
ABSTRACT - Successful prediction of hybrid performance
(HP) is an attractive alternative to expensive field testing
for identification of superior hybrids and can greatly accel-
erate hybrid breeding programs. In combination with the
doubled-haploid technology, which has greatly facilitated
the development of maize lines, HP prediction based on
molecular markers has gained importance in recent years.
Here, we review the methods for HP prediction of single-
crosses between heterotic groups. These methods are
based on line per se performance, general combining abili-
ty, best linear unbiased prediction, genetic distances, and
genetic effects estimated from molecular markers. We con-
sider marker-based HP prediction with a focus on the use
of doubled-haploid lines and discuss its application for
three stages in hybrid breeding programs: (1) after field
evaluation of experimental hybrids, (2) after field evalua-
tion of testcross performance, and (3) before field evalua-
tion of testcross performance. Types of hybrids, whose
performance is to be predicted, are those having two
(Type 2), one (Type 1), or no (Type 0) parental lines that
are already evaluated for testcross performance. Various
studies in maize indicate that efficiency of HP prediction
depends not only on the prediction approach and the ac-
tual experimental data, but also on the type of hybrids. Fi-
nally, we present an outlook on the future of HP predic-
tion, with a focus on the integration of high-throughput
genotyping platforms in hybrid breeding programs.

KEY WORDS: General combining ability; Hybrid perform-
ance prediction; Selection; Best linear unbiased prediction.

INTRODUCTION

Performance prediction of single crosses has the
potential to greatly improve the efficiency of ap-
plied hybrid breeding programs in various crop
plants. Maize (Zea mays L.) germplasm is common-

ly organized in genetically divergent heterotic
groups, and commercial hybrid varieties are com-
monly inter-group single crosses (HALLAUER, 1990;
SMITH et al., 1999). In each heterotic group, a large
number of inbred lines are developed per cycle.
With the introduction of the doubled haploid (DH)
technology, the number of DH lines generated per
cycle has greatly increased as compared with inbred
lines developed through conventional recurrent self-
ing (SCHMIDT, 2004; GALLAIS and BORDES, 2007).
Hence, the number of possible cross-combinations
between lines from two heterotic groups becomes
extremely large. But only a small proportion of
these crosses are evaluated in field trials owing to
limited resources. Thus, it is of great importance to
the breeder, to identify the most promising hybrids
for field evaluation. The performance of hybrids,
which have not undergone any field evaluation, can
be predicted by employing field data available from
related crosses and molecular marker data of the
parental lines. Here, we (1) review the methods for
hybrid performance (HP) prediction of inter-group
single-crosses, (2) consider three different applica-
tion scenarios for marker-based HP prediction with
a focus on the use of DH lines, and (3) present an
outlook on the future of HP prediction.

METHODS FOR PREDICTION OF HP

In recent years, prediction of HP of single-cross-
es has been a major research issue in view of its ex-
pected effect on the acceleration of hybrid breeding
programs. A multitude of approaches have been
proposed that are described below.

Line per se performance
Predicting the grain yield of single crosses in

maize based on the per se performance of their
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parental inbred lines has not been effective due to
masking non-additive effects (SMITH, 1986; HALLAUER,
1990). Further, genotype-environment interactions
also lower this correlation (BERNARDO, 1991). The
difference between the performance of a hybrid
and the mean of its parents accounted for up to
76% of the grain yield of maize hybrids (HALLAUER

and MIRANDA FILHO, 1988). Thus, line per se perform-
ance alone does not sufficiently explain the vari-
ance of grain yield among maize hybrids (DUDLEY et
al., 1992).

General combining ability
SPRAGUE and TATUM (1942) developed the con-

cept of general (GCA) and specific combining abili-
ty (SCA), which has been very useful in hybrid
breeding. Estimates of GCA of the parental lines
provide an established and simple approach to pre-
dict HP (COCKERHAM, 1967; MELCHINGER et al., 1987).
But prediction based on GCA alone ignores SCA,
which constitutes an important component of HP
(GARDNER and EBERHART, 1966). Thus, including both
GCA and SCA in the model improved the prediction
of HP (BERNARDO, 1994; CHARCOSSET et al., 1998).

