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ABSTRACT

The expectation of the parental genome contribution to inbred lines derived from biparental crosses or
backcrosses is well known, but no theoretical results exist for its variance. Our objective was to derive the
variance of the parental genome contribution to inbred lines developed by the single-seed descent or double
haploid method from biparental crosses or backcrosses. We derived formulas and tabulated results for the
variance of the parental genome contribution depending on the chromosome lengths and the mating
scheme used for inbred line development. A normal approximation of the probability distribution function
of the parental genome contribution fitted well the exact distribution obtained from computer simulations.
We determined upper and lower quantiles of the parental genome contribution for model genomes of sugar
beet, maize, and wheat using normal approximations. These can be employed to detect essentially derived
varieties in the context of plant variety protection. Furthermore, we outlined the application of our results to
predict the response to selection. Our results on the variance of the parental genome contribution can assist
breeders and geneticists in the design of experiments or breeding programs by assessing the variation
around the mean parental genome contribution for alternative crossing schemes.

THE expected contribution of a parental line to the
genome of an inbred line derived from a biparen-

tal cross is 1
2. For inbred lines derived from a backcross,

the expected genome contribution of the nonrecurrent
parent is 1

2t , where t is the number of backcross gen-
erations. Experimental studies showed a considerable
variation in the parental genome contribution around
these mean values (Heckenberger et al. 2006) but until
now no theoretical concept for describing the variance
of the parental genome contribution to homozygous
inbred lines existed.

Inbred lines are developed for various purposes in
genetic research and applied plant breeding programs,
e.g., for direct use as line cultivars or as parents of hybrid
and synthetic varieties. A theoretical concept for calcu-
lating the variance of the parental genome contribution
to inbred lines can be used (1) in plant variety pro-
tection to test hypotheses on the mating scheme that
was employed for inbred line development and (2) to
assess and compare the variability in experimental and
breeding populations generated with a certain mating
scheme depending on the number and length of the
chromosomes of the species under consideration.

Hill (1993) derived the variance of the parental ge-
nome contribution to heterozygous backcross individuals
under the assumption of no interference in crossover

formation. Employing his formula for the variance, he
found that a normal approximation fitted well the prob-
ability distribution of the parental genome contribution
obtained from computer simulations. Using the cattle
genome as an example, he demonstrated that his re-
sults can be employed to determine approximate upper
bounds for the parental genome contribution of the non-
recurrent stock.

Our objectives were to (1) derive the variance of the
parental genome contribution to inbred lines developed
by the single-seed descent (SSD) or double haploid (DH)
method from biparental crosses or backcrosses adopt-
ing the approach of Hill (1993), (2) investigate with
computer simulations the fit of a normal approxi-
mation to the probability distribution of the parental
genome contribution, and (3) demonstrate the applica-
tion of the formulas in the context of plant variety
protection.

THEORY

Assumptions: We assume that the offspring are com-
pletely homozygous lines, derived without selection from
a biparental cross of completely homozygous parents P1

and P2. For all derivations, we assume absence of in-
terference (Stam 1979) in crossover formation such that
the recombination frequency ruv between two loci on a
chromosome with map positions u and v is calculated by
Haldane’s (1919) mapping function

ruv ¼ ð1� e�2jv�ujÞ=2: ð1Þ
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Variance of the parental genome contribution: Mei-
osis on different chromosomes is stochastically indepen-
dent. Hence, the variance of the genome contribution Z
of parent P1 to the genome of a derived line can be
written in terms of the variances Var(Zi) for individual
chromosomes as

VarðZÞ ¼
Xc

i¼1

li
l

� �2

VarðZiÞ; ð2Þ

where c is the number of chromosomes, li the length of
the ith chromosome, and l ¼

Pc
i¼1li the total length of

the genome in Morgan units.
Following the approach introduced by Hill (1993) in

the context of backcross populations, the variance of the
parental genome contribution to a chromosome equals
the expected covariance between two randomly sam-
pled loci on the chromosome,

VarðZiÞ ¼ E ½CovðGu;GvÞ�
¼ E ½EðGuGvÞ � EðGuÞEðGvÞ�
¼ E ½Duv �

¼ 1

l2
i

ðli

0

ðli

0
Dðu; vÞdu dv; ð3Þ

where Gu and Gv are random variables taking the value 1
if the loci at map positions u and v carry the allele of
parent P2 and 0 otherwise, and Duv is a random variable
describing the linkage disequilibrium between two loci
on the chromosome with probability density

Dðu;vÞ ¼ PðGv ¼ 1;Gu ¼ 1Þ�PðGu ¼ 1ÞPðGv ¼ 1Þ: ð4Þ

Using the formulas for

p ¼ PðGu ¼ 1Þ and quv ¼ PðGv ¼ 1jGu ¼ 1Þ ð5Þ

given in Frisch and Melchinger (2006, Table 1 therein),
D(u, v) can be calculated as

Dðu;vÞ ¼ pquv � p2: ð6Þ

We present formulas for D(u, v) for the following four
mating systems (Table 1): (1) (F2)t-SSD lines, developed
by t (t $ 0) generations of random mating of a F2

population and subsequent application of the SSD
method for line development; (2) (F1)t-DH lines, de-
veloped by t (t $ 0) generations of random mating of a
F1 cross and subsequent inbred line development with
the DH method; and (3) BCt -SSD and (4) BCt -DH lines,
developed from a F1 cross backcrossed t (t $ 1) times to
parent P1, with subsequent line development by the SSD
or DH method.

