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1 Introduction

One important tool towards understanding the thermodynamic processes of any kind
of matter is the corresponding phase diagram. The phase diagram is an instrument
to visualize, depending on the temperature and the pressure, which states or phases
the particular matter can occupy; it helps not only to understand the different char-
acteristics of each phase but also the transitions in between.
One may think the phase diagram of water is the most important one since water it
is the basis of all life. Yet there is another phase diagram which is even more fun-
damental: the phase diagram of Quantum chromodynamics (QCD), a theory that
describes the strong force. This force is responsible for the existence of protons and
neutrons which eventually form, together with electrons, all matter. The current un-
derstanding of the QCD phase diagram, shown Fig.1.1, implies not only the phase of
ordinary matter but, among others, also the so called Quark Gluon Plasma (QGP).
This is a state of matter one could have observed a short time after the big bang
at very high temperatures and low density. The QGP reveals much interesting in-
formation about how our universe has formed, whether QCD is a valid description
of the strong interaction and about certain symmetries which are very important to
understand underlying principles. An extended overview is given in the textbook of
Letessier and Rafelski [1].

In order to investigate the QGP experimentally one has to set up large accelera-
tors (i.e. the LHC in Geneva/Switzerland, RHIC in Brookhaven/USA or the future
SIS300 as part of FAIR at GSI in Darmstadt/Germany) and observe the collision of
heavy ions (such as lead or gold). During the experiment the ions are accelerated to
such high energies that the zone of the collision becomes very hot and dense hence
reproducing the conditions characteristic to QGP. Later on the QGP will cool down
due to spatial expansion and converts to regular strong interacting matter with the
usual degrees of freedom, the so called hadrons. Within the QGP phase the degrees
of freedom are free quarks and gluons which one cannot observe in the hadronic phase
due to the fundamental principle of confinement.
In this work we mainly investigate the quark spectral function, which is a relevant
quantity helping to understand the QGP close to and above the transition tempera-
ture. In this strongly coupled regime just above the phase transition quarks are still
suggested to be quasiparticle excitations. The spectral function encodes information
about the relevant degrees of freedom, some of their attributes and the interaction
in the system. Additionally, one can derive certain predictions for experimental ob-
servables to compare the results to the available data and it can be used as input

1



1 Introduction

Figure 1.1: Schematic picture of the QCD phase diagram taken from [2].

for transport approaches as discussed in [3, 4]. One can calculate the spectral func-
tion from the quark two-point function. This function, also called quark propagator,
contains information about how a quark moves and reacts throughout a medium.
Since in the year 2000, when the CERN laboratory announced that there is conclusive
evidence for a new state of matter, the interest in the QGP on experimental as well
as on theoretical side has rapidly increased. High quality data from RHIC as well
as from the LHC became available and the investigation of the QCD phase diagram
became more and more intensive (see [5,6] and [7] for review). However, perturbation
theory (which exploits the so called asymptotic freedom, indicating weak coupling at
small distances, to express necessary quantities in orders of the interaction strength),
fails near the phase transition for QGP since the (running) coupling constant is of
order one, leading to an expansion where every term is of the same order.
A first approach to QCD at finite temperature has been proposed by Braaten and
Pisarski and is based on a resummed perturbation theory [8–10]. The so called hard
thermal loop (HTL) method is designed for the case of weak coupling and high tem-
peratures, and used to calculate (effective) quantities in hot gauge theories. It can
also be used to predict a HTL effective quark propagator, the quark spectral func-
tion and experimental observables related to the production of soft dileptons [11]. In
this context a high temperature prediction for the quark spectral function has been
found, revealing two branches of quasiparticle excitations. One of them is connected
to the quark, while the other is a collective excitation which partly shows antiparticle
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like behavior and was dubbed plasmino, referring to a similar phenomenon in QED
plasma called plasmon.
Since the HTL method is designed for high temperature, far above the expected
transition temperatures, other techniques must be employed. One possible approach
to do calculations of thermodynamical quantities for the QGP is the AdS/CFT cor-
respondence. A summary of the current status can be found in [12]. There are
qualitative results, for example for the shear viscosity of the medium or Quarkonium
states, but its not yet possible to make exact quantitative predictions.
Lattice QCD and the usage of modern supercomputers represents an alternative ap-
proach to investigate properties of QCD at finite temperature, in particular the quark
propagator and the corresponding spectral function (for more details refer e.g. to
the textbook [13]). In lattice QCD correlation functions are calculated on a four di-
mensional grid with three spatial and one time (inverse temperature) direction. The
lattice quark propagator in Landau gauge at finite temperature was first investigated
by Hamada et al. [14]. Consecutive studies of the propagator as well as the spec-
tral properties have been studied by Karsch, Kacymarek et al. [15, 16] and recently
in [17]. The authors used an ansatz motivated by the HTL results for the spectral
function and fitted this to the propagator calculated on the lattice. Unfortunately,
calculations on the lattice can only be done for a simplified case of QCD where
the Yang-Mills part (gluons) does not depend on the fermionic part (but vice versa).
This case where no quark loops are taken into account is called quenched QCD, while
the scheme including this backcoupling is called unquenched QCD. Moreover, exact
calculations are only possible for zero chemical potential due to the sign problem in
the exponential of the effective action. There is no solution to this problem yet and
only predictions from model calculations are available [18,19]. Other approaches use
effective models such as the Nambu-Jona-Lasinio (NJL) model [20].
In this thesis we use the non-perturbative functional approach of Dyson-Schwinger
equations (DSE s) which have been used successfully to investigate fundamental ques-
tions like confinement in Yang-Mills theory but also to more phenomenological re-
search on hadron observables [21–24]. For our studies, of particular interest are
the applications to finite temperature and chemical potential (see for example [25]
for a review). There are some using model ansätze for the quark-gluon vertex in
the so called rainbow-ladder approximation, which takes into account only bare ver-
tices [26, 27]. This is also done in [28] where a technique called Maximum-Entropy-
Method (MEM ) is applied to derive the quark spectral function from the quark
propagator, which in turn is calculated from the QCD gap equation in rainbow ap-
proximation. Recent considerations and calculations for quenched and two-flavor
QCD phase transitions can be found in [29–31]. Most recently an investigation for
the unquenched case with two plus one quark flavors for finite temperature and
chemical potential has been performed in [32]. Finally, in [33] spectral functions are
investigated in a Dyson-Schwinger framework by employing the technique used in
investigations on the lattice, namely to fit certain ansätze of the spectral function
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1 Introduction

to the obtained quark propagator. This will serve as a foundation for investigations
of the spectral function in the quenched and, along with [32], for the NF = 2 + 1
unquenched case. In all investigations we limit ourself to zero chemical potential, e.g.
the temperature axis of Fig.1.1, where one expects a phase transition from ordinary
hadronic matter to the QGP phase.
The thesis is organized as follows: In the next chapter we review some general aspects
of QCD, in particular a thermodynamic formulation and the QCD phase diagram.
We then also focus on the Dyson-Schwinger equations as the equations of motion
of the quark propagator in Matsubara formalism and our truncation, which is moti-
vated by the analysis of the phase diagram from [32]. A recap of the HTL formalism
and the definition of the spectral functions, which themselves depend on the quark
correlator, is given. At the end we briefly introduce the Schwinger function used to
investigate positivity violations of the spectral function.
chapter 3 is dedicated to the numerical background. We introduce the Levenberg-
Marquardt method, which is employed to fit the given ansätze for the quark spectral
function to the quark correlator. We give the parameters entering the equations as
well as detailed discussions of the models for the quark-gluon vertex, followed by a
brief comparison of quenched and unquenched propagators. Finally, we present our
ansätze for the spectral function.
In chapter 4 we consider the case of quenched QCD and test our routine by compar-
ing our findings to the results from [33]. Furthermore, we extend the investigations to
higher temperatures by employing the introduced vertex parameters. Additionally,
we work with an improved ansatz for the spectral function in the chiral limit as well
as for finite quark masses.
The case of unquenched QCD is subject of chapter 5. In this thesis, the quark spec-
tral function for unquenched NF = 2 + 1 QCD is calculated in the chiral limit and
for physical masses in a Dyson-Schwinger framework. Since this calculation is not
possible on the lattice, we investigate different ansätze to explore the spectral prop-
erties. For both cases, the behavior of the Schwinger function calculated from our
obtained spectral function is studied.
In chapter 6 we summarize our results and indicate possible directions for future
work.
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2 QCD at finite temperature

In this work, we are interested in properties of strongly interacting matter at high
temperatures. Firstly we want to focus on general aspects of QCD and its phase
diagram. We discuss some properties and related topics such as symmetries and
phase transitions. Next we set the foundation for the detailed understanding of
finite temperature QCD in form of a brief review of a formulation at thermodynamic
equilibrium. This is followed by a summary of the Dyson-Schwinger framework and
truncation scheme we use, based on [32]. A short review of HTL calculations is given
before we draw our attention to the quark spectral function, the object of our main
interest, and eventually to the Schwinger function.

2.1 The QCD phase diagram and aspects of QCD

An important quantity of a theory, revealing all necessary informations to derive
predictions for the included particles or fields, is the Lagrangian or Lagrangian den-
sity. For QCD including the non-abelian Yang-Mills sector, this object can be derived
from fundamental principles such as Poincaré invariance, locality, certain symmetries
and renormalizability. In a very compressed notation the QCD Lagrangian density
is written as

LQCD[Ψ,Ψ, A] = Ψ
(
i /D −m

)
Ψ− 1

2g2
s

Trc(FµνF
µν) (2.1)

with the quark fields Ψ and Ψ, the field strength tensor Fµν = [Dµ, Dν ] and the
common notation /D = γµDµ, using the known Dirac γ-matrices and the covariant
derivative Dµ = ∂µ+Aµ. The coupling constant is absorbed into the gluon field Aµ in
a standard way. One needs to read this equation carefully due to the suppression of
most of the indices. The mass matrix m for example, represents the diagonal matrix
m=diag(mu, md, ms,...) with the current quark masses generated by electroweak
interactions. The spinors of the quark field transform under a gauge transformation
as elements of the fundamental representation of SU(3) while the gauge fields may
be written as Aµ = −itaAaµ with the generators of the group ta.
One important symmetry which is interesting for considerations of the phase diagram
of QCD is the chiral symmetry. Chirality is an attribute of a particle, which deter-
mines whether the particle transforms under a left or right handed representation of
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2 QCD at finite temperature

the Poincaré group. Since Dirac spinors are a superposition of both representations,
one considers the projections onto the left, respectively right handed Weyl spinors

ΨR,L =
1

2
(1± γ5)Ψ (2.2)

as chirality eigenstates and rewrites the quark part of the Lagrangian in Eq.(2.1) as

Ψ
(
i /D −m

)
Ψ = ΨL

(
−i /D

)
ΨL + ΨR

(
−i /D

)
ΨR + ΨLmΨR + ΨRmΨL, (2.3)

where m once again is the diagonal matrix, including entries according to the number
Nf of quark flavors under consideration. For m=0, which is referred to as the chiral
limit, it is apparent from Eq.(2.3) that the right and left handed quarks decouple
and the Lagrangian is invariant under global UL(Nf )× UR(Nf ) transformations.
For convenience, one reorganizes this by defining axial- and vector-transformations
leading to the underlying symmetry group of SUA(Nf )× SUV (Nf )×UA(1)×UV (1)
(see [2]). We now want to consider three different ways chiral symmetry can be
broken:

• Explicit chiral symmetry breaking: The quark masses generated by the
electroweak interaction break the chiral symmetry explicitly, which follows im-
mediately from Eq.(2.3).

• Spontaneous chrial symmetry breaking: Even for m=0 the gluon in-
teractions generate quark masses dynamically, a purely non-perturbative phe-
nomenon.

• Breaking of axial UA(1) symmetry: Quantizing the theory leads to an
implicit breaking of the axial UA(1) symmetry, even in the chiral limit. This is
also referred to as the UA(1) anomaly.

While the explicit breaking of chiral symmetry is independent of the respective phase,
the breaking of chiral symmetry with respect to dynamical mass generation is restored
for certain chiral phase transitions. Since spontaneous chiral symmetry breaking and
the UA(1) anomaly are dominant even away from the chiral limit, one expects to see
effects in certain order parameters such as the one for chiral symmetry, the chiral
condensate. Taking also the transitions between confined and deconfined phases into
account, which are reflected in the (dressed) Polyakov loop as an order parameter,
one can distinguish different phases in the QCD phase diagram.
For zero chemical potential the so-called Columbia plot shows the mass and flavor
dependence of the chiral and deconfinement phase transitions. This plot is shown in
Fig.2.1, where the gray area and the blue line in the left part of the diagram deal
with the chiral phase transition, while the upper right part shows the deconfinement
phase transition.

A detailed explanation of the plot can be found in [34] as well as in [2]. Here we
want to focus on the three cases we are concerned with in this work:
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2.1 The QCD phase diagram and aspects of QCD

Figure 2.1: Expected phase diagram at zero quark chemical potential taken from [34].