Phenotypic BLUP method
Best linear unbiased prediction (BLUP) was de-

veloped by HENDERSON (1975) originally for the pre-
diction of breeding values in animal breeding. Its
application in plant breeding was demonstrated by
HILL and ROSENBERGER (1985) for the analysis of un-
balanced data of germplasm evaluation trials in
multiple environments. BERNARDO (1994) adopted
BLUP for the performance prediction of untested
single crosses based on phenotypic data of related
hybrids. The BLUP approach also uses information
on genetic relationships among the parental in-
breds, based on coancestry coefficients estimated
from pedigree records or molecular marker data.
BERNARDO demonstrated the successful application
of the approach with hybrids in an 6 × 9 factorial
mating design (BERNARDO, 1994), and on a much
wider scale with 16 data sets on 61 to 636 hybrids
(4099 in total) belonging to different heterotic pat-
terns and evaluated in multiple environments
(BERNARDO, 1996a,c). Further studies indicated the
robustness of the BLUP approach when inbred rela-
tionships were erroneously specified (BERNARDO,
1996b). BLUP was also successfully used to predict
HP of 24 crosses in soybean (PANTER and ALLEN,
1995) and 66 hybrids in rice (XU and VIRMANI, 2000).
The results of these studies have been promising.

However, the full potential of molecular markers is
not utilized. The marker-based coancestry coeffi-
cients indicate overall expectations for the whole
genome and ignore specific genomic regions that
are relevant for trait expression (CHARCOSSET et al.,
1991).

Trait- and marker BLUP method
The above discussed BLUP approach based on

trait data, also named T-BLUP, was extended by
BERNARDO (1998a) to make use of both trait and
marker data (TM-BLUP) for prediction of HP. In the
TM-BLUP approach, identity by descent of unob-
servable quantitative trait locus (QTL) alleles was in-
ferred from molecular marker data and used for
modelling the covariances associated with QTL.
However, when applied to an empirical data set of
464 single crosses from one heterotic pattern,
TM-BLUP resulted only in marginal improvement
for predicting single-cross performance, compared
with the T-BLUP approach (BERNARDO, 1998b). This
result was corroborated by a simulation study,
which analyzed the influence of various factors,
such as heritability, number of QTL, and map dis-
tance between markers and flanking QTL
(BERNARDO, 1999).

Molecular genetic distances
Predicting HP with estimates of genetic distances

(GD) between the parental lines based on random
DNA markers was not successful for inter-group hy-
brids, as reviewed by MELCHINGER (1999). These
findings were in agreement with theoretical (CHAR-
COSSET et al., 1991; CHARCOSSET and ESSIOUX, 1994)
and simulation results (BERNARDO, 1992), that attrib-
uted the low correlation between mid-parent het-
erosis and GD to (1) no or only loose linkage of
heterotic QTL with the molecular markers employed
to estimate GD and (2) different linkage phases be-
tween the QTL and marker alleles in the maternal
and paternal gametic arrays, as generally expected
with inter-group hybrids.

The potential of GD estimated from trait-related
markers has often been discussed (e.g., MELCHINGER,
1993), but there are not many published studies, es-
pecially for inter-group hybrids. In maize, DUDLEY et
al. (1991) reported low correlations of Modified
Rogers Distance (MRD) with hybrid yield if random
markers were used, but also for markers that were
significantly associated with the trait. They evaluat-
ed single crosses developed through diallel matings
of 14 inbred lines, which originated from several
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heterotic groups, so that the 91 single crosses were
not only inter-group hybrids. In rice, JOSHI et al.
(2001) tested 28 hybrids (14 restorer × 2 CMS lines),
and mostly recorded low correlations of GD with
yield of hybrids, irrespective of the use of random
(RAPD, ISSR) or trait-related (RFLP, STMS) molecular
markers to measure GD.

