

AMIES II - Final Meeting

Tbilisi, Goethe-Institute in September 2017

Scenario Development for Sustainable Land Use in the Greater Caucasus, Georgia

Project unit C1

Presentation title: G. Tedoradze, M.Sc. (Institute of Botany, Ilia State University): Phytodiversity and biomass production at steep slopes

Center for International Development and Envrionmental Research

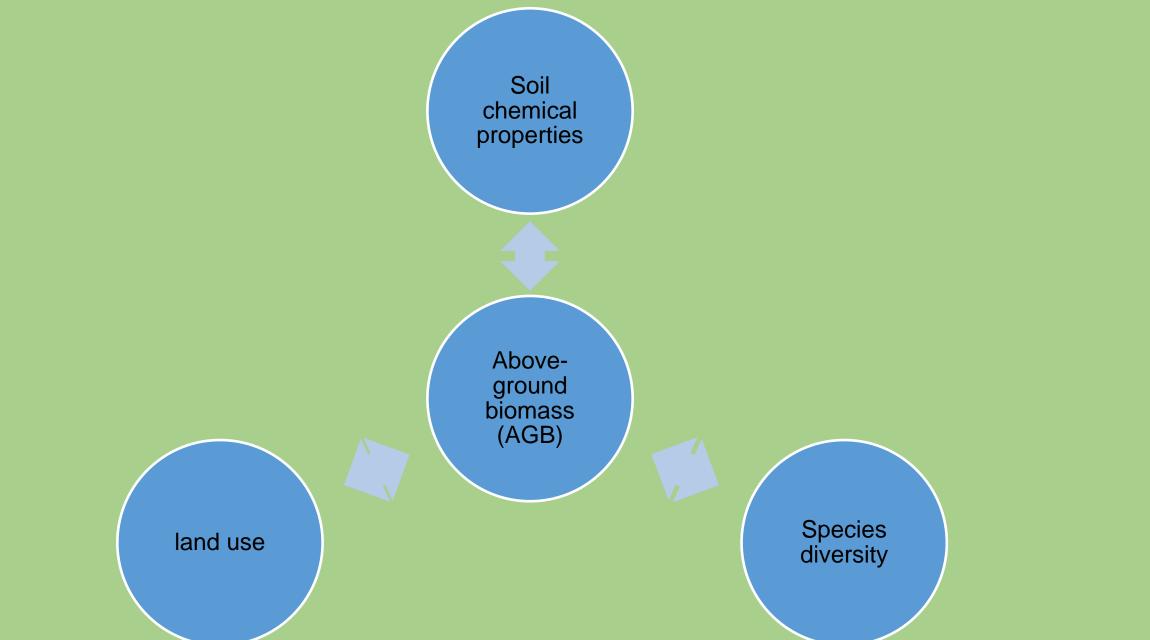
Ivane Javakhishvili Tbilisi State University

Ilia State University

Agricultural University of Georgia

My work was carried out within the international project AMIES II -Scenario development for sustainable land use in the Greater Caucasus, Georgia

- 1. The general goal of my work was analyzing the relations between patterns of phytodiversity and productivity / biomass potentials at the local scale
- 2. Methods used: vegetation sampling, field-spectrometry, and biomass harvesting: relations between site productivity and plant functional diversity of the grassland swards
- 3. The expected results: improved vegetation modelling and estimates of carrying capacities

