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Abstract In hybrid breeding, the prediction of hybrid

performance (HP) is extremely important as it is difficult to

evaluate inbred lines in numerous cross combinations.

Recent developments such as doubled haploid production

and molecular marker technologies have enhanced the

prospects of marker-based HP prediction to accelerate the

breeding process. Our objectives were to (1) predict HP

using a combined analysis of hybrids and parental lines

from a breeding program, (2) evaluate the use of molecular

markers in addition to phenotypic and pedigree data,

(3) evaluate the combination of line per se data with

marker-based estimates, (4) study the effect of the number

of tested parents, and (5) assess the advantage of haplotype

blocks. An unbalanced dataset of 400 hybrids from 9

factorial crosses tested in different experiments and data of

79 inbred parents were subjected to combined analyses

with a mixed linear model. Marker data of the inbreds were

obtained with 20 AFLP primer–enzyme combinations.

Cross-validation was used to assess the performance pre-

diction of hybrids of which no or only one parental line was

testcross evaluated. For HP prediction, the highest pro-

portion of explained variance (R2), 46% for grain yield

(GY) and 70% for grain dry matter content (GDMC), was

obtained from line per se best linear unbiased prediction

(BLUP) estimates plus marker effects associated with mid-

parent heterosis (TEAM-LM). Our study demonstrated that

HP was efficiently predicted using molecular markers even

for GY when testcross data of both parents are not avail-

able. This can help in improving greatly the efficiency of

commercial hybrid breeding programs.

Introduction

Hybrid maize breeders develop a large number of inbred

lines and estimate their value in cross combinations

(Hallauer 1990). The number of crosses increases rapidly

with the number of inbreds and their field evaluation requires

large resources. The generation of inbred lines has been

facilitated and accelerated in recent years by the doubled

haploid technology, which is being used increasingly in

commercial hybrid breeding programs (Schmidt 2004;

Seitz 2005). This has a strong influence on the allocation

of resources in hybrid maize breeding (Longin et al. 2007).

Depending upon the resources, only a small proportion

of all possible experimental hybrids can be evaluated in

field trials. In this situation, prediction of hybrid perfor-

mance (HP) utilizing field trial data available from related

crosses has been attempted to identify promising inter-

group hybrids (i.e., crosses between lines from different

heterotic groups) without having them tested in the field.

Bernardo (1994) presented a best linear unbiased
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J. Möhring � H.-P. Piepho

Bioinformatics Unit of the Institute for Crop Production

and Grassland Research, University of Hohenheim,

70599 Stuttgart, Germany

A. P. Sørensen

Keygene, P.O. Box 216, 6700 AE Wageningen, The Netherlands

M. Frisch

Institute of Agronomy and Plant Breeding II,

Justus-Liebig-University, 35392 Giessen, Germany

123

Theor Appl Genet (2009) 118:741–751

DOI 10.1007/s00122-008-0934-9



prediction (BLUP) approach based on phenotypic trait data

and coancestry coefficients estimated from pedigree

records or marker data. The approach was extended by

including marker data directly into the model to account

for quantitative trait loci (QTL), which however resulted

only in marginal improvements (Bernardo 1998, 1999).

Charcosset et al. (1998) evaluated the prediction of HP,

comparing different marker-based approaches to account

for specific combining ability (SCA). Their results for

inter-group crosses indicated higher prediction efficiencies

with BLUP and factorial regression models compared with

a genetic distance model.

Vuylsteke et al. (2000) presented a linear regression

approach to predict HP and SCA for grain yield (GY) using

marker-based estimates for the genotypic value of inter-

group crosses. This approach was extended and validated

for the prediction of GY and grain dry matter content

(GDMC) in factorial crosses (Schrag et al. 2006) and was

further improved to account for multiple testing and cor-

relation among marker loci by the identification of

haplotype blocks, in which stretches of closely linked

markers were regarded as one unit (Schrag et al. 2007). In

both studies, four experiments on factorial crosses were

analyzed separately. Therefore, the performance of crosses

between inbreds evaluated in different factorials remained

unpredicted. This situation is commonly encountered in

plant breeding programs and consequently is of great

interest to plant breeders.