In contrast, ZHANG et al. (1994) in diallel crosses
of eight parents in rice, found higher correlations of
HP or mid-parent heterosis with specific heterozy-
gosity (calculated only with significant marker loci)
than with general heterozygosity (calculated with all
marker loci). Similarly, in intra-group crosses from a
diallel of 10 rice lines, CHO et al. (2004) reported
closer correlations of GD with HP or mid-parent
heterosis when markers were pre-selected for asso-
ciation with heterosis. Also, in a study based on six
CMS × five restorer lines in oilseed rape, pre-selec-
tion among several markers (morphological,
isozymes, soluble proteins, RAPD) increased the
magnitude of correlations between GD and yield
(YU et al., 2005).

Marker-based GD was assessed not only for pre-
diction of HP or mid-parent heterosis, but also for
prediction of SCA (LEE et al., 1989; MELCHINGER et al.,
1990). Such marker-based SCA predictions were
used in combination with experimentally estimated
GCA effects by CHARCOSSET et al. (1998) to predict
HP of untested single crosses. In diallel matings
among 21 diverse silage maize lines, they compared
several marker-based approaches to account for
SCA. For inter-group crosses, the study indicated no
advantage of predicting SCA with GD if compared
with the additive model in which GCA was consid-
ered but SCA was ignored. However, the authors
obtained higher prediction efficiencies using BLUP
and factorial regression models.

Marker effect estimates
Molecular markers can be tested for their associ-

ation with hybrid yield, and the estimates of their
allelic effects can be employed for prediction of HP.
DUDLEY et al. (1991) demonstrated that hybrid geno-
typic values which were estimated by scores across
29 significant loci were useful to predict yield of
single crosses in maize. VUYLSTEKE et al. (2000) in-
vestigated the associations of large numbers of
AFLP markers with HP and SCA for grain yield
across inter-group maize hybrids. The sum of mark-
er effects across significantly associated markers
(“total sum of selected markers“, TCSM) provided
an estimate for the genotypic value of the hybrids.

The predictions obtained with a linear regression of
HP on TCSM were encouraging, but the authors did
not compare the approach with established proce-
dures for prediction of inter-group hybrids such as
GCA-based methods. SCHRAG et al. (2006) applied
the TCSM approach to four factorials of Dent x Flint
hybrids and compared it with a GCA approach and
two approaches based on a combination of GCA
and SCA for grain yield and grain dry matter con-
tent. Further, SCHRAG et al. (2007) extended the TCSM
approach to consider multiple testing of loci, ro-
bustness to missing marker observations, and suit-
ability for multiple alleles, which they named “total
effects of associated markers” (TEAM) approach.
The suitability of TEAM for multiple alleles enabled
its application to multi-allelic haplotype blocks,
which account for linkage disequilibrium between
markers. Further, combining this method with a
BLUP analysis of phenotypic data enabled the use
of highly unbalanced field data (SCHRAG et al.,
2009), which is prevalent in applied breeding pro-
grams for hybrid maize. Joint analyses of perform-
ance of hybrids and per se performance of their
parental lines allowed marker-based prediction of
mid-parent heterosis, which in combination with
the per se performance of parents was used for pre-
diction of untested hybrids. Marker-based TEAM ap-
proaches were outperformed by BLUP based on
GCA and SCA for prediction of grain yield and grain
dry matter content of hybrids provided that pedi-
gree-based relationship measures and covariance
between GCA and line per se performance were
considered (SCHRAG et al., 2010). Further, the study
indicated the potential of marker-based approaches
for prediction of hybrids especially between untest-
ed lines, as is the case for newly developed lines.

APPLICATION OF MARKER-BASED
PERFORMANCE PREDICTION

OF HYBRIDS INVOLVING DH LINES

In recent years, the use of the DH technology
has greatly facilitated and accelerated the develop-
ment of maize lines (SCHMIDT, 2004; RÖBER et al.,
2005; SEITZ, 2005). In conventional inbred line de-
velopment, several generations of recurrent selfing
are necessary to achieve high degrees of homozy-
gosity. In contrast, in DH line development, com-
plete homozygosity is achieved in an extremely
short time, just by haploidization and subsequent
chromosome doubling. Therefore, unlike conven-
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tionally developed inbreds, DH lines are neither
subjected to per se performance assessment nor to
early testing for testcross performance. Thus, the
main differences between DH technology and con-
ventional recurrent selfing are (1) line development
through DH technology is more rapid than the con-
ventional inbreeding process, needs less resources,
and the number of lines can be greatly enhanced
and (2) unlike conventional inbreds, the DH lines
represent a random sample of lines from the
parental cross because these have not undergone
any selection for per se or testcross performance.
For these reasons, the prediction of HP with molec-
ular markers is especially attractive for DH lines as
an alternative to expensive field testing and is great-
ly expected to accelerate the identification of supe-
rior hybrids.