Inserting D(u, v) (Table 1) into Equation 3 yields
Var(Zi). Analytical results for Var(Zi) are derived in the
appendix and summarized in Table 2. Numerical results
for Var(Zi) are given in Table 3. To check our deriva-
tions, we determined the results in Table 3 also with
computer simulations using Plabsoft (Maurer et al.
2004). The differences between simulated and analyti-
cally determined variances were , 0.001 if one million
chromosomes were simulated.

Probability distribution of the parental genome
contribution: The probability distribution of the paren-
tal genome contribution is determined by the number
and location of crossover events occuring during the
meioses in inbred line development. We investigated
the probability distribution assuming no interference in
crossover formation (Stam 1979), employing proper-
ties of the Poisson process (cf. Karlin 1968).

For an individual chromosome, the probability that
exactly k crossovers occur during all meioses in inbred
line development can be obtained from the probability
function of the Poisson distribution. If no crossover

TABLE 1

Formulas for the expected gametic disequilibrium D(u, v) between two loci at map positions u and v in
populations of infinite size under four mating schemes

D (u, v)

Mating system General form After inserting Haldane’s mapping function

(F2)t-SSD
1� 2ruv

4 1 8ruv

ð1� ruvÞt ¼ 1

2t12

Xt11

n¼1

� t
n � 1

� e�2njv�uj

2� e�2jv�uj

(F1)t-DH
1� 2ruv

4
ð1� ruvÞt ¼ 1

4

1 1 e�2jv�uj

2

� �t

e�2jv�uj

BCt -SSD
1

2t11

ð1� ruvÞt

1 1 2ruv

� 1

4t11
¼ 1

4t11
2
Xt

n¼1

"
t
n

� �
e�2njv�uj

2� e�2jv�uj1
e�2jv�uj

2� e�2jv�uj

�

BCt -DH
1

2t11
ð1� ruvÞt11 � 1

4t11
¼ 1

4t11

Xt11

n¼1

�
t 1 1

n

�
e�2njv�uj

D(u, v) depends on the recombination frequency ruv between the two loci and the number t of intermating or
backcrossing generations.
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occurs (k¼ 0), then the genome contribution of parent
P1 is either 0 or 1. In consequence, the probabilities
P(Zi¼ 0) and P(Zi¼ 1) do exist and the random variable
Zi is discrete for Zi ¼ 0 and Zi ¼ 1. If k . 0 crossovers

occur, then the length of chromosome segments be-
tween crossovers is exponentially distributed and the
sum of lengths of chromosome segments is gamma
distributed. In consequence, Zi is in the interval (0, 1) a
mixture of linear transformations of the gamma distri-
butions for different values of k. For the entire genome,
the distribution of the parental genome contribution
is a convolution of the distributions for the individual
chromosomes.

Analytical results for the exact probability distribu-
tion of the parental genome contribution could be de-
rived by employing the above considerations. However,
the resulting equations would be rather unwieldy and
using them to derive important parameters such as quan-
tiles directly from the density functions would require a
heavy use of high quality numerical mathematics.
Alternatively, we suggest employing our relatively simple
equations for the variance (Table 2) and a normal ap-
proximation instead.

DISCUSSION

Genetic model: For all derivations we used the as-
sumption of no interference (Stam 1979) underlying
Haldane’s (1919) mapping function. This is a simplified
mathematical model and there exist more sophisticated
models of crossover formation in meiosis, which fit ex-
perimental data better (McPeek and Speed 1995). Briefly,
the advantages of the assumption of no interference are

TABLE 2

Formulas for the variance Var(Zi) of the parental genome
contribution to a chromosome of length li under four

mating schemes

Mating
system Var(Zi)

(F2)t-SSD
1

l2
i

1

2t12

Xt 1 1

n¼1

� t
n � 1

�
2n�1j6 1 2

Xn�1

k¼1

j3ðj7 � liÞ
" #

a

(F1)t-DH
1

l2
i

1

4ðt 1 1Þ li 2� 1
2t �

1

2t11

Xt 1 1

n¼1

! "
t 1 1

n

� �
1
nð1� e�2li nÞ

#

BCt -SSD
1

l2
i

1

4t11

(Xt

n¼1

t
n

� �
2nj6 1 4

Xn�1

k¼1

j3ðj7 � liÞ
" #

1 j6

)