1. Quenched QCD: This scenario may be found in the upper right corner of
Fig.2.1, since infinite heavy quarks do not effect the Yang-Mills sector. From
the plot we expect a first order phase transition implying a discontinuity in the
order parameter.

2. Unquenched QCD in the chiral limit: To find the type of transition
for this case, where the up and down quark bare masses are zero, the exact
position of the tri-critical strange quark mass with respect to the physical one
is important, but still unresolved. The question is whether we see a first or a
second order phase transition. In our case we will face a second order phase
transition, where the first derivative of the order parameter is discontinuous.

3. Unquenched QCD for physical masses: The physical point is clearly
indicated in Fig.2.1 and we see that a crossover rather than a sharp transition
is expected.

Finally we want to come back to the QCD phase diagram in Fig.1.1, where the
case shown in the Columbia plot refers to the µ = 0 axis. QCD is in the chirally
broken and confined phase for low temperatures and densities where the well known
hadronic bound states and resonances are located. At large enough temperatures
and chemical potential QCD undergoes a chiral and a deconfining phase transition
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2 QCD at finite temperature

towards QGP. Other phases present in this scheme, e.g. the regime where the interior
of neutron stars is expect to be described (high densities and low temperatures) and
a possible quark-matter superconducting phase, are also shown. One key question
concerning the phase diagram of QCD is the exact position of the critical end point
for the chiral transition. The sketch also shows the patterns, by which RHIC and
the future SIS300 at FAIR explore the phase diagram experimentally.

2.2 Imaginary time formalism

If we want to investigate QCD at finite temperature we need to develop a formal-
ism, which makes quantities of interest depending on the temperature in equilibrium
accessible. A lot of textbooks and previous works are concerned with this topic.
We follow the main steps of [35] to introduce the idea of one way to set up such a
formalism on the example of scalar fields, before we give the result for QCD.
In statistical mechanics one learns there are three ensembles to describe different
types of systems. The microcanonical ensemble is used for isolated systems with
fixed energy, particle number and volume while the canonical ensemble describes a
system in contact with a heat bath. For our purpose, the most interesting one is the
grand canonical ensemble which also takes particle exchange into account. In this
case the statistical density matrix is defined as

ρ̂ = e−β(Ĥ−
∑

i µiNi) (2.4)

with the inverse temperature β = 1
kBT

, the conserved quantities Ni and the according
chemical potentials µi, introduced as the Lagrange multipliers. For convenience, we
work in units with the Boltzmann factor kB set to one. For the field operator φ(x, t),
we denote a complete set of orthonormal eigenstates as |φ〉. The partition function,
as a central quantity, is defined as

Z = Trρ̂ =
∑
a

∫
dφa 〈φa|e−β(Ĥ−µN)|φa〉, (2.5)

where the sum runs over all states. To make a connection to a functional integral
representation, we consider the transition amplitude for a particular state |φ′〉 going
into the same state after some time tf , and introduce an evolution in imaginary
time t = −iτ . The transition amplitude is expressed in terms of the time evolution
operator e−iĤtf as

〈φ′|e−iĤtf |φ′〉. (2.6)

Next, the interval [0,tf ] is divided in N subintervals. Alternating between the field
and the conjugate field momentum operator, using their completeness and the or-
thonormality, a complete set of eigenstates is inserted at each time interval. Since
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2.2 Imaginary time formalism

the size ∆t of each interval becomes very small for N → ∞ the exponential e−iĤ∆t

can be expanded. One arrives at

〈φ′|e−iĤtf |φ′〉 = N ·
∫ φ(x,tf )=φ′(x)

φ(x,0)=φ′(x)

[dφ] exp

(
i

∫ tf

0

dt

∫
d3x L(t)

)
(2.7)

where the factor of N comes from the unrestricted integration over the conjugate
momentum, [dφ] represents a functional integral and we already introduced the La-
grangian density (a detailed derivation can be found in [35]).
If we compare Eqs.(2.5) and (2.7), we notice that the partition function can be ex-
pressed in terms of functional integrals if we make the analytic continuation tf →
−iβ. By additionally performing the analytical continuation for the variable t→ −iτ
with 0 ≤ τ ≤ β we eventually arrive at the main result

Z =

∫
periodic

[dφ] exp

(
−
∫ β

0

dτ

∫
d3x LE(τ,x)

)
, (2.8)

where the Euclidean Lagrangian density is defined as LE(τ,x) = −L(t = −iτ,x) and
the subscript “periodic” indicates the implementation of periodic boundary condi-
tions in τ direction, since we work with a scalar field (compare Eq.(2.7)):

φ(τ = 0) = φ(τ = β).

The same procedure can be used to develop a representation of fermions. This
differs only in the character of the boundary conditions, which are antiperiodic due
to the anticommuting character of the fermion fields. The boundary conditions in
the fermionic case read

Ψ(τ = 0) = −Ψ(τ = β).

For the QCD partition function we find

Z[Jµ, η, η] =

∫
[dΨ] [dΨ][dA]exp

(
−SE[Ψ,Ψ, Aµ] +

∫ β

0

dτ

∫
d3x

(
AaµJ

a
µ + ηΨ + Ψη

))
(2.9)

with the Euclidean action

SE[Ψ,Ψ, Aµ] =

∫ β

0

dτ

∫
d3x LE (2.10)

=

∫ β

0

dτ

∫
d3x

(
Ψ
(
−i /D +m

)
Ψ +

1

2g2
s

Trc(FµνF
µν)

)
.

The gluons, as bosons, obey periodic boundary conditions and the quarks antiperiodic
ones. Among the introduced source terms in Eq.(2.9) are Grassmann variables η, η
for the fermions and a source Jaµ for the gauge fields. Finally, we introduce the
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2 QCD at finite temperature

Matsubara formalism, connected to the Fourier transform of a function in imaginary
time. Due to the periodic character we expect a discrete corresponding variable. For
a function f, periodic in the imaginary-time direction, f(τ) = f(τ +β), we define the
Fourier transformation by

f(τ) = T
∞∑

n=−∞

e−iω̃nτf(iω̃n)

(2.11)

f(iω̃n) =

∫ β

0

dτ eiω̃nτf(τ)

where
ω̃n = 2n π T (2.12)

is the bosonic Matsubara frequency. In the case of a fermionic function obeying
antiperiodic boundary conditions Ψ(τ) = −Ψ(τ + β), the Matsubara frequency is of
the form

ωn = (2n+ 1) π T. (2.13)

For this work we follow the conventions from Ref. [33] for the Dirac γ-matrices

γ4 = −γM0
(2.14)

γj = −iγMj .

We define the four-vector shorthand notation k = (ωn,k), which differs from the Eu-
clidean definition in a minus sign in the fourth component. In calculations involving
this vector we have ∫

d4k

(2π)4
f(ik4,k)→ T

∑
n

∫
d3k

(2π3
f(iωn,k). (2.15)

where we already used explicitly imaginary arguments in the functions, as we will do
throughout the whole work, reminding of the conventions in (2.14).

2.3 QCD Dyson-Schwinger equations

Within this work, we aim at a description of the quark spectral function in the QGP
using the functional approach of Dyson-Schwinger equations, where n-point func-
tions, such as for the quark, the gluon and the quark-gluon vertex, can be calculated
by self-consistently solving an infinite tower of coupled integral equations. Since it is
impossible to solve the whole (infinite) set of equations in general, one has to make
certain approximations. This process, called truncation, needs to be done carefully
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2.3 QCD Dyson-Schwinger equations

in order to describe the relevant physics correctly. Guidance for the approximations
can be obtained from symmetries, conservation laws and comparison with lattice re-
sults. By working with DSEs we obtain a description of dynamical chiral symmetry
breaking and the direct accessibility of the Yang-Mills sector, opposing to effective
models.
The truncation scheme and setup we use are the same as those used by Lücker and
Fischer [32], in our case at zero chemical quark potential. Since their results are also
of main interest and importance for our investigations, in the following we introduce
the used Dyson-Schwinger framework by a summary of their work in [32].
Their investigations aim for the QCD phase diagram for Nf = 2 and Nf = 2 + 1
quark flavors at finite temperature and chemical potential, where the notation 2
+ 1 indicates two light quarks and a strange quark flavor with vanishing chemical
potential for the strange quark.

The in-medium propagators in Landau gauge at finite temperature and chemical
potential for the quark and the gluon are given by

S(p) = [i(ωn + iµ)γ4C(p) + ipγA(p) +B(p)]−1 (2.16)

Dµν(p) = PL
µν(p)

ZL(p)

p2
+ P T

µν(p)
ZT (p)

p2
. (2.17)

In this case the vector dressing functions A and C, as well as the scalar dressing
function B of the quark propagator, depend on the momentum p = (ωn,p), and
so are the gluon dressing functions ZL and ZT . “L” and “T” indicate longitudinal
respectively transversal orientation with respect to the heat bath, obtained with the
projectors given by

P T
µν = (1− δµ4) (1− δν4)

(
δµν −

pµpν
p2

)
, (2.18)

PL
µν = Pµν − P T

µν .. (2.19)

The Matsubara frequencies, defined in Eqs.(2.12) and (2.13), differ for the fermionic
(quark) and bosonic (gluon) case. The quantity µ in Eq.(2.16) denotes the quark
chemical potential which will be set to zero throughout our work.
We briefly mentioned order parameters as important quantities to describe phase
transitions. An order parameter and its first derivative with respect to the tempera-
ture are used to define the class of a phase transition. For chiral symmetry breaking
the so-called quark (chiral) condensate is a strict order parameter in the chiral limit
and indicates a chiral phase transition for finite bare quark masses. The condensate
in the DSE framework is defined as

〈ΨΨ〉 = ZW
2 T

∑
n

∫
d3p

(2π)3
TrD[S(p)], (2.20)
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2 QCD at finite temperature

where ZW
2 is the wave function renormalization constant. As mentioned in [32] this

object is quadratically divergent for finite quark masses and can be regularized by
defining

∆u,d,s = 〈ΨΨ〉u,d −
mu,d

ms

〈ΨΨ〉s, (2.21)

dubbed the regularized condensate.

The quark and the gluon DSE

In figure 2.2 we find a diagrammatic representation of the quark DSE, which depends
on the (fully) dressed gluon propagator as well as on the full quark-gluon vertex.
Those two quantities have to be approximated in our scheme. If we look at Fig.2.3
we see the untruncated full gluon DSE. As pointed out in [32] and Refs. therein,
solving this equation turns out to be very difficult. Therefore a truncation is applied
involving the quenched gluon propagator calculated on the lattice in [24], represented
diagrammatically in Fig.2.4, where the term “quenched” implies that all quark loops
are neglected (the last diagram in Fig.2.3). The unquenching, e.g. the inclusion
of the quark loop is done by merely adding it to the quenched lattice part. This
process neglects all contributions from the quark loop to ghost loops or gluon loops
and is in this sense an approximation. In [32] they tested the agreement for vacuum
predictions and found agreement on a five percent level. However, in our setup we
will observe effects of the quenched part even in unquenched calculations. Since the
gluon propagators on the lattice are calculated only for certain temperatures, a fit
in T of the dressing functions obtained from the lattice results is necessary and we
will come back to this point in the next chapter.
For the truncated scenario of NF = 2+1 unquenched QCD, the quark and the gluon
DSE read[

Sf (p)
]−1

= Zf
W

[
Sf0 (p)

]−1

+ CFZ
f
WZ

f
1Fg

2
s

∫∑
l

γµS
f (l)Γfν(l

2, p2, q2)Dµν(q),

D−1
µν (p) =

[
Dque.
µν (p)

]−1 −
Nf∑
f

Zf
W

2
g2
s

∫∑
l

Tr
[
γµS

f (l)Γν(l
2, q2, p2)Sf (q)

]
,

with Sf (p) being the quark propagator for one of the flavors f = u, d, s, CF =
4
3

the Casimir operator and Γν the dressed quark-gluon vertex. Additionally, we
have the vertex and wave-function renormalization constant Z1F and ZW and the
renormalized coupling g2

s = 4παs. The sum over the Matsubara frequencies as well
as the integration over the loop three-momentum l is represented by∫∑

l

= T
∑
n

∫
d3l

(2π)3
.
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2.3 QCD Dyson-Schwinger equations

This system of coupled integral equations needs to be solved iteratively to receive
the desired dressing functions. In the quenched case, the quark loop in the gluon
DSE is not considered, therefore we are left with the quenched lattice data for the
gluon propagator.

