

Organic Arable Farming Experiment Gladbacherhof

Productivity and soil parameters of different farm types and various soil tillage systems

Franz Schulz & Andreas Gattinger

Justus Liebig University, Chair in Organic Farming, Karl-Glöckner-Straße 21c, 35394 Gießen, Germany, Email: Franz.Schulz@agrar.uni-giessen.de

- **Potentials and limits of stockless organic farming:** 1.
- Direct and long-term impact of different *"*farm types" with and without \bullet animals on crops, soil quality and the environment.
- Stability, resilience, sustainability and nutrient efficiency.

Location Altitude Mean annual temperature

Gladbacher Hof, 65606 Villmar, Limburg-Weilburg, Hesse, Germany 170 m a. s. l. 9,4 °C

- Potentials and limits of reduced tillage in organic farming: 2.
- Direct and long-term effects of different tillage systems on crops, soil quality, and the environment.
- Potentials of reduced tillage with different crop rotation and fertilization.

Experimental design / treatments 3

Mean annual precipitation Soil texture Soil type

654 mm Lu – Ul, Silt loam – Loamy silt **Orthic luvisol**

Long-term field experiment sin	ce 1998, split-plot design, 4 replications:		
a) main factor "farm type":	MF = Mixed farming with cattle	b) subordinated factor "soil tillage": P 30	= Plough 30 cm
	SFL = Stockless farming with mulched ley	TLP 30/	15 = Two layer plough 30/15 cm
	SFC = Stockless farming cash crops only	P 15	= Plough 15 cm
Further information: Schulz et	al. 2014	CR 30/1	L5 = Cultivator & rotary harrow 30/15 cm

SFC	Oats Catch crop	Beans US	Winter wheat Catch crop	Potatoes	Peas	Winter rye Catch o	rop
1. Rotation	1998	1999	2000	2001	2002	2003	
2. Rotation	2004	2005	2006	2007	2008	2009	
3. Rotation	2010	2011	2012	2013	2014	2015	
4. Rotation	2016	2017	2018	2019	2020	2021	

Fig. 2: Yield of potatoes (dt FM ha⁻¹) in the year 2019 dependent on farm type and Fig. 3: Development of soil organic carbon (Mg ha⁻¹) from 1998 – 2015 dependent on farm type and soil tillage; DM = Dry Matter soil tillage; FM = Fresh Matter in the topsoil dependent on farm type

Conclusions

- With regard to *"farm* types":
- The superiority of a management system with cattle over stockless organic farming is demonstrated. The mixed farm type led to higher yields and higher amounts of humus in the soil.
- Long-term reduction of humus in stockless farming is not acceptable.
- With regard to "soil tillage": 2.
- It can be concluded that reduced tillage systems did not yield less than the regularly ploughed reference system if at least a shallow soil inversion was carried out.
- The reason for lower yields in the soil tillage system without ploughing seems to be the soil structure and the soil temperature and as a consequence of this a lower nutrient availability in special periods of vegetation.

Franz Schulz, Christopher Brock, Harald Schmidt, Klaus-Peter Franz & Günter Leithold (2014) Development of soil organic matter stocks under different farm types and tillage systems in the Organic Arable Farming Experiment Gladbacherhof, Archives of Agronomy and Soil Science, 60:3, 313-326, DOI: 10.1080/03650340.2013.794935