power of D(g) is in the representation, since a group is closed under its multiplication law (see B.1)
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elements).

Most of physical applications (and this work as well) only make use of the exponential representation

of Lie groups. So from now on talking about Lie groups always is equivalent to talking about group

representations of the form D(α) = eiα jX j with a fixed and finite set of N generators {X j}
N
j=1 and a cor-

responding set of free parameters {α j}
N
j=1. This means that in all later applications the structure of the

generators {X} will characterise the group completely.

B.5.2 Lie algebras

Now Lie groups have been introduced and their general concept has already been omitted in favour of

the idea of generators. For a certain parameterisation of Lie groups it was shown that these generators

could be used to specify the group structure completely. This section now analyses the structure, which

is produced by any exponential representation of Lie groups.

In order to do so, the combination of different representation elements has to be examined. From the

construction (see previous section) one knows already how two transformations in the same direction

can be combined:

D(α1)D(α2) = eiα1
j X jeiα2

j X j = ei(α1
j +α

2
j )X j = D(α1 + α2) (B.5)

Here α1 and α2 are two parameter-sets in the same representation-direction, but with possibly different

magnitudes. So for transformations in the same direction one sees from Eq. (B.5) that their param-

eters simply add for the combined transformation. Unfortunately for two transformations in different

directions (α and β) this is not true. The only thing one knows from the definition of groups is that the

combination of any two representation elements must be within the whole representation as well (B.1(i)):

D(̃γ) = D(α)D(β) (B.6)

eĩγcXc = eiαaXaeiβbXb (B.7)

⇒ ĩγcXc = log
(
eiαaXaeiβbXb

)
(B.8)

This equation can be used to derive the combination rules for two different generators Xa and Xb. If

the generators commute with each other, then the solution is trivial, giving just the combination rule Eq.

(B.5) for all generators. But in general this is not true, since the generators can be viewed as matricies,

which do not always commute. Nevertheless there is a solution to equation B.8, which is called the

Baker-Campbell-Hausdorff formula. It has the form:

ĩγcXc = log
(
eiαaXaeiβbXb

)
= i(αaXa + βbXb) −

1
2

[αaXa, βbXb] + ... (B.9)
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The derivation of this formula is simple but mostly technical. Essentially a double Taylor expansion in

{α} and {β} is used. Crucial is only that the righthand side can be expressed completely in powers of

commutators of αaXa and βbXb. So if all commutation relations for the generators are known then in

principle all terms of the expansion could be calculated. In essence this is what makes generators of

Lie groups so powerful. The relatively easy commutation relations of generators determine the complete

group structure.

Equation Eq. (B.9) can be brought to a more standard form, if all higher order contributions are ignored

(this corresponds to the infinitesimal case):

ĩγcXc = i(αaXa + βbXb) −
1
2

[αaXa, βbXb] (B.10)

αaβb[Xa, Xb] = i 2 (αc + βc − γ̃c)︸             ︷︷             ︸
≡γc

Xc (B.11)

αaβb[Xa, Xb] = iγcXc (B.12)

[Xa, Xb] = i fabcXc (B.13)

In the second line the different summation indicies have been renamed and in the last line the renaming

γc = αaβb fabc was used. Equation B.13 defines an antisymmetric, bilinear operation law [·, ·]. The Lie

algebra (associated with a Lie group G) is a vector space g over a field F with this operation law. In

addition the Lie algebra has to fulfil the Jacobi identity7).

The fabc are called the structure constants of the group. They are specific for each Lie group. The

generators {X} can have different forms, depending on the dimension of the space they live in.

From equation B.13 two properties of the structure constants can be read off directly:

• As the commutator is antisymmetric it follows that fabc = − fbac is antisymmetric as well.

• If the representation U(α) = eiαaXa is unitary, then the structure constants are real.

For this one needs to remember that the generators are hermitian for a unitary representation.