−1
= +

−1 −1

Figure 2.2: Diagrammatic representation of the DSE for the quark propagator where
blobs denote dressed propagators respectively vertices (taken from [32])

=
−1

+ +

++

+ +

−1

Figure 2.3: Diagrammatic representation of the DSE for the gluon propagator where
blobs denote dressed propagators respectively dressed vertices (taken
from [32])

=
−1

+ 2
−1

+

s

u/d

Figure 2.4: Diagrammatic representation of the truncated DSE for the gluon propa-
gator where black blobs denote dressed propagators respectively vertices
and the yellow blob the quenched propagator (taken from [32])

Finally, we want to emphasize the implications of the unquenching process. The
including of the back-reactions from the quark to the gluonic sector introduces an
implicit dependence on the quark chemical potential as well as on the chiral dynam-
ics of the quarks for the gluon dressing functions. This dependences will manifest
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2 QCD at finite temperature

predominantly in effects on the thermal mass of the gluon, in particular close to the
chiral phase transition.

The quark-gluon vertex

At this point we are left with a definition of the quark gluon vertex, which is part
of our truncation scheme. We follow [32] and use an educated guess motivated by
basically two constraints:

• The vertex in principle has to satisfy its Slavnov-Taylor identity, which is an not
yet resolved issue in QCD. The corresponding Abelian constraint, the Ward-
Takahashi identity, has been used to express one part of the vertex in terms of
the quark dressing functions, reflected in the first term of the Ball-Chiu vertex.

• In order to have the correct ultraviolet running of the vertex in combination
with the gluon dressing functions and to absorb non-Abelian effects the infrared
enhanced function Γ(p2, k2, q2) is introduced.

Our ansatz for the quark-gluon vertex then reads

Γµ(p, k; q) = γµ · Γ(p2, k2, q2) ·
(
δµ,4

C(p) + C(q)

2
+ δµ,i

A(p) + A(q)

2

)
,

Γ(p2, k2, q2) =
d1

d2 + x
+

x

Λ2 + x

(
β0α(µ) ln[x/Λ2 + 1]

4π

)2δ

, (2.22)

where p and k are the fermion momenta and q is the gluon momentum. The three
quantities d1, d2 and Λ are parameters adjusted to control the renormalization group
running of the vertex in the large and low momentum region (d2 and Λ) and to
control the actual strength of the quark gluon interaction at small momenta in the
case of d1. In the ultraviolet, δ = (−9Nc)/(44Nc− 8Nf ) is the anomalous dimension
of the vertex and β0 = (11Nc − 2Nf )/3, leading to values of δ = −9/44 and β = 11
in the quenched and δ = −1/4 and β = 9 in the Nf = 2 + 1 unquenched case. The
values of the parameters are fixed as

Λ = 1.4 GeV,

dunq1 = 7.5 GeV2,

dque1 = 4.6 GeV2,

d2 = 0.5 GeV2.

The variable x, representing a squared momentum, is equal to q2 in the quark DSE
and equal to p2 + k2 in the quark loop. As it turns out, the parameter d1 needs to
be modified above the crossover respectively critical temperatures for quenched and
unquenched calculations. We deal with this issue in the next chapter.
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2.3 QCD Dyson-Schwinger equations

As mentioned before not all unquenching effects for the gluon propagator are taken
into account in our truncation scheme. Furthermore there are also effects in the
chosen vertex, which can be expressed as hadronic contributions in the diagrammatic
notation. They will be necessary to obtain the correct critical scaling at the chiral
phase transition temperature in the chiral limit.

Results for the QCD phase diagram for NF = 2 + 1 from [32]

At the end of this section we want to repeat some of the results from [32], which are
closely related to our work. Therefore we focus only on the Nf = 2 + 1 unquenched
QCD part. In Fig.2.5 we give their results for the regularized condensate, where the
authors find good agreement with lattice predictions below and at the crossover, but
differ above the continuous transition. They attribute this discrepancy to the fixed
vertex strength parameter d1. We exploit the difference in the regularized condensate
to obtain a model for d1 in the next chapter.

100 150 200 250
T [MeV]

0

0.2

0.4

0.6

0.8

1

∆
l,

s(T
)/

∆
l,

s(0
)

This work
Lattice QCD

Figure 2.5: Comparison of the regularized condensate calculated in [32] to lattice
results from [36] at zero chemical potential.

The major result of [32] is shown in Fig.2.6, where we see their prediction for the
QCD phase diagram obtained from unquenched Nf = 2+1 calculations. The authors
find a critical end point at µ=190 MeV and T=100 MeV. The curvature obtained
from the chiral transition line is much larger than the lattice prediction. One for
our work important observation is the prediction of slightly different crossover tem-
peratures for the chiral and the deconfinement transition at zero chemical potential.
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Figure 2.6: Phase diagram for Nf = 2 + 1 obtained in [32].

2.4 Hard thermal loops

At high temperatures T where all masses are negligible and for weak coupling g,
Braaten and Pisarski first investigated the application of a method called Hard ther-
mal loops with the involved resummation to QCD (see [8–10]). In this scenario, the
fields have an effective mass of order gT and therefore it is important to distinguish
between hard and soft momenta. A momentum is called soft if all its components
are proportional to gT and called hard if the momentum is of order T. In case of
a hard external momentum perturbative corrections to a certain diagram are sup-
pressed by at least one power of g. In contrast, all external momenta p are soft,
some loop corrections with hard internal momenta, which are proportional to g2T 2

p2

are as important as the tree-level diagrams. These corrections are the so called hard
thermal loops due to the hard momentum in the loop calculation. As shown in [10]
one can calculate the gluon self energy in the HTL limit, denoted as ΠHTL

µν . The exact
calculations can be found in [35] and we find contributions from the gluon loop, the
quark loop and the four gluon-vertex diagram. Using the DSE for the gluon, one can
define an HTL-effective gluon propagator as(

DHTL
)−1

µν
(p) = p2gµν − pµpν + ΠHTL

µν (2.23)

and an equivalent expression for the HTL effective quark propagator as well as for
the vertices. In order to calculate any kind of loop contribution, propagators and
vertices need to be taken as the HTL effective ones where the loop momentum is soft,
and as the bare propagators for hard momenta. One can use the HTL limit to define
an effective theory with effective Lagrangians (see [35]). We want to emphasize that
the self-energy of the gluon takes also the quark loop into account. Even if one only
deals with the bare quark, this will have some sort of unquenching effects. Therefore
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2.4 Hard thermal loops

it is interesting to see if calculations within our unquenched system of coupled quark
and gluon DSEs reveal the same behavior as the HTL method predicts.
Three attributes of hard thermal loops are mentioned in Ref. [10] and repeated here
due to their importance:

• They only arise from one-loop subdiagrams

• They are gauge invariant

• They satisfy Ward identities.

Explicit calculations of the HTL-effective quark propagator can be found in [11].
Decomposed in quark and antiquark part it reads with four momentum p = (ωn,p)

SHTL(p) =
1

D+(p)

γ0 + iγ · p
2|p|

+
1

D−(p)

γ0 − iγ · p
2|p|

, (2.24)

where we used the γ-matrices convention (2.14). The separated inverse propagators
D±(p) including the HTL-effective action are

D±(p) = −ip0 ± |p|+
m2
T

|p|
·
[
Q0

(
ip0

|p|

)
∓Q1

(
ip0

|p|

)]
, (2.25)

with the Legendre functions of the second kind Q0(x) and Q1(x) and the thermal
mass mT . The general relation

Disc

[
1

D±(p)

]
= iρ±(ω, |p|) (2.26)

defines the spectral densities, where ω = ip0 is the analytic continuation to a contin-
uous Minkowski energy. The exact prediction for the spectral functions in the HTL
scheme reads

ρ±(ω, |p|) = 2π
ω2 − |p|2

2m2
T

[δ(ω − ω±) + δ(ω + ω∓)]

+ ρ±branch cut,

(2.27)

where ρ±branch cut results from the existence of a branch cut in the HTL effective quark
propagator below the lightcone. This branch cut originates from Landau damping,
where one particle is emitted from the medium and another one is absorbed. The
spectral contribution from this branch cut reads

ρ±branch cut(ω, |p|) =
π ·m2

T

|p|
· (1∓ x) ·Θ(1− x2)

×

[
|p| · (1∓ x)± m2

T

2|p|
·
[
(1∓ x) · ln

(
1 + x

1− x

)
± 2

]2

+
π2m4

T

4|p|2
· (1∓ x)2

]−1

,

(2.28)
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2 QCD at finite temperature

with the variable x defined as x = ω
|p| . This spectral density generates a basically

flat contribution in the space like region.

Figure 2.7: HTL prediction for the dispersion relations extracted from the effective
quark propagator Eq.(2.24), taken from [11] .

In [37] we find the HTL predictions for the dispersion relations of the excitations
in the spectral functions. This is also shown in Fig.2.7, where the energy and the mo-
mentum are normalized to the thermal quark mass. The behavior for small momenta
as predicted in the HTL scheme for the dispersion relations is

E1(|p|) ≈ mT +
|p|
3

E2(|p|) ≈ mT −
|p|
3

(2.29)

and for the relative spectral strength of the lower branch

Z2

Z1 + Z2

≈ 1

2
− |p|

3mT

. (2.30)

Here the second (lower) branch, with the dispersion relation E2(|p|), is a collective
fermionic excitation. This appears due to the introduction of the heat bath and has a
helicity over chirality ratio of -1 indicating an antiparticle. Due to this antiparticle-
like attribute and a antiparticle-like dispersion relation for small |p|, it is dubbed
antiquark hole or plasmino, derived from a similar phenomenon in QED plasmas,
the plasmon.
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2.5 Spectral functions at finite temperature

2.5 Spectral functions at finite temperature

For the quark propagator in imaginary time formalism analyticity enables us to write
down a spectral representation, denoted as

S(iωn,p) =

∫ ∞
−∞

dω

2π

ρ(ω,p)

iωn − ω
. (2.31)

The quark correlator, as a quantity describing a fermion, has Dirac structure.
Therefore the spectral function ρ, at zero chemical potential, can be split up as

ρ(ω,p) = 2π

(
ρ4(ω, |p|) · γ4 + ρv(ω, |p|) ·

iγ · p
|p|

− ρs(ω, |p|)
)
, (2.32)

where the conventions settled in Eq.(2.14) are used and we call ρ4, ρv and ρs dressing
functions of the spectral representation where “v” indicates the vector, “s” the scalar
and “4” the Matsubara part. By comparing Eq.(2.32) with the definition of the quark
propagator, Eq.(2.16), the connection between the two sets of dressing functions is
apparent. As mentioned in Ref. [33], if one assumes the Fock space of our interacting
theory to be positive definite, the dressing functions in Eq.(2.32) obey

ρ4(ω, |p|) ≥
√
ρ2
v(ω, |p|) + ρ2

s(ω, |p|) ≥ 0 (2.33)

and furthermore follow the sum rules

1 = ZW
2

∫ ∞
−∞

dω ρ4(ω,p)

0 =

∫ ∞
−∞

dω ρv(ω,p)

0 =

∫ ∞
−∞

dω ρs(ω,p)

(2.34)

where ZW
2 is the wave function renormalization constant. It is convenient and in-

structive to consider projections onto the quark and the antiquark space for vanishing
momenta and the chirally restored phase, respectively. These two cases will be in-
vestigated in the following subsections.

