Benutzerspezifische Werkzeuge

Information zum Seitenaufbau und Sprungmarken fuer Screenreader-Benutzer: Ganz oben links auf jeder Seite befindet sich das Logo der JLU, verlinkt mit der Startseite. Neben dem Logo kann sich rechts daneben das Bannerbild anschließen. Rechts daneben kann sich ein weiteres Bild/Schriftzug befinden. Es folgt die Suche. Unterhalb dieser oberen Leiste schliesst sich die Hauptnavigation an. Unterhalb der Hauptnavigation befindet sich der Inhaltsbereich. Die Feinnavigation findet sich - sofern vorhanden - in der linken Spalte. In der rechten Spalte finden Sie ueblicherweise Kontaktdaten. Als Abschluss der Seite findet sich die Brotkrumennavigation und im Fussbereich Links zu Barrierefreiheit, Impressum, Hilfe und das Login fuer Redakteure. Barrierefreiheit JLU - Logo, Link zur Startseite der JLU-Gießen Direkt zur Navigation vertikale linke Navigationsleiste vor Sie sind hier Direkt zum Inhalt vor rechter Kolumne mit zusaetzlichen Informationen vor Suche vor Fußbereich mit Impressum

Artikelaktionen

6.30.12 Nr. 1 Studienordnung Diplom Mathematik

 

6.30.12 Nr. 1 WinWord Download als WinWord-Dokument


Studienordnung des Fachbereichs Mathematik
der Justus-Liebig-Universität Gießen
für das Hauptfach Mathematik
und die Nebenfächer Stochastik und Informatik
im Studiengang "Mathematik"
mit dem Abschluß Diplom-Mathematiker

Hinweis vom 26. Juni 1985
Erlaßgrundlage Änderungsbeschlüsse



INHALTSVERZEICHNIS

§ 1 Geltungsbereich
§ 2 Dauer des Studiums
§ 3 Beginn des Studiums
§ 4 Studienvoraussetzungen
§ 5 Ziel und Inhalt des Studiums
§ 6 Umfang und Aufbau des Studiums
§ 7 Studiennachweise
§ 8 Nebenfächer anderer Fachbereiche
§ 9 Studienfachberatung
§ 10 Inkrafttreten
§ 11 Übergangsbestimmungen

Anlage


Aufgrund von § 22 Abs. 5 des Hessischen Universitätsgesetzes (HUG) erläßt der Fachbereich Mathematik der Justus-Liebig-Universität Gießen folgende Studienordnung:

§ 1
Geltungsbereich

Die Studienordnung regelt auf der Grundlage der Diplomprüfungsordnung des Fachbereichs Mathematik der Justus-Liebig-Universität Gießen vom 8. Februar 1984 (ABI. 9/84) Ziel, Inhalt und Aufbau des Studiums im Hauptfach Mathematik und in den Nebenfächern Stochastik und Informatik im Studiengang "Mathematik" mit dem Abschluß Diplom-Mathematiker (abgekürzt: "Dipl.-Math.").

§ 2
Dauer des Studiums

Der Fachbereich Mathematik schafft auf der Grundlage dieser Studienordnung die Voraussetzungen dafür, daß sich der Student unter Berücksichtigung der übrigen Ausbildungsteile nach vier Semestern (Erster Studienabschnitt) zur Diplom-Vorprüfung und nach weiteren vier Semestern (Zweiter Studienabschnitt) zur Diplom-Prüfung melden kann.

§ 3
Beginn des Studiums

Das Studium sollte zum Wintersemester aufgenommen werden. Ein Studienbeginn im Sommersemester ist nicht ausgeschlossen, stellt aber erhöhte Anforderungen an den Studierenden.

§ 4
Studienvoraussetzungen

Das Studium der Mathematik kann aufnehmen, wer die allgemeinen Voraussetzungen für die Einschreibung erfüllt hat.

§ 5
Ziel und Inhalt des Studiums

(1) Während des Studiums soll der Student die für den Übergang in die Berufspraxis notwendigen gründlichen Fachkenntnisse sowie die Fähigkeit erwerben, nach wissenschaftlichen Grundsätzen selbständig und verantwortungsbewußt zu arbeiten.