Conventional procedures of line development by

recurrent selfing enable field testing of inbred lines and

rejection of poor ones during inbreeding. In contrast, the

doubled haploid technology generates homozygous lines

representing a random sample of all possible inbred lines

from the parental cross. Assessing their breeding value

only by conventional field tests is prohibitive considering

the resources required. Genotyping these lines with

molecular markers before producing their seed, conducting

testcross (TC) evaluation in field experiments and pre-

dicting HP by using estimates of marker effects obtained

from crosses between already evaluated lines in the same

breeding program would greatly enhance the efficiency of

hybrid breeding programs with doubled haploids. How-

ever, to our knowledge prediction of the performance of

hybrids between inbreds, for which no TC evaluation data

are available, has not been addressed so far.

Mid-parent heterosis (MH), defined as the difference

between the performance of a hybrid and the mean per-

formance of its parents, accounts for up to 76% of the GY

of maize hybrids (Hallauer and Miranda Filho 1988). It is

therefore of great importance in hybrid maize breeding.

While the performance of parental lines per se has not been

of much value in predicting HP due to masking dominance

effects (Smith 1986; Hallauer 1990), prediction of MH

based on marker effects combined with inbred line per se

performance seems to be a promising approach, which has

not been evaluated earlier.

Our objectives were to (1) predict the GY and GDMC

performance of untested maize hybrids using a combined

analysis of hybrids and their parental inbred lines across

several field experiments from an applied breeding pro-

gram, (2) compare predicted performance based on

molecular markers with that based exclusively on pheno-

typic and pedigree data, (3) test the improvement in the

prediction of HP by combining observed line per se data

with marker-based MH estimates, (4) compare the perfor-

mance prediction of hybrids of which no versus one

parental line was evaluated for testcross performance, and

(5) study the benefit of combining correlated markers into

haplotype blocks for prediction.

Materials and methods

Molecular data

Seventy-nine parental inbred lines (47 from the dent pool

and 32 from the flint pool) were genotyped with 20

amplified fragment length polymorphism (AFLP) primer–

enzyme combinations (Vos et al. 1995), as described in

detail by Schrag et al. (2006). Positions of 910 mapped

AFLP bands were obtained from an integrated AFLP map

(Vuylsteke et al. 1999). Each marker was analyzed for

polymorphism and the proportion of missing marker

observations among the evaluated inbreds.

Phenotypic and pedigree data

Nine dent 9 flint factorial mating experiments were con-

ducted within the maize breeding program of the

University of Hohenheim. Each experiment was carried out

within 1 year at 5–7 locations in Germany under diverse

agroecological conditions. In total, there were 54 experi-

ment 9 location combinations (trials) across 6 years and

11 locations. Across all experiments, 400 inter-group

crosses between 47 dent and 32 flint inbred parents were

evaluated along with 20 commercial hybrids, which were

used as checks. By combining these data, an unbalanced

47 9 32 factorial dataset comprising 400 tested and 1,104

untested hybrids was generated (Fig. 1). The 79 inbred

parents were evaluated for their per se performance in

11 trials across 3 years and 3–5 locations. Eight

year 9 location combinations were in common for the

hybrid trials and inbred trials. All trials were conducted

using adjacent a-designs with two-row plots and two to

three replications. GY was recorded in Mg ha-1 adjusted to

155 g kg-1 grain moisture, while GDMC was recorded in

742 Theor Appl Genet (2009) 118:741–751

123



percent. Pedigree data for all inbred lines were gathered

from breeding history tracing back at least two ancestral

generations.

Biometrical analysis of phenotypic data

Data for GY and GDMC from all experiments were sub-

jected to combined analyses with a mixed linear model.

Main effects for years, locations, and check varieties were

treated as fixed, which allowed to account for performance

differences between experiments. Genotypic effects, all

interactions, and block effects for trials, replications within

trials, and incomplete blocks within replications were

treated as random. Genotypic effects of the crosses were

partitioned into general combining ability (GCA) effects of

the parental dent and flint inbreds, and SCA effects of the

crosses (Gardner and Eberhart 1966). It was assumed that

GCA effects were normally distributed with variances

A1 � r2
dent and A2 � r2

flint and SCA effects with variance

D� r2
sca; where the matrices, A1, A2 and D, were computed

from coefficients of coancestry among the inbred lines

(Bernardo 2002). Coefficients of coancestry were calcu-

lated using SAS procedure INBREED (SAS Institute Inc.

