
Abstract Prediction methods to identify single-cross

hybrids with superior yield performance have the po-

tential to greatly improve the efficiency of commercial

maize (Zea mays L.) hybrid breeding programs. Our

objectives were to (1) identify marker loci associated

with quantitative trait loci for hybrid performance or

specific combining ability (SCA) in maize, (2) compare

hybrid performance prediction by genotypic value

estimates with that based on general combining ability

(GCA) estimates, and (3) investigate a newly proposed

combination of the GCA model with SCA predictions

from genotypic value estimates. A total of 270 hybrids

was evaluated for grain yield and grain dry matter

content in four Dent · Flint factorial mating experi-

ments, their parental inbred lines were genotyped with

20 AFLP primer-enzyme combinations. Markers

associated significantly with hybrid performance and

SCA were identified, genotypic values and SCA effects

were estimated, and four hybrid performance predic-

tion approaches were evaluated. For grain yield, be-

tween 38 and 98 significant markers were identified for

hybrid performance and between zero and five for

SCA. Estimates of prediction efficiency (R2) ranged

from 0.46 to 0.86 for grain yield and from 0.59 to 0.96

for grain dry matter content. Models enhancing the

GCA approach with SCA estimates resulted in the

highest prediction efficiency if the SCA to GCA ratio

was high. We conclude that it is advantageous for

prediction of single-cross hybrids to enhance a GCA-

based model with SCA effects estimated from molec-

ular marker data, if SCA variances are of similar or

larger importance as GCA variances.

Introduction

Identifying single-cross hybrids with superior yield

performance is of fundamental importance in com-

mercial maize (Zea mays L.) breeding programs. Sev-

eral hundred single-cross combinations are tested by

breeders each year in extensive yield trials. The test

procedure is expensive and time-consuming, therefore,

only a limited subset of all possible single crosses can

be tested. Prediction methods for performance of sin-

gle crosses have always been a major issue in hybrid

breeding owing to the potential to greatly improve the

efficiency of commercial breeding programs. As maize

germplasm is commonly organised in genetically

divergent heterotic groups, predicting the performance

of inter-group hybrids is of greatest interest to maize

breeders.

Predicting the performance of hybrids from per se

performance of their parental inbred lines failed due to

masking dominance effects (Smith 1986; Hallauer

1990). Estimates of genetic distances (GD) between

the parental lines based on unselected DNA markers

alone were not promising for predicting performance
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of inter-group hybrids (cf. Melchinger 1999). These

findings were in agreement with theoretical results of

Charcosset and Essioux (1994), who attributed the low

correlation between heterosis and GD to (1) no or only

loose linkage of heterosis-affecting QTL to the

molecular markers employed in estimating GD and (2)

different linkage phases between the QTL and marker

alleles in the maternal and paternal gametic arrays, as

expected more frequently with inter-group hybrids.

Best linear unbiased prediction (BLUP) was inves-

tigated by Bernardo (1994, 1996) to predict perfor-

mance of untested single crosses using phenotypic

information of related single crosses and genetic rela-

tionships among their parental inbreds. As an exten-

sion based on trait and marker data, TM–BLUP was

proposed, inferring the identity by descent of unob-

servable QTL alleles from molecular marker data and

thereby modelling the covariances associated with

QTL (Bernardo 1998, 1999). However, TM–BLUP

resulted only in marginal improvements for predicting

single-cross performance, compared with the ordinary

BLUP approach.

Vuylsteke et al. (2000a) determined associations of

amplified fragment length polymorphism (AFLP)

markers with hybrid performance for grain yield (GY)

and with specific combining ability (SCA) across hybrids

from a diallel among lines from different heterotic

groups. Estimates of genotypic value for all hybrids were

obtained from the summed effects of significant mark-

ers. They provided the basis for prediction of hybrid

performance and SCA by a linear regression approach.

The predictions obtained with this approach were

encouraging, but comparisons with established proce-

dures for prediction of inter-group hybrids are lacking.

General combining ability (GCA) estimates of the

parental lines provide an established and simple ap-

proach to predict hybrid performance (Cockerham

1967; Melchinger et al. 1987). Prediction based on

GCA alone ignores SCA, which is related to specific

heterosis and an important component of hybrid per-

formance (Gardner and Eberhart 1966). Improving the

simple GCA model with SCA predictions obtained by

the approach of Vuylsteke et al. (2000a) has not been

investigated hitherto.

Our objectives were to (1) identify marker loci

associated with QTL for hybrid performance or SCA

in maize using the approach devised by Vuylsteke et al.

(2000a), (2) compare hybrid performance prediction by

genotypic value estimates with that based on GCA

estimates, and (3) investigate a newly proposed com-

bination of the GCA model with SCA predictions from

genotypic value estimates for the performance predic-

tion of inter-group hybrids.