Knowing this the result can simply be calculated:

[Xa, Xb]† = (i fabcXc)† (B.14)

[Xb, Xa] = −i f ∗abcXc (B.15)

→ [Xa, Xb] = i f ∗abcXc (B.16)

Equation B.16 in combination with equation B.13 lead to the desired result f ∗abc = fabc.

7)Jacobi identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0
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B.5.3 Important Lie groups

So far Lie groups have been introduced on a general footing without focussing on their connection to

symmetries. This section will make up for the leeway and some of the most important Lie groups in

physics shall be introduced briefly. But before doing so it is useful to provide a little list of important

expressions in the characterisation of groups.

Notation - The mathematical notation for Lie groups consists of a name, the dimension of the group gen-

erators in the fundamental representation (=̂ loosely speaking the smallest dimensional faithful

representation) and the field over which the group is defined. So An(C) is the group A, with dimen-

sion n over the complex numbers. In physics the field typically is C and so the notation is often

shortend to An(C) = A(n). This convention is adopted throughout this work as well.

Subgroups - are groups within larger groups. A subgroup itself must fulfil all the group axioms (B.1) and it is

embedded in the structure of a larger group.

Connected - is a mathematical concept that does not only apply to groups. In the context of group theory a

group is connected if there exists a similarity transformation S for every element that connects

it to the identity (S mGS −1 = 1). A simple example where this fails are matrices with negative

determinant. Consequently a group that is not connected is called disconnected8).

Traceless - The trace is a tool that allows to characterise different Lie algebras. Traces for Lie algebras are

equivalent to something called ‘characters’ for groups. Without going into the details of characters

it should be mentioned, that they do not change under basis transformations of the group and so

they qualify for a tool of characterisation.

Another feature, that is important for physical applications is that traceless Lie algebras do not

change the volume and orientations in infinitesimal transformations. The associated groups to

these Lie algebras are called ‘special’. They have the constraint that every group element needs to

have unit determinant. These groups leave the volume and orientations in general unchanged.

Using these features one can now give promised list of important groups. For this take Mn(K) denote the

square-matrices of size n × n with entries from the field K.

GL(n) = GLn(C) is the group of invertible, complex matrices (under matrix multiplication). It is called general

linear group and its definition is GLn(K) := {A ∈ Mn(K)|A is invertible}. As there are no other

constraints this is indeed a very general structure. All other examples will be subgroups of the

GL(n).

S L(n) = S Ln(C) is the special linear group. It is the group of all invertible matrices whose determinant is one -

S Ln(K) := {A ∈ Mn(K)| det(A) = 1}. This means that these are all linear transformations that

8)The groups of interest here are the so called topological groups. For such groups topological properties have simple analogies
in the space of the group.
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leave volume and orientations fixed. Although being special, is still a bit too general to describe

symmetries in physics.

O(n) = On(R) is the first group with an important interpretation in physical applications. It is called the orthogo-

nal group with the definition On(K) := {A ∈ Mn(K)|AAT = ATA = 1}. The orthogonality condition

leads to the condition for the determinants det(A) = ±1 and so this group corresponds to symmetry

transformations that leave the length of a real vector invariant. This means that O(n) leaves volu-

mina unchanged but it can reverse the orientations of vectors. A relevant example for this group in

physics is the Lorentz group (O(3,1)), which will be discussed in Sec. II.1.

S O(n) = S On(R), just like S L(n), has the extra condition that its constituent matrices have unit determinant. It is

called the special orthogonal group S On(K) := {A ∈ O(n)| det(A) = 1}. In contrast to O(n) this

group does not change the orientations of vectors. For the Lie algebra the conditions of the group

lead to traceless, real and orthogonal matrices. This group finds a direct application in physics as

well - it represents ordinary rotations in n dimensions.