2000). Covariance between the per se performance of an

inbred and its corresponding GCA effect as a parent of

crosses was considered in the model. Consequently, esti-

mation of GCA effects may benefit from line per se data

and vice versa, line per se effects may benefit from HP data

if available. The same covariance structure was used for

the genotype 9 location interaction, except that effects for

the SCA 9 location interaction were assumed indepen-

dent. The residual error was assumed to be specific for each

trial. All other block variances were assumed to be

homogeneous. Mixed linear model analyses were per-

formed with ASReml (Gilmour et al. 2002).

Evaluation of the efficiency of prediction methods

Cross-validation was performed to evaluate the efficiency

of the investigated prediction methods. For each cross-

validation run, the entire 47 9 32 factorial dataset was

divided into an estimation set and a test set (Fig. 1). In

order to mimic the situation in commercial hybrid breeding

programs, in each cross-validation run 23 dent and 16 flint

lines were randomly assigned as ‘TC evaluated’, which

corresponds to half of the parental lines from each heterotic

group. The remaining inbreds were designated as ‘TC

unevaluated’. The crosses between TC-evaluated lines

formed the estimation set, which by expectation covered

24.5% of all crosses. The remaining 75.5% crosses formed

the test set, such that 25.5% of all crosses were termed as

‘Type 0’ meaning that none of the parents were evaluated

for TC performance, and 50% of all crosses were of ‘Type

1’ meaning that one parent was evaluated for TC perfor-

mance. In a complete 47 9 32 factorial (1,504 crosses),

this procedure would assign 368 crosses to the estimation

set and 1,136 crosses to the test set. However, since only

400 out of 1,504 crosses were studied, the numbers of

crosses in the estimation and test sets were accordingly

lower (Fig. 1).

For each cross-validation run, phenotype data collected

in field experiments were analyzed separately on the basis

of the specific estimation set, using the mixed linear model.

Initially, re-estimating variance components in each cross-

validation run was considered, however, occasional lack of

convergence was observed. For this reason, cross-valida-

tion was performed using variance estimates based on the

whole dataset. For each prediction method under investi-

gation, the BLUPs obtained from the estimation set were

then used as the basis for performance prediction of the
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Fig. 1 Unbalanced factorial crosses showing one possible random

subdivision for the estimation set and test set in cross-validation of

hybrid performance prediction. The available dataset was based on

400 crosses (indicated by cells). In each of 300 cross-validation runs,

23 of the 47 dent lines (D01–D47) and 16 of the 32 flint lines (F01–

F32) were randomly assigned as testcross evaluated lines (bold
letters). The crosses between the testcross evaluated lines formed the

estimation set (indicated by dark gray cells) and all remaining crosses

formed the test set (indicated by light gray cells)
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hybrids in the test set. Prediction efficiency was assessed

by two statistics, namely the proportion of explained

variance (R2) and the square root of the mean square

deviation (RMSD) between predicted and observed HP

values of all hybrids in the test set as well as separately for

Type 0 and Type 1 hybrids. Higher estimate of R2 and

lower estimate of RMSD indicated better efficiency. Cross-

validation was carried out with 300 randomized replica-

tions. Boxplots were based on Tukey’s five number

summary (Tukey 1977).

Prediction methods

PP-GS

Based on phenotypic and pedigree data only (‘PP-’), the

performance of test-set hybrids was predicted by BLUPs

for GCA and SCA (‘-GS’) of the corresponding dent and

flint lines and their crosses, estimated by the mixed linear

model analysis from the hybrids in the estimation set. The

GCA estimates for TC-unevaluated parental lines were

obtained from data of related TC-evaluated inbred lines

using coefficients of coancestry in the mixed linear model

analysis. Likewise, the SCA estimates of hybrids in the test

set were obtained from related hybrids in the estimation

set.

PP-L

The mid-parent performance based on BLUPs of parent

line (‘-L’) per se performance was considered the predictor

of HP.

MLR-H

The prediction of HP in the test set was regarded as a

multiple linear regression (MLR) problem, as described in

detail by Schrag et al. (2007). Briefly, the HP effects (‘-H’)

of the genotypic classes among the hybrids in the estima-

tion set were computed at each AFLP marker locus.