Materials and methods

Plant materials and field trials

In total, 52 maize elite inbred lines developed at the

breeding program of the University of Hohenheim

were used as parental lines for the factorial crosses

under evaluation. The inbreds comprised 38 Dent lines

with Iodent or Iowa Stiff Stalk Synthetic background,

and 14 Flint lines with European Flint or Flint/Lan-

caster background. Four Dent · Flint factorial mating

experiments (14 · 7, 11 · 4, 14 · 6, 11 · 4), further

referred to as Exp. 1–4, were produced, providing a

total of 270 hybrids. Thereby, eight Dent lines and six

Flint lines were included in more than one factorial.

Each factorial was evaluated in an 1-year experiment,

with field trials at four to six locations in Germany

under diverse agroecological conditions. The trials

were evaluated in two-row plots using adjacent a-de-

signs with two to three replications. The hybrid per-

formance of the crosses was recorded for GY in

Mg ha–1 adjusted to 155 g kg–1 grain moisture and for

grain dry matter content (GDMC) in percent.

Biometrical analysis of phenotypic data

Adjusted entry means and effective error mean squares

(Cochran and Cox 1957) derived from analysis of

variance (ANOVA) of each trial were used to calculate

the combined ANOVA for each experiment. Variance

components and GCA and SCA effects of the factorial

mating designs (Comstock and Robinson 1952) were

estimated with the following model:

yijk ¼ lþ g
0

i þ g
00

j þ sij þ lk þ gl
0

ik þ gl
00

jk þ slijk þ e; ð1Þ

where yijk = mean performance of the hybrid between

parental inbreds i and j at location k; l = overall mean;

gi¢ and gj¢¢= GCA effects; sij = SCA effect; lk = effect of

location k; glik¢, gljk¢¢, and slijk = GCA · location and

SCA · location interaction effects of inbreds i and j

with location k; e � N 0; r2
e

� �
¼ residual error of yijk:

All effects were assumed random and determined by

BLUP. Broad-sense heritabilities (h2) were estimated

on an entry-mean basis (Fehr 1987), and 95% confi-

dence intervals of heritabilities were calculated

according to Knapp and Bridges (1987). BLUP for

GCA and SCA effects were calculated with SAMM

(Butler et al. 2004), a software package, which uses

core FORTRAN routines from the program AS-

RemlTM (Gilmour et al. 2002). The remaining analyses

of field data were performed with PLABSTAT (Utz

2003).
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Analysis of molecular data

The 52 inbred lines were assayed for AFLP markers

based on published protocols (Vos et al. 1995).

Genotyping was conducted with 20 AFLP primer-

enzyme combinations, 10 of which were EcoRI/MseI

(E33/M47, E33/M50, E33/M51, E33/M61, E33/M62,

E35/M50, E38/M47, E38/M51, E39/M47, and E39/

M50) and the remaining 10 were PstI/MseI (P12/

M47, P12/M49, P12/M50, P12/M59, P12/M61, P12/

M62, P13/M49, P18/M49, P18/M59, and P18/M62)

(Vuylsteke et al. 1999). Positions of mapped AFLP

bands were obtained from an integrated AFLP map

(Peleman et al. 2000), a subset of which was chosen

to avoid multiple markers at identical mapping

positions.

Selection of markers and identification

of QTL regions

For each experiment, markers associated significantly

with hybrid performance and SCA were identified.

Following Vuylsteke et al. (2000a), the genotypic

class of each marker-hybrid combination was deter-

mined from marker data of the homozygous parental

inbreds, generally resulting in three possible classes:

homozygous present (MM), homozygous absent

(mm), and heterozygous (Mm). Across all hybrids,

each marker was tested with the rank sum test of

Kruskal–Wallis for effects of marker genotypic class

on hybrid performance or SCA. For testing marker

associations with hybrid performance, a significance

level of P = 0.001 was used. In the study of Vuyls-

teke et al. (2000a), this significance level resulted in

the highest efficiency for prediction of hybrid per-

formance, when compared with other scenarios.

Following these authors, a significance level of

P = 0.005 was used for testing marker associations

with SCA.

For further analyses, significant markers were re-

tained only if (1) marker genotypes were available for

all hybrids and (2) all three genotypic classes were

represented by at least one hybrid. These markers are

referred to as fully informative. Chromosomal regions

harbouring significant QTL across experiments were

identified with a moving interval approach. An interval

was defined for each selected locus, beginning 3 cM

before and ending 3 cM after the locus. Intervals

comprising significant loci in at least two experiments

were regarded as chromosomal regions with effects

across experiments.

Prediction models for hybrid performance and

specific combining ability based on genotypic values

Additive (a) and dominance (d) effects for hybrid

performance were estimated for each selected mar-

ker from the arithmetic means of the genotypic

classes MM, mm, and Mm (Vuylsteke et al. 2000a).

