Inhaltspezifische Aktionen

Prototypical Triplet Alkyl Phosphonatocarbenes.

Adelina Nemirowski, Hans Peter Reisenauer, Jaroslaw Romanski, Grzegorz Mloston, and Peter R. Schreiner,

J. Phys. Chem. A, 2008, 50, 13244. Download

    Abstract.  The current case study focuses on the generation, identification, and characterization of two representative mono- and disubstituted alkyl phosphonatocarbenes by means of matrix isolation techniques in conjunction with density functional theory [B3LYP/6-311++G(d,p)] and coupled cluster [CCSD(T)/cc-pVXZ, X = D, T] computations. The EPR measurements identify both carbenes as triplet ground-state species with D values of 0.660 and 0.623 cm–1 respectively, exhibiting persistency toward intramolecular reactions (the EPR signal observable in perfluoromethylcyclohexane up to around 70 K for the disubstituted molecule). While the reaction of the carbene center of the conformationally rich tetramethyl bisphosphonatocarbene with the CH bonds of the methyl groups leads to phosphaoxetane at room temperature, its fragmentation via a Wittig-type reaction during high vacuum flash pyrolysis (HVFP) results in dimethyl vinylphosphonate and methyl metaphosphate. The latter has been observed for the first time as an isolated entity.

Prototypical Triplet Alkyl