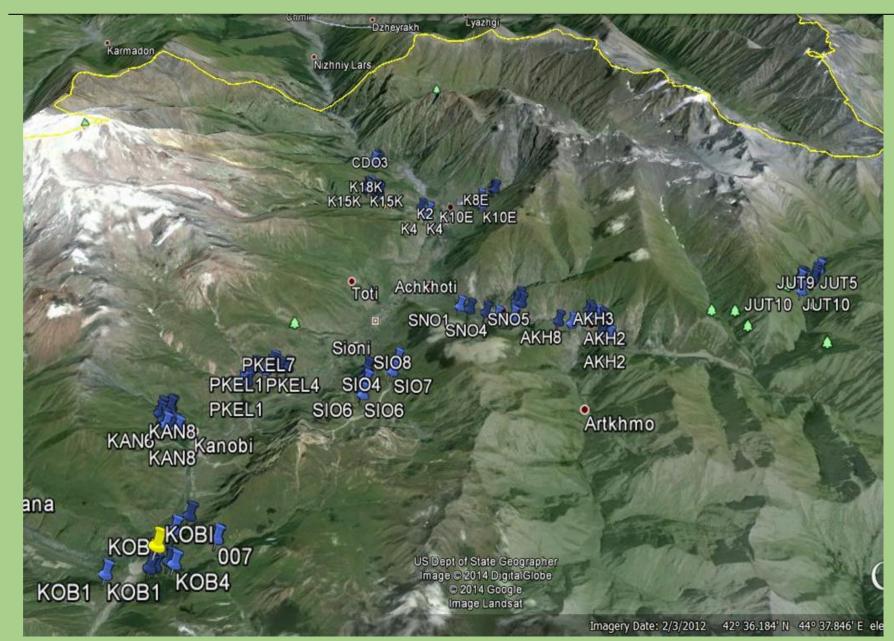

Specifically, we quantitatively analyzed the following relationships:

- a) the relations between soil chemical parameters and species diversity of grassland on steep mountain slopes,
- b) the relation between species diversity and *Above-ground biomass* (AGB) of grasslands on steep mountain slopes,
- c) the relations between soil chemical properties and *Above-ground biomass (AGB)* of grasslands on steep mountain slopes,
- d) the relations between the land use and *Above-ground biomass (AGB)* of grasslands on steep mountain slopes

The flowchart of my study



Location of study area



Study sites in the Kazbegi region

In total, I sampled 83 plots in Kazbegi, during the summer season (2014-2015).

Standardized 25 m²- plots, Braun-Blanquet scale

	Name of the village (study site)	Number of plots
1.	Khanobi	8
2.	Sioni	8
3.	Kobi	8
4.	Kazbegi	18
5.	Sno	8
6.	Akhaltsikhe	9
7.	Pkhelshe	9
8.	Juta	10
9.	Tsdo	5

Villages where I took the plots

- Steep (>10°) meadows in proximity to settlements, southern slope
- Steep (>10°) pasture in proximity to settlements, northern slope
- Steep (>10°) pasture in proximity to settlements, southern slope

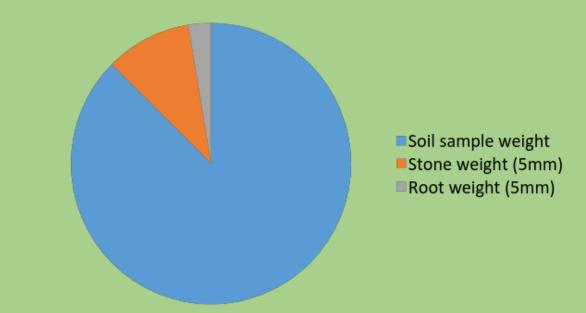
• Elevation (m above sea level)

1000 – 1750 m 1750 - 2500 m 2500 - 3000 m 3000 - 3600 m > 3600 m The plots were chosen according to the slope, aspect and the distance to the settlement (900 m away)

. . . .

- montane
- subalpine
- alpine
- subnival
- nival

- 1750-2317 m
- Slope (degree)
- Steep, > 10°
- Aspect (N, S)


Volkswagen Stiftung

Soil sampling

••• Volkswagen**Stiftung**

Besides the plant sociological study there were taken samples of soil from each plot.

Soil sample weight	Stone weight (5mm)	Root weight (5mm)
46.309	5.263	1.382

Soil corer with a diameter of 3 cm.

Field work in Kazbegi

. . . .