Marker allele M describes the presence of an AFLP

fragment and m the absence of that fragment. The

genotypic value for each hybrid was estimated by the

total contribution of the selected markers to hybrid

performance (TCSMHP) and was used as predictor

for hybrid performance in a linear regression

approach.

For prediction of SCA on the basis of genotypic

value estimates, two approaches were employed (Vu-

ylsteke et al. 2000a). Analogous to the partitioning of

hybrid performance into GCA and SCA, the TCSMHP

was partitioned into general (GCSMHP) and specific

(SCSMHP) contributions of the selected markers to

hybrid performance, where the TCSMij of a hybrid

between inbreds i and j can be written as:

TCSMij ¼ lþGCSMi þGCSMj þ SCSMij: ð2Þ

The linear regression of SCA on SCSMHP across all

tested hybrids was chosen as a first model for pre-

diction of SCA. For the second approach, additive

and dominance effects for SCA were estimated for

each marker from the arithmetic means of the

genotypic classes MM, mm, and Mm. Using the

markers that were significantly associated with SCA,

the total contribution of the selected markers to

SCA (TCSMSCA) was calculated for each hybrid.

Linear regression of SCA on TCSMSCA across all

hybrids resulted in a second model for prediction of

SCA.

Prediction of hybrid performance based

on general and specific combining abilities

For untested hybrids, no SCA estimates exist. There-

fore, a simple approach for the hybrid performance

prediction of untested hybrids was based solely on the

GCA estimates:

~yij ¼ l̂þ ĝ
0

i þ ĝ
00

j : ð3Þ

We extended the GCA approach for hybrid perfor-

mance prediction by using SCA estimates ðŝijÞ from

the two SCA prediction models presented above, so

that:
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~yij¼ l̂þ ĝ
0

iþ ĝ
00

j þ ŝij with ŝij¼
aþb SCSMHP or
aþb TCSMSCA

�
: ð4Þ

Substituting ŝij with estimates from the first model for

SCA prediction resulted in the SCSMHP-based

GCA+SCA approach for hybrid performance predic-

tion (referred to as GCA+SCA 1 approach), substi-

tuting ŝij with estimates from the second model for

SCA prediction resulted in the TCSMSCA-based

GCA+SCA approach for hybrid performance predic-

tion (referred to as GCA+SCA 2 approach).

Evaluating the efficiency of prediction models

for hybrid performance

The efficiency of the four approaches predicting the

performance of untested hybrids was evaluated by a

leave-one-out cross-validation similar to the jackknife

procedure (Vuylsteke et al. 2000a). Briefly, the full

data set of n hybrids was split into two subsets. The

estimation set comprised n–1 hybrids for the estima-

tion of model parameters. The remaining one hybrid

was not included in the parameter estimation and

formed the test set, for which the predictions with each

chosen model were done on the basis of parameters

derived from the estimation set. This procedure was

performed n times, designating each of the n hybrids as

test set. To evaluate the prediction efficiency, the

proportion of explained variance (R2) was calculated

for the correlation between the n predicted and ob-

served hybrid performance values.

Results

Biometrical analysis of field data

Estimates of GCA variance components (Table 1) for

GY ranged from 0.078 to 0.428 with highest values for

Exp. 2 and generally higher GCA variances for Dent

lines compared with Flint lines. The SCA variance

components for GY were highest (0.170) for Exp. 1

and were remarkably higher than for the remaining

experiments (0.029–0.072). Broad-sense heritabilities

(h2) for GY ranged from 68.1 to 81.6%, with the lowest

value for Exp. 3. When averaging GCA variance over

Flint and Dent, the ratio of SCA to GCA variance

ranged from 0.19 to 1.12, with highest values for

Exp. 1. For GDMC, the ratio of SCA to GCA variance

ranged from 0.06 to 0.42, again with highest values for

Exp. 1.

Identification of chromosomal regions

with significant QTL

The AFLP assays resulted in 1835 dominantly scored

AFLP markers (Table 2) of which 910 were uniquely

mapped. For GY, the number of markers with signifi-

cant (P < 0.001) genotypic effects for hybrid perfor-

mance ranged from 38 (Exp. 4) to 98 (Exp. 1), of which

28–67 were fully informative and therefore selected for

calculation of TCSMHP. The number of markers with

significant (P < 0.005) genotypic effects for GY SCA

ranged from zero (Exp. 2) to five (Exp. 1), with zero to

three being fully informative and therefore selected for

calculation of TCSMSCA. For GDMC, between 24 and

55 fully informative markers were significant for hybrid

performance, between 0 and 13 were significant for

SCA.

All markers with significant effects for GY hybrid

performance and known map positions were shown in

a linkage map (Fig. 1), including the results of all four

experiments. For every chromosome, regions were

identified where QTL with significant GY hybrid per-

formance effects were detected in at least two of the

four experiments. Chromosomal regions with signifi-

cant loci in at least three experiments are located on

chromosome 1 (55, 68–73 cM), chromosome 3 (62–

64 cM), chromosome 4 (59–63 cM), chromosome 6

(45–48 cM), chromosome 8 (82–83 cM), chromo-

some 9 (82–84 cM), and chromosome 10 (59–60 cM).

