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Abstract Genome-based prediction of genetic values is

expected to overcome shortcomings that limit the appli-

cation of QTL mapping and marker-assisted selection in

plant breeding. Our goal was to study the genome-based

prediction of test cross performance with genetic effects

that were estimated using genotypes from the preceding

breeding cycle. In particular, our objectives were to employ

a ridge regression approach that approximates best linear

unbiased prediction of genetic effects, compare cross val-

idation with validation using genetic material of the sub-

sequent breeding cycle, and investigate the prospects of

genome-based prediction in sugar beet breeding. We

focused on the traits sugar content and standard molasses

loss (ML) and used a set of 310 sugar beet lines to estimate

genetic effects at 384 SNP markers. In cross validation,

correlations [0.8 between observed and predicted test

cross performance were observed for both traits. However,

in validation with 56 lines from the next breeding cycle, a

correlation of 0.8 could only be observed for sugar content,

for standard ML the correlation reduced to 0.4. We found

that ridge regression based on preliminary estimates of the

heritability provided a very good approximation of best

linear unbiased prediction and was not accompanied with a

loss in prediction accuracy. We conclude that prediction

accuracy assessed with cross validation within one cycle of

a breeding program can not be used as an indicator for the

accuracy of predicting lines of the next cycle. Prediction of

lines of the next cycle seems promising for traits with high

heritabilities.

Introduction

Prediction of genetic values with genome-wide dense

marker maps was proposed in an animal breeding context

by Meuwissen et al. (2001). Simulation studies (Bernardo

and Yu 2007; Bernardo 2009; Wong and Bernardo 2008;

Xu 2003; Zhong et al. 2009) suggested that it can over-

come shortcomings limiting the application of QTL map-

ping and marker assisted selection in plant breeding.

In a study with maize, test cross performance for kernel

dry weight of 208 doubled haploid lines was assessed in

five locations (Piepho 2009). The lines were genotyped

with 136 SNP and SSR markers and the model fit of var-

ious ridge regression models was assessed. It was sug-

gested that genotype 9 environment interactions and

genetic effects not captured by markers should be included

in genome-based prediction models. Parametric and semi-

parametric models for genome-based prediction were

compared in a study using phenotypic data of 599 wheat

lines grown in four environments and 300 maize lines

grown under two different conditions (Crossa et al. 2010).

1,447 markers were used for the genotyping of the wheat

lines and 1,148 markers for the maize lines. In cross vali-

dation, correlations between observed and predicted per-

formance in the range of 0.4–0.5 were observed for grain

yield and up to 0.79 for flowering time. Genome-based

prediction with mixed linear models was investigated in a

study with 1,380 doubled haploid maize lines grown in

seven environments and phenotyped for the traits grain dry
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matter yield and grain dry matter content (Albrecht et al.

2011). The lines were genotyped with 1,152 SNP markers.

In cross validation, correlations between predicted and

observed test cross performance up to 0.74 were observed.

While Piepho (2009) used the model fit in the estimation

set as a measure to compare alternative models, Crossa

et al. (2010) and Albrecht et al. (2011) used cross valida-

tion in the estimation set to assess prediction accuracy.

However, no results are available investigating the accu-

racy of genome-based prediction when the set of lines to be

predicted belongs to the breeding cycle that follows the

breeding cycle to which the estimation set belongs.

The goal of our study was to assess the accuracy of

genome-based prediction of test cross performance for

sugar content (SC) and standard molasses loss (ML) in

sugar beet (Beta vulgaris L.) by using data from two sub-

sequent cycles of a breeding program. In particular our

objectives were to (1) compare ridge regression employing

preliminary estimates of the heritability (RIR) with best

linear unbiased prediction (BLUP) for predicting marker

effects, (2) compare cross validation for assessing predic-

tion accuracy of genome-based prediction with validation

using data from a subsequent breeding cycle, (3) draw

conclusions on the potential of genome-based prediction in

sugar beet breeding.

Methods

Plant material

The estimation set consisted of 310 inbred lines randomly

derived from 34 crosses among 9 diploid sugar beet lines.