Zero momentum

One defines the zero momentum projectors as

L± =
1

2
(1∓ γ4) (2.35)
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2 QCD at finite temperature

for the quark(+) and the antiquark(-). In consequence, the spectral function for
vanishing momenta can be written as

ρ(ω,0) = ρz(ω) = ρz+(ω)L+γ4 + ρz−(ω)L−γ4, (2.36)

and the propagator then follows as

S(iωn,0) = Sz+(iωn)L+γ4 + Sz−(iωn)L−γ4. (2.37)

This means

ρz±(ω) = 2π (ρ4(ω, |0|)± ρs(ω, |0|)) , (2.38)

and

ρv(ω, |0|) = 0. (2.39)

From the spectral representation we derive the scalar relation

Sz±(iωn) =

∫ ∞
−∞

dω

2π

ρz±(ω)

iωn − ω
. (2.40)

and the normalization ∫ ∞
−∞

dω ρz±(ω) =
2π

ZW
2

(2.41)

from Eq.(2.34). We infere from Eq.(2.33) that ρz±(ω) is positive semi-definite. Finally,
by employing the projectors Eq.(2.35) to the propagator in the Dyson-Schwinger
framework Eq.(2.16), we find the left hand side of Eq.(2.40) in our scheme denoted
as

Sz±(iωn) = − iωnC(iωn, |0|)±B(iωn, |0|)
ω2
nC

2(iωn, |0|)±B2(iωn, |0|)
. (2.42)

Chirally symmetric phase

In the case of a chirally symmetric phase withB(iωn, |p|) = 0 and therefore ρs(ω, |p|) =
0 one defines the projectors

P±(p) =
1

2

(
1∓ iγ4

γ · p
|p|

)
(2.43)

which can be understood as energy projectors for massless modes. The indication
of quark and antiquark part are as in the previous subsection. Again the spectral
function can be split up in terms of the projectors as

ρ(ω,p) = ρp+(ω)P+γ4 + ρp−(ω)P−γ4 (2.44)
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2.6 Schwinger function

and the propagator as

S(iωn,p) = Sp+(iωn)P+γ4 + Sp−(iωn)P−γ4. (2.45)

While we find

ρp±(ω, |p|) = 2π (ρ4(ω, |p|)± ρv(ω, |p|)) . (2.46)

the normalization of ρp±(ω, |p|) is the same as in Eq.(2.41) and we encounter a similar
(scalar) relation from the spectral representation

Sp±(iωn, |p|) =

∫ ∞
−∞

dω

2π

ρp±(ω, |p|)
iωn − ω

. (2.47)

We can derive the according propagator in our framework, as in the previous case,
by employing the projectors Eq.(2.43) to the quark propagator Eq.(2.16), leading to

Sp±(iωn, |p|) = − iωnC(iωn, |p|)± |p|A(iωn, |p|)
ω2
nC

2(iωn, |p|)± |p|2A2(iωn, |p|)
. (2.48)

2.6 Schwinger function

Another quantity of interest is the Schwinger function SM+ (τ), which is the Fourier
transform of the propagator SM+ (iωn) as defined in Eq.(2.11) at |p| = 0:

SM+ (τ) = T ·
∑
n

e−iωnτSM+ (iωn). (2.49)

At zero temperature the Schwinger function is a tool to investigate positivity vio-
lations in the quark propagator. From charge conjugation invariance we find the
symmetry

SM± (τ) = SM∓ (1/T − τ). (2.50)

In the phase of chiral symmetry restoration in the chiral limit

SM+ (τ) = SM+ (1/T − τ) (2.51)

is given due to B(iωn,0)=0 and we also find SM+ (iωn) = −SM+ (−iωn) (compare [33]).
In Ref. [2], two important relations for the Schwinger function at finite temperature
are given.

1. The connection to the calculated spectral density is

SM+ (τ) =

∫
dω

2π
ρM+ (ω) · e(1/2−τT )ω/T

eω/2T + e−ω/2T
. (2.52)

This means that a positive spectral function always implies a positive Schwinger
function. A negative Schwinger function, or positivity violation, corresponding
to a negative spectral function, leads to the absence of the according particles
from physical space, implying the phenomenon of confinement.
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2 QCD at finite temperature

2. The second relation connects the search for positivity violations in the spectral
function with the curvature of the logarithm of the Schwinger function:

ρM+ (ω) ≥ 0⇒
∂2SM+ (τ)

∂τ 2
≥ 0 (2.53)

This shows that a concave curvature of the logarithm of the Schwinger func-
tion implies positivity violations in the spectral function and therefore can be
interpreted as an indicator for confinement.
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3 Numerical setup and approaches to
the spectral function

After setting the theoretical foundation of finite temperature QCD we turn to the
details of the numerical calculation. We introduce the Levenberg-Marquardt method
as a fitting routine for multiple parameters and explain its general idea. The following
section deals with the details for solving the Dyson-Schwinger equation focusing in
particular on the vertex strength parameter d1 above the phase transitions for the
considered scenarios and a comparison of quenched and unquenched propagators.
We then briefly address some more details of the fitting routine and introduce the
ansätze for the spectral functions.

3.1 Levenberg-Marquardt Method

In order to perform a nonlinear multiparametrical fit, one needs an appropriate fitting
routine. The Levenberg-Marquardt method is an advanced fitting routine with all
necessary features. The fitting process is translated into the task of minimizing a
predefined merit function χ2(a) with a being the set of N parameters to vary. A
properly defined merit function will show approximately quadratic behavior close to
a minimum (see [38]):

χ2 ≈ γ − d · a +
1

2
· a ·D · a. (3.1)

Here d is a vector of size N and D is proportional to the NxN curvature matrix
(compare Eq.(3.4)). In this case one knows from minimization techniques how to
calculate the next set of parameters anew from the old set aold

anew = aold +D−1 ·
[
−∇χ2(aold)

]
. (3.2)

In case the approximation with the current set of parameters a is rather poor, one
can, according to the steepest descent method (compare Ref. [38]), take one step
down the gradient

anew = aold − c · ∇χ2(aold). (3.3)

For the minimization process one defines

αkl = 2 ·D =
1

2

∂2χ2

∂ak∂al
(3.4)
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and

βk = −1

2

∂χ2

∂ak
. (3.5)

The figure of merit is usually defined as

χ2

d.o.f.
=

1

Ndata −N
·
Ndata∑
i

[yi − y(xi; a)]2

σ2
i

(3.6)

where y(x; a) is the model function one wants to fit to the data (xi, yi) and d.o.f.
stands for degrees of freedom. Using also the first partial derivatives we find

αkl =

Ndata∑
i=1

1

σ2
i

[
∂y(x; a)

∂ak

∣∣∣∣
x=xi

· ∂y(x; a)

∂al

∣∣∣∣
x=xi

]
(3.7)

βk =

Ndata∑
i=1

[yi − y(xi; a)]

σ2
i

∂y(x, a)

∂ak

∣∣∣∣
x=xi

. (3.8)

Second order partial derivatives are neglected since the form of their appearance
shows that they would cause more disadvantages due to destabilizing effects than
improve the routine.

Eqs.(3.2) and (3.3) can now be rewritten and combined to the central equation of
the Levenberg-Marquardt method

N∑
l=1

α′kl · δal = βk (3.9)

where
δal = (anew − aold)l (3.10)

and

α′jj = αll · (1 + λ)

α′kl = αkl , for k 6= l.

The appearance of the parameter λ is connected to the constant c in Eq.(3.3) and
some general considerations. λ basically switches smoothly between the quadratic
approximation Eq.(3.1) and the steepest descent method Eq.(3.3). One starts with
a set of parameters aold and a value for λ. The linear equations (3.9) are solved for
δal and the trial parameters anew are calculated. If χ2(anew) is smaller than the old
value, λ is divided by a factor α which is equivalent to get closer to the quadratic
approximation. The routine stops when the difference between the old and the new
value of the merit function is smaller than a defined limit. If the value of the merit
function is bigger than the old one, λ is multiplied by α and one goes back to aold to
start over. Increasing λ makes the matrix α′kl diagonal-dominant which is the same
as using the steepest descent method to go one step down the gradient.
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3.2 The quark propagator and models for the vertex
strength parameter

The quark propagator in Matsubara formalism calculated in the DSE approach, as
defined in Eq.(2.16), is the main input for our investigations. For the calculation of
the quark propagators we apply the code used in [32] written by Jan Lücker. The
theoretical background as well as the truncation scheme have been already discussed
in chapter 2. In this section we address the remaining open questions and some
details of the calculation.
In both, the quenched and in the unquenched calculations a O(4) cutoff of the form

ω2
n + |p|2 = Λ2 (3.11)

is applied, leading to different momentum grids for each Matsubara frequency. The
cutoff dependence is removed by a renormalization at |µ| = 80GeV with a MOM
scheme, satisfying

B(iω0,µ) = m(|µ|) = m0,

(3.12)

C(iω0,µ) = 1.

The strange quark mass in the Nf = 2 + 1 unquenched calculations is set to
ms = 54 MeV. Our set of truncated Dyson-Schwinger equations is solved numerically
by iteration, resulting in the dressing functions of the quark propagator for ω−N to
ωN−1 with N = 5. We also obtain the wave function renormalization constant,

ZW
2 . 1 (3.13)

from all our calculations.

As mentioned in the previous chapter, the quenched gluon propagator in Landau
gauge is fitted to lattice calculations [39], which are available for certain tempera-
tures. Therefore one has to develop a method to derive the gluon dressing functions
(propagator) for any temperature of interest. We used two ansätze to resolve this
issue:

1. Linear interpolation: If one is interested in quark propagators in a tem-
perature regime, where the fits of the dressing functions to the lattice data are
available, an interpolation of the dressing functions in T is possible. We employ
a linear interpolation to follow [33].

2. Quadratic fit: The main instrument used to derive the gluon dressing func-
tions in our work is a quadratic fit to those gluon dressing functions, derived
from the lattice gluon propagators.
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3 Numerical setup and approaches to the spectral function

If not otherwise indicated we use the quadratic fit method. The linear interpolation
is only considered in the quenched scenario for comparison with [33]. The values
for the gluon dressing functions for both schemes differ little for temperatures up to
T ≈ 450 MeV.

Vertex strength parameter d1

An open question is the value of the strength parameter d1 in the ansatz for the
quark-gluon vertex Eq.(2.22) above the particular phase transition. The strategy in
the quenched as well as in the unquenched case is to extract certain quantities from
our calculations and vary the vertex strength until we achieve satisfying agreement
with lattice results.

• Quenched QCD: In the second chapter we found a first order phase transi-
tion for the case of quenched QCD in the Columbia plot Fig.2.1. This transition
happens at T 1st

que ≈ 277 MeV, independent of the quark mass. We consider two
cases for the parameter d1 resulting from the two methods to obtain the gluon
dressing functions at various temperatures. In case of linear interpolation we
adapt the investigated temperatures and the values for d1 used in [33] in order
to compare our findings with their results. The idea is to fix the values for d1

by comparing the obtained with the thermal quark mass from lattice calcula-
tions [16]. The particular values together with our results for thermal masses
and those of [33] are shown in Table I in chapter 4.
However, the fitted gluon dressing functions differ to those dressing functions
obtained via linear interpolation leading to different vertex strength parame-
ters. We adapted the idea of comparing to the lattice results for the thermal
mass from [16] and obtained the following ansatz for the parameter above the
critical temperature of T 1st

que = 277 MeV:

dque1 (T ) = 0.560 ·
(
T 1st
que

T

)1.057

GeV2. (3.14)

The resulting thermal masses as well as the temperatures and exact values used
for d1 are listed in Table II. One important feature of the model Eq.(3.14) is the
possibility to calculate the vertex strength parameter at arbitrary temperatures.
One additional remark on the lattice data for the thermal mass is, that by
comparing with [17] one sees the thermal masses have been updated recently
and the values seem to be lower. This suggests an even smaller vertex strength
as modeled in Eq.(3.14), but it will be left for future investigations to explore
the lowering of the vertex strength, when there is also more input for the gluon
propagator available.
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3.2 The quark propagator and models for the vertex strength parameter

• Unquenched QCD - physical masses: For the unquenched case there is
no lattice data for the thermal mass, as used to fix d1 in the quenched case,
available. In the case of physical quark masses with mu,d = 2 MeV we used
the results from [32] for the chiral condensate shown in Fig. 2.5. We already
discussed briefly that above the crossover the results do not quite match the
lattice prediction. The vertex strength parameter was varied to roughly fit the
results in our Dyson-Schwinger scheme to the lattice values of the regularized
condensate. We obtained an adapted vertex strength, once again following a
power law

dunq,phys1 (T ) = 7.67 ·
(
T crossunq,phys

T

)0.966

GeV2 (3.15)

with T crossunq,phys ≈ 156 MeV. However this model will only be reliable up to the
critical temperature of the quenched phase transition T 1st

que. At this temperature
we will see (artificial) residual effects from the quenched case. By looking
at Fig.2.4 and Eq.(2.22) we remember, the unquenching was done by merely
adding the quark loop leaving the inner structure of the quenched gluon part
unchanged. As discussed in chapter 2 unquenching effects are expected in the
Yang-Mills part of the gluon as well as in the vertex.

• Unquenched QCD - chiral limit: As mentioned in the consideration of the
Columbia plot in section 2.1, we expect to find a second order phase transition
with a critical temperature T 2nd

unq,chiral. In the case of unquenched QCD in
the chiral limit we have no lattice data available, since calculations of the
quark propagator are impossible for this scenario. However, we assume the
vertex strength to decrease as in the two previous cases. Motivated by the
behavior of roughly 1

T
we propose a model for the vertex strength reproducing

d1 = 7.5 GeV2 right before the phase transition:

d1(T ) = 7.5 ·
T 2nd
unq,chiral

T
GeV2. (3.16)

In order to test the setup concerning the dependence of the vertex strength a
second model is applied keeping the vertex strength parameter to the constant
value defined before

d1(T ) = 7.5 GeV2. (3.17)

This certainly gives simply an impression about the impact of d1 rather than
realistic results, since we expect the vertex strength to decrease eventually.