(2) Das Studium der Mathematik soll insbesondere folgende Kenntnisse und Fähigkeiten vermitteln:
  • Gründliche Kenntnisse in den Gebieten Analysis, Grundstrukturen, Praktische Mathematik und im gewählten Nebenfach;
  • Gründliche Kenntnisse in je drei Vorlesungen der Reinen und der Angewandten Mathematik;
  • Vertiefte Kenntnisse in einem Schwerpunkt der Reinen oder Angewandten Mathematik (drei Vorlesungen).
Hierbei soll der Student
  • Kenntnisse der typischen Methoden der Mathematik erwerben,
  • Überblick über mathematische Theorien gewinnen,
  • die Fähigkeit zur adäquaten Behandlung vorgegebener Probleme durch geeignete mathematische Modelle erwerben,
  • die Anwendbarkeit der Mathematik auf praktische Probleme erkennen können,
  • sich mit der Mathematik im Hinblick auf ihre Bedeutung für die Gesellschaft kritisch auseinandersetzen.
(3) Das Studium des Hauptfaches Mathematik muß mit einem Nebenfach kombiniert werden. Als Nebenfach kann gewählt werden: Physik oder Stochastik oder Informatik oder Wirtschaftswissenschaften mit dem Schwerpunkt Betriebswirtschaftslehre bzw. Volkswirtschaftslehre. In besonders begründeten Einzelfällen kann der Prüfungsausschuß weitere Nebenfächer im Gesamtumfang von mind. 30 Semesterwochenstunden bis zur Diplomprüfung, die eine sinnvolle Ergänzung des Mathematik-Studiums darstellen, mit Zustimmung des zuständigen Dekans zulassen.

§ 6
Umfang und Aufbau des Studiums

(1) Das Studium erstreckt sich
  1. im Hauptfach Mathematik

  2. auf 59 SWS im Grundstudium (Erster Studienabschnitt: 1. - 4. Semester)
    und 60 SWS im Hauptstudium (Zweiter Studienabschnitt: 5. - 8. Semester)
  3. im Nebenfach Stochastik

  4. auf 20 SWS im Grundstudium (Erster Studienabschnitt: 1. - 4. Semester)
    und 20 SWS im Hauptstudium (Zweiter Studienabschnitt: 5. - 8. Semester)
  5. im Nebenfach Informatik

  6. auf 24 SWS im Grundstudium (Erster Studienabschnitt: 1. - 4. Semester)
    und 18 SWS im Hauptstudium (Zweiter Studienabschnitt: 5. - 8. Semester)
(2) Das Studium gliedert sich wie folgt:

1. Hauptfach Mathematik

1.1 Grundstudium (Erster Studienabschnitt)
a) Analysis I - III:
Grenzübergänge, Ableitungen und Integrale für Funktionen von einer und mehreren Veränderlichen; Theorie und Lösungsmethoden für gewöhnliche Differentialgleichungen und Differentialgleichungssysteme; Funktionen von einer komplexen Veränderlichen, Residuen-Methode, konforme Abbildung
im Umfang von 21 SWS

b) Grundstrukturen
- Lineare Algebra und Analytische Geometrie I und II: Vektorräume und multilineare Abbildungen (einschl. Matrizen, lin. Gleichungssysteme und Skalarprodukt), Geometrie euklidischer, affiner und projektiver Räume
- Algebra:
Gruppen, Ringe, Körper mit Einführung in die Galais-Theorie, Verbände mit Anwendungen in der elementaren Zahlentheorie
im Umfang von 20 SWS

c) Praktische Mathematik
- Programmierkurs
und
- Numerische Mathematik I und II:
Näherungsverfahren zur Lösung von Gleichungssystemen, zur Approximativen, Differentiation und Quadratur von Funktionen, für Eigenwertprobleme bei Matrizen, zur Lösung von Differentialgleichungen
oder
- Stochastik I und Il:
Grundzüge der Wahrscheinlichkeitstheorie (einschl. Martingale, Konvergenzbegriffe) und Grundzüge der Mathematischen Statistik (Entscheidungstheorie, Testtheorie, Schätztheorie)
im Umfang von 16 SWS

Ist Stochastik Nebenfach, so müssen Numerische Mathematik I und II gewählt werden. Sind die Wirtschaftswissenschaften (Schwerpunkt Betriebswirtschaftslehre oder Schwerpunkt Volkswirtschaftslehre) Nebenfach, so müssen Stochastik I und II gewählt werden.
Anstelle der Numerischen Mathematik II bzw. Stochastik II kann auch die Vorlesung Optimierung gewählt werden.

d) Darüber hinaus soll der Student an einem Proseminar wahlweise aus einem der Bereiche nach lit. a) - lit. c) teilnehmen.
2 SWS