Markers were added to the MLR model by forward

selection using the Schwarz Bayesian criterion (Schwarz

1978). With the resulting model, performance of the test-

set hybrids was predicted. The MLR analysis was restricted

to markers with no missing observations.

TEAM-H

The genotypic value of each hybrid was estimated by the

sum of marker class effects across all AFLP markers that

were significantly associated with the investigated trait

(Schrag et al. 2007). This sum was termed total effects of

associated markers (TEAM). Values of HP (‘-H’) were

regressed on the TEAM values across all hybrids in the

estimation set. The regression parameters thus obtained

were used to predict the performance of hybrids in the test

set on the basis of their TEAM values.

MLR-LM

Another approach for HP prediction combined line per se

performance with MH (‘-LM’), the latter being predicted

using AFLP markers. The BLUPs for performance of the

parental lines per se were estimated with the mixed linear

model analysis. For each estimation-set hybrid, MH was

calculated as the difference between HP and the mean

performance of the two parental lines per se, and used to

calibrate the MLR model based on AFLP marker data.

Subsequently, HP of the test-set hybrids was predicted by

adding (1) MH predicted with MLR and (2) the mid-parent

performance estimated from the mean of BLUPs of the

corresponding parental lines per se performance.

TEAM-LM

Analogous to MLR-LM, the HP of the test-set hybrids was

predicted by adding (1) MH predicted with TEAM and

(2) the mid-parent performance estimated from the mean of

BLUPs of the corresponding parental lines per se

performance.

Analysis of haplotype block structure

Adjacent AFLP marker loci were combined into haplotype

blocks, considering marker data of all 79 inbred lines and

using the HB2 and HB3 approaches described in detail by

Schrag et al. (2007). Briefly, for the HB2 approach, the

maximum block length was four markers, and the markers

affected by missing observations were considered as blocks

with the length of one. In the HB3 approach, a maximum of

15 markers displaying strong linkage disequilibrium were

combined into a haplotype block. All marker-based pre-

diction methods were applied to the HB2 and HB3

haplotype block data analogously to the use of single AFLP

marker data described above.

Results

Molecular and phenotypic data

For all analyses, a set of 732 AFLP markers was chosen

that was polymorphic and had less than 30% missing

observations in the 79 inbred lines. Of these markers, a

proportion of 19% had no missing marker observation

among all lines. For the haplotype blocks, a proportion of
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16% of the 705 HB2 blocks and 12% of the 424 HB3

blocks had no missing observation. For GY, 40–59% of HP

was attributable to heterosis, whereas for GDMC, contri-

bution of heterosis ranged from -8 to 5% (Table 1). With

both traits the estimate of the GCA variance component

was larger for dent than for flint lines. The ratio of SCA

variance to GCA variance (average of dent and flint GCA

variance components) was 0.07 for GY and 0.04 for

GDMC. Correlation coefficients between mid-parent per-

formance and HP were 0.44 for GY and 0.81 for GDMC,

both estimates being highly significant (P \ 0.001).

Efficiency of prediction methods

For GY, the number of hybrids in the estimation set ranged

from 60 to 145 across all cross-validation runs and the

average was 98.3, which corresponded to 24.6% of the 400

crosses studied. For GDMC, the number of hybrids in the

estimation set was 43–140 with an average of 97.2, which

was 24.3% of the 400 hybrids.

The prediction methods explained 16.5–46.0% of the

observed variance for GY and 16.1–69.9% for GDMC

(Table 2). For GY, the TEAM methods had by far the

highest R2, followed by the MLR and PP-GS methods. The

poorest prediction efficiency was observed for PP-L, which

had the lowest R2 and exceptionally high RMSD. For

GDMC, the highest R2 and the lowest RMSD were

obtained by the application of the TEAM-LM method. For

R2, it was followed by PP-L and MLR-LM, indicating that

the methods that considered inbred line per se estimates

(TEAM-LM, PP-L, MLR-LM) explained consistently

higher proportions of the GDMC variance in contrast

to TEAM-H, PP-GS, and MLR-H. Within both groups

of methods (considering inbred line per se estimates

versus others) the ranking was identical for R2

(TEAM [ PP [ MLR) and RMSD (TEAM \ PP \ MLR)

of GDMC. For both traits, the haplotype block analyses

applied to TEAM-H and MLR-H showed only small dif-

ferences in R2 among single AFLP marker data, HB2, and

HB3 (Fig. 2).