The number of progenies from each cross ranged from two

to seven. The 56 lines of the validation set were derived

from 8 crosses among 6 lines of the estimation set. The

number of progenies from each cross ranged from 3 to 11.

The line development included selection between crossing

parents as well as selection between lines. The lines were

selected for high performance and to maintain the genetic

diversity within the breeding pool.

Field data

Test cross performance of the lines of the estimation set was

evaluated for SC (%) and ML (%) in field trials at six

European locations with one tester. The lines were a subset

of a larger trial that was set up in 10 9 10 lattices with two

replications. The lines of the validation set were evaluated

as part of a larger trial that employed alpha lattices with

block size 10 at six European locations. A two-replicate

design was employed. The first replicate was assigned to the

first of two testers and the second replicate to the second.

Four standard genotypes were included. The field trials

were analysed with a two-stage analysis. In the first stage

the adjusted entry means were calculated for each envi-

ronment. These were combined in an analysis of series of

experiments. The error variance for the analysis of the series

was obtained by pooling the individual error variances.

Following the practice of commercial sugar beet breeding,

relative values were calculated that refer to the average of

the standard lines. The relative values were calculated from

the means across environments. The use of relative values

might not be totally consistent with assumptions implicitly

made by our further analyses; however, in the present study,

our focus is on practical applicability.

Marker data

Genotyping was carried out with the same marker set of

384 SNPs in the estimation set and in the validation set.

The nine chromosomes of sugar beet had lengths of about

1 M and the total map length was 10.25 M. Hence, the

average map distance between two adjacent markers was

3.6 cM. Markers with more than two alleles, more than

20 % missing values, or a low degree of polymorphism

(1 -
P

fi
2 \ 0.1, where f1, f2 are the allele frequencies at a

marker) were discarded. This resulted in 300 SNPs for the

estimation set and 198 SNPs for the validation set that were

used for the calculations.

The marker data were used to investigate the relatedness

of the material (Fig. 1) and the decay of linkage disequi-

librium depending between pairs of loci depending on their

map distance (Fig. 2).

Linear model

For estimating the genetic effects of the SNPs we used the

linear model

y ¼ 1b0 þ Zuþ e ð1Þ

where y is the vector of N phenotypic values, b0 a fixed

intercept, Z the design matrix relating the marker data to

genotypes, u the vector of genetic effects, and e the vector

of residuals. The genetic effects ulðl ¼ 1. . .mÞ at the

m SNPs were assumed to follow a normal distribution with

expectation 0 and variance ru
2. The residuals were assumed

to follow a normal distribution with expectation 0 and

variance re
2. It was assumed that cov(ui,uj) = 0 (i = j) and

cov(ek,el) = 0 (k = l).

We assume that the possible allele effects at each locus

follow a distribution with a common variance. An alter-

native model takes the allele frequencies at the individual

loci into account and assumes that in the estimation set

each locus contributes equally to the genetic variance

(Crossa et al. 2010). For predicting the genetic values in a
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new validation set, our approach seems more suitable,

because allele frequencies in the estimation and validation

sets are most likely different.

The assumption of independent residuals in Eq. 1 is

simplifying, because adjusted means are neither uncorre-

lated nor necessarily homoscedastic. It remains open to

further research, whether more advanced linear models,

that combine the analysis of the field design and the

modeling of marker effects are able to increase the accu-

racy of prediction of genetic values.

Best linear unbiased prediction

We used an expectation-maximization (EM) algorithm to

obtain restricted maximum likelihood (REML) estimates of

the variance components ru
2 and re

2 (Searle et al. 1992,

p. 303). The EM algorithm is known to be slow in con-

vergence and commercial software implements more

sophisticated numerical approaches. However, it showed

good performance for our data set. Convergence was

reached with less than 10 iterations and computing times

less than one second were required when using starting

values determined on basis of Eq. 7. The algorithm showed

high numerical stability and similar performance for other

data sets from sugar beet and maize breeding programs.