U(n) = Un(C) is the analogue of O(n) in the complex case and so its definition is Un(C) := {A ∈ GLn(C)|A†A =

AA† = 1}. As O(n) it contains all transformations that leave volumina and the origin unchanged,

but this time in a complex vector space and so the condition on the determinant is |det(A)| = 1.

S U(n) = S Un(C) is very similar to S O(n). It is the special unitary group with the definition S Un(C) := {A ∈

Un(C)| det(A) = 1}. So it is the analogon of S O(n) for complex vector spaces.

For the algebra things look very similar as well. It consists of traceless matrices that are complex

this time. This group as well is used in a lot of situations in physics. It will play a key role for the

symmetries regarded in this work.

B.5.4 Examples: Lie algebras

Throughout the last sections a lot of material has been introduced without any explicit examples. While

the whole theory of Lie algebras can be introduced without working in a explicit basis, it is far more

practical for the present purpose to give explicit matrix representations for the generators of the impor-

tant Lie groups.

U(1) - This is the first and easiest Lie group to be presented. It only has a single one dimensional gen-

erator X1 = 1 and so the group elements are U(α) = eiα. It follows directly that U(1) is abelian

([U(α),U(β)] = 0).

SU(2) - has the first non-trivial algebra. There are three linear independend complex traceless matrices in
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two dimensions, the Pauli matrices:

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 (B.17)

Including a factor of 1/2 these are the generators Xa = σa/2 of S U(2). The commutation relation

resulting from these matrices turn out to be

[Xa, Xb] =
1
4

[σa, σb] = iεabc
1
2
σc = iεabcXc (B.18)

The group elements are then analogous to the U(1) case: U(α) = ei αa
2 σa . Here the notation is

slightly confusingly, as U(1) refers to a group, while U(α) means elements of a particular group.

SO(3) - As this group corresponds to rotations in three dimensions it should better have three generators,

resulting in three free parameters9). Indeed there are three linearly independend, orthogonal and

traceless matrices in three dimensions:

J1 = i


0 −1 0

1 0 0

0 0 0

 , J2 = i


0 0 1

0 0 0

−1 0 0

 , J3 = i


0 0 0

0 0 −1

0 1 0

 (B.19)

And again, by including a normalisation factor of 1/2 one gets the generators Xa = Ja/2 for S O(3).

The algebra of S O(3) now produces something remarkable:

[Xa, Xb] =
1
4

[Ja, Jb] = iεabc
1
2

Jc = iεabcXc (B.20)

Comparing Eq. (B.18) with Eq. (B.20) one could think that S U(2) and S O(3) are the same groups.

But this is not true! The algebras are the same but these do only describe the groups locally. On a

global scale both groups are different. This is not important in later derivations, but as the problem

appears in this context it should at least be mentioned that there is a difference between Lie groups

and algebras.

These examples are only the most simple ones but higher dimensional generators for S U(n) and S O(n)

can be built by just mimicking the matrices from the two examples. S U(3) for example consists of eight

generators. There are six generators of the type σ1 and σ2 and two diagonal traceless generators.

The given examples are chosen partly to show how well known symmetries translate into the formalism

of Lie algebras. But this formalism is capable of going far beyond a description of ‘classical’ symmetries.

The structure of the exponential map D({α}) = eiαaXa allows for many different symmetries by simply

changing the set of generators {Xa}. In addition one could mess with the set of parameters. They could

9)They can be chosen to be the Euler angles
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be made space-time dependend for example ({α} → {α(x)}). The variety of possible symmetries that can

be described via Lie groups is another feature that makes them important in modern physics.

B.6 Observables in S U(2)

Of course, the S U(2) group is a Lie group and following this terminology this section should rather be

included in the part on Lie groups. To make matters worse the main concept this section will deal with

(the ‘highest weight decomposition’) is not unique to S U(2) but can be used in the characterisation of

GL(n) groups in general. The proof that it can be used for groups of GL(n) is given in Ref. [35, p.p.126-

130]. As always, whenever logical structure is bluntly put aside in this work, it is due to the limited time.