Prediction of performance of Type 0 and Type 1

hybrids

For GY, the two TEAM methods showed the highest R2

for the performance prediction of Type 0 hybrids, the R2

being 0.37 for TEAM-H and TEAM-LM (Fig. 3). The

difference in R2 (DR2) between Type 0 and Type 1 hybrids

was only 0.12–0.14 for the TEAM methods. For GDMC,

TEAM-LM and PP-L had high R2 for Type 0 hybrids

(0.66 for TEAM-LM and 0.64 for PP-L). Both these

methods showed small DR2 between Type 0 and Type 1

hybrids (0.06 for TEAM-LM and 0.01 for PP-L). Further,

for GDMC, all methods based on line per se values had

smaller DR2 than the counterpart methods. The MLR-H

and MLR-LM methods generally resulted in lower R2 than

the respective TEAM methods and their DR2 between

Type 0 and Type 1 hybrids was larger than for TEAM in

all cases. The PP methods showed extreme results for DR2

with practically no reduction in PP-L (0.01 for both traits)

and the largest in PP-GS (0.33 for GY and 0.38 for

GDMC).

Table 1 Biometrical analyses of phenotypic data of 400 crosses and

their 79 parental inbred lines: mean and range of hybrid performance

(HP), mid-parent performance, mid-parent heterosis (MH), ratio MH/

HP as well as the estimates of variance components of general

combining ability (GCA) and specific combining ability (SCA) and

their standard errors (SEs)

Criterion Grain yield (Mg ha-1) Grain dry matter content (%)

Mean Range Mean Range

Performance-related measure

HP 10.76 9.44–12.38 70.01 65.12 to 74.80

Mid-parent performance 5.44 4.45–6.43 71.18 62.28 to 77.73

MH 5.32 4.01–6.60 -1.16 -5.93 to 3.58

MH/HP 0.49 0.40–0.59 -0.02 -0.08 to 0.05

Criterion Grain yield (Mg ha-1) Grain dry matter content (%)

Estimate SE Estimate SE

Variance component

GCA (dent) 0.221 ±0.064 3.741 ±0.893

GCA (flint) 0.151 ±0.056 1.347 ±0.479

SCA 0.013 ±0.009 0.111 ±0.050
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Discussion

Biometrical analysis of field data

The materials evaluated showed a high degree of heterosis

for GY (mean MH/HP ratio 49%) whereas heterosis was of

little importance for GDMC (mean MH/HP ratio -2%).

This enabled the efficiency evaluation of prediction

methods for two traits having extreme expression of

heterosis.

The present study was based on combined analyses of

nine experiments, four of which were investigated previ-

ously in separate analyses by Schrag et al. (2006). As

compared with the mean of these previous analyses, the

present estimate of GCA variance component was com-

parable for GY of flint lines, smaller for GY of dent lines

and GDMC of flint lines, and larger for GDMC of dent

lines. The present estimates of SCA variance component as

well as the SCA:GCA ratios for both traits were smaller.

The fact that GCA and SCA variances depend on genetic

materials and test environments may explain the slight

variation in these estimates compared with the corre-

sponding values reported by Schrag et al. (2006). Variance

components for GDMC in the present study were in good

agreement with those reported by Parisseaux and Bernardo

(2004) based on 22,774 single crosses belonging to nine

heterotic patterns. Furthermore, Fischer et al. (2008)

reported similarly low SCA:GCA ratios for GY. Overall,

this result indicates the minor importance of SCA in the

germplasm used in the maize breeding program at the

University of Hohenheim, emphasizes the predominant

role of GCA for GY and GDMC, and consequently sug-

gests that variation in HP for these traits may be explained

largely by GCA estimates.

With the mixed linear model, it was possible to analyze

an unbalanced dataset from separate experiments com-

prising different years and locations. Additionally, with the

combined analysis of experiments on crosses and inbred

parents, the BLUP estimates were obtained for HP,

parental line per se performance, MH, GCA and SCA. This

approach facilitates the utilization of the large amount of

phenotypic data that are generated in commercial hybrid

breeding programs, and allows the performance prediction

of crosses of which one or even both parents have not been

evaluated.