BCt -DH
1

l2
i

1

4t11

Xt 1 1

n¼1

�t 1 1
n

� 1

2n2
2nli � 1 1 e�2nlið Þ

a j3 ¼ 2k�2

n�k

j6 ¼ li ln2� 1
2 dilog 1

2

� �
1 1

2 dilog 1� 1
2e
�2li

� �
j7 ¼ 1�e�2li ðn�kÞ

2ðn�kÞ

TABLE 3

Variance Var(Zi) of the parental genome contribution to a chromosome of length li under four mating schemes

Chromosome length li

t 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ðF2Þt -SSD
0 0.1410 0.1231 0.1091 0.0978 0.08860 0.0809 0.0743 0.0687
1 0.1246 0.1064 0.0927 0.0821 0.07356 0.0666 0.0608 0.0559
2 0.1110 0.0931 0.0800 0.0701 0.06232 0.0561 0.0509 0.0467
3 0.0997 0.0823 0.0700 0.0608 0.05374 0.0481 0.0435 0.0398

ðF1Þt -DH
0 0.1740 0.1566 0.1419 0.1294 0.11867 0.1094 0.1014 0.0943
1 0.1517 0.1330 0.1181 0.1060 0.09604 0.0877 0.0806 0.0745
2 0.1335 0.1145 0.1000 0.0886 0.07948 0.0720 0.0657 0.0605
3 0.1186 0.0998 0.0860 0.0754 0.06711 0.0604 0.0549 0.0503

BCt -SSD
1 0.1058 0.0923 0.0818 0.0734 0.06654 0.0607 0.0558 0.0516
2 0.0576 0.0497 0.0436 0.0389 0.03500 0.0318 0.0291 0.0269
3 0.0283 0.0241 0.0209 0.0185 0.01654 0.0150 0.0137 0.0126
4 0.0133 0.0112 0.0096 0.0084 0.00749 0.0067 0.0061 0.0056

BCt -DH
1 0.1194 0.1057 0.0945 0.0854 0.07769 0.0712 0.0656 0.0608
2 0.0632 0.0550 0.0486 0.0435 0.03929 0.0358 0.0328 0.0303
3 0.0306 0.0262 0.0229 0.0203 0.01821 0.0165 0.0151 0.0139
4 0.0143 0.0121 0.0104 0.0092 0.00816 0.0074 0.0067 0.0061
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(1) mathematical simplicity, yielding equations that can
be easily evaluated, and (2) that the results can be
applied without knowing the exact amount of interfer-
ence in the chromosome region under consideration.
For a more detailed discussion concerning the use of
the assumption of no interference see Frisch and
Melchinger (2001).

Equation 3, defining the variance of the parental
genome contribution in terms of the linkage disequi-
librium D(u, v), and the formulas for D(u, v), in terms of
the recombination frequency ruv presented in Table 1,
hold true irrespectively of the amount of interference.
These formulas can be used with arbitrary mapping
functions to derive the variance of the parental genome
contribution under the assumption of interference.
Presumably, analytical solutions as presented in the
appendix cannot be derived for some mapping func-
tions. In such cases, approximative solutions of Equation
3 can be obtained with numerical integration routines of
mathematical software packages.

Compared with no interference, negative interfer-
ence results in a greater number of chromosome seg-
ments with intermediate length and a smaller number
of very long or short chromosome segments. Therefore,
negative interference will result in smaller variances of
the parental genome contribution than those presented
in our results. The opposite is the case for positive
interference.

Comparison with previous studies: Hill (1993) de-
rived the variance of the parental genome contribution
to backcross individuals. Each backcross individual re-
ceives from the recurrent backcross parent one set of
homologous chromosomes, for which the variance of
the parental genome contribution is zero. Hence, the
variance of the parental genome contribution to back-
cross individuals is entirely determined by the variance
Varð �ZðnÞÞ (following Hill’s 1993 notation) of the par-
ental genome contribution to the homologous chro-
mosome set originating from the nonrecurrent parent.
These homologous chromosomes are genetically iden-
tical to the chromosomes of DH lines derived from a
backcross individual. In consequence, Varð �ZðnÞÞ derived
by Hill (1993) for backcross individuals equals Var(Zi)
for BCt -DH lines.

Wang and Bernardo (2000) derived the variance
V(kX) of marker estimates of parental genome contribu-
tion to F2- and BC1-SSD lines. They considered a finite
number k of marker loci per chromosome and em-
ployed Kosambi’s (1944) mapping function ruv ¼
1
2tanhð2v � 2uÞ. The major difference to our approach
is that Wangand Bernardo (2000) obtain V(kX) by sum-
ming over a discrete number of marker loci, whereas we
obtain Var(Zi) by integrating over an infinite number
of genomic loci (Equation 3). The results on V(kX) and
Var(Zi) can be related as follows. Inserting D(u, v) (Ta-
ble 1) in Equation 3, but employing Kosambi’s instead
of Haldane’s mapping function, yields limk/‘V ðkX Þ ¼

VarðZiÞ. In consequence, V(kX) of Wang and Bernardo

(2000) converges to Var(Zi) for large numbers of mark-
ers on a chromosome (assuming that the same mapping
function is employed).