Comparison of quenched and unquenched quark propagator

At the end of this section we want to compare the quenched and unquenched quark
propagators by investigating their dressing functions (see Eq.(2.16)). In Figures 3.1a
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Figure 3.1: Comparison of the vector and scalar dressing functions for quenched and
unquenched propagators at T=346.25 MeV and m0=2 MeV.

and 3.1b the dressing functions at T=346.25 MeV and m0=2 MeV are shown for the
first Matsubara mode ω0. The quenched case is represented by black lines, while the
red and the blue lines correspond to the unquenched scenario, for a vertex strength
parameter d1 = 3.55 GeV2, calculated with Eq.(3.15), and a tenth of this value re-
spectively. We use two values for d1 in the calculation of the unquenched quark
propagator to estimate the influence of the vertex strength.
While the shape of the dressing functions B and C shows no dependence on the pa-
rameter d1, there appears a maximum in the A dressing function for d1 = 0.355 GeV2

while the vector dressing function for the larger value of d1 behaves linear until it
eventually decreases. It is striking that the shape of the quenched and the un-
quenched dressing function with smaller d1 is similar. This is due to the structure
of the quark-gluon vertex Eq.(2.22). Since the parameter d1 appears quadratic in
backcoupling processes from the unquenched Yang-Mills sector, leading to a suppres-
sion of the unquenching effects for values of d1 smaller than one. On the other hand
the backcoupling effects are enhanced for values of d1 larger than one. While the
values for the unquenched dressing functions with the smaller (reduced) parameter
d1 and those in the quenched case are comparable, the unquenched propagator with
d1 = 3.55 GeV2 displays larger values for all dressing functions.
In Fig.3.2 we compare the dressing functions in the same setup but with d1 = 1 GeV2

in both calculations to see the pure unquenching effects. We observe that the un-
quenching is reflected in a lowering of all dressing functions. While the shapes of
the functions B and C are similar, we find again a maximum in the vector dressing
function A for the unquenched case.
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Figure 3.2: Comparison of the vector and scalar dressing functions for quenched
and unquenched propagators at T=346.25 MeV, m0=2 MeV and d1 =
1 GeV2.

3.3 Fitting strategy

The process of fitting the spectral function to the quark propagator is realized in a
C++ program which needs the dressing functions of the quark propagator as input.
Those propagators are obtained by the previously mentioned program. Partially
based on source codes from [38] the Levenberg-Marquardt method is used to fit the
integral of a chosen spectral function to the quark two-point function. We want to
emphasize that the quark spectral function refers to the spectral functions ρ+.
The model function in the Levenberg-Marquardt method is one (or the combination)
of the propagator S±(iωn, |p|), calculated from the ansätze for the spectral function,
which will be introduced in the next section. Generally, the figure of merit is defined
as in Eq.(3.6). In our case we assume uncorrelated data and set σi = 1 for all data
points. To distinguish this from the previous figure of merit we define

l2±(|p|)
d.o.f.

=
1

Ndata −N
·
NMatsubara∑

i

|S±,DSE(|p|, ωi)− S±,F it(|p|, ωi)|2. (3.18)

Since we always calculate this figure of merit we will use l2

d.o.f.
and l2 equivalently.

We fit the quark propagator for every |p| separately. Remembering that we use a
O(4)-cutoff for the production of the data, an interpolation is necessary to set the
propagator for every Matsubara frequency on the same momentum grid. For this
process an interpolation with cubic splines is used (compare [38]). Another necessary
tool is some sort of numerical integration. Here we decided to use the Gauss-Legendre
integration due to its numerical stability and divided the region of integration in small
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3 Numerical setup and approaches to the spectral function

intervals to keep the order of the used polynomials as low as possible. All results
which needed usage of this numerical integration are checked to be independent of
an increase of the integration parameters. For more details on the Gauss-Legendre
integration see [38].
For the fitprocess the factor α is set to 15, ensuring a moderate transition between
a quadratic approximation of l2 and the steepest descent method. The fitroutine
stops when the the difference between the new and the old value for l2 falls below a
particular value for the second time. This value depends on the current setup and
fitfunction.
Since we calculate the quark propagators for ω−N to ωN−1 with N = 5 and we need
a higher number of Matsubara frequencies, we use a extrapolation method based
on the isotropic behavior of the quark dressing functions at high momenta. The
Euclidean four momentum squared can be rewritten as

p2 = ω2
n + |p|2

= ω2
max +

(
ω2
n − ω2

max + |p|2
)︸ ︷︷ ︸

:=|p′|2

. (3.19)

As indicated in Eq.(3.19), we define the absolute value of the new three momentum
|p′| and now extrapolate the quark dressing functions

X(ωn, |p|) ∈ {A(ωn, |p|), B(ωn, |p|), C(ωn, |p|)}

for n > max.
X(ωn, |p|) = X(ωmax, |p′|). (3.20)

In order to extrapolate to higher Matsubara frequencies the O(4) cutoff has to be set
accordingly. As it turns out, it is sufficient in all cases to extrapolate to max=70,
leaving us with 140 data points for the Matsubara frequencies. We want to mention
that the numerical calculation of the unquenched propagator turns out to be sensitive
to the number of accounted Matsubara frequencies. Therefore we chose to calculate
the propagators with N=5 to stay in one line with [32].

3.4 Ansätze for the spectral function

In this section we present the different ansätze for the spectral function ρ±(ω, |p|) as
introduced in Eqs.(2.38) and (2.46). We still carry the signs for both, the quark and
the antiquark spectral function even if we are only interested in the quark spectral
functions.

HTL: Two-pole plus continuum

From our discussion of the HTL results we infer one appropriate ansatz for the
spectral function is the HTL suggested two-pole ansatz plus continuum shown in

30



3.4 Ansätze for the spectral function

Eq.(2.27). The simple cornerstone for the HTL ansatz is a pole in the spectral
density

ρ±pole(ω, |p|) = 2π · Z(|p|) · δ(ω ∓ E(|p|)). (3.21)

The fit parameters are momentum dependent and contain the dispersion relation for
the pole-particle. As already discussed, the HTL formalism predicts two poles, the
quark-like pole and the so called plasmino pole. The plasmino can be understood
as a collective excitation showing antiparticle-like evolution at small momenta in the
dispersion relation. The spectral density for two poles reads

ρ±two-pole(ω, |p|) = ρ±pole 1(ω, |p|) + ρ∓pole 2(ω, |p|)

= 2π · Z1(|p|) · δ(ω ∓ E1(|p|)) + 2π · Z2(|p|) · δ(ω ± E2(|p|))
(3.22)

where the factor of 2π is due to the normalization of the spectral representation in
Eq.(2.31) and the inversion of the ± due to the expectation of an antiparticle like
behavior of the second pole.

From Eq.(3.22) it is obvious, that ρ+
two-pole(ω, |p|) and ρ−two-pole(ω, |p|) are symmetric

under exchange of parameters if the continuum contribution Eq.(2.28) is not present.
What we call the HTL ansatz is the spectral density in Eq.(3.22) plus the branch
cut in Eq.(2.28)

ρ±HTL(ω, |p|) = ρ±two-pole(ω, |p|) + ρ±branch cut(ω, |p|). (3.23)

We remember that the Θ-function in Eq.(2.28) ensures that the continuum only
contributes in the space-like region of the spectrum. The normalization of the ansatz
is given by

∫ ∞
−∞

dω ρ±HTL(ω) = 2πZtotal(|p|), (3.24)

where the left part for the HTL spectral function is found to be

Ztotal(|p|) = Z1(|p|) + Z2(|p|) +
1

2π

∫ 1

−1

dxρ±branch cut(x, |p|). (3.25)

From the spectral representation for one pole Eq.(3.21), the corresponding propagator
can be easily calculated and reads

S±pole(iωn, |p|) =
Z(|p|)

iωn ∓ E(|p|)
. (3.26)

The propagator for ansatz (3.23) follows immediately.
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3 Numerical setup and approaches to the spectral function

Tripole ansatz

In reference [28] an investigation of the spectral function for the quark propagator
calculated from the QCD gap equation in a Dyson-Schwinger approach with a tem-
perature dependent vertex model was done. Using the Maximum Entropy method, a
tripole solution for the chiral limit of unquenched QCD is suggested. For later studies
and to test the prediction we include this ansatz in our repertoire. The systematics
are just the same as for Eq.(3.22). The ansatz for the spectral function reads

ρ±Tripole(ω, |p|) = 2π · Z1(|p|) · δ(ω ∓ E1(|p|)) + 2π · Z2(|p|) · δ(ω ± E2(|p|))

+ 2π · Z3(|p|) · δ(ω ∓ E3(|p|)),
(3.27)

and the quark propagator follows again from Eq.(3.26).

Breit-Wigner function

Due to effects of a strongly interacting medium one would expect not only sharp
particle poles in the spectral representation and a continuum contribution from the
branch cut but also a broadening of the correlated peaks. To cover this possibility
we include the Breit-Wigner function as an ansatz in our spectral function. In order
to agree with the normalization for the two-pole ansatz (Eq.(3.24)), the ansatz for
the Breit-Wigner function is

ρ±Breit-Wigner(ω, |p|) =
2 · Z(|p|) · Γ(|p|)

(ω ∓ E(|p|))2 + Γ2(|p|)
. (3.28)

leading with Eq.(2.31) to the propagator

S±Breit-Wigner(iωn, |p|) =
Z(|p|)

∓E(|p|) + i (ωn + Γ(|p|))
·Θ(ωn)

+
Z(|p|)

∓E(|p|) + i (ωn − Γ(|p|))
·Θ(−ωn).

(3.29)

The idea is to use the Breit-Wigner ansatz to investigate whether one has a sharp pole
(Γ becoming very small) or needs a broader distribution. If one replaces the poles in
the HTL ansatz by Breit-Wigner functions one needs to be careful applying the HTL
continuum in Eq.(2.28) since it is derived from a propagator with two poles rather
than broader distributions. Therefore an ansatz with two Breit-Wigner functions is
similar to the two pole ansatz and reads

ρ±2BW(ω, |p|) = ρ±BW 1(ω, |p|) + ρ∓BW 2(ω, |p|). (3.30)

A real advantage in this case is that the propagator Eq.(3.29) is given in an analytical
form, excluding issues due to numerical integration during the fitting procedure.
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3.4 Ansätze for the spectral function

Gauss function

In principle, there is additionally the possibility to use an ansatz with two Gaussian
functions, as mentioned in Ref. [33]. However the Gaussian as an ansatz for the
spectral density has a drawback due to a non-analytical solution of the integral given
in Eq.(2.31). Since one has to calculate not only the propagator S±Gauss(iωn, |p|) but
also its partial derivatives with respect to the parameters, a numerical integration
includes possible sources for uncertainties. After all the Gaussian has no such physical
motivation as the Breit-Wigner ansatz representing a particle with a mean and a
certain decay width, which is used in the investigation of spectral representations in
experimental physics. Therefore we disregard the Gaussian as a possible ansatz for
the spectral function.

Combinations of different fitfunctions

Since the analytical form and the input for the fitting routine was already at hand
we investigated different combinations of the pole ansatz Eq.(3.21) and the Breit-
Wigner ansatz Eq.(3.28). Firstly it is apparent that a Breit-Wigner function will
melt down to a pole if the pole is suggested by the data. It turns out that different
combinations of poles and Breit-Wigner functions are sensitive to the initial values
of the parameters. One needs to distinguish carefully between two cases:

1. Dependence on initial values gives solutions with the same l2.

2. Dependence on initial values gives solutions with different l2.

While in the first case a redundancy of parameters leaves us with a whole family
of equally suitable solutions, the second case points towards local minima in the l2-
space. In this case one has to find the global minimum by hand, which is of course
a procedure that has to be used carefully.
There are three interesting examples we found to be useful throughout our investi-
gations.

1. HTL plus Breit-Wigner: Firstly, there is the HTL solution plus a Breit-
Wigner function. The idea is that the Breit-Wigner function simulates back-
ground and contributions from the branch cut while the two poles describe the
previously seen quark and plasmino branch. The ansatz for the spectral density
in this case is

ρ±HTL plus Breit-Wigner(ω, |p|) = ρ±HTL +
2 · ZBW (|p|) · ΓBW (|p|)

(ω ∓ EBW (|p|))2 + Γ2
BW (|p|)

. (3.31)
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3 Numerical setup and approaches to the spectral function

2. Pole plus Breit-Wigner: Another ansatz we used with success for the un-
quenched case with physical mass, consists of one pole and one Breit-Wigner
function. The spectral function then reads

ρ±Pole plus Breit-Wigner(ω, |p|) = 2π · Z1(|p|) · δ(ω ∓ E1(|p|))+
2 · Z2(|p|) · Γ(|p|)

(ω ± E2(|p|))2 + Γ2(|p|)
.

(3.32)

3. Three Breit-Wigner functions: Finally, we also used a very general ansatz.
This was mainly important to investigate the given structure when we found
one or two Breit-Wigner functions to melt down to a pole. The propagator is
simply given as

ρ±Three Breit-Wigner(ω, |p|) = ρ±2BW +
2 · Z3(|p|) · Γ3(|p|)

(ω ∓ E3(|p|))2 + Γ2
3(|p|)

. (3.33)
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4 Quark spectral functions in
quenched QCD

In this chapter we present our results for the spectral functions of quenched QCD.
For this scenario, where all quark loops are neglected, we expect a first order phase
transition at T 1st

que ≈ 277MeV . To test our fitting routine, in a first step we compare
our findings with the HTL ansatz in the chiral limit to those obtained in [33]. We then
use our ansatz for the vertex strength parameter Eq.(3.14) to explore the spectrum
for higher temperatures, with the HTL as well as with an improved spectral function
including an additional Breit-Wigner function. Finally we consider the case of finite
quark masses in the HTL as well as the improved ansatz.