Efficiency of prediction methods

Heterosis has a major influence on maize GY, which (1)

reduces the correlation between parental line per se per-

formance and HP and (2) leads to large differences between

the average performance levels of inbred lines and hybrids.

It can be regarded as a major cause for the low R2 and the

exceptionally high RMSD value for the PP-L method.

Keeping in view the complex inheritance of GY, it may be

stated that the differences between hybrids and inbreds due

to MH were modeled successfully with the marker-based

TEAM methods (R2 C 45%; RMSD B 0.43). In TEAM-H,

markers were used for prediction of HP, whereas in TEAM-

LM, markers were used to predict MH instead, which was

combined with line per se BLUP estimates. This slightly

increased R2 over that of TEAM-H. In summary, the TEAM

approaches provided by far the best predictions for GY,

indicating that marker data can advantageously be used for

this purpose. In contrast, the line per se (PP-L) approach

failed to predict the performance for a heterotic trait like

GY, as was expected from the literature (Smith 1986;

Hallauer 1990). However, combining line per se perfor-

mance estimates with a good marker-based approach for

MH prediction (such as TEAM) provided equally reliable

HP predictions.

The major proportion of HP variance in GDMC is

contributed by the performance of the parental inbreds per

se. This may explain the generally higher GDMC predic-

tion efficiency of the methods that included per se

estimates (PP-L, MLR-LM, TEAM-LM) in comparison

with the other methods. Heterosis was very low for GDMC.

However, the general performance levels of hybrids and

inbreds still differed. This systematic deviation is a source

of RMSD, which may explain the higher RMSD for PP-L

than PP-GS. Since GCA and SCA values were estimated

from hybrids, PP-GS better reflected the general perfor-

mance level of hybrids and resulted in a lower systematic

deviation. The marker-based MH prediction by TEAM-LM

accounted for this systematic deviation between hybrids

and inbreds in addition to a small proportion of the

explained HP variance. Consequently, the TEAM-LM

method in comparison with PP-L further improved the

efficiency of GDMC prediction, as reflected by an

increased R2 and reduced RMSD. For the non-heterotic

trait GDMC, methods using line per se performance were

Table 2 Efficiency of various methods for prediction of grain yield

and grain dry matter content of hybrids of which no or only one

parental line was evaluated for testcross performance

Method Grain yield

(Mg ha-1)

Grain dry matter

content (%)

Median R2 Median

RMSD

Median R2 Median

RMSD

PP-GS 0.240 0.519 0.281 1.624

PP-L 0.165 5.441 0.648 1.933

MLR-H 0.229 0.615 0.161 2.226

MLR-LM 0.241 0.646 0.488 1.937

TEAM-H 0.451 0.415 0.339 1.517

TEAM-LM 0.460 0.433 0.699 1.379
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advantageous and the usefulness of marker-based approa-

ches was limited. MLR failed and marker-based

predictions with TEAM based on HP directly were poor.

Only when combining line per se performance estimates

with marker-based heterosis (TEAM-LM), predictions

could be improved slightly by the inclusion of marker data.

In the present study, the efficiency of various methods

varied with the degree of heterosis but at the same time

TEAM-LM was the most efficient method to predict HP for

both GY and GDMC.

Haplotype blocks

The TEAM methods do not account for correlation

structure among the AFLP marker loci. Therefore, the use

of haplotype blocks was expected to further improve the

prediction efficiency of TEAM. Such approaches were

presented by Schrag et al. (2007), where the haplotype

block approaches HB2 and HB3 were slightly advanta-

geous for prediction with TEAM and MLR methods. In

the current study, prediction efficiencies based on 732

single AFLP markers and 705 HB2 haplotype blocks were

similar (Fig. 2), which can be explained by the fact that

the haplotype structure obtained with the HB2 algorithm

differed only marginally from the single AFLP marker

data. This was due to the property of the HB2 procedure

that adjacent markers could only be combined into a

haplotype block if they were completely unaffected by

missing marker observations. Application of the HB3

algorithm to the 732 AFLP markers resulted in a distinct

block structure comprising 424 haplotype blocks, of which

a very low number of 51 blocks were completely unaf-

fected by missing marker observations. Since the MLR

method could utilize only these 51 blocks as its database,

this may have impaired the prediction efficiency of MLR

based on HB3 data for GY. In contrast, the TEAM

Fig. 2 Efficiency (R2) of

marker-based methods (MLR-

H, MLR-LM, TEAM-H,

TEAM-LM) applied to single

AFLP marker data (SM) and

haplotype blocks (HB2, HB3)

