Inhaltspezifische Aktionen

H–C–SiH3: Direct Generation and Spectroscopic Identification of Ethylidene’s Cousin.

Peter R. Schreiner, Hans Peter Reisenauer, Kurt W. Sattelmeyer, and Wesley D. Allen,

J. Am. Chem. Soc. 2005, 127, 12156. Download

     Abstract.  Ground-state triplet silaethylidene, generated directly by the reaction of 3P carbon atoms with silane under matrix isolation conditions in solid Ar (10–12 K), has been thoroughly characterized by the EPR and IR spectra of both the parent and perdeuterated isotopologs. A theoretical anharmonic vibrational analysis based on a CCSD(T)/cc-pVTZ complete quartic force field gave remarkable agreement with the experimental IR fundamentals, generally within 10 cm–1 and without any empirical scaling of the ab initio frequencies. Silaethylidene exhibits a CS minimum with a H–C–Si angle near 153 °, but the barrier to H–C–Si linearity (3v symmetry) is only 0.24 kcal mol–1. This minuscule barrier can be surmounted by zero-point vibrations, as evident from the EPR data. The triplet stabilizing effect of the electropositive SiH3 group amounts to about 15 kcal mol–1.


Direct Generation and Spectroscopic