Heckenberger et al. (2006) estimated the parental
genome contribution to 102 F2-SSD and 11 BC1-SSD
maize lines with 100 SSR and 1017 AFLP markers. They
determined the standard deviations of the parental
genome contribution (Table 4) and compared their re-
sults with computer simulations. The observed standard
deviations were not significantly different (x2 test with
a ¼ 0.05) from the simulated values. The standard
deviations determined with Equation 2 as well as those
obtained with the model of Wang and Bernardo

(2000) were in good agreement with the experimental
and simulated values (Table 4). In conclusion, both
theoretical models fit the data set of Heckenberger

et al. (2006) well.
Numerical results: The variance of the parental

genome contribution to a chromosome depends on
the expected number of crossovers occurring on the
chromosome during inbred line development. A large
number of expected crossovers results in many small
chromosome segments, whereas few crossovers result
in few long chromosome segments. With few long seg-
ments, the probability that chromosomes with very large

TABLE 4

Standard deviation Var
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðZÞ

p
of the parental genome

contribution to F2-SSD and BC1-SSD maize lines
for experimental and simulated data (HECKENBERGER

et al. 2006), the model of WANG and BERNARDO

(2000), and the model developed in this study

Mating system (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðZÞ

p
)

F2-SSD BC1-SSD

Experimental data of Heckenberger et al. (2006)a

100 SSR markes 0.10 0.09
1017 AFLP markers 0.10 0.11

Simulations of Heckenberger et al. (2006)b

Entire genome 0.09 0.07

Model of Wang and Bernardo (2000)c

100 markers 0.088 0.076
1020 markers 0.090 0.078
‘ markers 0.090 0.078

Model of this study
Entire genome 0.088 0.076

a The linkage map consisted of 10 chromosomes of 1.70,
1.30, 1.06, 1.48, 1.28, 1.15, 1.14, 1.21, 0.99, and 0.91 M length.

b The linkage map of the experimental data and a noninter-
ference model was used for the simulations.

c The ‘‘nonterminal marker model’’ of the authors was em-
ployed with 10 chromosomes of 1.22 M length and 10 SSRs or
102 AFLPs equally spaced on each chromosome.
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or very small parental genome contributions do occur is
greater and, therefore, the variance of the parental
genome contribution is greater than for many small
segments.

The number of crossovers expected per meiosis on a
chromosome equals its length in Morgan units. There-
fore, the variance of the parental genome contribution
is smaller for long chromosomes than for short chro-
mosomes. This trend can be observed irrespective of the
employed breeding scheme for inbred line develop-
ment (Table 3).

The total number of crossovers occurring on a chro-
mosome during inbred line development depends on
the total number of meioses and, hence, the employed
breeding scheme. Intermating or backcrossing prior to
employing the SSD or DH method results in an in-
creased total number of meioses and, therefore, in a
smaller variance of the parental genome contribution
(Table 3). Generating DH lines comprises only one
meiosis, whereas in the SSD scheme one meiosis occurs
in each selfing generation. Therefore the variances of
the parental genome contribution is greater for DH
than for SSD lines.

Normal approximation: A normal approximation is
not expected to fit the distribution of the parental
genome contribution for individual chromosomes well,
because Zi ¼ 0 and Zi ¼ 1 can occur with rather high

probabilities, especially for short chromosomes or when
inbreds are generated by the DH method. However, the
genomes of important crops consist of many chromo-
somes (9 in sugar beet, 10 in maize, and 21 in wheat).
Therefore, the random variable describing the parental
genome contribution to the entire genome is a sum of
independent random variables for the individual chro-
mosomes. According to the central limit theorem
(Shao 1999) the probability distribution of a sum of a
large number of random variables converges to a nor-
mal distribution, irrespective of the type of distributions
of random variables that are summed up. As a conse-
quence, theory suggests that a normal approximation
of the probability distribution of the parental genome
contribution to the entire genome should fit the true
distribution well.

To investigate the fit of the normal approximation, we
used the software Plabsoft (Maurer et al. 2004) to
simulate the parental genome contribution to (a) one
chromosome of 1.6 M length and (b) a model of the
maize genome consisting of 10 chromosomes each of
1.6 M length for the F2-SSD and BC1-SSD mating
schemes. The normal approximations fit the simulated
distributions of the parental genome contribution for
individual chromosomes only poorly (Figure 1). In con-
trast, the fit was very good for the simulated distribution
of the entire genomes for both F2-SSD and BC1-SSD

Figure1.—Simulateddistribution(histo-
gram) and normal approximation (solid
line) of the parental genome contribution
to one chromosome of 1.6 M length (left)
and to a model of the maize genome with
10 chromosomes of 1.6 M length (right)
for F2-SSD lines (top) and BC1-SSD lines
(bottom).