for prediction of grain yield

(GY) and grain dry matter

content (GDMC) of hybrids of

which no (Type 0) or only one

(Type 1) parental line was

evaluated for testcross

performance
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methods (1) had less adverse affect due to missing marker

observations and (2) should benefit from addressing the

correlation structure of markers by the use of haplotype

blocks. Therefore, improved prediction efficiency with the

TEAM methods was expected. However, a small increase

in R2 was observed for TEAM-H only. In general, the use

of haplotype blocks did not increase substantially the

prediction efficiency in our data. However, on higher

marker densities, e.g., with SNP chips, haplotype blocks

are expected to be more advantageous. Missing marker

data represent a major problem for haplotype block anal-

ysis, which among other reasons may explain the poor

improvement of prediction efficiencies. Missing data of

markers can be predicted from observed genotypes of

tightly linked markers (Balding 2006). Such data imputa-

tion promises to be a simple and effective solution for

improving the HP prediction especially if based on

haplotype blocks and also for the MLR approach.

Prediction of performance of Type 0 and Type 1

hybrids

Performance prediction of hybrids having untested parental

lines is of major interest to plant breeders. If hybrids are

regarded as the sampling unit, a very high proportion of

parental lines is left in the estimation set due to the

structure of the factorial mating design. The extreme case

for such a scenario is a hybrid-based leave-one-out strategy

(Vuylsteke et al. 2000; Schrag et al. 2006), where large

numbers of testcrosses of each parental line are included in

each cross-validation run. Such a strategy may result in

very high prediction efficiency but it does not address the

demand of plant breeders who are interested in predicting

the performance of hybrids involving parental lines that

have not been TC evaluated. Thus, the efficiency of the

prediction methods was studied for Type 0 hybrids (TC-

unevaluated 9 TC-unevaluated parents) and Type 1

Fig. 3 Efficiency (R2) of

various methods for prediction

of grain yield (GY) and grain

dry matter content (GDMC) of

hybrids of which no (Type 0) or

only one (Type 1) parental line

was evaluated for testcross

performance
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hybrids (TC-evaluated 9 TC-unevaluated parents). This

was achieved by treating the parental inbred lines instead

of crosses as sampling unit in cross-validation.

Prediction efficiency of PP-L differed only marginally

between Type 0 and Type 1 hybrids. The per se BLUP value

was mainly based on the performance of parental lines per

se, and to a limited extent on TC evaluation as correlation

between parent per se performance and GCA was consid-

ered. This may explain the marginal differences between

Type 0 and Type 1 hybrids with the application of PP-L in

the present study. In contrast to PP-L, prediction efficiency

of PP-GS differed considerably between Type 0 and Type 1

hybrids. The PP-GS method was based on GCA and SCA

estimates obtained from the phenotypic performance of the

crosses. When the parental lines have not been evaluated in

cross combinations, these estimates were obtained from

phenotypic data of the crosses involving related inbred

parents and their coefficients of coancestry in the mixed

linear model analysis. However, these coefficients are only

expected values of genome distribution and, therefore, may

not reflect the actual relatedness of the inbred lines inves-

tigated, which is influenced by selection and genetic drift

during inbreeding (Melchinger et al. 1991; Bernardo et al.

1996). Moreover, the coefficients indicate overall expecta-

tions for the whole genome and do not refer to specific

genomic regions that may be relevant for the predicted trait.

This limitation can be overcome by approaches such as

TEAM or MLR, which are based on molecular markers

associated with the trait under investigation.

Size of estimation and test sets

Subdivision of data into estimation and test sets for cross-

validation was done considering the situation across multi-

ple generations of a commercial plant breeding program. We

sampled 23 dent and 16 flint lines as TC-evaluated parents in

the cross-validation runs, leading to a balanced subdivision

into the estimation set as well as Type 0 and Type 1 hybrids

in the test set. An expansion of the estimation set to 38

dent 9 26 flint lines resulted in a strong downsizing in the

Type 0 component of test set and increased variance of

prediction efficiency, which reflects the sampling effect due

to the smaller test sets. In comparison with the 23 9 16

scenario, the database of the 38 9 26 estimation set was

substantially larger and resulted in higher GY prediction

efficiency for both PP-GS and TEAM-LM methods (data not

shown). Increases of similar magnitude were also reported

by Bernardo (1994) and Charcosset et al. (1998).

