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Abstract

In this work we use the framework of Dyson-Schwinger and Bethe-Salpeter equations
(DSEs and BSEs) to describe candidates of exotic hadrons in a four-quark (tetraquark)
picture. Speci�cally, we calculate mass spectra on the energy levels of light scalar mesons,
ordinary charmonia and fully-charmed tetraquark states. For that, we solve the quark DSE
and several two-quark meson and diquark BSEs for di�erent quark masses and quantum
numbers in order to use the corresponding propagators and bound state amplitudes for a
description of tetraquarks in a reduced two-body approximation of the full four-body
BSE that is able to distinguish between di�erent internal structures. Beyond that, we
introduce a novel method to couple the two-body tetraquark BSE with the two-quark
meson BSE in order to be able to describe mixing e�ects of tetraquark components with
ordinary quarkonia.
In the energy region of ordinary charmonia, we observe that the candidates of theχc1(3872)
and Zc(3900) are both dominated by a mesonic DD̄∗ component, whereas the diquark-
antidiquark and the hadro-charmonium component are negligible for the description
of those states. The same mostly holds for other hidden and open charm heavy-light
ground states. A mixing with ordinary quarkonia was not considered in those channels
for technical reasons. Moreover, we observe that the light scalar mesons f0(500) and
a0/f0(980) are dominated by meson-meson correlations (�� and KK̄ ) as well, whereas the
diquark-antidiquark and even the qq̄ components appear to be irrelevant for a description
of the ground states. We further show that this is an e�ect of chiral symmetry breaking as
this four-quark dominance is only present for light quark masses. In course of all-charm
calculations we are able to extract a whole spectrum for quantum numbers 0+ and 1+,
where we �nd possible candidates for the recently discovered X(6900) in the excitation
spectra for both quantum numbers. The 1+ candidates are pure mesonic composite states,
whereas the 0+ candidates also have a non-negligible diquark-antidiquark component.
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Kurzzusammenfassung

In dieser Arbeit nutzen wir Dyson-Schwinger- und Bethe-Salpeter-Gleichungen (DSEs
und BSEs), um Kandidaten für exotische Hadronen in einem Vier-Quark/Tetraquark-Bild
zu beschreiben. Im Speziellen berechnen wir Massenspektren auf den Energieniveaus
von leichten Mesonen, gewöhnlichen Charmonia und Full-Charm-Tetraquarks. Dafür
lösen wir die Quark-DSE und mehrere Zwei-Quark-BSEs für verschiedene Quarkmassen
und Quantenzahlen, um mit den entsprechenden Propagatoren und Bindungszustand-
samplituden Vier-Quark-Zustände in einer reduzierten Zweikörperapproximation der
vollen Vierkörpergleichung zu beschreiben. Darüber hinaus führen wir eine neuartige
Methode zur Kopplung der Zweikörper-Tetraquark-BSE mit der Zwei-Quark-Meson-BSE
ein, um Mischungse�ekte von Tetraquarks mit gewöhnlichen Quarkonia zu beschreiben.
Im Energiebereich gewöhnlicher Charmonia sehen wir, dass die Kandidaten des χc1(3872)
und des Zc(3900) beide von der mesonischen DD∗-Komponente dominiert sind, während
die Diquark-Antidiquark- und Hadro-Charmonium-Komponenten vernachlässigbar für
eine Beschreibung dieser Zustände sind. Zumeist gilt dies auch für andere Heavy-Light-
Grundzustände sowohl mit Hidden-, als auch mit Open-Charm-Quantenzahlen. Eine
Mischung mit gewöhnlichen Quarkonia wurde in diesen Kanälen aus technischen Grün-
den nicht berücksichtigt. Außerdem beobachten wir, dass die leichten, skalaren Mesonen
f0(500) und a0/f0(980) ebenfalls von Meson-Meson-Korrelationen (�� und KK̄ ) dominiert
werden, während die Diquark-Antiquark- und sogar die qq̄-Komponente für die Beschrei-
bung der Grundzustände irrelevant zu sein scheinen. Wir zeigen weiter, dass die ��-
Dominanz für das f0(500) auf chirale E�ekte rückführbar ist, da diese lediglich bei leichten
Quarks präsent ist. Im Zuge von All-Charm-Rechnungen können wir ein ganzes Spek-
trum für die Quantenzahlen 0+ und 1+ extrahieren und �nden mögliche Kandidaten für
das erst kürzlich entdeckte X(6900) in den Anregungsspektren beider Quantenzahlen.
Während die 1+-Kandidaten rein mesonische Zustände sind, haben die 0+-Kandidaten
nicht-vernachlässigbare Diquark-Antidiquark-Komponenten.
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Chapter 1

Introduction

1.1 Elementary Particle Physics

The search for the tiniest structures and the associated mechanisms in nature has a
long history. Nowadays, we believe that there exist four fundamental forces which are
responsible for the phenomena we observe in our universe:

• electromagnetism: the force between electrically charged particles such as electrons
and protons in an atom. In principle, it’s acting on arbitrarily long distances, but
its strength is decreasing quickly with increasing distance.