Variance of the Parental Genome Contribution 481



lines. Hence, our formulas for the variances, together
with a normal approximation, provide a good means by
which to investigate the distribution of the parental
genome contribution in many applications in genetics
and breeding.

Application in plant variety protection: An essentially
derived variety is a cultivar or an inbred line, which is for
the most part identical to one of its ancestors. Essentially
derived varieties can be detected by comparing predic-
tions of the parental genome contribution to inbred
lines with threshold values. The variances of the par-
ental genome contribution derived here can be em-
ployed together with the prediction method described
in a companion article (Frisch and Melchinger 2006)
to establish a test for detecting essentially derived
varieties.

The first step of the test is to identify breeding schemes
that are generally considered acceptable for inbred
line development. For example, in wheat breeding in
Europe, it is an accepted breeding scheme to cross a
proprietary inbred line with a registered line cultivar of a
competitor and to select a new line cultivar from the
resulting population of F2-SSD lines. In contrast, deriving
inbred lines from backcross populations is not accepted.

Then the null hypothesis, ‘‘An inbred line was derived
using an accepted breeding scheme,’’ is tested. The crit-
ical value for the test is determined from the quantiles of

a normal approximation of the distribution of the
parental genome contribution under the null hypoth-
esis. For example, in wheat, the 0.99 quantile of the
parental genome contribution to F2-SSD lines is 0.638
(Table 5). As test statistic, the genome contribution of
the parental line that is assumed to be plagiarized to the
putative essentially derived variety is determined by using
the prediction method of Frisch and Melchinger

(2006). If the test statistic is greater than the critical
value, then the null hypothesis is rejected and plagia-
rism is assumed. (Of course, the accused breeder always
has the possibility to prove that an accepted method was
employed, e.g., by disclosing the breeding records.)

For use as threshold values, we determined quantiles
of the parental genome contribution for model ge-
nomes of sugar beet (9 chromosomes of 1.0 M length),
maize (10 chromosomes of 1.6 M length), and wheat (21
chromosomes of 1.8 M length) by employing normal
approximations (Table 5). The upper quantiles were
considerably lower for long genomes than for short
ones, e.g., the 0.95 quantile for F2-SSD lines was 0.598
for wheat and 0.681 for sugar beet. Breeding schemes
with intermating before inbred line development had
slightly smaller 0.95 quantiles than the corresponding
breeding schemes without intermating.

The upper quantiles for F1-DH lines were consider-
ably greater than those for F2-SSD lines. For example,

TABLE 5

Quantiles of the parental genome distribution for models of the genomes of sugar beet (9 chromosomes of 1.0 M length),
maize (1.0 chromosomes of 1.6 M length), and wheat (21 chromosomes of 1.8 M length)

Quantile

Mating system 0.005 0.025 0.050 0.900 0.950 0.975 0.990 0.995 0.999

Sugar beet model: 9 chromosomes of length 1 M
F2-SSD 0.216 0.284 0.319 0.641 0.681 0.716 0.756 0.784 0.840
ðF2Þ2-SSD 0.257 0.315 0.345 0.621 0.655 0.685 0.719 0.743 0.791
F1-SSD 0.177 0.254 0.293 0.661 0.707 0.746 0.792 0.823 0.888
ðF1Þ2-SSD 0.228 0.293 0.327 0.635 0.673 0.707 0.745 0.772 0.826
BC1-SSD 0.504 0.563 0.593 0.872 0.907 0.937 0.972 0.996 1.000
BC1-DH 0.486 0.549 0.581 0.881 0.919 0.951 0.988 1.000 1.000

Maize model: 10 chromosomes of length 1.6 M
F2-SSD 0.268 0.324 0.352 0.615 0.648 0.676 0.709 0.732 0.778
ðF2Þ2-SSD 0.307 0.353 0.377 0.596 0.623 0.647 0.674 0.693 0.731
F1-DH 0.231 0.295 0.328 0.634 0.672 0.705 0.743 0.769 0.823
ðF1Þ2-DH 0.281 0.334 0.360 0.609 0.640 0.666 0.697 0.719 0.762
BC1-SSD 0.549 0.597 0.622 0.850 0.878 0.903 0.931 0.951 0.991
BC1-DH 0.533 0.585 0.611 0.858 0.889 0.915 0.946 0.967 1.000