The stages in DH-based hybrid breeding are: de-
velopment of DH lines, evaluation of the per se per-
formance of DH lines, development and evaluation
of testcrosses of DH lines, and development and
evaluation of experimental hybrids. Marker-based
HP prediction can be introduced at various stages:
(1) after field evaluation of experimental hybrids to
predict performance of missing hybrids, (2) after
field evaluation of testcross performance, and (3)
before field evaluation of testcross performance.
Three scenarios at these stages, involving different
types of hybrids, are considered for performance
prediction. Hybrid types are those having two (Type
2), one (Type 1), or no (Type 0) parental lines al-
ready evaluated for their testcross performance.

Scenario 1:
Performance prediction of Type 2 hybrids
after field evaluation of experimental hybrids

Promising lines, which are selected after several
stages of evaluation for their per se performance and
GCA, are used as parents to produce experimental
hybrids. The experimental hybrids are then field
evaluated to identify the best crosses among these
candidates. In complete factorials, all possible com-
binations between two sets of parental lines from
opposite heterotic groups are produced. However,
in practice, some crosses may fail. Because the num-
ber of such crosses is rather small, it is expected that
an appreciable number of crosses of each parental
line are available in the factorial set (Fig. 1a) and,
therefore, GCA of all these parental lines can be esti-
mated. Such missing crosses, of which both parental
lines have been tested in hybrid combinations, are
of Type 2. To assess the utility of producing and
evaluating these crosses, their HP can be predicted
utilizing data on all the other experimental hybrids
in the factorial. As more and more parental lines are
being routinely genotyped (EATHINGTON et al., 2007),
the available molecular marker data of the parental
lines can also be employed for the prediction.

A leave-one-out-validation scheme has been em-
ployed to validate and compare different approach-
es for performance prediction of Type 2 hybrids.
BERNARDO (1996a) employed this scheme to assess
BLUP-based prediction. He studied 16 heterotic pat-
terns with 480 to 8100 potential hybrids, of which
61 to 636 hybrids were actually tested (4099 in to-
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FIGURE 1 – Schemes for cross-validation within factorial mating designs, which comprise hybrids between lines from two heterotic groups
A and B: (a) Leave-one-out, (b) L-shaped (rotated 90° clockwise in this diagram), and (c) chess-board-like cross validations comprising
tested hybrids (“x”) and untested hybrids (“0”,”1”,”2”), where untested hybrids may have no (Type 0, “0”), one (Type 1, “1”), or two (Type
2, “2”) parental lines evaluated in testcrosses.



tal) and available for cross-validation. He iterated
the prediction for each hybrid and determined the
coefficient of correlation (r) between observed and
predicted values for each heterotic pattern. For the
sake of easy comparison among various studies
(Table 1), we here report the square of the correla-
tion coefficient (r2). For grain yield, r2 was 0.33 on
average across the 16 heterotic patterns and ranged
from 0.02 to 0.58. For grain dry matter content, r2

ranged from 0.56 to 0.86 and was 0.79 on the aver-
age. In another study (BERNARDO, 1998b), the data
set across 16 heterotic patterns was augmented to
4775 tested hybrids by including data of an addi-
tional year. In this study, r2 ranged from 0.21 to 0.75
with an average of 0.41 for grain yield and from
0.75 to 0.88 and an average of 0.82 for grain dry
matter content. VUYLSTEKE et al. (2000) evaluated the
TCSM prediction approach also by employing the
leave-one-out-validation scheme. They considered
53 hybrids among unrelated lines from a set of 78
diallel crosses. Performance prediction in different
scenarios resulted in r2 between 0.35 and 0.45.
Comparison of the TCSM and GCA-based predic-
tions was carried out by SCHRAG et al. (2006). Across
four complete factorials, each with 44 to 98 hybrids
(a total of 270 hybrids), the prediction efficiency r2