To obtain best linear unbiased predictions (BLUP) of the

genetic effects we solved (Searle 1987, p. 509)

101 10Z
Z01 Z0Zþ k2I

� �
b0

u

� �

¼ 10y
Z0y

� �

ð2Þ

for u where

k2 ¼ r2
e=r

2
u ð3Þ

An LU decomposition with back substitution (Press et al.

1992, p. 44) was used for solving Eq. 2.

With respect to terminology, we follow the literature on

linear models (Searle 1987, Searle et al. 1992) and Meu-

wissen et al. (2001), and use the abbreviation BLUP for the

best linear unbiased prediction of the elements of the

u vector. Albrecht et al. (2011) employed the term random

regression (Model RR) for a similar model.

Prediction with ridge regression

RIR was carried out by solving the mixed model equations

(Eq. 2) with a fixed shrinkage parameter k2. As a starting

point, we used the convenient but incorrect assumption

(Bernardo and Yu 2007), that the variance due to each
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Modified Rogers distance

Fig. 1 Relatedness of the employed inbred lines based on the

Modified Rogers distance determined from the SNP marker data.

Average linkage clustering was used for ordering the distance matrix.

Lines of cycle n are marked in green and lines of cycle n ? 1 in blue
(color figure online)
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marker can be approximated by dividing an estimate of the

genotypic variance by the number of markers. As pointed

out by Piepho (2009), estimates of the genotypic variance

are usually obtained from models assuming independent

genotype effects. This is in contrast with the marker-based

ridge regression model that implies correlation among

genotypic effects. Due to this fundamental difference in the

models, we do not claim mathematical rigour for the RIR

approach suggested in the following.

To determine k2 we used preliminary estimates of the

heritability hp
2 that are typically available for the traits

under selection in a breeding program. In a simplified

model, these can be interpreted as

h2 ¼
r2

g

r2
g þ r2

e

ð4Þ

where ru
2 is the genetic variance and re

2 the residual

variance. This approximation is a second point where we

do not claim mathematical rigour for our approach: The

masking variance used to obtain the heritability estimate

typically includes not only the residual variance but further

variance components. These are totally ignored in our

interpretation of the heritability. This is expected to result

in an inflated value for the error variance, resulting in a

stronger shrinkage of the genotypic effects. However, if we

make this simplification, we can write

r2
e

r2
g

¼ 1

h2
� 1; ð5Þ

and together with the assumption of equal variances of the

marker effects, we can use the approximation

r2
u �

1

m
r2

g ð6Þ

to define

k2 ¼ r2
e

r2
u

¼ m
1

h2
p

� 1

 !

: ð7Þ

Using a shrinkage factor as defined in Eq. 7 can be

regarded as an approximation of the BLUP approach. The

difference between RIR and BLUP is that with RIR the

shrinkage factor is determined from genetic and residual

variances that were approximated from results on

preliminary estimates of heritability, while in the BLUP

approach these variances are estimated from the data.

Hence, if the variance components correspond to the marker

data, as is the case in the simulation example of Shepherd

et al. (2010), then Eq. 7 results in BLUP. If preliminary

estimates for the heritability are used, then it approximates

BLUP. To determine k2 for our experimental data, we used

preliminary estimates of the heritabilities of hp
2 = 0.9 and

0.4 for the traits SC and ML. These values are not estimated

for the particular set of material under consideration, nor

approaches were employed to obtain the most precise

heritability estimates possible for unbalanced data (Piepho

and Möhring 2007). The appeal of the method lies in the

fact that it employees rule-of-thumb estimates of the

heritability that are easily available in breeding programs.

Validation

For assessing the prediction accuracy we carried out

(a) cross validation within one breeding cycle and (b) val-

idation with lines of the next breeding cycle. In each of 100

cross validation runs, the lines of the first breeding cycle

were divided randomly to two parts, 254 lines were used to

estimate marker effects and 56 lines to validate the effects.

The correlations between observed and predicted test cross

performance for RIR and BLUP were averaged over the

100 runs. For validation with lines from the next breeding

cycle, we estimated the marker effects with the lines from

the first breeding cycle and predicted the test cross per-

formance of the lines of the subsequent breeding cycle.

Then we assessed the correlation between the predicted and

observed test cross performance.