While a deeper introduction to Lie groups would generalise the findings of this section to other groups

this will not be done here, as the techniques for S U(2) are sufficient for later derivations. Just keep in

mind that this is not the end of the game.

Before going into details of construction, suppose that a system is invariant under S U(2) transformations.

As S U(2) is non-abelian, not all generators (=̂Ji) can be diagonalised simultaneously. For physical sys-

tems only the eigenvalues of the simultaneously diagonalised operators are measurable at the same time.

So only the diagonalised generators of S U(2) can be related to observable quantities. The idea of the

‘highest weight decomposition’ is to furnish a basis for exactly those states, which are physically mea-

surable.

For the 2-dimensional fundamental representation of S U(2) this is a rather trivial decomposition. In this

representation one can see right away, that only one generator can be diagonalised at a time (as they are

hermitian and non commutative - compare Eq. (B.17), Eq. (B.18)). This generator can be taken to be

J3 = diag(1/2,−1/2). The eigenstates of J3 then build a complete basis of physically observable states

in the space, S U(2) acts on. Typically these states are labelled with the maximal eigenvalue j of the

diagonalised generator and with the eigenvalue m, that the particular state corresponds to. The m

value of a state is also called ‘weight’. So in the present case one has the basis set B = {| j,m〉} =

{|1/2, 1/2〉, |1/2,−1/2〉}, with the eigenvalue (weight) equation and orthonormality relation:

J3| j,m〉 = m| j,m〉 (B.1)

〈 j1,m1| j2,m2〉 = δ j1 j2δm1m2 (B.2)

The δ j1 j2 part of this relation will be important in the next section, once tensor products are discussed.

It means that representations with different maximal weights can be chosen to be orthogonal. For the

present j = 1/2 case the above equations mean that any operator, which can be written in terms of the ir-

reducible 2-dimensional representation of S U(2), can at best be associated with one observable quantity,

which can take on the values 1/2 or −1/2 (up to a normalisation). The states of physical systems can be
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expressed in terms of the basis B.

Although equation B.1 was introduced from the fundamental representation of S U(2), it holds for repre-

sentations with any dimension. For these other examples the possible values of j and m change but they

are still sufficient to label and distinguish all states, which can correspond to physical systems. Ultimately

the reason for this is that any representation of S U(2) has to fulfil the algebra equation ([Ji, J j] = iεi jkJk),

but a more explicit construction of general S U(2) states | j,m〉 will be given in the following two sections.

B.6.1 Raising & Lowering operators

So far J3 has been used to give a unique label to different states of physical observables in a S U(2)-

invariant system. The underlying symmetry allows to transform a state | j,m1〉 into another one | j,m2〉.

This transformation can be expressed in terms of the missing two generators of S U(2) by introducing

raising & lowering operators J± = (J1 ± iJ2)/
√

2. Using the definition of the algebra, one finds the

following commutation relations:

[J3, J±] = ±J± (B.3)

[J+, J−] = J3 (B.4)

With these definitions one can work out how a basis state changes under the action of J±:

J3(J±| j,m〉) = J±J3| j,m〉 ± J±| j,m〉 = (m ± 1)(J±| j,m〉) (B.5)

and this explains the names for J±. They raise, or lower the m value of a state | j,m〉 by 1 and thereby (up

to a normalisation factor) J± can be used to transform | j,m1〉 into | j,m2〉.