4.1 Spectral functions in the chiral limit

In this section we draw our attention to the case of the chiral limit and therefore
consider the spectral density as defined in Eq.(2.46).

Comparison with previous calculations

In order to test the fitting routine, the HTL ansatz from Eq.(3.23) is used to fit
the spectral function to the calculated quenched data. The propagators have been
calculated using the linearly interpolated gluon dressing functions and the values for
d1 from [33], since we want to compare our results with their findings. In Fig. 4.1a
one can see the established pattern of the quark and plasmino dispersion relations.
While the quark branch shows eventually the behavior of a free particle at high
momenta, the plasmino dispersion relation first follows antiparticle-like behavior,
reaches a minimum at about 0.4T and rises again. Since we included the HTL
continuum, both branches stay time-like, which means

E(|p|) > |p| , for all |p|. (4.1)

If we compare the predictions from HTL for the slope of the curves (compare Eq.(2.29)
and Eq.(2.30)) we find good agreement for both, the dispersion relations and the spec-
tral strength with the results given in [33]. The obtained values for the thermal mass
are shown in Table I.
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Figure 4.1: Results for the dispersion relations and spectral strength for the two-
pole ansatz plus continuum in quenched QCD in the chiral limit for 1.25
TC (solid lines) and 2.2 TC (dashed lines) for linearly interpolated gluon
dressing functions.

T/TC 1.25 1.5 2.2

d1[GeV 2] 0.5 0.4 0.25
mT/T 0.870 0.867 0.827

Table I: Values for the strength d1 of the quark-gluon vertex and the obtained thermal
masses for the linearly interpolated gluon dressing functions

Since the comparison with [33] confirms the fact that our fitting routine works
well, we next explore the situation in a different setup.

Calculations with the model vertex strength

From now on a slightly different and more advanced description of the gluon propa-
gator for the calculation of the quark propagator is used. This is necessary to be able
to extrapolate to higher temperatures. Following [32] we use the fit for the dressing
functions of the gluon propagator to the lattice data, as described in chapter 3. This
provides the opportunity to calculate the gluon dressing functions at higher temper-
atures. By changing the gluon propagator we expect the vertex strength d1, as fixed
in Table I, not to reproduce the calculated thermal masses exactly. Since we aim at
providing results at higher temperatures, it is necessary to model the vertex strength
parameter d1. This model was already introduced in Eq.(3.14) in chapter 3. The
first three values in Table II are the adjusted values used to fit the power law.

Firstly, we want to explore and compare the results for the HTL-suggested ansatz
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4.1 Spectral functions in the chiral limit

T/TC 1.25 1.5 3 4 5

d1[GeV 2] 0.49 0.32 0.18 0.13 0.10
mT/T 0.8990 0.9055 0.8753 0.8113 0.7649

Table II: Values for the strength d1 of the quark-gluon vertex and the obtained ther-
mal masses for the gluon dressing functions fitted to lattice results
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Figure 4.2: Results for the dispersion relations and spectral strength for the HTL
ansatz in quenched QCD in the chiral limit for 1.25 TC (solid lines)
and 4 TC (dashed lines) for the fitted gluon dressing functions and ver-
texstrength as in Table II.

in the new setup and see whether the impact is noticeable or not. In Fig.4.2 we see
the dispersion relation for the two poles and the relative strength of the plasmino
for 1.25 TC and 4 TC . We notice the shift in the thermal mass for the 1.25 TC
branches and a plasmino which is slightly steeper after the minimum in comparison
with Fig.4.1. For a temperature of 4 TC one observes a plasmino strength, which
decreases faster (compare Fig.4.2b) but which has a steeper dispersion relation for
momenta bigger than ≈ 0.2 T. The minimum of the plasmino branch has shifted to
smaller momenta as well. The values of the slope for small momenta are presented
in Table III, where in both cases we do not see the HTL predicted behavior from
Eq.(2.29).

To test how well the HTL approximation describes the data, we employ the ansatz
Eq.(3.30), which includes two broad contributions from possible excitations. In case
the propagators we consider follow the HTL prediction, we expect the two Breit-
Wigner functions, on top of the HTL continuum, to have a very small width and
show time-like dispersion relations. For the thermal quark mass, a parameter in the
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4 Quark spectral functions in quenched QCD

continuum part, we use those extracted from the two-pole ansatz. Before we present
the results, we shortly comment upon this idea. In [16] it was found that for an
ansatz with two Gaussian functions the width only reduces to zero if the fits were
correlated. As mentioned after Eq.(3.18) we assume uncorrelated data in our pro-
cedure. Nevertheless we observe a correlation which is encoded in our propagator.
From the normalization of the spectral density Eq.(2.41) we can infere the total spec-
tral strength in Eq.(3.25) must equal 1

ZW
2

' 1. The same has to be true for the total

spectral strength for all other ansätze. We find this to be approximately fulfilled in
all our approaches. This implies the fitting routine suggests this correlation, based
on the data and, in this sense, is correlated.

The investigation of the ansatz with two Breit-Wigner functions Eq.(3.30) plus the
HTL suggested continuum contribution Eq.(2.28) gives two Breit-Wigner functions
with relative widths presented in Fig.4.3.
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Figure 4.3: Comparison of the obtained width for a Breit-Wigner ansatz Eq.3.30 plus
HTL continuum for 1.25 TC (solid lines), 3 TC (dotted lines) and 4 TC
(dashed lines)

T/TC 1.25 4

slope pole 1 0.42 0.26
slope pole 2 (-)0.30 (-)0.14

Table III: Slopes of the dispersion relations in Fig.4.2a.
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4.1 Spectral functions in the chiral limit

A remarkable feature is the fact that there is one rather small Breit-Wigner dis-
tribution with a width of about 0.2 T for all temperatures, which can be interpreted
as a residual of the quark pole. However, the width of the second Breit-Wigner
function is very big and tells us immediately that an ansatz with two sharp poles
will not describe the spectrum sufficiently, if we use the HTL predicted continuum
only. Nevertheless the figure of merit l2/dof for the ansatz with two Breit-Wigner
functions is about two orders of magnitude at T=4 TC and three orders of magnitude
at T=1.25 TC better compared to the HTL ansatz (see Fig.4.8a). The fact that the
relative width of the wide Breit-Wigner function for both higher temperatures in
Fig.4.3 is about a factor of ten bigger than the one for 1.25 TC , might be an indicator
that our model for d1 in Eq.(3.14) overestimates the vertex strength, already indi-
cated by recent lattice values for the thermal mass, as mentioned before. We observe
that this width seems to tend to a common limit. In Fig.4.4 the dispersion relations
are presented. We see that the rather small Breit-Wigner function has its maximum
slightly below the lightcone.
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Figure 4.4: Comparison of the obtained dispersion relations for a Breit-Wigner ansatz
Eq.(3.30) plus HTL continuum for 1.25 TC (solid lines), 3 TC (dotted
lines) and 4 TC (dashed lines)

In [27] it was investigated what impact the shape of the gluon-propagator and the
vertex strength might have on the shape of the HTL suggested two-pole structure.
The authors employ a Dyson-Schwinger calculation in rainbow-ladder approximation
to show that the peak of the fermion spectral function is broadened by in-medium
effects for the gauge boson. This might give an explanation why the HTL predic-
tion leaves space for an improved description. Motivated by the findings in [27] we
investigate the spectral function for the chirally symmetric phase in the following
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4 Quark spectral functions in quenched QCD

with ansatz Eq.(3.31), expecting the additional Breit-Wigner function to mimic the
continuum contributions from the gluon-propagator and the influence of the vertex
strength. As mentioned before, this was subject to investigation of different minima
in l2. The minima leading to the smallest l2 we found and the resulting parameters
will be presented in the following.
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Figure 4.5: Dispersion relation for the HTL with continuum plus Breit-Wigner ansatz
for 1.25 TC (solid lines) and 1.5 TC (dashed lines).

T/TC 1.25 1.5 3 4 5

mT/T 0.6974 0.7335 0.7556 0.7049 0.6671

Table IV: Values for the obtained thermal masses for the HTL plus Breit-Wigner
ansatz Eq.(3.31)

In Tabel IV the quark thermal masses for all investigated temperatures are sum-
marized. For 1.5 and 3 TC they are in good agreement with those recently pub-
lished in [17]. In Figures 4.5 and 4.6 one can see that the character of the plasmino
branch is different for small and high temperatures. While for high temperatures the
(anti)particle-like behavior changes, leading to a minimum in the dispersion relation,
it stays antiparticle-like for small temperatures. In Table V the slopes of the disper-
sion relations are summarized and we see, by comparing with Eq.(2.29) and Table
III, the slopes for higher temperatures are closer to the HTL prediction than for the
HTL ansatz. In Figures 4.5 and 4.6 we observe, the Breit-Wigner function simu-
lates a space-like contribution, which reaches also in the time like region due to the
width of the Breit-Wigner function. The mean value is always below the lightcone
and raises with a slope smaller than one. It is striking that the behavior is similar
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Figure 4.6: Dispersion relation for the HTL with continuum plus Breit-Wigner ansatz
for 4 TC (solid lines) and 5 TC (dashed lines).

for both small temperatures and for both high temperatures. This reminds of the
broadening of the spectral function found in [27]. In Fig.4.7a we see that the Breit-
Wigner function contributes with a constant spectral strength, while the antiparticle
contribution is damped. This damping seems to differ for the smaller and the higher
temperatures, where the smaller temperatures seem to have a smaller damping rate
for the plasmino-like contribution. We observe the spectral contribution from the
Breit-Wigner function to decrease with increasing temperature, indicating we get
closer to the simple HTL continuum description. In Fig.4.7b we see, the width of
the continuum slightly increases with the temperature, which might be caused by
a slightly overestimated vertex strength parameter. We want to mention that the
ansatz works quite well up to momenta of 0.6 T for the small temperatures and up
to 0.8 T for the higher temperatures before becoming numerically instable. However,
this does not effect its predictive character since the HTL ansatz becomes instable
at about p ≈ T , too.

To finally rate how good a fit is, one has to consider the figure of merit. Looking
at Fig.4.8a shows, the description with our chosen ansatz Eq.(3.31) is better than

T/TC 1.25 1.5 4 5

slope pole 1 0.75 0.74 0.44 0.31
slope pole 2 (-)0.60 (-)0.59 (-)0.24 (-)0.21

slope Breit-Wigner 0.87 0.93 0.57 0.48

Table V: Values for the parameters extracted from Figs.4.5 and 4.6
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Figure 4.7: Relative spectral strength of the plasmino and the almost constant con-
tribution from the Breit-Wigner continuum and relative width of the
Breit-Wigner continuum for small (solid lines) and higher (dashed lines)
temperatures.

both, the HTL ansatz and the ansatz with two Breit-Wigner functions plus the
HTL continuum. This indicates that the picture of the plasmino as an collective
phenomena might arise from an antiparticle-like excitation at smaller temperatures
as indicated in Fig.4.5. If we look at Fig.4.8b showing the total spectral strength
for the different ansätze, we see that the HTL ansatz plus the Breit-Wigner function
gives a pretty good and constant value for the total spectral strength related to the
wave function renormalization constant by Ztotal = 1/ZW

2 & 1. The non-constant
character of the ansatz with two Breit-Wigner plus the HTL continuum indicates
possible numerical instabilities for this ansatz.
In both Figures, 4.8a and 4.8b, we make the observation that the ansatz works better
for higher temperatures.

4.2 Impact of a finite quark mass

In this section we present calculations with our model Eq.(3.14) for quarks with
finite bare mass with both, the HTL and the improved HTL ansatz, including the
additional Breit-Wigner function. The actual renormalized mass of a quark is non-
zero, leading to explicit breaking of chiral symmetry. Therefore it is interesting to
investigate the influence of a finite mass on our results for the quark spectral function.
In Fig.4.9 we can see the results for the fit with the two-pole ansatz at |p| = 0 for
the projection of the scalar function as defined in Eq.(2.38). This is commonly
termed thermal mass, a quantity sensitive to the interactions the in-medium particle
undergoes. By looking at the plasmino contribution to the spectral function, encoded
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Figure 4.8: Comparison of the values of the figure of merit l2 for the used ansätze
for 1.25 TC (solid lines) and 4 TC (dashed lines) in the left panel and
of the total spectral strength for the two Breit-Wigner plus continuum
Eq.(3.30), the HTL plus Breit-Wigner Eq.(3.31) and the HTL suggested
ansatz Eq.(3.23) in the right panel.

in the spectral strength (shown in Fig.4.9b), we see that the influence of the plasmino
drops dramatically with increasing bare mass. This behavior was already expected
from investigations with heavy quarks, where the spectral function basically reduces
to a free quark spectral function.