Results

For SC the correlation between observed and predicted test

cross values in the estimation set was r = 0.94 with RIR

(employing a hp
2 = 0.9) and r = 0.93 for BLUP. In cross

validation, correlations of on average 0.82 were observed

for both prediction models. Prediction of the test cross

values of lines of the next breeding cycle resulted in cor-

relations r = 0.79 (RIR) and 0.80 (BLUP, Fig. 3).

For ML the correlation between predicted and observed

test cross values in the estimation set was slightly greater

for BLUP (r = 0.94) than for RIR (r = 0.90). However, in

cross validation similar average correlations of r = 0.85

(RIR) and 0.86 (BLUP) were observed for both prediction

models. Despite these high correlations in cross validation,

that were even greater than those observed for SC, the

transferability of the effect estimates to the next breeding

cycle was low. A correlation of r = 0.41 was observed for

RIR (employing a hp
2 = 0.4) and r = 0.39 was observed

for BLUP.

Discussion

Accuracy of prediction methods

Bayesian methods provided better prediction accuracy than

BLUP in the study that initially suggested genome-based
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prediction of genetic values (Meuwissen et al. 2001). Since

then much effort was invested in Bayesian estimation

methods (Gianola and van Kaam 2008; Park and Casella

2008; Gianola et al. 2006) that allow for distributions of

the genetic effects with unequal variances, because it was

expected that they provide improved prediction accuracy.

However, as pointed out by Piepho (2009) and Bernardo

and Yu (2007), the fact that all genetic effects are modelled

as realizations of random variables with the same variance

does not imply that all loci contribute equally to the genetic

value. It was suggested by Piepho (2009) and Goddard and

Hayes (2007) that the advantage of Bayesian estimation

over BLUP observed by Meuwissen et al. (2001) might be

a consequence of the effect distributions in the employed

simulation model. Bernardo and Yu (2007) concluded that

for plant models, Bayesian methods would provide little, if

any, advantage and Zhong et al. (2009) found BLUP to

outperform Bayesian estimation. For grain yield in maize

Albrecht et al. (2011) and Crossa et al. (2010) found that

prediction accuracy of BLUP was similar to that of

Bayesian estimation with varying variances. However,

for flowering time superiority of Bayesian estimation

was observed (Crossa et al. 2010). In accordance with

Daetwyler et al. (2010), a possible conclusion from these

studies is that approaches with variable variances might be

superior for traits that are controlled by a few major genes.

In contrast, for polygenic traits that follow closely the

infinitesimal model of quantitative genetics, models with

constant variances might be more appropriate. Schneider

et al. (2002) detected five QTLs for SC on five chromo-

somes. They also found several QTLs for potassium,

sodium, and alpha-amino nitrogen, which account for the

trait ML. These results suggest that, due to the polygenic

inheritance of SC and ML, BLUP is an appropriate method

for genome-wide prediction in our data set.

Average correlations between predicted and observed

test cross performance from the cross validation of BLUP

were 0.82 for SC and 0.86 for ML (Fig. 3). These values

confirm the results of Albrecht et al. (2011) and Piepho

(2009) that BLUP can provide precise predictions, and
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Fig. 3 Prediction of test cross

performance for SC and ML.

Observed versus predicted test

cross performance in the

validation set for prediction

with RIR and BLUP. hp
2 is the

preliminary estimate of the

heritability employed in RIR

and r the correlation between

predicted and observed values.

In the tables, the minimum, the

mean, and the maximum of the

correlations between predicted

and observed test cross

performance in the cross

validation runs with the

estimation set are presented
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support the hypothesis that for polygenic traits BLUP with

constant variances is a suitable prediction method. RIR

based on preliminary estimates of the heritability provided

the same prediction accuracy as BLUP for both traits. With

the present data set consisting of roughly 300 lines and 300

markers, obtaining BLUPs was not technically challenging.

However, with large data sets convergence problems could

occur. For such data sets an RIR approach might prove

useful. In conclusion, BLUP provided genome-based pre-

dictions of high accuracy, and approximating BLUP on

basis of preliminary estimates of heritabilities with RIR is a

computationally simple alternative that was not accompa-

nied with losses in prediction accuracy.