Wheat model: 21 chromosomes of length 1.8 M
F2-SSD 0.347 0.383 0.402 0.576 0.598 0.617 0.638 0.653 0.684
ðF2Þ2-SSD 0.373 0.403 0.419 0.563 0.581 0.597 0.615 0.627 0.652
F1-DH 0.321 0.364 0.386 0.589 0.614 0.636 0.662 0.679 0.715
ðF1Þ2-DH 0.356 0.390 0.408 0.572 0.592 0.610 0.630 0.644 0.673
BC1-SSD 0.617 0.649 0.665 0.816 0.835 0.851 0.870 0.883 0.909
BC1-DH 0.606 0.640 0.658 0.822 0.842 0.860 0.880 0.894 0.923
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the 0.95 quantile for F2-SSD lines of maize was 0.648,
whereas for F1-DH lines it was 0.672 (Table 5). Typically,
the expectation of the parental genome contribution is
the criterion that determines acceptance or nonaccep-
tance of a certain breeding scheme for inbred line
development. The F2-SSD scheme is often suggested as
an accepted breeding method for determining critical
threshold values (cf. Heckenberger et al. 2006). If F2-
SSD lines are considered acceptable, then F1-DH lines
should also be considered acceptable, because both
have an expected parental genome contribution of one-
half. However, F1-DH lines have a considerably greater
variance of the parental genome contribution (Table 3)
and, consequently, greater upper quantiles (Table 5).
Therefore, the F1-DH mating scheme seems in general
more appropriate than the F2-SSD scheme for deter-
mining threshold values.

The test described above can be modified by using
alternative test statistics or/and alternative methods to
determine critical values. Alternative predictors of the
parental genome contribution for use as test statistics
were discussed by Frisch and Melchinger (2006), and
alternative methods to determine critical threshold
values were proposed by Smith et al. (1995), Wang

and Bernardo (2000), and Heckenberger et al.
(2005).

Smith et al. (1995) suggested employing fixed thresh-
old values and proposed a parental genome contribu-
tion of 0.9 as threshold for maize lines. Compared with
using fixed values as thresholds, our method has the
advantage that it is genetically justified. For F2 and F1

derived lines of maize, the 0.999 quantiles of the par-
ental genome contribution ranged between 0.73 and
0.82 (Table 5). In consequence, employing 0.9 as thresh-
old value results in a low power of detecting backcross-
derived inbreds.

Wang and Bernardo (2000) suggested determining
threshold values using the variance of marker estimates
of the parental genome contribution. Compared with
the method of Wang and Bernardo (2000), our method
has the advantage that the threshold values (Table 5)

are independent of the employed set of molecular
markers.

Heckenberger et al. (2005) suggested determining
threshold values with computer simulations. Our results
on the quantiles of the parental genome contribution
for F2-SSD lines of maize were in good agreement with
the corresponding results of Heckenberger et al. (2005).
However, our method has the advantage that no com-
puter simulations are required.

Application in selection theory: Selection for paren-
tal marker alleles in backcross populations was in-
vestigated and a comprehensive selection theory was
developed by Frisch and Melchinger (2005). That
approach takes into account (a) the exact distribution
of the parental genome contribution and (b) that se-
lection for the parental alleles at marker loci is actually
an indirect selection for the parental alleles at all loci of
the entire genome. However, such theory is not available
for inbred lines developed with the mating schemes
considered in this study. Using a simpler mathematical
model that neglects (a) and (b), the variances of the
parental genome contribution can be employed to esti-
mate the response to selection.

We consider a population of inbred lines analyzed for
a large number of polymorphic molecular markers,
which are covering the entire genome without larger
gaps (e.g., one marker per centimorgan). Selection is
carried out for the alleles of one parental line and the
marker score is regarded as the target trait for selection.
Under these assumptions, an approximate pre-test esti-
mate of the response to selection R can be obtained
adopting from standard selection theory (Falconer

and Mackay 1996, p. 189, Equation 11.3),

R ¼ ih2sp ; ð7Þ

where i is the selection intensity, h2 the heritability, and
sp the square root of the phenotypic variance. Assigning
a heritability of h2 ¼ 1 for the markers and using the
variance of the parental genome contribution as phe-
notypic variance we obtain

Figure 2.—Probability density functions of the
normal approximation of the parental genome
contribution to F2-SSD and BC1-SSD lines in (left)
sugar beet (9 chromosomes of 1 M length) and
(right) wheat (21 chromosomes of 1.8 M length).
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R ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðZÞ

p
: ð8Þ

Further applications: In addition to the above appli-
cations, the results presented are of general interest for
breeders and geneticists because they allow comparison
of the distribution of the parental genome contribution
for alternative mating schemes.