for grain yield ranged from 0.46 to 0.73 for TCSM
and 0.54 to 0.86 for GCA. For grain dry matter con-
tent, r2 ranged from 0.59 to 0.87 for TCSM and 0.78
to 0.96 for GCA. MAENHOUT et al. (2007) used sup-
port vector machine regression based on AFLP and
SSR markers for HP prediction in a leave-one-out-
validation scheme. In a data set based on the evalu-
ation of 2371 hybrids plus a 10-fold higher number
of check hybrids, they obtained an r2 of 0.34 for
grain yield and 0.71 for moisture content.

The procedure of hybrid breeding in which per-
formance of untested Type 2 crosses is predicted us-
ing marker data may involve five steps. These are:
(1) compilation of field trial data of experimental hy-
brids from the current breeding cycle, and optionally
from previous cycles as well as on per se perform-
ance of the parental lines; (2) compilation of routine
marker data of all parental lines, and computation of
coefficients of coancestry using pedigree or marker
data if to be used in the prediction procedure; (3)
estimation of marker effects from the marker and
phenotypic data; (4) prediction of the performance
of Type 2 hybrids with TCSM (VUYLSTEKE et al., 2000;
SCHRAG et al., 2006), TEAM (SCHRAG et al., 2007), or if
line per se data are available, with the TEAM-LM ap-
proach (SCHRAG et al., 2009); (5) seed production of

the untested Type 2 hybrids identified to be superior
on the basis of their predicted HP, and evaluation of
these hybrids in field trials.

The aim in this scenario is the identification of
superior experimental hybrids that were uninten-
tionally missed in evaluations of factorial crosses in
the current cycle. Through this approach, the risk of
missing superior hybrids is reduced, but efforts and
resources are required for the prediction analysis as
well as for seed production and field evaluation of
the hybrids that were selected as a result of the
marker-based predictions. Further, the evaluation of
these hybrids is delayed by one test season, which
may be disadvantageous with regards to the selec-
tion gain per year.

Scenario 2:
Performance prediction of Type 2
hybrids after testcross evaluation of lines

The first phase of the HP evaluation of candidate
lines of each heterotic group involves their crossing
with the best lines of the opposite group (treated as
testers) and the evaluation of the resulting testcross-
es because crossing all candidate lines of one het-
erotic group to all candidate lines from the opposite
group would result in an unmanageable complete
factorial. Such a procedure results in an incomplete
factorial with an L-shape as shown in Fig.1b. In this
incomplete factorial mating design, all untested hy-
brids are of Type 2, i.e., crosses between tested
lines. SCHRAG et al. (2007) mimicked such a scenario
and analyzed four Dent x Flint maize factorials of
dimensions 11 x 4 to 14 x 7. In these factorials, five
Dent and three Flint lines were randomly selected
as opposite testers, so that 63 to 86% of the hybrids
were regarded as tested hybrids. The prediction effi-
ciency r2 was 0.47 to 0.90 for GCA, 0.42 to 0.86 for
the TEAM approach based on single markers (SM-
TEAM), and 0.47 to 0.86 for a TEAM approach
based on haplotype blocks (HB2-TEAM). CHARCOS-
SET et al. (1998) analyzed HP prediction in a half-di-
allel among 21 maize lines. They developed a vali-
dation procedure, which differed from the L-shape
and used a restricted and balanced sampling proce-
dure to ensure, that all untested hybrids were of
Type 2 and to allow the variation of the percentage
of tested hybrids. Considering the 182 crosses
among unrelated lines only, a BLUP approach for
marker-based prediction of SCA together with GCA
provided the best results, the r2 being 0.62 when
the proportion of tested hybrids was approximately
30%, 0.70 for 50%, and 0.73 for 80%.
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The aim in this scenario is to predict the per-
formance of untested crosses between DH lines that
have already been evaluated for line per se perform-
ance and for GCA in testcrosses. Application of
marker-based HP prediction of such untested exper-
imental hybrids may involve the following four
steps: (1) marker genotyping of DH lines that were
selected on the basis of per se performance; (2) pro-
duction and evaluation of testcrosses using a small
number of lines or F1 testers from the opposite het-
erotic pool; (3) prediction of the performance of
untested hybrids with TEAM-H and TEAM-LM
(SCHRAG et al., 2009) using available testcross data,
and optionally also field data from the previous cy-
cles; (4) seed production and evaluation of the ex-