1.2 Hauptstudium (Zweiter Studienabschnitt)
a) Mathematik I (Reine Mathematik) drei Vorlesungen nach Wahl (z.B. Reelle Funktionen, Funktionsanalysis, Topologie, Part. Differentialgleichungen, Funktionentheorie, Zahlentheorie usw.) im Umfang von 18 SWS

b) Mathematik II (Angewandte Mathematik) drei Vorlesungen nach Wahl (z.B. Numerische Mathematik I, II, Optimierung, Stochastik I, II - soweit nicht bereits im Grundstudium gewählt - und Spezialvorlesungen aus dem Gebiet der Angewandten Mathematik)
im Umfang von 18 SWS

c) Mathematik III (Schwerpunkt: ein Spezialgebiet aus der Reinen oder Angewandten Mathematik) drei Vorlesungen nach Wahl aus dem gewählten Schwerpunkt
im Umfang von 18 SWS

d) Darüber hinaus soll der Student an drei Seminaren im Gesamtumfang von 6 SWS nach Wahl aus den Gebieten nach lit. a) - c) teilnehmen, darunter obligatorisch an einem Seminar im gewählten Schwerpunkt nach lit. c). Eines der beiden übrigen Seminare kann durch das Proseminar nach 1.1 Iit. d) ersetzt werden.
4 - 6 SWS


2. Nebenfach Stochastik
2.1 Grundstudium (Erster Studienabschnitt)
a) Statistische Methoden, Maß- und Integrationstheorie
im Umfang von 6 SWS

b) Stochastik I, Stochastisches Praktikum, Stochastik II oder Optimierung
im Umfang von 14 SWS

2.2 Hauptstudium (Zweiter Studienabschnitt)
a) drei Vorlesungen nach Wahl aus Stochastik III, IV (Vertiefung der Wahrscheinlichkeitstheorie, Vertiefung der Mathematischen Statistik), Stochastische Prozesse, Angewandte Wahrscheinlichkeitstheorie
im Umfang von 18 SWS

b) ein Seminar zur Stochastik
im Umfang von 2 SWS


3. Nebenfach Informatik
3.1 Grundstudium (Erster Studienabschnitt)
a) Programmierkurs
im Umfang von 4 SWS

b) Physikalische Grundlagen der Informatik
im Umfang von 4 SWS

c) Software-Praktikum
4 SWS

d) Software I und II: Problemlösung mit Algorithmen; sequentielle, iterative, rekursive und parallele Prozesse; Aufbau und Verwendung von Datenstrukturen; Syntax von Programmiersprachen; Architektur und Funktionsweise von Rechnern
im Umfang von 12 SWS

3.2 Hauptstudium (Zweiter Studienabschnitt)
a) drei Vorlesungen nach Wahl aus Einführung in die Elektronik, Prozeßrechner, Betriebssysteme, Mikroprozessoren und andere Spezialvorlesungen zur Informatik
im Umfang von 10 SWS

b) Elektronik-Praktikum und Praktikum über Prozeßrechner und Mikroprozessoren
im Umfang von 8 SWS


§ 7
Leistungsnachweise

(1) Der Student hat folgende Leistungsnachweise zu erwerben:

1. Im Hauptfach Mathematik

1.1 Grundstudium (Erster Studienabschnitt)
a) ein Übungsschein zu Analysis I oder II

b) ein Übungsschein zu Lineare Algebra und Analytische Geometrie I oder II

c) ein Übungsschein zu Analysis III oder Algebra

d) zwei Übungsscheine zu Praktische Mathematik (Numerische Mathematik I, II, Stochastik I, II, Optimierung).

Ist Stochastik Nebenfach, so sind diese beiden Übungsscheine zu Praktische Mathematik aus Numerische Mathematik I, II, Optimierung zu wählen; sind die Wirtschaftswissenschaften (Schwerpunkt Betriebswirtschaftslehre oder Schwerpunkt Volkswirtschaftslehre) Nebenfach, so sind diese beiden Übungsscheine zur Praktischen Mathematik aus Stochastik I, II, Optimierung zu wählen.

1.2 Hauptstudium (Zweiter Studienabschnitt)
a) ein nicht schon zur Diplom-Vorprüfung vorgelegter Übungsschein nach Wahl, jedoch nicht zu Analysis I, II, III, Lineare Algebra und Analytische Geometrie I, II, Numerische Mathematik I, II; Stochastik I, II

b) drei Seminarscheine, wobei mindestens ein Seminarschein zu Mathematik III gefordert wird und einer der beiden anderen Seminarscheine durch einen Proseminarschein ersetzt werden kann.