On the other hand we see a minimum for the thermal mass of the quark at a bare
mass of 0.1 T for all temperatures, while the energy for the plasmino increases almost
monotonically. This is in accordance with [16], while in comparison with our spectral
strength in Fig.4.9b drops faster compared to their results.
For a finite quark mass the projection of the spectral function in Eq.(2.46) is not
defined. This is a drawback, since it would be interesting to see the momentum
dependence of the spectral strength and the dispersion relations for physical quark
mass.
Finally we want to check the results for a finite mass with our improved ansatz. In
Fig.4.10 we see about the same behavior of the two poles for the thermal masses
while the spectral strength of the plasmino mode drops more dramatically, shown
in Fig.4.10b. For completeness we show also the parameters of the Breit-Wigner
function in Fig.4.11 which apparently produces a sort of background modulation,
due to its broad width and almost linear increase in energy. The second ansatz
improves the figure of merit in this context about three to four orders of magnitude
in comparison with the HTL ansatz.
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Figure 4.9: Results for the parameters of the two-pole ansatz in quenched QCD for
finite current quark mass at 1.25, 3 and 5 TC . For the plots we defined
E2 > E1 with E2 being the plasmino mode energy.
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5 Quark spectral functions in
Nf = 2 + 1 unquenched QCD

In this last chapter we focus on the scenario of unquenched QCD with Nf = 2 + 1
quark flavors. This is the first investigation on the behavior of the quark spectral
function in the framework of Dyson-Schwinger equations under our truncation. It
is interesting to see whether the behavior predicted by HTL applies, as seen in the
previous chapter for the case of quenched QCD. We first draw our attention to the
chiral limit for the light quarks and finally to the case of physical quark masses. In
both cases we employ ansätze for spectral function without the HTL continuum and
use a strange quark mass of ms = 54 MeV.

5.1 Quark spectrum in the chiral limit

An investigation of the chiral limit for unquenched QCD is an useful starting point
towards finding an ansatz for the case of physical quark masses. In Ref. [28], a model
ansatz for the vertex to calculate quark propagators has been used together with the
gap equation and the Maximum Entropy Method. The authors found for the chiral
limit not only the common two pole structure in the quark spectral function, but
also a third pole which appears as a zero mode and has support only close to the
critical temperature. As already discussed, in the chiral limit for unquenched QCD
we expect to see a second order phase transition. A striking feature of the results in
Ref. [28] is the disappearance of this zero-mode at about 1.35 to 1.8 times the critical
temperature.

Estimation of the critical temperature

Before we start investigating the results with the tripole ansatz Eq.(3.27), we want to
make an estimation of the critical temperature T 2nd

unq,chiral for our scheme. In Fig.5.1
one can see the B-function of the propagator is finite for values up to T=136 MeV
and then it is, above the critical temperature, zero. Since the mass-function for the
DSE propagators is defined as M(p2) = B(p2)/A(p2) and the A-function stays finite,
we see the generated mass vanishes at this temperature. In the chiral limit, where
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the bare mass vanishes, this is equivalent to chiral symmetry restoration, therefore
the critical temperature in this case is T 2nd

unq,chiral ≈ 137MeV .
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Figure 5.1: B-function at |p| = 0 for the first Matsubara depending on the tempera-
ture for unquenched QCD in the chiral limit.

Tripole-ansatz

In order to investigate whether the tripole ansatz fits our propagators we use the
two different ansätze for the vertex strength d1, as defined in Eqs.(3.17) and (3.16).
Firstly we test whether the zero-mode on top of the well know two-pole-solution is
present in the projections of our spectral functions, defined in Eqs.(2.46) and (2.38),
as predicted in Ref. [28].
Fig.5.2a shows the thermal masses for both vertices. One can see that the difference
for the quark and plasmino thermal masses between the two vertices increases with
the temperature mirroring the different strength d1(T). In both cases we find a zero-
mode for all temperatures we investigated.
In Fig.5.2b we see the spectral strength of the three poles. In contradiction to [28],

we see neither for the constant, nor for the model vertex strength, that the zero-mode
dies out in the temperature interval we consider (1 to 1.8 T 2nd

unq,chiral). We actually see
that the spectral strength of the third pole dominates the two particle-like poles and,
by comparing the two ansätze for d1, whether it has increasing spectral strength or
is damped depends on the vertex strength. This might result from the unquenching
process and its backcoupling to the quark sector.
The question is, what causes the difference and one possible explanation is the way
the spectral functions haven been obtained. The calculations in Ref. [28] are not one
to one comparable to our unquenched calculations and so is the ansatz for their ver-
tex. While they used the Maximum Entropy method relying on statistical guidance
towards the solution hidden in their quark propagator, we employ a fit ansatz. The
interpretation of the zero-mode as the in-medium realization of the Wigner-mode
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Figure 5.2: Thermal masses and spectral strengths for the tripole ansatz for un-
quenched propagators in the chiral limit with the constant vertex
Eq.(3.17) (solid lines) and the vertex model Eq.(3.16) (dashed lines) de-
pending on the temperature.

of our DSEs has to be considered with care. Especially if we look at Fig.5.3a, and
compare it to the quenched scenario shown in Fig.4.6, we might interprete this zero-
mode rather as a background contribution.
Next we want to consider the dependence of the fit parameters on the momentum for
a certain temperature, which was chosen as T=200 MeV. The dispersion relations
in Fig.5.3a show an HTL-like behavior for the quark- and plasmino-like poles, while
the zero-mode rises linearly and crosses the E = p line.
In Fig.5.3b we see the dependence of the spectral contribution, depending on the
momentum, at this temperature. If we interpret the second pole again as the com-
mon plasmino we observe the known damping of its spectral contribution in Fig.5.3b.
We once again see the spectral domination of the zero-mode pole, which displays an
almost constant strength for both ansätze of the parameter d1.

Ansatz with three Breit-Wigner functions

After we investigated the suggested tripole solution and found the appearance of a
third pole, we want to investigate whether there is more involved than three sharp
peaks. It turns out that an ansatz, including a width for all three poles and therefore
using three Breit-Wigner functions, gives the best description of our data. We use
both the constant as well as the model vertex strength to examine this ansatz. In
Fig.5.4 we can see what is the influence the vertex strength model makes upon the fit
results depending on the temperature. As we see in Fig.5.4a, a pole-like zero-mode
for both vertex models exists. At T ≈ 210 MeV the results for the model vertex seem
to merge to a solution, where only the zero-mode is present. The branches, which
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Figure 5.3: Dispersion relations and spectral strengths for the tripole ansatz for
unquenched propagators in the chiral limit with the constant vertex
Eq.(3.17) (solid lines) and the vertex model Eq.(3.16) (dashed lines) at a
temperature of 200 MeV.

appear at this temperatures in the width and the spectral contribution, are redun-
dant, since they basically merge to one common value for this zero-mode. For the
constant vertex, the width of the zero-mode increases slightly with the temperature,
while the quark- and plasmino like Breit-Wigner functions, with the same absolute
value for the energy, have the same (almost constant) width and a slightly decreasing
thermal mass.
If we draw our attention to the spectral strengths in Fig.5.5, we find the same behav-
ior as in the case of the tripole ansatz. The zero-mode dominates the spectrum and
whether its damped or it rises depends on the vertex strength. The decreasing vertex
strength from the model Eq.(3.17) for the vertex parameter d1 leads to a decreasing
contribution, while the constant vertex results in a slight increase. The last case
with fixed d1 leads to the same spectral strength for the plasmino- and quark-like
Breit-Wigner function with a slight damping, while in the model for the vertex the
spectral contribution for the quark-like and the plasmino-like branch differ in their
dependence on the temperature.

Next we want to examine the behavior for the three Breit-Wigner functions de-
pending on the momentum for a certain temperature. We want to compare the
results to those for the tripole ansatz and therefore we choose again a temperature
of 200 MeV. In Fig.5.6 we see the dispersion relations and the relative widths of the
Breit-Wigner functions for this case. It is apparent that the impact of the vertex
strength is more important compared to the tripole ansatz (compare Fig.5.3). For
the first Breit-Wigner function (we identify as quark-like), the observation is that
this branch seems to approach free particle behavior for large momenta. The second
Breit-Wigner function (plasmino-like), displays the known pattern of a minimum
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Figure 5.4: Thermal masses and widths of the Breit-Wigner functions for unquenched
propagators in the chiral limit with the constant vertex Eq.(3.17) (solid
lines) and the vertex model Eq.(3.16) (dashed lines) at |p| = 0 depending
on the temperature.

in the dispersion relation, just as in the quenched case. This minimum is followed
by almost free particle behavior, with a different group velocity then the quark-like
pole. The position of the minimum strongly dependents on the vertex strength,
in contradiction to the tripole ansatz. For the constant vertex strength, the long
range, almost linear behavior for the quark and the plasmino branch, in form of one
particle-like and an one antiparticle-like dispersion relation, reminds of the quenched
case in Fig.4.5 for small temperatures. The slopes are 1.23, respectively −1.48, and
therefore much larger than in the quenched scenario.
The widths of the quark- and plasmino-like Breit-Wigner functions in Fig.5.6b show
similar behavior for constant d1. However, when we apply the model vertex, they
mirror the shape of the dispersion relations. An interesting phenomena appears for
the third Breit-Wigner function representing the zero-mode. For the constant vertex
strength the relative width decreases monotonically towards a pole-like behavior at
large momenta, while for the model vertex strength, set up in Eq.(3.16), we find an
increase from an essentially zero width reaching a maximum at about 0.2 T for p ≈ 2
T before it tends to zero again.
The spectral strength at T=200 MeV, shown in Fig.5.7, reveals for small momenta
the same behavior as with the tripole ansatz (damping of the plasmino like and ris-
ing of the quark like contribution) but then shows an increase of the zero-mode for
higher momenta and simultaneous damping of both, the quark- and plasmino-like
contribution. This happens for the model vertex earlier as for the constant vertex
strength. For the model vertex all three contributions tend to a constant value.

An evaluation of this results at T=200 MeV can be done by looking at Fig.5.8.
We see that the figure of merit for the three Breit-Wigner function ansatz is better
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Figure 5.5: Spectral strengths for the three Breit-Wigner ansatz for unquenched
propagators in the chiral limit with the constant vertex Eq.(3.17) (solid
lines) and the vertex model Eq.(3.16) (dashed lines) depending on the
temperature.

than for the tripole ansatz and Ztotal is closer to the expected value of 1/ZW
2 .

Since the shape of the dispersion relations for both ansätze reminds of the HTL
pattern, we want to make some connections trying to match the effects of the un-
quenching process. In chapter 4 we found an ansatz with two poles, the HTL-
continuum and an additional Breit-Wigner function to model the in-medium effects
of the gluon-propagator. The tripole and the ansatz with three Breit-Wigner func-
tions displays the appearance of a third excitation in the space-like region. While
the pole character of this contribution to the spectrum was given with the tripole
ansatz, the three Breit-Wigner ansatz shows we rather face an excitation with a cer-
tain width which is also true for the two poles. The contribution we call zero-mode
might be a combination of Landau damping, the in-medium contribution of the gluon
and unquenching effects, which additionally might cause the finite width of the poles
we found in the quenched case.

The Schwinger function in the chiral limit

Finally we want to investigate the Schwinger function, calculated with Eq.(2.49), for
a constant vertex strength parameter. Firstly, we used the tripole ansatz to calculate
the propagator, also for temperatures below the critical temperature. This leads to a
l2 of about three orders of magnitude smaller compared to the figure of merit for the
ansatz above the critical temperature. In Fig.5.9a we ploted the Schwinger functions
for four different temperatures. One notices two important features reflected in this
results:

• We observe the reflection of the chiral restoration as shown in Eq.(2.51) for
temperatures above T 2nd

unq,chiral.
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Figure 5.6: Dispersion relations and relative widths for the three Breit-Wigner ansatz
for unquenched propagators in the chiral limit with the constant vertex
Eq.(3.17) (solid lines) and the vertex model Eq.(3.16) (dashed lines) at a
temperature of 200 MeV.

• We do not observe a concave curvature below T 2nd
unq,chiral nor is the Schwinger-

function negative in the regime down to 110 MeV.

Since we consider the chiral limit, the first point was expected, while the second
comes unexpected. Since we did not exclude negative solutions for our spectral
function, this could be related to the limitations of our ansatz. They might lead to
the solution of the Schwinger function which has no convex curvature. Exploring
the ansatz with three Breit-Wigner functions, we find a better description below
the critical temperature (compare Fig.5.10). The Schwinger functions are given in
Fig.5.9b and show the expected concave curvature, implying positivity violations.
This shows the importance of the actual fit to the data below TC and the sensitivity
of the Schwingerfunction. From the results for the Schwinger function obtained with
the ansatz including three Breit-Wigner functions we derive, that the deconfinement
and the chiral phase transition happen at about the same temperature.