All markers with significant effects for GDMC hybrid

performance and known map positions were shown in

a linkage map (Fig. 2), including the results of all four

experiments. For every chromosome, regions were

identified where QTL with significant GDMC hybrid

performance effects were detected in at least two of the

four experiments. Chromosomal regions with signifi-

cant loci in at least three experiments are located on

chromosome 1 (70–73, 85–87 cM), chromosome 2 (51–

54, 91–93 cM), chromosome 3 (56–58, 83–85 cM),

chromosome 4 (61–64 cM), and chromosome 9 (82–

84 cM).

Prediction models for specific combining ability

and hybrid performance

For the first model of SCA prediction for GY, the

estimates of correlations (r) and their significance lev-

els varied substantially among the four experiments

(Table 3). Highly significant (P < 0.001) correlations

were detected only for Exp. 1, where 26.4% of the

observed SCA variation could be explained. For the
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second model of SCA prediction, markers could be

selected for Exps. 1 and 4, resulting in highly signifi-

cant (P < 0.001) and significant (P < 0.01) correla-

tions, and explaining 25.6 and 21.4% of the observed

SCA variation for GY. The estimates of correlation (r)

of GY hybrid performance with all four predictors

were highly significant (P < 0.001). Correlations of

hybrid performance with TCSMHP were generally

lowest, ranging from 0.79 (Exp. 1) to 0.89 (Exp. 2 and

Exp. 4). Differences among the three GCA-based ap-

proaches were very small, with the exception of Exp. 1,

where both GCA+SCA approaches showed higher

correlations (0.89) compared with the GCA approach

(0.85).

For the first model of SCA prediction for GDMC,

the estimates of correlations (r) and their significance

levels varied substantially among the four experiments

(Table 3). For the second model of SCA prediction,

markers could be selected for Exps. 1–3, resulting in

highly significant (P < 0.001) correlations, and

explaining 31.3–47.3% of the observed SCA variation

for GDMC. Correlations of GDMC hybrid perfor-

mance with TCSMHP were generally lowest, ranging

from 0.86 (Exp. 1) to 0.95 (Exp. 2). Differences among

the three GCA-based approaches were small, again

with the exception of Exp. 1, where both GCA+SCA

approaches showed higher correlations (0.94 and 0.96)

compared with the GCA approach (0.93).

Table 1 Means, variance components, and heritabilities of grain yield and grain dry matter content from field experiments with
factorial crosses, comprising n hybrids and l locations

Criterion Experiment

1 2 3 4

Experimental setup
n 98 44 84 44
l 6 5 4 6

Grain yield (Mg ha–1)
Overall mean 11.72 12.10 11.38 9.82

Variance components
GCA Dent 0.203 (0.091, 0.765)*** 0.428 (0.195, 1.569)*** 0.193 (0.087, 0.733)*** 0.220 (0.099, 0.825)***
GCA Flint 0.100 (0.032, 1.333)*** 0.339 (0.086, 22.730)* 0.117 (0.030, 6.726) 0.078 (0.019, 5.904)*
SCA 0.170 (0.114, 0.278)*** 0.072 (0.030, 0.352)* 0.066 (0.034, 0.176)*** 0.029 (0.011, 0.172)*
GCA Dent · loc 0.153 (0.100, 0.262)*** 0.053 (0.019, 0.447)* 0.129 (0.075, 0.272)*** 0.071 (0.038, 0.177)***
GCA Flint · loc 0.135 (0.080, 0.279)*** 0.462 (0.227, 1.401)*** 0.256 (0.134, 0.675)*** 0.120 (0.060, 0.352)***
SCA · loc 0.173 (0.125, 0.254)*** 0.169 (0.095, 0.382)*** 0.125 (0.079, 0.230)*** 0.067 (0.032, 0.215)***

Ratio of variance components
SCA:GCA 1.12 0.19 0.43 0.19

Broad-sense heritabilities (%)
h2 80.3 (72.7, 85.3) 81.6 (69.2, 88.2) 68.1 (53.8, 77.2) 81.6 (69.6, 88.1)