2. Nebenfach Stochastik
2.1 Grundstudium (Erster Studienabschnitt)
Nachweis über die regelmäßige und erfolgreiche Teilnahme (Leistungsnachweis) an einem Stochastik-Praktikum
2.2 Hauptstudium (Zweiter Studienabschnitt)
a) ein Übungsschein nach Wahl aus Stochastik I - IV, Stochastische Prozesse, Angewandte Wahrscheinlichkeitsrechnung

b) ein Seminarschein zu Stochastik.


3. Nebenfach Informatik
3.1 Grundstudium (Erster Studienabschnitt)
Nachweis über die regelmäßige und erfolgreiche Teilnahme (Leistungsnachweis) an
einem Software-Praktikum
3.2 Hauptstudium (Zweiter Studienabschnitt)
Nachweis über die regelmäßige und erfolgreiche Teilnahme (Leistungsnachweis) an
einem Elektronik-Praktikum,
einem Praktikum über Prozeßrechner und Mikroprozessoren.
(2) Die Leistungsnachweise werden vom Veranstaltungsleiter ausgestellt. In einer Übungsveranstaltung werden verlangt: eine bestimmte Anzahl gelöster Hausaufgaben oder bestandener Klausuren oder eine schriftliche Hausarbeit oder eine mündliche Prüfung von max. 20 Minuten Dauer; in einem Praktikum eine bestimmte Anzahl erfolgreich bearbeiteter Aufgaben. In einem Seminar werden verlangt: ein Seminarvortrag oder eine schriftliche Hausarbeit.
Das Direktorium des Mathematischen Instituts kann festlegen, in welchen der genannten Formen der Nachweis jeweils zu erbringen ist. Entsprechende Beschlüsse des Direktoriums müssen an deutlich sichtbarer Stelle bekanntgemacht werden. Soweit kein entsprechender Beschluß vorliegt, legt der Veranstaltungsleiter bei Beginn der Veranstaltung die Formen des Leistungsnachweises fest.

§ 8
Nebenfächer anderer Fachbereiche

Wegen der Regelungen für Nebenfächer, die nicht vom Fachbereich Mathematik angeboten werden, wird auf die Ordnung der jeweils fachlich zuständigen Fachbereiche verwiesen.

§ 9
Studienfachberatung

(1) Für die Studienfachberatung ist der Fachbereich Mathematik verantwortlich.

(2) Die Studienfachberatung sollte insbesondere in Anspruch genommen werden im Falle eines Studienfach-, Studiengang-, Studienortwechsels.

§ 10
Inkrafttreten

Diese Studienordnung tritt am Tage nach der Veröffentlichung im Amtsblatt des Hessischen Kultusministers und des Hessischen Ministers für Wissenschaft und Kultur in Kraft.

§ 11
Übergangsbestimmungen

Studenten, die das Studium der Mathematik bereits begonnen haben, können wählen, ob sie das Studium nach den bisherigen Vorschriften oder nach dieser Studienordnung fortführen und beenden wollen. Die Wahlmöglichkeit erlischt am 1. Oktober 1989.


Gießen, den 26. Juni 1985 Prof. Dr. D. Gaier, Dekan








Beschluß des Fachbereichs Mathematik vom 26.06.1985 (war nicht Teil des Genehmigungsverfahrens)

ANLAGE

zur Studienordnung des Fachbereichs Mathematik der Justus-Liebig-Universität Gießen für das Hauptfach Mathematik, das Nebenfach Stochastik und das Nebenfach Informatik im Studiengang "Mathematik" mit dem Abschluß Diplom-Mathematiker vom 26. Juni 1985, in der Form der 1. Änderung vom 12. Juni 1996.

Studienpläne*)

Studienplan für das Hauptfach Mathematik

Semester Vorlesungen Stund enzahl






Vorlesung
Übung




1 Analysis I 5
2
Winter Lineare Algebra und Analytische Geometrie I 4
2




2 Analysis II 4
2
Sommer Lineare Algebra und Analytische Geometrie II 4
2

Programmierkurs1) 2
2




3 Analysis III A2) 4
2
Winter Algebra A3) 4
2

Numerische Mathematik I


oder


Stochastik I4) 4
2




4 Analysis III B2) 3

Sommer Algebra B3) 2


Numerische Mathematik II


oder


Stochastik II


oder


Optimierung4) 4
2

Proseminar 2


Vordiplomprüfung


5. - 8. Sem. je 3 Vorlesungen aus den Gebieten Reine Mathematik, Angewandte Mathematik und einem Schwerpunktgebiet. Umfang in der Regel 4 und 2 Stunden. 3 Seminare mit je 2 Stunden.