To work out the normalisation of each state one needs to assume that the representation is finite dimen-

sional. In this case there is a highest weight j and a lowest weight j− `, for a particular ` and one has the

conditions:

finite highest weight: J+| j, j〉 = 0 (B.6)

finite lowest weight: J−| j, j − `〉 = 0 (B.7)
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From these two requirements the normalisation of each state can be constructed recursively using equa-

tion B.1 and B.2. This derivation is presented nicely in Ref. [2, p.56-63]. It leads to the relations:

J3| j,m〉 = m| j,m〉 (B.8)

J+| j,m〉 = N jm+1| j,m + 1〉 (B.9)

J−| j,m〉 = N jm| j,m − 1〉 (B.10)

N jm =
√

( j + m)( j − m + 1)/2 (B.11)

The number of possible states, constructed by the three equations Eq. (B.8)-(B.11), is ` = 2 j + 1 (since

N j` = 0). This is the reason why the labels j and m are sufficient to distinguish the elements of a complete

basis B for all matrix representations of S U(2). A 2 j + 1 dimensional matrix can have up to 2 j + 1 non-

trivial eigenvectors. As Eq. (B.8) generates exactly 2 j+1 linearly independent eigenvectors of the matrix

J3, these vectors form a complete basis for the matrix representation10).

This, by the way, gives another neat relation between the highest weight of a representation and its

dimension: dim(rep) = 2 j + 1.

B.6.2 Highest weight decomposition

With the construction rules Eq. (B.8)-(B.11) from the previous section the highest weight decomposition

now is a mere recipe. Nevertheless the scheme is useful as it is can be applied not only to irreducible

representations (as in the previous section), but also to tensor product representations (following section).

For tensor products the neat side effect of the highest weight decomposition is that it decomposes a

reducible representation into a direct sum of irreducible ones.

For the generic scheme (according to Ref. [2, p.62]) suppose that J3 is the generator to be diagonalised

and states are labelled by | j,m;α〉. Here j is the highest weight of the representation, m is the weight of

the state and α is a label for any other measurable observable, which is independend of the symmetry

transfromation.

1 - Diagonalise J3

2 - Take the state with the highest J3 weight (| j, j;α〉)

3 - For each such highest weight state build all related states by applying the lowering operator J− as

often as possible. This constructs the irreducible j representation (also called spin j representa-

tion).

4 - Set aside the states of the constructed irreducible representations. (The remaining states are or-

thogonal to the constructed ones.)

10)Mathematically this can be seen as J3 is hermitian, which leads to diagonalisability and so the eigenvectors of J3 can form
an orthonormal basis
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5 - Find the highest J3 weight of the remaining states (| j, j̃;α〉) and procede with step three.

Following this scheme until all existing states are used generates a complete orthonormal basis of the

Hilbert space corresponding to the problem.

〈 j′,m′;α′| j,m;α〉 = δ j′ jδm′mδα′α (B.12)

If the starting representation is irreducible, then the highest weight is unique and so the scheme ends

rather quickly. For a reducible representation the highest weights of each irreducible representations is

still unique (see Sec. B.6.3). Therefore the scheme simply runs through several times, each time giving

the states of different representations.

Only if there is a non-trivial other label α for each state, the highest weight might not be unique. In this

case one simply gets copies of the irreducible j representations for each value of α. The proper Lorentz

group can be viewed as an example for this case. Each basis state of this group transforms under two

independent S U(2) algebras. More details on the Lorentz group can be found in Sec. II.1. In general

there are more sophisticated ways to determine the decomposition in irreducible representations of tensor

products, but for the present purpose this scheme will do.

B.6.3 Tensor products for Lie groups

In Sec. B.3 the general idea of tensor products has been introduced. For Lie groups the proximity of

group elements to the identity can be used to simplify the action of tensor operators on tensor states

significantly. In other words, expressing group elements via infinitesimal transformations gives simple

relations for the generators of the tensor algebra.