For example, an important goal in second-cycle breed-
ing is the development of inbred lines that share the
general characteristics with one parental line and are
improved by specific characteristics of a second crossing
partner. Such derived lines are then used as a replace-
ment for parental lines in a breeding program. As a rule
of thumb, the breeder may attempt to derive lines with a
parental genome contribution of 3/4 from the parental
line, which should be replaced by the derived line. The
probability distribution of the parental genome contri-
bution can help to assess the suitability of mating schemes
to deliver such inbred lines. For sugar beet, the overlap of
the probability density functions of the parental genome
contribution to F2-SSD and BC1-SSD lines is considerable
(Figure 2) and it is possible to select lines with a parental
genome contribution of 70–75% from an F2-derived
population. In contrast, for wheat, F2-SSD lines with par-
ental genome contributions of 3/4 or more from one
crossing partner do occur only with an extremely small
probability (Figure 2). Therefore, in wheat a BC1-derived
population must be generated to be able to select lines
with the desired parental genome contribution.

These examples demonstrate that our results can be
used to assess the expected variation of the parental
genome contribution in populations derived from
planned crosses of parental lines, depending on the
number and length of the chromosomes of the species.
This information can help breeders and geneticists in
the design of breeding programs and experiments.

We thank Frank M. Gumpert for checking the derivations in the
appendix and an anonymous reviewer for helpful comments and
suggestions.
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APPENDIX

We derive the variance of the parental genome contribution to a chromosome according to Equation 3 for four
mating systems.

BCt -DH lines:

Inserting D(u, v) for BCt -DH lines (Table 1) into Equation 3 yields

VarðZiÞ ¼
1

l2
i

1

4t11

Xt11

n¼1

t 1 1
n

� �ð li

0

ðli

0
e�2njv�ujdu dv


 �
: ðA1Þ

With
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ðli

0
e�2njv�ujdu ¼

ðv

0
e�2nðv�uÞdu 1

ðli

v
e2nðv�uÞdu

¼ 1

2n
e�2nðv�uÞ


 �����v
0

1
1

�2n
e2nðv�uÞ


 �����li
v

¼ 1

2n
½1� e�2nv � e�2nðli�vÞ1 1� ðA2Þ

and

1

2n

ðli

0
2� e�2nv � e�2nðli�vÞdv ¼ 1

2n2 2nli � 1 1 e�2nli
� �

ðA3Þ

we get

VarðZiÞ ¼
1

l2
i

1

4t11

Xt11

n¼1

t 1 1
n

� �
1

2n2 2nli � 1 1 e�2nli
� �

: ðA4Þ

BCt -SSD lines:

For BCt -SSD lines we have (Table 1)ð
Dðu; vÞdu ¼ 1

4t11 2
Xt

n¼1

t
n

� �ð
e�2jv�ujn

2� e�2jv�ujdu 1

ð
e�2jv�uj

2� e�2jv�ujdu

" #
: ðA5Þ

We consider the second indefinite integral in Equation A5 for the case u # v and set

f ðuÞ ¼ 2� e�2ðv�uÞ and f 9ðuÞ ¼ �2e�2ðv�uÞ; ðA6Þ

and with logarithmic integration we getð
e�2ðv�uÞ

2� e�2ðv�uÞdu ¼ �1

2

ð
f 9ðuÞ
f ðuÞ du ¼ �1

2
ln j f ðuÞ j: ðA7Þ

Applying the same principle to the case u . v we get

ð
e�2jv�uj

2� e�2jv�ujdu ¼
�1

2
ln½2� e�2ðv�uÞ� for u # v

1

2
ln½2� e2ðv�uÞ� for u . v:

8><
>: ðA8Þ

We now consider the first indefinite integral in Equation A5. Adding to the numerator

0 ¼
Xn�1

k¼1

�2ke�2jv�ujðn�kÞ1 2ke�2jv�ujðn�kÞ� 
ðA9Þ

and applying

2k�1e�2jv�ujðn�k11Þ � 2ke�2jv�ujðn�kÞ ¼ �ð2� e�2jv�ujÞð2k�1e�2jv�ujðn�kÞÞ ðA10Þ

we get

ð
e�2jv�ujn

2� e�2jv�uj du ¼
ð

2n�1e�2jv�uj

2� e�2jv�uj �
Xn�1

k¼1

2k�1e�2jv�ujðn�kÞ

" #
du

¼
�2n�2 ln½2� e�2ðv�uÞ� �

Xn�1

k¼1

2k�2

n � k
e�2ðv�uÞðn�kÞ for u # v

2n�2 ln½2� e2ðv�uÞ�1
Xn�1

k¼1

2k�2

n � k
e2ðv�uÞðn�kÞ for u . v:

8>>>><
>>>>:

ðA11Þ

Hence, we get for a fixed value of v,
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ðli