perimental hybrids identified to be superior on the
basis of predicted performance and testcross results.
In this scenario, the use of line testers may be
preferable over F1 testers as these have advantages
for the estimation of marker effects and larger ge-
netic variation, and result in testcrosses that are po-
tential single-cross hybrid varieties.

Scenario 3:
Performance prediction of Type 1 and Type 0
hybrids before testcross evaluation of lines

The DH lines, being completely homozygous,
can be genotyped with molecular markers immedi-
ately after their production. Thus, marker-based per-
formance prediction of hybrids involving new DH
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TABLE 1 - Efficiency (r2) of prediction of hybrid performance in various studies in maizea.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

r2

Author(s) Validation Type of Prediction –––––––––––––––––––––– Remarks
approach hybridsb approach Grain dry

Grain yield matter/
moisture

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Scenario 1

BERNARDO (1996a) LOOV Type 2 T-BLUP 0.02-0.58c 0.56-0.86 4099 hybrids

BERNARDO (1998b) LOOV Type 2 T-BLUP 0.21-0.75 0.75-0.88 4775 hybrids

VUYLSTEKE et al. (2000) LOOV Type 2 TCSM 0.35-0.45 – 53 hybrids among unrelated lines

SCHRAG et al. (2006) LOOV Type 2 GCA 0.54-0.86 0.78-0.96 270 hybrids (4 experiments)

SCHRAG et al. (2006) LOOV Type 2 TCSM 0.46-0.73 0.59-0.87 270 hybrids (4 experiments)

MAENHOUT et al. (2007) LOOV Type 2 SVR 0.34 0.71 2371 hybrids

Scenario 2

CHARCOSSET et al. (1998) Restricted sampling Type 2 BLUP 0.73 – 182 hybrids, 80% predictors,

CHARCOSSET et al. (1998) Restricted sampling Type 2 BLUP 0.70 – 182 hybrids, 50% predictors

CHARCOSSET et al. (1998) Restricted sampling Type 2 BLUP 0.62 – 182 hybrids, 30% predictors

SCHRAG et al. (2007) L-shape Type 2 GCA 0.47-0.90 – 270 hybrids (4 exp.), 63 to 86% predictors

SCHRAG et al. (2007) L-shape Type 2 SM-TEAM 0.42-0.86 – 270 hybrids (4 exp.), 63 to 86% predictors

SCHRAG et al. (2007) L-shape Type 2 HB2-TEAM 0.47-0.86 – 270 hybrids (4 exp.), 63 to 86% predictors

Scenario 3

BERNARDO (1996c) Modified LOOV Type 1 T-BLUP 0.23 0.62 4099 hybrids

MAENHOUT et al. (2007) Modified LOOV Type 1 SVR 0.45 0.61 2371 hybrids

SCHRAG et al. (2008) Chess-board Type 1 TEAM-LM 0.51 0.72 400 hybrids

BERNARDO (1996c) Modified LOOV Type 0 T-BLUP 0.13 0.43 4099 hybrids

MAENHOUT et al. (2007) Modified LOOV Type 0 SVR 0.20 0.41 2371 hybrids

SCHRAG et al. (2008) Chess-board Type 0 TEAM-LM 0.37 0.66 400 hybrids

BERNARDO (1994, 1995) Sampling all types T-BLUP 0.36-0.64 – 54 and 67 hybrids, 15 to 56% predictors
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
a Abbreviations: best linear unbiased prediction (BLUP), trait-data BLUP (T-BLUP), general combining ability (GCA), leave-one-out-
validation (LOOV), support vector machine regression (SVR), total contribution of selected markers (TCSM), total effects of associated
markers (TEAM), single-marker TEAM (SM-TEAM), haploblock TEAM (HB2-TEAM), line per se plus mid-parent heterosis TEAM (TEAM-LM).
b For prediction, hybrids with two (Type 2), one (Type 1), or no (Type 0) testcross-evaluated parental lines were considered.
c range of r2.