In analogy to the situation of Sec. B.3 take two systems 1 and 2. 1 is in some representation with basis

{m} and it is invariant under the representation D1(g) of some Lie group G with g ∈ G. At the same time

2 is in a representation with basis {y} and is invariant under the representation D2(g). The transformation

of a tensor state is then (just as in Sec. B.3):

D(g)|my〉 = D1�2(g)|m〉|y〉 = (D1(g)|m〉) � (D2(g)|y〉) (B.13)
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As D1 and D2 are Lie groups in the exponential representations, they can be rewritten in a power series

and for elements close to the identity one gets:

D(g)|mx〉 = D1(g)|m〉� D2(g)|y〉 (B.14)

=
(
I + iαaX1

a + O(α2)
)
|m〉�

(
I + iβbX2

b + O(β2)
)
|y〉 (B.15)

=
(
δlm + iαa[X1

a]lm + O(α2)
)
|m〉�

(
δxy + iβb[X2

b]xy + O(β2)
)
|y〉 (B.16)

=
(
δlmδxy + i

(
αa[X1

a]lmδxy + βbδlm[X2
b]xy

)︸                              ︷︷                              ︸
≡γc[X1�2

c ]lm xy

+O(αaβb)
)
|ym〉 (B.17)

And thus one finds the generators of the tensor representation:

[X1�2
c ]lm xy = [X1

c ]lmδxy + δlm[X2
c ]xy (B.18)

X1�2
c = X1

c � I + I � X2
c (B.19)

This is a very helpful result as it directly tells that a generator in the tensor representation acts on states

by simply acting consecutively on each constituent representation:

X1�2
a (|m〉|x〉) =

(
X1

a |m〉
)
|x〉 + |m〉

(
X2

a |x〉
)

(B.20)

B.6.3.1 Example

As mentioned in Sec. B.3 typically tensor product representations are reducible. The transformation

rules for tensor generators combined with the highest weight decomposition now allows to decompose

tensor products of various S U(2) representations. Since these decompositions will be important in later

derivations one explicit example will be given:

Regard the tensor product space of two independent spin 1 systems ( j = 1). So each subsystem lives

in a three dimensional S U(2) invariant space and from Sec. B.3 one knows that the tensor space has

dimension 9 = 3 · 3 (the basis of the tensor space are simply all possible combinations of two spin 1

states {|1,m1〉|1,m2〉}m1,m2).

It is conventional to label generators of different representations with their dimension (e.g. J3
3 is the

diagonal generator of S U(2) in the three dimensional representation). The J3�3
3 generator in tensor

space has the nice feature that its weights are simply the sum of the weights in the subsystems (compare

Eq. (B.20)):

J3�3
3 | j1,m1〉| j2,m2〉 =

(
J3

3 | j1,m1〉
)
| j2,m2〉 + | j1,m1〉

(
J3

3 | j2,m2〉
)

(B.21)

= (m1 + m2)| j1,m1〉| j2,m2〉 (B.22)
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The highest weight state in each subsystem is | j = 1,m = 1〉. Using the preceding equation (Eq. (B.22))

one sees that the highest weight in the tensor representation comes from the highest weight states of both

subsystems.

|2, 2〉 = |1, 1〉|1, 1〉 (B.23)

This finding allows now to decompose the 9 dimensional reducible tensor representation into lower

dimensional irreducible ones. The first irreducible representation is found by applying the (normalised)

lowering operator to both sides of Eq. (B.23) recursively and by the use of the equations Eq. (B.8)-(B.11)

one gets:

|2, 2〉 = |1, 1〉|1, 1〉 (B.24)

|2, 1〉 =
1

N22
J−|2, 2〉 =

N11

N22

(
|1, 0〉|1, 1〉 + |1, 1〉|1, 0〉

)
(B.25)

=
1
√

2

(
|1, 0〉|1, 1〉 + |1, 1〉|1, 0〉

)
(B.26)

|2, 0〉 =
1
√

3 · 2
J−|2, 1〉 =

1
√

6

(
|1,−1〉|1, 1〉 + |1, 1〉|1,−1〉 + 2|1, 0〉|1, 0〉

)
(B.27)

|2,−1〉 =
1
√

3 · 6
J−|2, 0〉 =

1
√

18

(
3|1,−1〉|1, 0〉 + 3|1, 0〉|1,−1〉

)
(B.28)

|2,−2〉 =
3

√
2 · 18

J−|2,−1〉 = |1,−1〉|1,−1〉 (B.29)

The apperance of the normalisation constants is only presented explicitly in the first step, but it works

similarly for all other lines (simply by following the rules of equations Eq. (B.8)-(B.11)). As this

representation consists of 5 states there are still 4 missing for a complete basis of the 9 dimensional

tensor space.