Replacing line per se evaluation by additional hybrids

In this study, all parental inbred lines were evaluated for

their line per se performance. However, given a fixed

budget, additional hybrids could have been evaluated for

their performance instead of these parental lines. Such

hybrids would enhance the database for effect estimation

and could improve the connectivity among the several field

experiments within the analysis. The question is open,

whether under such a scenario, the GCA/SCA-based pre-

diction benefits to such an extent that it reaches the

efficiency of the line per se-based approaches.

The line per se-based approaches predicted GDMC very

well, both based on phenotypic data only (PP-L) and

combined with the marker TEAM approach (TEAM-LM).

In general, the low heterosis of GDMC and the low rele-

vance of SCA for this trait support the GCA/SCA-based

prediction. However, for hybrids, of which only one or no

parental line was TC evaluated, the prediction efficiency of

GCA/SCA is much lower than for the line per se-based

approaches that even with additional hybrids the GCA/

SCA-based prediction can hardly be improved up to the

level of line per se-based prediction approaches.

For GY, the line per se-based approach is not generally

superior to the GCA/SCA approach. Even the combination

of line per se performance with markers (TEAM-LM) was

equal but not superior to the marker-based TEAM-H

approach, which not generally requires line per se data.

Thus, for GY it could be interesting to study whether the

prediction efficiency of PP-GS but also of TEAM-H can

further be increased by replacing the line per se evaluations

with additional hybrids, which may improve the connec-

tivity between the experiments. Thus, the experiments

could be augmented with hybrids from previous experi-

ments. A simple and common method for improving

connectivity is to include several check varieties in each

trial, as was done in the current work.

Application in plant breeding programs

Inbred lines in large numbers are continuously produced in

commercial maize breeding programs but by far not all

possible cross combinations are evaluated because of

resource constraints. On the other hand, our study indicates

that on the basis of marker assayed inbred lines, the per-

formance of maize hybrids can be predicted efficiently for

the heterotic trait GY as well as the non-heterotic trait

GDMC for crosses of which one or even both inbred par-

ents have not been TC evaluated. Relative response to

indirect selection (say selection based on markers to

improve GY) versus direct selection depends, in addition

to other factors, on relative selection intensities and the

proportion of additive-genetic variance of GY accounted

for by the markers versus the heritability of GY (Dudley

1993; Falconer and Mackay 1996). With the development

of high-throughput marker platforms, molecular markers

have become available in large numbers and the cost per
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marker data point has decreased considerably (Eathington

et al. 2007). Further, the cost of genotyping is expected to

decrease further compared with that for phenotyping in

field trials. Thus, more intense selection can be carried out

based on markers as compared to direct selection for GY.

Also, selection based on increased marker density is

expected to enhance the proportion of variance accounted

for by markers. These factors positively affect the advan-

tage of marker-assisted selection with large impact on

allocation of resources in commercial plant breeding

programs.

Marker-assisted selection among inbred lines and pre-

diction of HP will particularly enhance the utility of

doubled haploid technology, which generates a vast num-

ber of homozygous lines in short time. Marker assays may

be conducted immediately after the development of dou-

bled haploids. Promising doubled haploids may be

identified using marker effects estimated in the previous

breeding cycle, and selected for seed multiplication and

evaluation of their per se performance. The HP may be

predicted using molecular markers (e.g., TEAM-H) or

using molecular markers combined with per se perfor-

mance data (e.g., TEAM-LM). The hybrids having high

predicted performance and parents with high per se per-

formance required for commercial seed production may be

identified, their seed produced and field trials conducted on

their performance. The data generated in each new cycle of

breeding may be analyzed with a mixed linear model

approach and used to re-estimate marker-QTL associations

for continuous refinement of the estimates of marker

effects. This approach will not only enable maize breeders

to enhance selection intensity but will also positively

impact the selection response per unit of time by reducing

the number of seasons required to develop a commercial

hybrid.
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