Volkswagen**Stiftung**

Biomass sampling, separating and draying

Harvesting of biomass took place in the summer of 2015-2016. Above-ground biomass was harvested with scissors.

The resulting harvested vegetation was collected, sorted (Grass, Herbs, Legumes), dried in an oven and then weighed.

In a first step, an indicator species analysis was performed for the different exposition (S, N)

		Frequency		
		Northern	Southern	
Northertn slopes	Indicator			
	value (>14)	n=43	n=39	P
Rhinanthus minor	49.1	81	51	0.0108
Agrostis planifolia	45.3	77	56	0.0472
Ranunculus oreophilus	43.6	67	38	0.0096
Pimpinella rhodantha	53.2	58	5	0.0002
Polygonum carneum	53.5	53	0	0.0002
Southern slopes				
Medicago glutinosa	58	51	90	0.0006
Trifolium alpestre	40.4	40	64	0.019
Festuca ovina	40	33	64	0.0132
Koeleria luerssenii	40.7	28	56	0.0032
Salvia nemorosa	38.1	5	41	0.0002

In total, the number of indicator species for Northern slopes was 18, and for Southern slopes 16

Indicator species for Northern slopes

Polygonum carneum

Rhinanthus minor

Agrostis planifolia

. . .

. . .

. . . .

• VolkswagenStiftung

Indicator species for Southern slopes

Trifolium alpestre

Koeleria luerssenii

Grazing in Kazbegi

The major grazers are caws, horses and sheep

Indicator species for Pastures and Meadows

		Freque	ency (%)				Freque	ency (%)	
		Pasture	Meadow						
	Indicator								
Pasture	value(>14)	n=49	n=33	Р			Pasture	Meadow	
Campanula collina	53.3	82	55	0.004		Indicator			
Festuca varia	37	47	15	0.0028	Meadow	value(>14)	n=49	n=33	Р
Cirsium obvalatum	33.4	51	24	0.0458	Trifolium ambiguum	48.3	61	82	0.031
Silene ruprechtii	36.3	55	30	0.0378	Pastinaca armena	41.6	47	70	0.038
Astragalus captiosus	29.1	37	9	0.0112	Trifolium alpestre	41.2	43	64	0.0204
Carex humilis	25.6	31	9	0.0186	Koeleria luerssenii	39.6	37	61	0.0134
Dianthus cretaceus	25.3	31	9	0.023	Leucanthemum vulgare	37.9	16	48	0.0008
Galium album	23.8	29	6	0.0156	Polygala transcaucasica	37.8	16	45	0.0018
Silene linearifolia	18.4	18	0	0.009	Vicia purpurea	36.7	27	52	0.0068
Euphrasia caucasica	16.3	16	0	0.0192	Seseli transcaucasicum	36.7	4	42	0.0002

In total, there were 10 indicator species in the pastures and 19 in the meadows

Volkswagen Stiftung

. . . .

Indicator species for Meadows

Trifolium ambiguum¹⁸

Bromopsis variegata

Trifolium

Indicator species for Pastures

Astragalus captiosus

Veratrum lobelianum

Cirsium obvalatum

Sempervivum transcaucasicum

Indicator species under different management

		Frequency (%)			
		Pastur			
		e	Meadow		
	Indicator				
Overgrazed pasture	value (>14)	n=17	n=5	n=11	Р
Dianthus cretaceus	46.6	65	0	18	0.001
Sempervivum transcaucasicum	40.7	47	0	0	0.002
Astragalus captiosus	32.3	65	20	18	0.0114
Silene ruprechtii	28.2	82	20	64	0.0418
Taraxacum officinale	22.6	35	0	9	0.04
Moderately grazed pasture					
Trifolium alpestre	31.9	0	0	27	0.0208
Thalictrum collinum	27.3	12	20	82	0.0112
Hypericum caucasicum	15.2	0	0	18	0.0332
Lightly grazed meadow					
Ranunculus oreophilus	40.8	24	100	64	0.002
Campanula trautvetteri	30.4	6	40	0	0.021
Leucanthemum vulgare	30.2	100	100	100	0.0282
Astrantia trifida	29.2	0	40	9	0.0104
Bromopsis variegata	28	6	60	18	0.0164

In total, there were 9 indicator species in the overgrazed pastures, 3 in moderately grazed pastures and 10 in the meadows (lightly grazed)

Correlation between soil chemical (N, C, C/N, K, P, Mg,) properties and AGB.