• weak interaction: it’s responsible e.g. for nuclear decays. The radius of action is
extremely small – only on subatomic scales, this interaction can be observed.

• strong interaction: it’s binding together atomic nuclei, generates the majority of
mass in our universe and acts only on subatomic scales. With increasing distance,
this force is not asymptotically approaching zero strength as it is the case for the
electromagnetic interaction, but rather approaches a non-zero value. In its radius
of action, it is more than 100 times stronger than the electromagnetic force.

• gravitation: this force is by far the weakest, but the most in�uential force in
the universe. It cannot be shielded and is responsible for planetary and stellar
trajectories. The radius of action is in�nitely large such that this force dominates
the behaviour of the largest structures we have knowledge about; for example,
the orbit of our solar system in the Milky Way is in�uenced by forces acting over
thousands of light years.

The �rst three forces are described by the so-called Standard Model of elementary
particle physics. Attractions and repulsions between interacting particles are described
via the exchange of bosonic particles, called exchange bosons. It is broadly desired that
the behaviour of particles is mathematically described by well-formulated quantum �eld
theories. The electromagnetic interaction for instance is described by a quantum �eld
theory called quantum electrodynamics (QED) and can be generalized together with the
weak interaction to the theory of electroweak interaction. While the small coupling of the
electromagnetic force allows us to treat QED as a perturbation theory, it can be solved that
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way as it is. That makes a vital di�erence to the treatment of strong interaction, which is
described by quantum chromodynamics (QCD) and cannot be treated as a perturbation
theory at low energies (or large distances, respectively) due to its strong coupling. Until
this day, QCD cannot be considered as solved; while trying, theoretical physicists all
over the world are faced with enormous technical and conceptual challenges. This does
not hold for the behaviour on small distances (or high energies, respectively), where the
coupling is approaching zero and the theory could be solved perturbatively (“asymptotic
freedom”).

The fourth force, gravitation, is not part of the standard model and the formulation of
a robust quantum theory is still a subject of intense research. On large scales, phenomena
are successfully described by general relativity, but the behaviour on small distances is
still puzzling because there is no clear perspective to extract information from experiment
due to its weak strength compared to the other forces, which clearly dominate physics on
small scales. Theorists all over the world search for generalizing “beyond-standard-model”
(BSM) theories in the �eld of quantum gravity. However, it is yet unknown, on which
energy scale the relevant e�ects of BSM physics could be measured. At some point in
time, the development of a proper theory for quantum gravity could lead to a more
general description of the unsolved mysteries in our universe such as dark matter or dark
energy.

1.2 Quarks and Multiquark States

In this thesis, we focus on the strong interaction/QCD and the production of bound states
and resonances. While the electromagnetic force describes interactions between particles
with electric charge, the interacting particles in QCD carry a “strong” charge, which we
characterize by three colours (and the corresponding anticolours). Based on this, QCD is
a non-Abelian gauge theory with SU(3) as the associated symmetry group. The colour-
carrying fermions in this theory are quarks and the exchange bosons are gluons, which
carry a colour charge as well. To this day, we know about six sorts of quarks (and their
antiparticles) and distinguish between them by a property called �avour. Only composite
states of colour-carrying particles for which the colours “add up” to zero – a “colourless” or
“white” state, which we call hadron – could be observed in nature. The potential energy
resulting from separating a quark from a colourless state results in quark-antiquark
productions, ensuring colourless separations. This principle is called “con�nement” and
is fundamental for our understanding of the strong interaction. It leads to bound state
spectra including quarks and gluons, but only in speci�c con�gurations. The simplest ones
are mesons, compositions of a quark and an antiquark (qq̄) and baryons, compositions
of three quarks (qqq) or three antiquarks, respectively. Prominent representatives for
the latter con�gurations are protons and neutrons, the building blocks of atomic nuclei.
Though, these are not the only ones; one can imagine of other compositions, which we
call exotic:

• tetraquarks: bosonic particles containing two quarks and two antiquarks (qqq̄q̄)

• hybrids: bosonic particles containing a quark, an antiquark and a gluon (qq̄g)
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• glueballs: bosonic particles containing two or more gluons (gg[g])

• and even higher multiquark states (fermionic pentaquarks, hexaquarks, . . . )

The attribute “exotic” originally stems from the non-explainability of certain quantum
numbers from the non-relativistic quark model of conventional qq̄ mesons – thus, either
the inclusion of relativistic e�ects or the consideration of deviating “exotic” compositions
provide the possibility to realize an appropriate description of those states. In principle,
there is no upper limit set for the own imagination regarding the construction of exotic
states, but since a physical system always aspires a state of minimal energy, the hadronic
reality should be dominated by low-energy states.