0
Dðu; vÞdu ¼ 1

4t11 2
Xt

n¼1

t
n

� �
2n�2ðj1 1 j2Þ1

Xn�1

k¼1

j3ðj4 1 j5 � 2Þ
" #

1
1

2
ðj1 1 j2Þ

( )
; ðA12Þ

where

j1 ¼ lnð2� e�2vÞ; j2 ¼ lnð2� e2ðv�liÞÞ

j3 ¼
2k�2

n � k
; j4 ¼ e�2vðn�kÞ

j5 ¼ e2ðv�liÞðn�kÞ: ðA13Þ

For symmetry reasons ð li

0
j1dv ¼

ð li

0
j2dv and

ð li

0
j4dv ¼

ðli

0
j5dv: ðA14Þ

Employing the dilogarithm function (cf. Galassi et al. 2006)ð
lnð2� e�2vÞdv ¼

ð
ln 2 1

ð
ln 1� 1

2
e�2v

� �
dv

¼
ð

ln 2�
ðX‘

k¼1

1

k

1

2
e�2v

� �k

dv

¼ v ln 2 1
1

2

X‘

k¼1

1

k2

1

2
e�2v

� �k

¼ v ln 2 1
1

2
dilog 1� 1

2
e�2v

� �
ðA15Þ

we get

j6 ¼
ðli

0
lnð2� e�2vÞdv ¼ li ln2� 1

2
dilog

1

2

� �
1

1

2
dilog 1� 1

2
e�2li

� �
: ðA16Þ

Using this and

j7 ¼
ð li

0
e�2vðn�kÞdv ¼ 1� e�2liðn�kÞ

2ðn � kÞ ðA17Þ

yields

VarðZiÞ ¼
1

l2
i

ð li

0

ðli

0
Dðu; vÞdu dv

¼ 1

l2
i 4t11

Xt

n¼1

t

n

� �
2nj6 1 4

Xn�1

k¼1

j3ðj7 � liÞ
" #

1 j6

( )
: ðA18Þ

(F1)t-DH lines:

For (F1)t-DH lines we have (Table 2)

Dðu; vÞ ¼ 1

4

1 1 e�2jv�uj

2

� �t

e�2jv�uj: ðA19Þ

Consider u # v and set

g ðuÞ ¼ 1 1 e�2ðv�uÞ

2
g 9ðuÞ ¼ e�2ðv�uÞ f ðxÞ ¼ xt ; ðA20Þ
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then

Dðu; vÞ ¼ 1

4
f ðg ðuÞÞg 9ðuÞ: ðA21Þ

With integration by substitution we get

ðv

0
Dðu; vÞdu ¼ 1

4

ðg ðvÞ

g ð0Þ
f ðxÞ dx

¼ 1

4

xt11

ðt 1 1Þ

����g ðvÞ
g ð0Þ

¼ 1

4ðt 1 1Þ 1� 1 1 e�2v

2

� �t11
" #

: ðA22Þ

In analogy we get for u . v

ð li

v
Dðu; vÞdu ¼ � 1

4ðt 1 1Þ
1 1 e�2ðli�vÞ

2

� �t11

�1

" #
ðA23Þ

and therefrom for a fixed v

ðli

0
Dðu; vÞdu ¼ 1

4ðt 1 1Þ 2� 1 1 e�2v

2

� �t11

� 1 1 e�2ðli�vÞ

2

� �t11
" #

: ðA24Þ

We have

ðli

0

1 1 e�2v

2

� �t11

dv ¼ 1

2t11

ð li

0
ð1 1 e�2vÞt11dv

¼ li
2t11 1

1

2t11

Xt11

n¼1

t 1 1

n

� �ðli

0
e�2vndv

¼ li
2t11 1

1

2t11

Xt11

n¼1

t 1 1

n

� �
1

2n
ð1� e�2linÞ: ðA25Þ

For symmetry reasons

ðli

0

1 1 e�2v

2

� �t11

dv ¼
ð li

0

1 1 e�2ðli�vÞ

2

� �t11

dv ðA26Þ

and therefrom we get

VarðZiÞ ¼
1

l2
i

ð li

0

ðli

0
Dðu; vÞdu dv

¼ 1

4l2
i ðt 1 1Þ li 2� 1

2t

� �
� 1

2t11

Xt 1 1

n¼1

t 1 1

n

� �
1

n
ð1� e�2linÞ

" #
: ðA27Þ

(F2)t-SSD lines:

Using the definition of D(u, v) from Table 1 and Equation A11 we get for a fixed value of v

ðli

0
Dðu; vÞdu ¼

ð li

0

1

2t12

Xt11

n¼1

t

n � 1

� �
e�2jv�ujn

2� e�2jv�ujdu

¼ 1

2t12

Xt11

n¼1

t

n � 1

� �
2n�2ðj1 1 j2Þ1

Xn�1

k¼1

j3ðj4 1 j5 � 2Þ
" #

; ðA28Þ
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where j1, j2, j3, j4, and j5 are defined in Equation A13, and therefrom

VarðZiÞ ¼
1

l2
i

ðli

0

ðli

0
Dðu; vÞdu dv

¼ 1

l2
i 2t12

Xt11

n¼1

t

n � 1

� �
2n�1j6 1 2

Xn�1

k¼1

j3ðj7 � liÞ
" #

: ðA29Þ
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