食品中25种水溶性色素的HPTLC同时含量测定

在德国斯图加特的霍恩海姆大学食品化学研究所，平面色谱法基于其优势一直被用于食品分析。Claudia Oellig的毕业论文采用这项技术对水溶性食品色素进行了分析。

简介

为了提高食品安全，鉴于一些食品色素潜在的致癌性，近年来欧盟批准了可食用色素的种类显著降低。《欧洲国会和议会指导性法案94/36/EG》所许可的约40种食品色素的用法和许可用量都进行了详细规定。快速定量分析方法对于确保严格遵守上述法规至关重要。过去的TLC/HPTLC方法通常都局限于分离9至12种的食品色素。本文着眼于一项更艰巨的挑战，即开发出能够同时测定所有常用的25种水溶性食品色素的HPTLC方法。

对比目前的食品色素分析方法，新的HPTLC方法是一种更可靠、快速和低成本的含量测定替代方法[1-3]。它允许在较低成本下进行1000个样品/天的高通量筛选，平均每个样品的分析时间为1.5 min，溶剂消耗200 μL。由于分析目标比较明确，因此基本的结果阐述可以从薄层板的肉眼判别到吸收光谱的相似性计算直至HPTLC-ESIMS质谱分析。目标物的分析步骤可根据需要循序渐进。

样品制备

市售食品样本采用甲醇-乙酸铵缓冲液(pH 6.8)1:1进行稀释，必要时可进行脱气。

对照品溶液

将各色素对照品溶解于甲醇-乙酸铵缓冲液(pH 6.8)1:1溶液中，配置成下表浓度：

<table>
<thead>
<tr>
<th></th>
<th>MIX 1</th>
<th></th>
<th>MIX 2</th>
<th></th>
<th>MIX 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>色素</td>
<td>浓度</td>
<td>h/t</td>
<td>色素</td>
<td>浓度</td>
</tr>
<tr>
<td>E100</td>
<td>30</td>
<td>93</td>
<td></td>
<td>E103</td>
<td>50</td>
</tr>
<tr>
<td>E101b</td>
<td>45</td>
<td>5</td>
<td></td>
<td>E104</td>
<td>100</td>
</tr>
<tr>
<td>E110</td>
<td>20</td>
<td>57</td>
<td></td>
<td>E120</td>
<td>70</td>
</tr>
<tr>
<td>E122</td>
<td>20</td>
<td>71</td>
<td></td>
<td>E121</td>
<td>125</td>
</tr>
<tr>
<td>E124</td>
<td>15</td>
<td>27</td>
<td></td>
<td>E123</td>
<td>8</td>
</tr>
<tr>
<td>E126</td>
<td>30</td>
<td>10</td>
<td></td>
<td>E125</td>
<td>60</td>
</tr>
<tr>
<td>E127</td>
<td>10</td>
<td>93</td>
<td></td>
<td>E151</td>
<td>15</td>
</tr>
<tr>
<td>E131</td>
<td>10</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E132</td>
<td>200</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E142</td>
<td>8</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

薄层板
HPTLC硅胶60 F254高效薄层色谱板（Merck），20 x 10 cm，采用甲醇-水（4:1）进行展开预洗。

点样
采用CAMAG ATS 4进行条带状点样，18个轨道，条带宽7.5 mm，原点距离边8 mm（对向展开时5 mm），距离边24 mm，轨道间距9 mm，点样量：样品2 μL，混合标准品1-4 μL。

色谱条件
在双槽层析缸中以乙酸乙酯-甲醇-水-醋酸（65:23:11:1）进行展开，最大展开距离50 mm，展开时间约12 min。也可采用全自动展开仪ADC 2进行展开，或者在水平双向展开槽HDC中进行高通量样品展开。

成像
采用CAMAG TLC Visualizer在UV 254，UV 366 nm和白光下成像。

光密度扫描
- 采用VideoScan软件进行数字图像评估（采用Savitsky Golay滤镜，最低斜率作为基线校正）或，
- 采用CAMAG TLC Scanner 3和winCATS软件在11个波长下吸收方式进行光密度扫描[1]。

光谱记录（可见和MS）
- 采用TLC Scanner 3和winCATS软件记录可见光光谱图（400 – 800 nm）和计算光谱相似度（样品和对照品）或/和，
- 采用TLC-MS质谱接口装置取样（甲醇洗脱，流速0.2 mL/min），测定HPTLC/ESI 质谱图。

结果和讨论
分离在硅胶板上以乙酸乙酯-甲醇-水-醋酸（65:23:11:1）为展开剂进行。1%的酸浓度对于获得尖锐的色谱峰至关重要。根据文件，将食品色素分为不同的混合物组别以提高定量能力。

对于50 mm的展开距离，分离时间为12 min。从双向展开时，36个样品可得到同时展开。以单个样品计，展开时间为20 s，试剂消耗为200 μL，耗材费用为0.01欧元/样品。包括样品制备，点样和数字图像评估在内的样品总分析时间为1.5 min，这一分析耗时即便与超高压液相色谱相比也毫不逊色。

对于样品基质干扰较大的样品，区域点样方式，样品稀释以及强大的数字化图像评价被用来进行前处理工作。当个别样品中存在Rf值位于0的色素（E120，E132，E163），薄层板需要采用洗脱能力稍强的流动相进行展开，例如采用45:35:18:2的比例进行2次展开（1 cm展距，6 s每次）。含量测定结果以UV/可见范围内的多波长扫描或数字图像方式进行定量。
12种食品样品中25种水溶性食品色素的12 min对向色谱展开结果（能量饮料ED，酸奶JOG，果汁FD，面包上色浆BT）

采用不同数字滤镜（B-D）的增强色谱分离度的数字图像评价（Mix 1）

稀释后的能量饮料样品2（ED2）的数字图像评价，含有红色素E122（Mix 1）；叠加样品图谱（红色）和Mix 1滤标（绿色）图谱以及多项式回归曲线（基于峰面积）
基于任务需要，分析步骤可按要求选择从薄层板上样品的目测鉴别到判别吸收光谱图至MS谱图测定。离线系统在此提供了一种低成本和灵活的高通量样品处理方式。

表格

<table>
<thead>
<tr>
<th>样品</th>
<th>所含色素</th>
<th>含量</th>
<th>RSD (%)</th>
<th>对照品光谱相关性 (400 – 800 nm)</th>
<th>质谱信号 (每扫描，M/Z 100-900)</th>
</tr>
</thead>
<tbody>
<tr>
<td>面包上色素</td>
<td>E122</td>
<td>66.4 g/L</td>
<td>0.0</td>
<td>≥ 0.99996</td>
<td>228 [M-2Na]²⁻</td>
</tr>
<tr>
<td></td>
<td>E124</td>
<td>13.3 g/L</td>
<td>2.1</td>
<td>≥ 0.99957</td>
<td>279 [M-2Na]³⁻, 178 [M-3Na]³⁻</td>
</tr>
<tr>
<td>能量饮料1</td>
<td>E133</td>
<td>9.1 mg/L</td>
<td>0.1</td>
<td>≥ 0.99964</td>
<td>373 [M-2Na]³⁻</td>
</tr>
<tr>
<td>能量饮料2</td>
<td>E122</td>
<td>76.2 mg/L</td>
<td>3.6</td>
<td>≥ 0.99958</td>
<td>228 [M-2Na]³⁻</td>
</tr>
</tbody>
</table>

进一步资料可向作者索取：

Contact: Dr. G. Morlock, Institute of Food Chemistry, University of Hohenheim, 70599 Stuttgart, gmorlock@uni-hohenheim.de