Biomass type	mg.Mg.kg.Bodern	mg.P.kg.Bodern	mg.K.kg.Bodern	NValue.	CValue.	C/N
Grasst.ha.	0.325946	0.329146	0.1257783	0.299646	0.268386	0.044378
Herbs.t.ha.	0.38656	0.21721	0.3396334	0.28447	0.30146	0.329405
Legumest.ha.	-0.0509	-0.08158	0.02628804	-0.1729	-0.17574	-0.04351
X.t.ha.	0.371294	0.256603	0.28485615	0.234869	0.224665	0.190799

Analyses of correlation between soil chemical properties and AGB of Legumes, Herbs and Grasses, the best coefficients were found between Herbs and Mg, K, P, N, C, C/N in soil (0.38, 0.34, 0.22, 0.28, 0.3, 0.32, 0.04) also correlation was high between Grasses and Mg, K, P, N, C, C/N in soil (0.32, 0.12, 0.32, 0.3, 0.27), whilst correlation was considerably weaker with Legumes (-0.05, 0.02, -0.08, -0.17, -0.17, -0.17)

Correlation between AGB and Richness

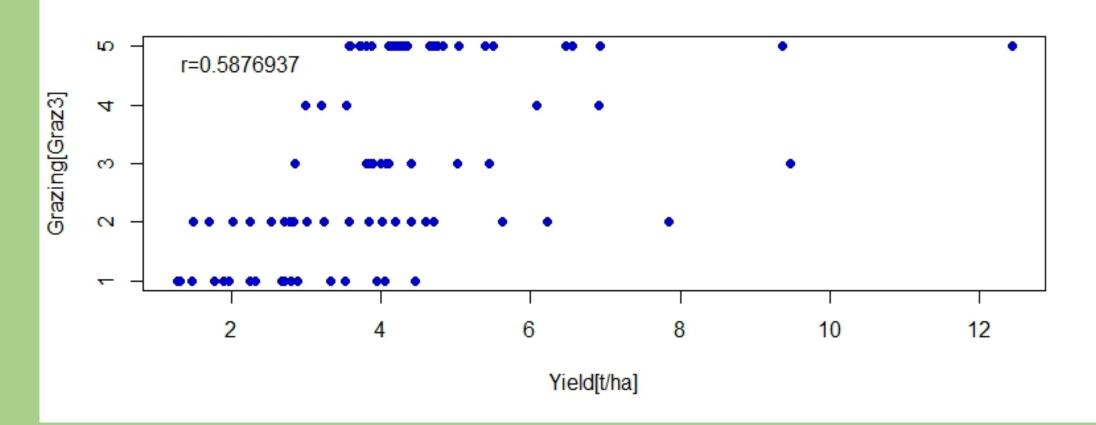
	Grasses t/h	Herbs t/h	Legumes t/h	X t/ha
Species richness	0.345619	0.258019	0.078075577	0.377388

Correlation is high between the Richness and AGB (0.37).