Grain dry matter content (in %)
Overall mean 67.7 71.4 71.6 68.5

Variance components
GCA Dent 1.068 (0.534, 3.105)*** 2.709 (1.293, 8.825)*** 2.886 (1.466, 8.091)*** 2.612 (1.248, 8.490)***
GCA Flint 0.404 (0.150, 2.930)*** 5.130 (1.585, 87.484)*** 2.812 (1.046, 20.088)*** 1.332 (0.402, 25.875)***
SCA 0.307 (0.213, 0.482)*** 0.224 (0.111, 0.668)*** 0.330 (0.215, 0.569)*** 0.174 (0.089, 0.487)***
GCA Dent · loc 0.262 (0.176, 0.432)*** 0.056 (0.014, 3.209) 0.435 (0.273, 0.802)*** 0.163 (0.084, 0.440)***
GCA Flint · loc 0.248 (0.149, 0.491)*** 1.056 (0.524, 3.121)*** 0.600 (0.318, 1.533)*** 0.464 (0.238, 1.270)***
SCA · loc 0.300 (0.236, 0.396)*** 0.335 (0.200, 0.671)*** 0.175 (0.104, 0.357)*** 0.315 (0.207, 0.538)***

Ratio of variance components
SCA:GCA 0.42 0.06 0.12 0.09

Broad-sense heritabilities (%)
h2 91.0 (87.5, 93.3) 95.4 (92.4, 97.1) 93.9 (91.1, 95.6) 95.1 (91.8, 96.8)

Variance components with their significance levels and 95% confidence intervals (in parentheses) were given for general combining
ability (GCA), specific combining ability (SCA), and interactions with locations (loc). The GCA variances were averaged over Flint
and Dent for calculation of the SCA:GCA variance ratio. Broad-sense heritabilities (h2) and their 95% confidence intervals (in
parentheses) were calculated for the entries

*, ***F-test for variance components significant at the 0.05 and 0.001 probability levels, respectively
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Evaluating the efficiency of prediction models for

hybrid performance

The prediction efficiency of the four hybrid perfor-

mance prediction approaches, evaluated by cross-vali-

dation and measured by the proportion of explained

variance (R2), ranged from 46.2 to 86.3% for GY

(Table 3). Efficiencies were consistently lowest for the

TCSMHP approach in all experiments. Among the

GCA-based approaches, differences in efficiency were

largest for Exp. 1, where R2 of the GCA+SCA 1 ap-

proach was greatest (56.5%). The SCA:GCA ratio for

GY in this experiment was higher than in Exps. 2–4,

where the efficiencies of the GCA-based approaches

hardly differed. In a comparison across all models, the

R2’s for Exp. 1 were lowest, followed by Exp. 3. For

GDMC, the prediction efficiencies ranged from 58.7 to

95.9% and were consistently lowest for the TCSMHP

approach. Among the GCA-based approaches, differ-

ences in efficiency were largest for Exp. 1, where R2 of

the GCA+SCA 2 approach was greatest (82.8%).

Discussion

The approaches for hybrid performance prediction

were evaluated across four experiments, which mostly

differed in the experimental size, set of parental lines,

set of trial locations, and year of trial. Accordingly, the

four experiments differed in the results from the bio-

metrical analyses of GY field data. For Exps. 2 and 4

the ratios of SCA variance to GCA variance (averaged

over Flint and Dent) were low. In Exp. 2, the low

SCA:GCA ratio was due to a high GCA variance,

whereas in Exp. 4 it was due to a low SCA variance.

These results agree with the findings of Melchinger

(1999) on the basis of data from Dhillon (1990),

describing an SCA:GCA ratio of 0.30 for ear yield of

inter-group hybrids. However, for Exp. 1, the

SCA:GCA ratio was relatively high (1.12), due to a

larger SCA variance. The SCA:GCA ratio is relevant

cM

Chromosome
1 2 3 4 5 6 7 8 9 10

200
190
180
170
160
150
140
130
120
110
100

90
80
70
60
50
40
30
20
10

0Fig. 1 Map of markers with
significant genotypic effects
for grain yield hybrid
performance. Markers are
plotted according to their
chromosome number and
map position (cM). Full dots
indicate fully informative
markers, whereas empty dots
indicate non-fully informative
markers. For each
chromosome, dots are
arranged in four columns that
correspond to Experiments 1–
4 (from left to right). Bold
lines along the chromosome
indicate regions with
significant loci in at least 2 of
4 experiments

Table 2 Number of selected AFLP markers

Criterion Experiment

1 2 3 4

Grain yield (Mg ha–1)
Markers selected for hybrid performance
Total 98 (67) 70 (40) 65 (44) 38 (28)
Mapped 56 (41) 37 (27) 29 (23) 21 (15)

Markers selected for SCA
Total 5 (3) 0 (0) 1 (0) 1 (1)
Mapped 0 (0) 0 (0) 1 (0) 1 (1)

Grain dry matter content (in %)
Markers selected for hybrid performance
Total 64 (40) 92 (55) 73 (39) 34 (24)
Mapped 32 (18) 54 (36) 44 (24) 20 (12)

Markers selected for SCA
Total 22 (13) 11 (7) 5 (5) 0 (0)
Mapped 9 (6) 5 (3) 1 (1) 0 (0)

Markers with significant genotypic effects for hybrid perfor-
mance and specific combining ability (SCA) for grain yield and
grain dry matter content were selected from 1835 markers, of
which 910 were uniquely mapped. Only fully informative mark-
ers (numbers given in brackets) were selected for subsequent
analyses

1042 Theor Appl Genet (2006) 113:1037–1047

123



for the following discussion on numbers of selected loci

and the prediction efficiencies compared across the

experiments.