Cross validation and validation with the subsequent

breeding cycle

The average correlations between predicted and observed

test cross performance in cross validation were 0.82 (SC)

and 0.86 (ML). Compared with results from maize and

wheat (Crossa et al. 2010; Albrecht et al. 2011) these

values are high. An explanation for the high correlations

might be the homogeneity of the material in the investi-

gated breeding pool. With an average distance between two

adjacent markers of &3 cM, prediction of genetic values

still relies on gametic disequilibrium between marker and

QTL alleles. If the breeding material in a pool is homo-

geneous, then the linkage phase of marker and QTL alleles

is expected to be the same for large parts of the material,

resulting in high prediction accuracy. In more diverse

breeding material, however, more dense marker maps,

ideally to the point that each gene underlying a trait can be

directly traced by a SNP, are expected to improve predic-

tion accuracy.

The correlation between observed and predicted values

in cross validation was smaller for SC (hp
2 = 0.9) than for

ML (hp
2 = 0.4). This result indicates that even for traits with

low heritabilities, good correlations between observed and

predicted performance can be obtained in cross validation.

The relatedness of the genotypes within a breeding pool can

be a reason for such high correlations. The following

example illustrates the problem. Assume several full sib

lines that share common marker alleles at several loci not

underlying the trait under consideration. In addition, they

share a high performance. Some lines are part of the esti-

mation set in a cross validation run and others are part of the

validation set. As a consequence, high effect estimates are

assigned to the common marker alleles, and these effects

are validated by the sister lines in the validation set.

An important conclusion from these results is that cross

validation in breeding pools of related material does not

necessarily correct prediction models for over-fitting. In

consequence, high correlations between predicted and

observed performance in cross validation do not guarantee a

good transferability of the estimated effects to a different set

of breeding material.

In contrast to cross validation, where the correlations

between predicted and observed performance were high for

both traits traits, in independent validation large differ-

ences were observed. While for SC correlations amounted

to 0.8, only correlations of 0.4 were observed for ML.

These correlations correspond well to the preliminary

estimates of the heritability hp
2 = 0.9 (SC) and 0.4 (ML).

This indicates that cross validation can only provide lim-

ited information on the accuracy of predicting line per-

formance with effects estimated from a previous breeding

cycle. In particular it remains open to further research

whether results comparing the accuracy of different pre-

diction models are robust with respect to the difference

between cross validation and independent validation.

Application in breeding programs

Test cross performance of lines in hybrid breeding can be

predicted either with effects estimated from related lines of

the same breeding cycle or with effects estimated in a

previous breeding cycle. Prediction of untested lines with

an estimation set from the same breeding cycle can be

implemented by generating more candidate lines than will

be evaluated in field trials. After having evaluated a portion

of the lines in field trials, the performance of the second

portion of lines is predicted, and the lines with the best

predictions were included in the second stage of line test-

ing. Employing genome-based selection in such a scenario

is conceptually similar to the assessment of prediction

accuracy with cross validation. Due to the relatedness of

the breeding material, even random associations between

markers and phenotypes can be exploited by genome-based

prediction. The high correlations in cross validation sug-

gest that a considerable gain in response to selection can be

realized with such applications.

Prediction of lines with an estimation set from the pre-

vious breeding cycle can be implemented as follows. More

candidate lines are generated than will be evaluated in the

field trials. All of these are genotyped and those with the

best predicted test cross values were evaluated in the field.

This can be regarded as indirect selection where the cor-

relation q between the trait under selection and the trait to

be improved is the correlation between the gene effects in

the estimation set and the gene effects in the validation set

(which could be called in this context more appropriately

prediction set). The upper bound of this correlation is lim-

ited by a measure for the heritability, that takes into account

not only the variance components of the field trial, but in

addition the genetic change through recombination. We

conclude that for assessing the accuracy of genome-based
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prediction with effects estimated in previous breeding

cycles, cross validation within one cycle is not sufficient,

but independent validation is required. Our results suggest

that such predictions are only promising for traits with high

heritabilities.
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