Mögliche Verteilung:

5 Wahlvorlesung Reine Mathematik
Winter Wahlvorlesung Angewandte Mathematik

Wahlvorlesung Schwerpunkt



6 Wahlvorlesung Reine Mathematik
Sommer Wahlvorlesung Angewandte Mathematik

Wahlvorlesung Schwerpunkt



7 Wahlvorlesung Reine Mathematik
Winter Wahlvorlesung Angewandte Mathematik



8 Wahlvorlesung Schwerpunkt
Sommer 2 Seminare






Diplomprüfung 1. Abschnitt (Reine Mathematik, Angewandte Mathematik, Nebenfach)
Diplomprüfung 2. Abschnitt (Diplomarbeit)
Diplomprüfung 3. Abschnitt (Schwerpunkt)

Als Vorlesungen in folgendem Gebiet können gewählt werden

A) Reine Mathematik:
Vorlesungen aus Reelle Funktionen, Funktionsanalysis, Topologie, Partielle Differentialgleichungen, Funktionentheorie, Zahlentheorie u.a.

B) Angewandte Mathematik:
Num. Math. I, II, Optimierung, Stochastik I, II (alle nur, sofern nicht im Vordiplom geprüft). Spezialvorlesungen aus dem Bereich der Angew. Mathematik.

C) Schwerpunkt:
Vorlesungen aus einem Spezialgebiet der Reinen oder Angewandten Mathematik, in dem später die Diplomarbeit angefertigt werden soll.






Studienplan für das Nebenfach Stochastik

Semester Vorlesungen Stund enzahl






Vorlesung
Übung




1 Statistische Methoden 2
1
Winter






2 Maß- und Integrationstheorie 2
1
Sommer










3 Stochastik I 4
2
Winter Stochastik-Praktikum
2
















4 Stochastik II

Sommer oder


Optimierung 4
2




Vordiplomprüfung










5. - 8. Sem. 3 Wahlvorlesungen in der Regel je aus z.B.: Stochastik III
Stochastik IV
Stochastische Prozesse
Angew. Wahrscheinlichkeitstheorie
Seminar zur Stochastik
2





Hauptdiplomprüfung 1. Abschnitt







Studienplan für das Nebenfach Informatik

Semester Vorlesungen Stund enzahl






Vorlesung
Übung




1 Physikalische Grundlagen der Informatik 2
2
Winter Programmierkurs 2
2




2 Software-Pratikum 2
2
Sommer










3 Software I 4
2
Winter


















4 Software II 4
2
Sommer






Vordiplomprüfung














5. - 8. Sem. Einführung in die Elektronik
Prozeßrechner
Betriebssysteme
Elektronikpraktikum
Praktikum über Prozeßrechner und Mikroprozessoren
4
2
4
4
4




Hauptdiplomprüfung 1. Abschnitt



Anmerkungen:


*) Nebenfächer
Für die Studienpläne für das Nebenfach Physik und das Nebenfach Wirtschaftswissenschaften sind der Fachbereich Physik bzw. der Fachbereich Wirtschaftswissenschaften zuständig.


1) Den Studierenden mit dem Nebenfach Betriebswirtschaft wird empfohlen, eine entsprechende Veranstaltung im FB 02 zu absolvieren.


2) Die Lehrveranstaltung Analysis III besteht aus den Teilen Analysis III A und Analysis III B. Dem Leistungsnachweis zu Analysis III liegt Vorlesungsstoff im Umfang von 4 SWS aus Analysis III A bzw. Analysis III B zugrunde.


3) Die Lehrveranstaltung Algebra besteht aus den Teilen Algebra A und Algebra B. Dem Leistungsnachweis zu Algebra liegt Vorlesungsstoff im Umfang von 4 SWS aus Algebra A bzw. Algebra B zugrunde.


4) Für das Nebenfach Stochastik muß Numerische Mathematik I und II, für das Nebenfach Wirtschaftswissenschaften Stochastik I und II genommen werden; anstelle der Numerischen Mathematik II bzw. Stochastik II kann auch die Optimierung genommen werden.




Erlaßgrundlage


FBR
HMWK Genehmigung
Abl./StAnz.
Seite
Stud.Ord. 26.06.1985
23.07.1985
31.08.1985
497
berichtigt 31.10.1985
31.12.1985

895



Änderungsbeschlüsse

Keine