The inbred lines in each experiment can be regarded

as a random sample of lines from a base population

consisting of all potential parental lines of hybrid

varieties between the Flint and Dent germplasm pools

in Central Europe. In consequence, the factors in the

model for analysis of the mating design were regarded

as random. This allows (1) for estimation of variance

components and thereby deriving measures such as the

SCA to GCA ratio, (2) for estimation of GCA main

effects for unbalanced data sets which is the case in

cross-validation, and (3) results in BLUPs which are

appropriate estimates if the aim of the data analysis is

selection of superior genotypes (Smith et al. 2005).

Identification of QTL

The markers that were identified for their significant

influence on hybrid performance or SCA were the

foundation for the estimation of genotypic values of

the hybrids and, consequently, for the prediction of

hybrid performance or SCA. The Kruskal–Wallis test

is a nonparametric version of the one-way ANOVA

(Kruskal and Wallis 1952) and was employed to test

the association of markers with hybrid performance or

SCA. The sampling distribution of the Kruskal–Wallis

statistic is a very close approximation of the chi-square

distribution provided that each class comprises at least

five observations. Thus, a minimum of five hybrids per

class would be recommendable, however, for the

present data similar prediction efficiency results were

obtained provided that each class comprises at least

one observation (data not shown). In order to compare

the results with Vuylsteke et al. (2000a), we followed

their procedure, including markers only if each of the

three genotypic classes was represented by at least one

hybrid.

For all experiments, between 28 and 67 fully infor-

mative markers were identified for GY hybrid perfor-

mance at a significance level of P = 0.001 and used for

hybrid performance prediction. In our study more

significant markers were found compared with the

work of Vuylsteke et al. (2000a), where 20 markers

were identified for hybrid performance at the same

significance level. Our experiments comprised between

44 and 98 inter-group hybrids, whereas Vuylsteke et al.

(2000a) analysed 53 inter-group hybrids from a 13 by

13 half-diallel experiment, evaluated at three sites in

Northern Italy with randomised complete block de-

signs and three replications. Their parental inbred lines

were genotyped with 71 primer combinations (Vuyls-

teke et al. 2000b), resulting in 1385 AFLP markers,

which mapped on the B73 · Mo17 Recombinant

Inbred high-density AFLP linkage map (Vuylsteke

et al. 1999). In our study, genotyping the inbred lines

with 20 primer combinations resulted in 1835 AFLP

markers, of which 910 uniquely mapped on a nearly

identical map (Peleman et al. 2000).

For GY SCA, we detected only few markers at a

significance level of P = 0.005, whereas Vuylsteke et al.

(2000a) identified 25 markers at the same significance

level. In their data sets, the SCA and GCA variances

were of similar order, indicating a higher relevance of

SCA compared to our experiments. The 53 inter-group
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Fig. 2 Map of markers with
significant genotypic effects
for grain dry matter content
hybrid performance. Markers
are plotted according to their
chromosome number and
map position (cM). Full dots
indicate fully informative
markers, whereas empty dots
indicate non-fully informative
markers. For each
chromosome, dots are
arranged in four columns that
correspond to Experiments 1–
4 (from left to right). Bold
lines along the chromosome
indicate regions with
significant loci in at least 2 of
4 experiments
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hybrids from their half-diallel were produced with

parental lines from Iowa Stiff Stalk Synthetic, Lan-

caster Sure Crop and miscellaneous origin, and there-

fore stratification effects explain higher SCA variances

compared with the situation of hybrids between lines

exclusively from two divergent heterotic groups (Reif

et al. 2005). The SCA variance is defined as a compo-

nent of the total genotypic variance for hybrid per-

formance, and in cases where the SCA variance was

small, this would explain the lower number of markers,

which were significantly associated with SCA com-

pared to the number of markers significantly associated

with hybrid performance. This is supported by our

results for GY and GDMC, where the number of SCA

associated markers was highest for Exp. 1, which

showed for both traits the highest SCA:GCA ratio of

all experiments. Summarizing, the number of markers

identified for GY hybrid performance was comparable

to literature findings and the number of markers

associated with SCA was very low, in dependence to

the SCA:GCA ratio.