Ignoring the states with weight 2 the highest weight of the remaining missing states is 1, since the

constituent weights are natural numbers and so they have to be lowered at least by 1. Different irreducible

representations shall be orthogonal to each other. In order to guarantee this, the spin 1 tensor states can

be chosen to be antisymmetric. After antisymmetrising the highest weight state, the rest of the spin 1

representation can be found by applying the lowering operator once again.

|1, 1〉 =
1
√

2

(
|1, 0〉|1, 1〉 − |1, 1〉|1, 0〉

)
(B.30)

|1, 0〉 =
1
√

2

(
|1,−1〉|1, 1〉 − |1, 1〉|1,−1〉

)
(B.31)

|1,−1〉 =
1
√

2

(
|1,−1〉|1, 0〉 − |1, 0〉|1,−1〉

)
(B.32)
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One can check that the antisymmetric construction ensures, that all scalar products of the spin 2 with the

spin 1 representation give zero (remember the normalisation B.2). This sets the counter of states up to 8,

leaving one missing state. The maximal remaining weight is 0 and so the final state is:

|0, 0〉 =
1
√

6

(
|1,−1〉|1, 1〉 + |1, 1〉|1,−1〉 − 2|1, 0〉|1, 0〉

)
(B.33)

Notice that the spin 2 and the spin 0 representations are symmetric under the exchange of subsystems,

while the spin 1 representation is antisymmetric. There is a general pattern behind this. In a combined

system, that is built out of two subsystem in equivalent spin j representations, the state with the (global)

highest weight is always symmetric. Since J± does not change the symmetry properties of a state, the

irreducible representation belonging to this weight is always symmetric. The next representation (here

spin 1) has to be chosen antisymmetric in order to fulfil the orthonormality relation (B.2). In the pre-

vious case the last remaining state (|0, 0〉) is symmetric. But in a general setting (e.g. if there are more

than three irreducible representations) the symmetry properties of all remaining representations aren’t so

obvious. Nevertheless a lengthy analysis yields the very convenient result that symmetric and antisym-

metric irreducible representations alternate in the highest weight scheme if the original subsystems are

in equivalent (spin j) S U(2) representations.

The lengthy procedure of decomposition can be encoded in nice little equations which will only capture

the most important facts. For this an irreducible S U(2) representation is pictured only by its dimension

and a subscript is introduced that denotes if the representation is symmetric (s) or antisymmetric (a).

Using ths notation the above example of the tensor product decomposition reads:

3 � 3 = 5s � 3a � 1s (B.34)

While this notation at the moment appears only as a fancy way of writing, it turns out to be very useful for

the mathematical construction of physical systems. Suppose one would like to construct a Hamiltonian

density out of a set of constituent elements that transform according to some symmetry group. The

Hamiltonian density itself must be invariant under the action of any symmetry transformation as it is

a scalar (it simply corresponds to the total energy density). So all possible terms that can appear in

the Hamiltonian density must have scalar properties under symmetry transformations. A scalar, in the

language of Eq. (B.34) is an object in the symmetric singlet (1s) irreducible representation (there is

only one state in the representation and it is symmetric, so the transformation cannot change anything

about it). And so, by studying the tensor products of all constituents of the physical system, one can find

all terms that can be included in the Hamiltonian density (all terms that can be decomposed into a 1s

representation + stuff).

In appendix App. A.4 all S U(2) tensor products that are needed in this work are given.
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