53



5 Quark spectral functions in Nf = 2 + 1 unquenched QCD

0 0,5 1 1,5 2 2,5 3

p / T

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

Z
 /

 Z
to

ta
l

Z
1
, const. vertex

Z
2
, const. vertex

Z
3
, const. vertex

Z
1
, model vertex

Z
2
, model vertex

Z
3
, model vertex

Figure 5.7: Spectral strengths for the three Breit-Wigner ansatz for unquenched
propagators in the chiral limit with the constant vertex Eq.(3.17) (solid
lines) and the vertex model Eq.(3.16) (dashed lines) at a temperature of
200 MeV.
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Figure 5.8: Comparison of the figure of merit l2(p) and the total spectral strengths for
the three Breit-Wigner functions and the tripole ansatz for unquenched
propagators in the chiral limit with the constant vertex Eq.(3.17) (solid
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MeV.
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Wigner functions for unquenched propagators in the chiral limit with
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5 Quark spectral functions in Nf = 2 + 1 unquenched QCD

The quark spectral function for T=200 MeV in the chiral limit

Finally, we want to investigate the three-dimensional appearance of the quark spec-
tral function in the chiral limit. We choose again a temperature of 200 MeV, the
ansatz with three Breit-Wigner functions and employed the vertex model Eq.(3.16).
In Fig.5.11 we see the dependence of the resulting spectral function on the energy ω
and the absolute value of the three-momentum |p|. We observe that only the zero-
mode appears, which was already indicated in Figures 5.6 and 5.7. The increase of
the zero-mode in the spectral function is related to the increasing spectral strength,
shown in Fig.5.7. The behavior for small momenta (energies), where a minimum is
displayed, seems to be related to the partly finite width and decreasing strength of
the zero-mode and the influence of the quark-like branch.

Figure 5.11: The quark spectral function calculated with the vertex model Eq.(3.16)
at a temperature of 200 MeV.

5.2 Spectrum for physical quark masses

The last section is dedicated to a calculation with physical up- and down quark masses
of 2 MeV. In this setup the projection of the spectral function as in Eq.(2.46) is not
applicable, since we are not in the chiral limit. Nevertheless, we can investigate
the infrared behavior of our spectral functions at |p| = 0 and test which ansatz
works at this point. It is also possible to investigate the Schwinger function for finite
masses. As mentioned before we apply a constant vertex strength as well as the
adapted vertex strength fitted to the chiral condensate results of lattice QCD (see
Eq.(3.15)). In this setup we do not expect a critical temperature but a crossover
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5.2 Spectrum for physical quark masses

at about T crossunq,phys ≈ 156 MeV. To illustrate this, we once again consider the scalar
dressing function at zero momentum for the first Matsubara mode, which is shown
in Fig.5.12. We observe no sharp but a slow decrease in the B-function for the
first Matsubara mode at |p| = 0, which signals the crossover character of the phase
transition.
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Figure 5.12: B-function at |p| = 0 for the first Matsubara depending on the temper-
ature for unquenched QCD for a bare mass of 2 MeV.

Thermal masses and spectral strength for |p| = 0

Motivated by the results obtained in the chiral limit, one might expect the ansatz
with three Breit-Wigner functions to be a good starting point for investigations at
very small quark masses compared to the temperature scale. Nevertheless, we want
to start by considering a tripole ansatz before turning to the three Breit-Wigner
functions. In Fig.5.13 we compare the thermal masses for the constant and the model
vertex strength parameter. Far away from the crossover, at about T=220 MeV, the
ansatz tends towards the solution we encountered in the chiral limit, with two poles
of the same energy (but different signs) and one zero-mode. The same behavior is
also reflected in the relative spectral strength (see Fig.5.15a). The observations are
true for both vertices, with the difference that the reduced vertex strength of the
adapted vertex seems to be reflected in the stronger decrease of the zero-mode like
pole as shown in Fig.5.15b. It is also striking that the thermal mass appears to be
temperature independent above about 200 MeV for both vertices.

An interesting feature is also the behavior below 140 MeV. The tripole ansatz
suggests a two-pole solution below about 130 MeV and then picks up a third pole
appearing at a very high thermal mass. One needs to be careful in extracting infor-
mation from this results since the figure of merit is rather poor in this regime, as we
will see in Fig.5.17b. However, Fig.5.17b also shows the tripole ansatz gives a better
description below the crossover than the second ansatz, we found to work best above
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Figure 5.13: Thermal masses for the tripole ansatz for unquenched propagators with
bare masses of 2 MeV for the two vertex models depending on the tem-
perature.

the crossover temperature.
By starting with three Breit-Wigner functions, we have been guided to an ansatz
with one Breit-Wigner function and a pole (compare Eq.(3.32)), which works the
best above the crossover temperature. In Fig.5.14 the related thermal masses and
the width of the Breit-Wigner function are shown. It seems as one of the poles we
observe before the phase transition starts to melt down during the crossover and
becomes a sort of underlying background for the pole. The impact of the reduced
vertex strength in the adapted vertex is, that the thermal mass of the pole for higher
temperatures is pushed down. By looking at the spectral contributions we observe,
the Breit-Wigner function overtakes the major contribution to the spectrum from the
pole at roughly T=180 MeV. This might be related to the crossover process and the
backcoupling the Yang-Mills sector, which is sensitive to the chiral dynamics of the
quark sector in our unquenched calculation. If we compare with Fig.5.13 it appears
that the Breit-Wigner function can be identified with the role of the zero-mode giving
a spacelike contribution to the spectral function. This might be related to Landau
damping and other continuum effects, such as the impact of in-medium effects of the
gluon propagator discussed in the previous chapter.

In order to evaluate the quality of the fits for the unquenched propagator at phys-
ical masses, we look at Fig.5.17b and see that the second ansatz works better than
the tripole ansatz above the (pseudo) phase transition. We do also observe that the
adapted vertex works better for both ansätze, which is a success of the adaption to
the lattice results for the regularized condensate. The increase in the figure of merit
for the Breit-Wigner plus pole ansatz at about 260 MeV might be related to the
adapted vertex strength. As already mentioned in our discussion of the DSE frame-
work, this model for the vertex strength parameter d1 is valid only up to the phase
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Figure 5.14: Thermal masses and widths for the Breit-Wigner plus pole ansatz for
unquenched propagators with bare masses of 2 MeV for the two vertex
models depending on the temperature.
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Figure 5.15: Relative spectral strengths for both ansätze for unquenched propagators
with bare masses of 2 MeV for the constant vertex (solid lines) and the
adapted vertex (dashed lines) depending on the temperature.
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Figure 5.16: Schwinger functions for the Breit-Wigner plus pole and the three Breit-
Wigner ansatz for unquenched propagators with a bare mass of 2 MeV
with the adapted vertex Eq.(3.17) at different temperatures.

transition of the quenched case, where we expect residual effects from the quenched
gluon propagator due to the way we invoke the unquenching process.

The Schwinger function for physical masses

Finally, we return to the Schwinger function to inspect possible positivity violations.
In Fig.5.16a the calculated Schwinger function from the Breit-Wigner plus pole ansatz
is shown. We see that the symmetry from Eq.(2.51) is approached for high tempera-
tures. Due to the finite renormalized quark mass this symmetry will not be achieved
exactly, since chiral symmetry is explicitly broken. The same phenomenon in the
curvature of the Schwinger function for the investigated temperatures as in the chi-
ral limit is displayed in Fig.5.16a. No change in the sign of the Schwinger function,
implying a positive spectral function, without confinement, is possible. This appears
unlikely, since in Ref. [32] the temperature for the deconfinement was found to be
at about 165 MeV, as shown in Fig.2.6. Therefore we investigated the regime be-
low T=165 MeV, just as in the chiral case, with an ansatz with three Breit-Wigner
functions. In Fig.5.16b we can see the resulting Schwinger functions now showing a
concave curvature implying the positivity violations we expected. In Fig.5.17b we
already saw, that we obtain a better description in terms of a smaller l2(T ) below
T=170 MeV with the ansatz with three Breit-Wigner functions, before it reduces to
the Breit-Wigner plus pole ansatz, we found to work the best above T ≈ 157 MeV.
This reduction from three Breit-Wigner functions towards one pole and one Breit-
Wigner function is displayed in Fig.5.17a. We see that two of the three Breit-Wigner
functions collapse to poles, represented in the meltdown of the width, which is driven
to essentially zero.
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6 Conclusion and outlook

In this Master thesis the quark spectral function has been investigated for finite
temperature quenched and Nf = 2 + 1 unquenched QCD at zero quark chemical
potential . A Dyson-Schwinger approach has been employed to calculate the quark
propagator, which is the main ingredient in the calculation of the quark spectral
function. In our truncation scheme, the quark-gluon vertex is based on the first term
of the Ball-Chiu vertex, modified with a temperature dependent dressing function.
The strength parameter d1, as a main parameter of this dressing function, was fixed
by comparison with lattice results for the thermal mass in the quenched case, and to
the chiral condensate for unquenched case with physical masses. Moreover a simple
d1-model for unquenched QCD in the chiral limit was introduced. In the unquenched
case, the truncation scheme involved a method to add the quark loop in the gluon
DSE, hereby the quenched gluon propagator is calculated with lattice QCD.
Different ansätze for the spectral function, motivated by HTL and previous works,
have been presented. Furthermore we introduced the Levenberg-Marquardt algo-
rithm as a method to perform multiparametrical fits, which we have then used to
extract the spectral function from the quark propagator.
Firstly we drew our attention to the case of quenched QCD. A comparison with
previous results in Ref. [33] proved our algorithm to work. Using the model for the
vertex strength parameter d1, calculations at higher temperatures and with a dif-
ferent ansätze have been carried out. It turned out that the ansatz suggested by
HTL, namely two poles and a continuum originating from Landau damping, had
to be extended with a Breit-Wigner function. For small temperatures we found two
excitations with almost linear dispersion relations, one particle- and one antiparticle-
like. For higher temperatures we recovered the HTL picture with a minimum of the
so called plasmino pole, the excitations showing antiparticle like behavior for small
momenta. The spectral strength of the excitations have been investigated showing a
damping of the plasmino. Lastly, we have also investigated the influence of a finite
quark mass in the quenched case. The HTL prediction of a plasmino damped at
finite masses proved to be true in our extended ansatz.
We then focused on the chiral limit of unquenched QCD using two models for the
parameter d1. For this case Ref. [28] predicts the appearance of a third pole mani-
fested as a zero-mode. We tested this prediction and obtained a solution indicating
the existence of this zero-mode. As opposed to the work in [28], the third pole does
not disappears in our calculations. Furthermore an ansatz with three Breit-Wigner
functions has been employed displaying a finite width for all three poles, one showing
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6 Conclusion and outlook

the zero-mode behavior. The width for this zero-mode turned out to be rather small,
while the widths of the other poles showed almost constant behavior for a variation
of the temperature. The dispersion relations show HTL-like behavior, indicating
that the predictions from this high temperature approximation might provide the
underlying pattern even for unquenched QCD. We turned to the investigation of the
Schwinger function and found a concave curvature below the critical temperature
for the second order phase transition, indicating positivity violations and therefore
confinement.
The last chapter was dedicated to unquenched QCD with physical quark masses.
In this case it was only possible to investigate the behavior for |p|=0. The inves-
tigations show the disappearance of the zero-mode, while the spectrum above the
crossover at vanishing spatial momentum is described quite well by an ansatz with
one pole and one Breit-Wigner function. Finally we revisited the Schwinger function
and found positivity violations for a three Breit-Wigner ansatz below the crossover,
which merged into the pole plus Breit-Wigner function solution above the (pseudo)
critical temperature for the crossover.

To summarize, in this work we have found that the spectral function is extremely
sensitive on the running of the vertex strength. Future investigations could focus on
a more advanced description of this quantity, eventually derived from further studies
on the lattice. This could be obtained by comparing the chiral condensate in the
chiral limit, if possible up to high temperatures.
Using the Maximum Entropy method as an alternative to our fitting procedure might
also give new insight in the shape of the quark spectral function. Due to time
constraints we leave this method for future investigations.
Lastly, in order to reach the final goal of understanding the spectrum of the realistic
unquenched QCD for physical masses, it is desirable to develop a method to consider
the dispersion relations, specially in the view of making predictions for experiments
in order to test the results.

64



7 Acknowledgment

The support of a lot of people paved the way to finish this thesis and I want to take
the opportunity to thank all of them.
First I want to thank my thesis advisor Christian Fischer for giving me the opportu-
nity to work on this fascinating topic and for his guidance and support throughout
the last months, whenever needed.
Next I would like to thank professor Wolfgang Cassing for being the second examiner
of this work and his interest in its content.
Very important to me was the help by Jan Lücker, who not only shared his knowl-
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