Mapping of QTL regions across experiments

For GY hybrid performance, regions with significant

loci in at least two of four experiments were found on

all chromosomes. Moreover, five regions with signifi-

cant loci in all experiments were detected. The

experiments differed in their set of parental inbreds,

factorial size, year of trial, and set of locations, which in

Table 3 Correlations of specific combining ability (SCA) for
grain yield and grain dry matter content with (1) the specific
contribution of selected markers to hybrid performance
(SCSMHP) and (2) the total contribution of selected markers
to SCA (TCSMSCA). Correlations of hybrid performance for
grain yield and grain dry matter content with (1) the total
contribution of selected markers to hybrid performance

(TCSMHP), (2) predictions from general combining ability
(GCA) of parental inbreds, (3) SCSMHP-based GCA+SCA 1
predictor, and (4) TCSMSCA-based GCA+SCA 2 predictor.
Proportions of the explained variance (R2) of hybrid
performance prediction based on the four approaches were
determined by a cross-validation procedure

Criterion Experiment

1 2 3 4

Grain yield (Mg ha–1)
Correlation of SCA with:
SCSMHP 0.51*** 0.19 0.22* 0.27
TCSMSCA 0.51*** – – 0.46**

Correlation of hybrid performance with:
TCSMHP 0.79*** 0.89*** 0.85*** 0.89***
GCA 0.85*** 0.98*** 0.95*** 0.98***
GCA+SCA 1 (SCSMHP) 0.89*** 0.98*** 0.95*** 0.98***
GCA+SCA 2 (TCSMSCA) 0.89*** – – 0.99***

Proportion of explained variance determined by cross-validation:
TCSMHP 46.2% 73.3% 59.0% 65.8%
GCA 53.9% 86.0% 77.9% 86.3%
GCA+SCA 1 (SCSMHP) 56.5% 85.5% 76.9% 86.0%
GCA+SCA 2 (TCSMSCA) 52.8% – – 85.7%

Grain dry matter content (in %)
Correlation of SCA with:
SCSMHP 0.20 0.47** 0.24* 0.35*
TCSMSCA 0.65*** 0.69*** 0.56*** –

Correlation of hybrid performance with:
TCSMHP 0.86*** 0.95*** 0.89*** 0.87***
GCA 0.93*** 0.99*** 0.98*** 0.99***
GCA+SCA 1 (SCSMHP) 0.94*** 0.99*** 0.98*** 0.99***
GCA+SCA 2 (TCSMSCA) 0.96*** 1.00*** 0.99*** –

Proportion of explained variance determined by cross-validation
TCSMHP 58.7% 87.4% 69.8% 62.9%
GCA 78.3% 95.5% 92.9% 93.4%
GCA+SCA 1 (SCSMHP) 76.6% 95.9% 93.1% 93.3%
GCA+SCA 2 (TCSMSCA) 82.8% 95.9% 92.5% –

*, **, ***Pearson’s product moment correlation coefficient (r) significant at the 0.05, 0.01, and 0.001 probability levels, respectively
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conjunction with genotype by environment interactions

(Table 1) may account for those cases, in which sig-

nificant QTL were identified only in a subset of the

experiments. Vuylsteke et al. (2000a) reported 20 loci

significantly associated with hybrid performance, of

which four were identical or close to the following re-

gions identified in our study: chromosome 1 at 95 cM

in one experiment, chromosome 2 at 54–56 cM and

chromosome 6 at 61 cM in two experiments, and

chromosome 4 at 59–63 cM in all four experiments.

For GDMC hybrid performance, regions with signifi-

cant loci in at least two of four experiments were found

on all chromosomes. Many QTL regions for GDMC

mapped in the same regions as QTL for GY. Overlaps

between both traits for regions with significant QTL in

at least three experiments were found on chromo-

some 1 at 72–73 cM, chromosome 4 at 61–63 cM, and

chromosome 9 at 82–84 cM. Summarizing, a consid-

erable number of chromosomal regions was identified,

comprising QTL that were significantly associated with

hybrid performance of GY or GDMC in multiple

experiments.

Prediction of specific combining ability

For GY SCA prediction based on SCSMHP (first

model), the highest correlation was found for Exp. 1.

This experiment also showed the highest SCA:GCA

ratio. For Exps. 2–4, where the correlations were

clearly lower, the rank order did loosely correspond

to the SCA:GCA ratio. The correlations in Exp. 1

(r = 0.51) were similar to the respective results

(r = 0.49) of Vuylsteke et al. (2000a). For the GY

SCA prediction based on TCSMSCA (second model),

the correlations were similar or higher compared with

the first model. In comparison with the analysis of

Vuylsteke et al. (2000a), where 36.8% of the SCA

variance was explained with the second model based

on 25 selected markers, our results showed lower

coefficients of determination (Exp. 1: 25.6%, Exp. 4:

21.4%), however based on a very low number of se-

lected markers (Exp. 1: three markers, Exp. 4: one

marker).

Identification of significant QTL is a prerequisite for

the determination of a genotypic value and, thus, for

obtaining the predictor of SCA. However, it was ob-

served that with a very low number of selected markers

(three GY markers in Exp. 1, one GY marker in

Exp. 4, five GDMC markers in Exp. 3), the correlation

of SCA with genotypic value TCSMSCA can be com-

parable or even higher than the correlation with

SCSMHP, which was based on a considerably larger

number of selected markers. These results indicate that

already with a small number of selected markers,

sound predictions with TCSMSCA could be obtained, as

long as a minimum number of significant markers was

available for determination of genotypic values.