lines can be carried out before their field evalua-
tions of per se or testcross performance. This can
greatly enhance the efficiency particularly of hybrid
breeding programs using DH technology. The HP of
new DH lines can be predicted in combination with
(1) already tested lines (Type 1 hybrids) or (2) other
new DH lines, i.e., between two new untested lines
(Type 0 hybrids) (Fig. 1c).

Extended forms of the leave-one-out-validation
scheme, described earlier with regard to Type 2 hy-
brids, were used by BERNARDO (1996c) and MAEN-
HOUT et al. (2007) to evaluate the efficiency of pre-
diction of Type 1 and Type 0 hybrids. They dis-
carded the data of all evaluated hybrids that in-
volved the parents (one parent for Type 1 hybrid
and both for Type 0 hybrid) of the hybrid to be
predicted. Such a procedure was employed by
BERNARDO (1996c) for BLUP-based prediction of HP
in a large data set. For grain yield, the efficiency of
prediction r2 was on average 0.33 for Type 2, 0.23
for Type 1, and 0.13 for Type 0 hybrids. For grain
dry matter content, r2 was on average 0.79 for
Type 2, 0.62 for Type 1, and 0.43 for Type 0 hy-
brids. Using a similar cross-validation scheme, per-
formance of Type 1 and Type 0 hybrids was pre-
dicted by MAENHOUT et al. (2007) and of Type 2 hy-
brids by MAENHOUT et al. (2008). They used support
vector machine regression based on AFLP and SSR
markers, and reported the r2 for the prediction of
performance to be 0.34 for Type 2, 0.45 for Type 1,
and 0.20 for Type 0 hybrids. For grain moisture,
the r2 was 0.71 for Type 2, 0.61 for Type 1, and
0.41 for Type 0 hybrids.

The studies presented above were all based on
voluminous but highly unbalanced data, and the da-
ta structure represented the situation in practical
breeding programs very well. However, evaluating
the efficiency of prediction with cross-validation
leaving out just one hybrid or at maximum all hy-
brids having a common parent with the hybrid in
question (e.g., the entire column and row in the
factorial data set), does not represent the situation
in practical hybrid breeding programs, in which
large numbers of both tested as well as new untest-
ed lines are evaluated together. Cross-validation
with larger proportions of hybrids eliminated from
the complete data set mimics this situation more
closely. BERNARDO (1994, 1995) applied such a vali-
dation approach. Using a full BLUP model, he ex-
amined the prediction efficiencies for grain yield
with varying proportions (15 to 56%) of predictor
hybrids in small data sets of 54 and 67 hybrids, and

reported r2 to vary from 0.36 to 0.64. But he did not
distinguish among Type 2, 1, and 0 hybrids.

Combining a sampling strategy for parental lines
together with a large set of unbalanced data, SCHRAG

et al. (2009) differentiated between the performance
prediction of Type 1 and Type 0 hybrids. The data
set was based on the evaluation of 400 of the 1504
possible factorial crosses of 47 Dent and 32 Flint
lines. In every cross-validation round, 50% of the
lines in each group were randomly chosen as tested
lines, so that there were 25% hybrids of Type 2,
50% of Type 1, and 25% of Type 0. With the TEAM-
LM approach for HP prediction, they observed r2

for grain yield to be 0.51 for Type 1 and 0.37 for
Type 0 hybrids, and for grain dry matter content to
be 0.72 for Type 1 and 0.66 for Type 0 hybrids.