The correlation between Richness separately with AGB of Legumes, Herbs, Grass were as follows: 0.07, 0.25, 0.34;

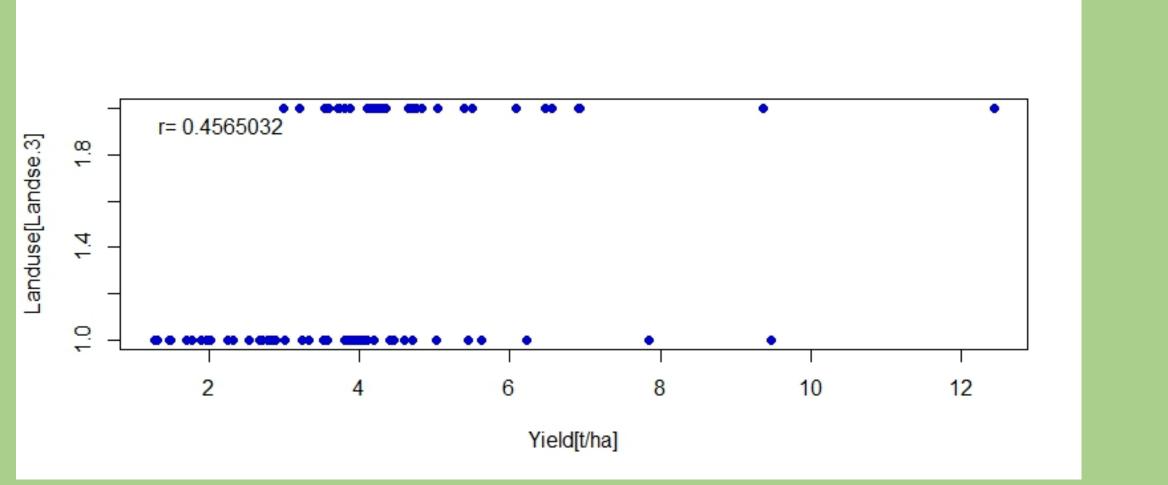
Correlation between richness and other important variables

Species richness negatively correlated with Slope degree, Cover bare rock, Open soil abundance


Correlation was high between the soil chemical (N, C, C/N, K, P, Mg,) variables and species richness.

	Cracica richness
	Species richness
Slope degree	-0.30387
Cover bare rock	-0.24744
Open soil abundance	-0.47035
Ν	0.309169
С	0.308352
C/N	0.263107
К	0.32412
Р	0.369796
Mg	0.336815

	Species
	richness
Soil depth	0.240188
Water content	0.199021
t/ha	0.365524
PHdistwhat1	-0.23151
Richness	1
Simpson	0.41366
Cw5 – Stones weight	0.345182
ndvi	0.523961



Grazing strongly correlated with AGB (0.58).

Land use strongly affected AGB (r = 0.45), in a manner of "switch".

Volkswagen Stiftung

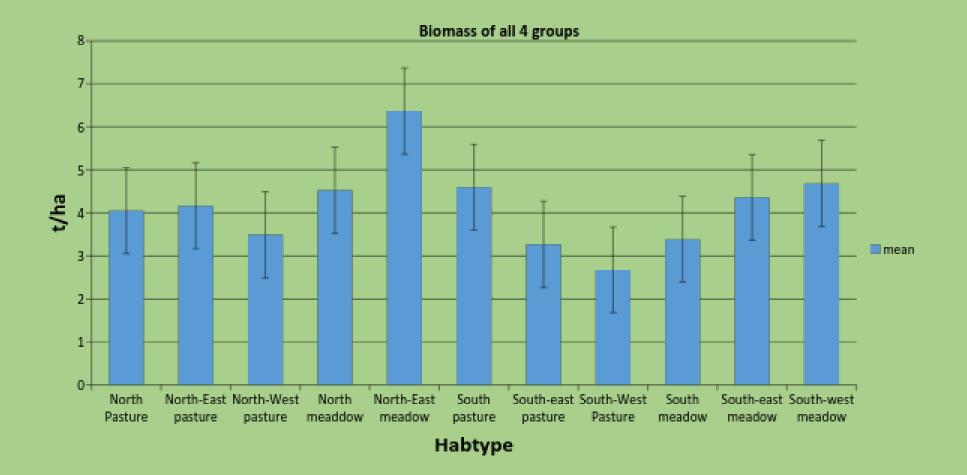
. . . .


AGB for each village t/ha

I calculated standard errors and mean AGB for each aspects, habitat type and land use.