Prediction of hybrid performance

The observed correlations of hybrid performance with

all investigated predictors were highly significant for all

experiments (Table 3). In the analysis of inter-group

crosses from a diallel experiment, Vuylsteke et al.

(2000a) obtained the correlation r = 0.79 of maize GY

hybrid performance with TCSM on basis of 20 selected

markers. This result is in the range of our findings for

the TCSMHP approach, with r between 0.79 and 0.89

on basis of 28–67 selected markers. Ranking the pre-

dictors by their correlation coefficients resulted in the

same order for each experiment: correlations of hybrid

performance with TCSMHP were notably smallest,

followed by GCA effects estimated from the parental

inbreds, and the combined GCA+SCA predictors.

All markers were tested separately from each other

for their association with hybrid performance or SCA.

Thus, it cannot be ruled out that multiple markers,

which are closely linked to the same QTL, were se-

lected for prediction. However, as the additive and

dominance effects of all selected markers were added

into the genotypic value estimates, the true contribu-

tion of such a QTL would be overestimated and con-

sequently may increase the prediction error. This issue

becomes apparent from results of Vuylsteke et al.

(2000a; Tables 2, 3), where identical additive and

dominance effects were estimated for closely linked

selected markers. In our data, closely linked selected

markers were also observed for GY and GDMC hybrid

performance (Figs. 1, 2). To investigate the effect of

closely linked selected markers, we compared the

prediction of hybrid performance on basis of all map-

ped selected markers with a subset of the mapped se-

lected markers (data not shown). The marker subset

was determined by the following rules: if two signifi-

cant markers had (a) less than 5 cM map distance and

no non-significant markers in between or (b) less than

3 cM map distance with non-significant markers in

between, the marker with the higher P-value was dis-

carded. Across all experiments and traits, this proce-

dure resulted in a reduction of the number of selected

markers by 8–37%, indicating that a substantial pro-

portion of markers is affected by this issue. However,

the correlation of hybrid performance with TCSMHP

changed by –0.2 to 1.5% and for the GCA+SCA 1

approach by –1.2 to 0.1%. These results indicate that

for our data closely linked markers did not have a
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substantial influence on the prediction of hybrid per-

formance.

Prediction of untested hybrids was assessed with a

cross-validation procedure, measuring the prediction

efficiency (Table 3) of the models by the proportion of

the explained variance (R2). Across all models, pre-

diction efficiencies were generally higher for experi-

ments with lower SCA:GCA ratio. For the TCSMHP

approach, R2 estimates for GY ranged from 0.46 to

0.73 for all four experiments and were similar or higher

compared with R2 = 0.45, obtained by Vuylsteke et al.

(2000a). However, for all experiments analysed in our

study, the simple approach based on GCA estimates

from the parental inbreds and without using molecular

marker data was able to predict hybrid performance

for GY of inter-group maize single crosses with higher

efficiency than the TCSMHP approach.

The highest prediction efficiency of all models for

GY and GDMC hybrid performance in Exp. 1 was

obtained with our two proposed models, which en-

hance the simple GCA approach with SCA estimates

predicted on the basis of molecular data. For the other

experiments, the prediction efficiencies of the SCA

enhanced approaches were similar to the simple GCA

approach. The superiority of the proposed SCA en-

hanced models can be explained by the comparably

high SCA:GCA ratio in Exp. 1, emphasizing the

advantage of including SCA estimates for hybrid per-

formance prediction. Such an increased relevance of

SCA exists in the early phase of establishing a hybrid

breeding program and in breeding programs, which

rely on more than two divergent heterotic pools. In

practical maize breeding programs, the extent of GCA

and SCA variances is rarely predictable. Thus, for the

prediction of single-cross hybrids, an approach is

advantageous if its prediction efficiency is convincingly

high under both conditions, low and high SCA:GCA

ratios. This was the case with our proposed prediction

procedure, enhancing a GCA-based model with SCA

effects predicted on the basis of molecular marker data.

The proportions of explained variance from cross-

validation (Table 3) were consistently smaller than

the squared correlations of hybrid performance with

the predictors across the full set of hybrids (Table 3).

This difference is due to the error of predicting one

hybrid on the basis of the remaining hybrids from a

full factorial, as was performed in the cross-valida-

tion procedure. Prediction efficiencies obtained in

this way can be used to compare the models. How-

ever, in practical breeding programs not only one

hybrid, but a larger proportion of a factorial experi-

ment has to be predicted. This should be considered

in future cross-validation analyses. So far, the ap-

proach is based on a biallelic model. Consequently,

the model could be extended to allow for the use of

multiallelic marker data such as simple sequence

repeats (SSR).
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