Inhaltspezifische Aktionen

Chinese hamster genome sequenced from sorted chromosomes.

Within this letter to Nature we briefly report about the results obtained by sequencing the chinese hamster genome.

In recent years, the number of published genome sequences has increased substantially owing to major developments in next-generation sequencing (NGS) technologies, concomitant reduction of sequencing costs and improvements in assembly strategies. In 2011, the genome of Chinese hamster ovary (CHO)-K1 cells, the most frequently used mammalian production cell line for biopharmaceutical products, was published. In this issue, the genomes of several related CHO cell lines as well as of the genome of the Chinese hamster are also presented. Although this information provides long-awaited and necessary insights for scientists working with these important production hosts, it also highlights a major drawback of short-read NGS technology, namely, the difficulty of assembling short-read data and scaffolding these sequences into a fully structured genome. This is especially critical for CHO cells, which are known to be genomically unstable, with frequent chromosome rearrangements and loss. In this correspondence to Nature, we describe how a chromosome sorting approach can facilitate genome assembly from short-read sequences.

 

Brinkrolf, K., Rupp, O., Laux, H., Kollin, F., Ernst, W., Linke, B., Kofler, R., Romand, S., Hesse, F., Budach, W. E., Galosy, S., Müller, D., Noll, T., Wienberg, J., Jostock, T., Leonard, M., Grillari, J., Tauch, A., Goesmann, A., Helk, B., Mott, J.E., Pühler, A., Borth, N. (2013).
Chinese hamster genome sequenced from sorted chromosomes.
Nature Biotechnology 31, 694–695.

DOI | PubMed | Europe PMC