The marker-based HP prediction of crosses be-
tween unevaluated DH lines involves seven steps.
These are: (1) genotyping of yet untested and unse-
lected DH lines; (2) prediction of performance of
Type 1 and 0 hybrids based on data of experimen-
tal hybrids and testcrosses from previous cycles e.g.
with the TEAM-H approach (SCHRAG et al., 2009).
Additionally, marker-based prediction of per se per-
formance of the DH lines may be undertaken; (3)
selection of DH lines, using the predictions of HP
and, if available, per se performance. In the absence
of any other information on the new DH lines, this
step of selection has to rely completely on marker
effects estimated from data of the previous breeding
cycles; (4) field evaluation of per se performance
concurrently with production of testcrosses (line
testers from the opposite heterotic pool may be
chosen based on HP predictions); (5) selection of
promising lines for seed increase on the basis of the
per se performance and for field evaluation of the
testcrosses; (6) HP prediction of experimental hy-
brids based on testcross performance of the lines
under consideration and all data generated earlier;
(7) seed production and evaluation of the experi-
mental hybrids identified to be superior. The aim of
using this procedure, which relies heavily on mark-
er-based prediction, is to select DH lines based on
their marker genotypes well in time to, first, reduce
the expenditures on labour and field capacities de-
voted to seed increase and per se evaluation of DH
lines, seed production and evaluation of testcrosses
and experimental hybrids, and second, to accelerate
the breeding process by identifying superior hybrids
at a very early stage. The procedure may be modi-
fied by first field evaluating per se performance of
DH lines and then genotyping selected DH lines.
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CONCLUSIONS AND FUTURE PROSPECTS

High-throughput genotyping platforms have
been established for large plant breeding programs
during the last decade (EATHINGTON et al., 2007).
Marker data, generated by routine fingerprinting of
new lines, has multiple uses such as quality control
of breeding procedures and seed production,
grouping of germplasm, mapping of traits, marker-
assisted selection and marker-assisted backcrossing.
Thus, molecular markers became an integral com-
ponent of applied breeding programs. Multiplex
marker platforms, which analyze thousands of sin-
gle nucleotide polymorphism (SNP) markers simul-
taneously in a single step, are available for routine
application in breeding of major crops (HYTEN et al.,
2008). In animal breeding, marker assays are in use,
which provide more than 54,000 evenly spaced SNP
probes spanning the bovine genome (SELLNER et al.,
2007). Platforms for whole-genome genotyping in
human genetics already provide more than
1,000,000 SNPs on a single chip (ZIEGLER et al.,
2008). Large numbers of known SNPs are required
for development of such high-density chips. In
maize, the genome sequencing of inbred B73 is
completed (www.maizesequence.org) and will
serve as a basis for re-sequencing efforts of several
maize inbred lines in public and private research in-
stitutions, thereby, providing the foundation to
identify huge numbers of SNPs. Owing to the ongo-
ing advances in automated high-throughput marker
technologies, the costs per marker data point are
expected to considerably decline relative to the
costs of phenotypic trait evaluation in field trials
(BERNARDO, 2008). In summary, marker-based HP
prediction for selection of promising single crosses
in combination with recent advances in DH and
molecular marker technologies has the potential to
further accelerate hybrid breeding programs and im-
prove their efficiency.

Genomic selection (MEUWISSEN et al., 2001),
which aims to overcome the problem of marker se-
lection in fixed effects regression, has mostly been
considered in animal breeding (HAYES et al., 2009),
and very recently for inbred line development in
crop plants (BERNARDO and YU, 2007; HEFFNER et al.,
2009). PIEPHO (2009) considered it as a promising
application for HP prediction. Despite of the avail-
ability of an extremely large number of SNP mark-
ers, an optimum marker density for cost-efficient
prediction of HP in a given germplasm remains an
issue to be investigated. In addition to molecular

markers, transcriptome and metabolome data are
becoming available and may also provide means for
HP prediction, as was demonstrated for transcrip-
tome analysis in maize (FRISCH et al., 2010) and
metabolome analysis in Arabidopsis (GÄRTNER et al.,
2009). Joint analysis of the genomic, transcriptomic
and metabolomic data for molecular-based predic-
tion of HP needs to be studied for its potential to
improve the efficiency of applied hybrid breeding
programs.
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