Benutzerspezifische Werkzeuge

Information zum Seitenaufbau und Sprungmarken fuer Screenreader-Benutzer: Ganz oben links auf jeder Seite befindet sich das Logo der JLU, verlinkt mit der Startseite. Neben dem Logo kann sich rechts daneben das Bannerbild anschließen. Rechts daneben kann sich ein weiteres Bild/Schriftzug befinden. Es folgt die Suche. Unterhalb dieser oberen Leiste schliesst sich die Hauptnavigation an. Unterhalb der Hauptnavigation befindet sich der Inhaltsbereich. Die Feinnavigation findet sich - sofern vorhanden - in der linken Spalte. In der rechten Spalte finden Sie ueblicherweise Kontaktdaten. Als Abschluss der Seite findet sich die Brotkrumennavigation und im Fussbereich Links zu Barrierefreiheit, Impressum, Hilfe und das Login fuer Redakteure. Barrierefreiheit JLU - Logo, Link zur Startseite der JLU-Gießen Direkt zur Navigation vertikale linke Navigationsleiste vor Sie sind hier Direkt zum Inhalt vor rechter Kolumne mit zusaetzlichen Informationen vor Suche vor Fußbereich mit Impressum

Artikelaktionen

Bild des Monats März 2021

Hier finden Sie wechselnde Einblicke in die AG Janek. Eine vergrößerte Darstellung aller bisher erschienenen Bilder finden sie hier.

Feststoffbatterien werden derzeit aufgrund ihrer im Vergleich zu Lithium-Ionen-Batterien besseren Eigenschaften wie einer höheren Sicherheit oder breiteren Betriebstemperatur und vergleichbaren ionischen Leitfähigkeiten intensiv erforscht und charakterisiert. Um die höhere Dichte der Festelektrolyte auszugleichen, ist die Verwendung von Lithiummetall als Anodenmaterial nötig, um gute gravimetrische und volumetrische Energiedichten zu erhalten. Lithiummetall ist jedoch sehr reaktiv. Entstehen bei der Reaktion des Festelektrolyten mit Lithium elektronisch leitfähige Produkte, kann dieser Elektrolyt nicht in direktem Kontakt mit Lithium verbaut werden, da es sonst zu Kurzschlüssen kommen kann. 	Um die Reaktionsprodukte des Festelektrolyten Li3InCl6 mit Lithium zu untersuchen, wird mittels Sputterdeposition Lithium auf den Elektrolyten aufgebracht und durch in situ Röntgen-Photoelektronenspektroskopie (XPS) untersucht, welche Produkte entstehen. Es zeigt sich, dass Li3InCl6 u.a. in In2O3 und Indiummetall zersetzt wird. Da Indiummetall elektronisch leitfähig ist, zersetzt sich der Elektrolyt so lange bis entweder Li3InCl6 oder das Lithium aufgebraucht sind, kann der Elektrolyt nicht in direktem Kontakt mit Lithium verwendet werden. (Bild eingereicht von Luise Riegger)

 

Feststoffbatterien werden derzeit aufgrund ihrer im Vergleich zu Lithium-Ionen-Batterien besseren Eigenschaften wie einer höheren Sicherheit oder breiteren Betriebstemperatur und vergleichbaren ionischen Leitfähigkeiten intensiv erforscht und charakterisiert. Um die höhere Dichte der Festelektrolyte auszugleichen, ist die Verwendung von Lithiummetall als Anodenmaterial nötig, um gute gravimetrische und volumetrische Energiedichten zu erhalten. Lithiummetall ist jedoch sehr reaktiv. Entstehen bei der Reaktion des Festelektrolyten mit Lithium elektronisch leitfähige Produkte, kann dieser Elektrolyt nicht in direktem Kontakt mit Lithium verbaut werden, da es sonst zu Kurzschlüssen kommen kann.   
Um die Reaktionsprodukte des Festelektrolyten Li3InCl6 mit Lithium zu untersuchen, wird mittels Sputterdeposition Lithium auf den Elektrolyten aufgebracht und durch in situ Röntgen-Photoelektronenspektroskopie (XPS) untersucht, welche Produkte entstehen. Es zeigt sich, dass Li3InCl6 u.a. in In2O3 und Indiummetall zersetzt wird. Da Indiummetall elektronisch leitfähig ist, zersetzt sich der Elektrolyt so lange bis entweder Li3InCl6 oder das Lithium aufgebraucht sind, kann der Elektrolyt nicht in direktem Kontakt mit Lithium verwendet werden. (Bild eingereicht von Luise Riegger)