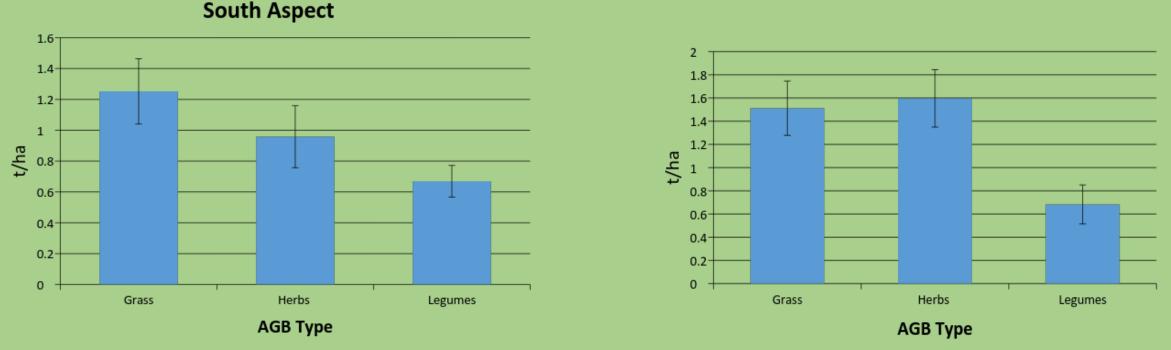
Volkswagen**Stiftung**

AGB was highest on NW aspects, followed by N, NE and S aspect (in a decreasing order).


AGB for each aspects t/ha

AGB by aspects and land use t/ha

As the figure shows, AGB was highest on the NE meadows, whereas on the SW pastures it was the lowest (mean values \pm SE).



AGB types in South and North aspect t/ha

27

AGB of Grass and Herbs was generally and without exception higher on the northern aspects as compared to the southern aspects. In contrast, AGB of Legumes do not change.

Seed bank.

M. Seip, M. Sc. (Landscape Ecology & Landscape Planning, JLU)

In total, 71 species could be identified in the seed bank, and similarity between the above ground vegetation and the seed bank species was 50.7%. Among the most frequent species were *Crepis pannonica*, *Bellis perennis, Potentilla crantzii* and *Agrostis planifolia*.

• The most frequent species were Dianthus cretaceous, Sempervivum transcaucasicum, Astragalus captiosus, Festuca varia, Cirsium obvalatum (pastures); Trifolium ambiguum, Pastinaca armena, Trifolium alpestre, Koeleria luerssenii, Leucanthemum vulgare, Ranunculus oreophilus, Bromopsis variegata (meadows). As we can see the meadows were rich in weeds (Leucanthemum, Ranunculus), which can be one proof of the strong prehistoric herbivory pressure.

• The lowest AGB values were found on S and SW aspect pastures (the villages of Kobi and Akhaltsikhe), whilst the highest AGB values were on NW and NE hay meadows (Kolteshi (Kazbegi), Tsdo and Khanobi).

• The soil chemical (N, C, C/N, K, P, Mg,) properties correlated with both Richness and AGB.

• The biomass of Legumes did not correlate with the amount of Mg, K, P, N, C, C/N in the soil or Richness (0.07), also AGB of Legumes did not change through Northern and Southern aspects.

• Our results confirm that land use (grazing) affects strongly both the AGB and species richness.

• The analysis also showed that species richness correlates negatively with Slope degree (-0.3), Cover bare rock (-0.25), Open soil abundance (-0.47).

All analyses were performed with the software packages: Version 0.99.489 – © 2009-2015 RStudio, Inc.

Soil chemical analyses were carried out by the Institute of Soil Science and Soil Conservation at Giessen University.

Harvested vegetation (Grass, Herbs, Legumes), dried in an oven and then weighed at Giessen University.

Preparation of a publication about the plant community and AGB of Kazbegi region.

Thank you for your attention!

giorgi.tedoradze.2@iliauni.edu.ge