It is conceivable to consider also coloured particles such as diquarks – states with two
quarks (qq) or two antiquarks, respectively – as particles which occur only internally
in higher bound states or resonances. Although they may have this “building block
character”, they have to be understood more as auxiliary tools than as standalone bound
states due to the lacking observability. An extensive overview over multiquark states
from a theoretical and an experimental view is provided by the review articles [1, 2].

In this thesis, we investigate the properties of colourless two- and four quark states
– mesons and tetraquarks1. The principles of quantum mechanics allow us to overlap
the wave functions of di�erent states as long as they have the same quantum numbers
and thus, the full wave function of a hadronic state could potentially be a sum of wave
functions including di�erent structures. In that sense, a bosonic hadron may have non-
vanishing meson and tetraquark components if the quantum numbers allow, and even the
tetraquark component might be decomposable into di�erent substructures. Additional
hybrid and glueball components for instance are possible as well, but we will particularly
concentrate on mesons and tetraquarks in this work.

1.3 Motivation

The light scalars. The lowest-lying state consisting of two light quarks (u/d) is the
pion with quantum numbers 0−: a pseudoscalar. It is the pseudo Goldstone boson of
QCD as a consequence of spontaneous chiral symmetry breaking. Hence, according to
the Goldstone theorem [3], it would be massless if chiral symmetry was not explicitly
broken (which would be the case for vanishing quark masses). The chiral partner of the
pion with opposite parity, i.e. with quantum numbers 0+, is called � or f0(500) and has a
puzzling property: its mass. With 400 − 550 MeV, it is far lighter than predicted by the
quark model. Especially, it should be heavier than the vector (1−) partner, which we can
trace back to group theoretical aspects: non-relativistically, the relation P = (−1)L+1 holds
and we conclude that the 0+ ground state is a p-wave (L = 1). That however indicates a
contribution from angular momentum that should raise the mass above its 1− partner,
the �, which is an s-wave in the non-relativistic picture. But since m� > m� , we get what
we call inverse mass ordering. Considering the whole multiplet of scalar states, which is

1As bosonic hadrons, tetraquarks are often called mesons as well in literature, mostly with the attribute
“exotic”. For the sake of understandability, we will call (qq̄) states mesons and (qqq̄q̄) states tetraquarks
throughout this work.
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Figure 1.1: Left panel: The scalar meson ground state multiplet its typical graphical form. f0
states are isoscalars (I = 0) and a0 states are isovectors (I = 1). Right panel: All
states from the multiplet put into a table with their respective quark content in a qq̄
description and in a qq̄qq̄ description.

shown in Fig. 1.1, we notice further inconsistencies with a qq̄ interpretation if we take a
closer look at the hidden-strange states. In the qq̄ interpretation, the lightest isoscalar
f0(500) should be almost mass-degenerate with the three a0(980) states in the isotriplet due
to the light quark content and the (approximate) isospin symmetry, whereas the second
lightest isoscalar, the f0(980), should be much heavier as it would consist of two strange
quarks. But the numbers in parentheses entail that this is not what we �nd in nature:
contrary, the a0(980) states and the second-lightest f0(980) are almost mass-degenerate
mysteriously, whereas the f0(500) is by far the lightest state. These arguments lead to the
conclusion that a qq̄ description may not be the correct way of describing this multiplet.

All these putative inconsistencies could be resolved by taking two more quarks
into consideration and thus, describing the light scalars four-quark states with quark
content qqq̄q̄. Recalling the parity argument from non-relativistic quark models, it now
states P = (−1)L and we get a 0+ ground state for vanishing angular momentum L = 0,
which resolves the existence of a scalar state in the spectrum below the vector mesons.
Furthermore, the mass-degeneracy between the a0(980) and the f0(980) could naturally be
explained by the quark content alone: as the f0(500) only carries light quarks, the f0(980)
and the a0(980) carry a heavy strange-antistrange quark pair. All this could be seen in
the table on the right hand side of Fig. 1.1. This idea of describing the lightest scalars as
four-quark states was �rstly motivated by Ja�e in the 70s [4].

In addition to that, we could explain the low mass of the f0(500) when we consider
pions as e�ective degrees of freedom. Compared to a constituent quark model with
e�ective quark masses of ∼ 350 MeV, it might be energetically favourable to bind two
pions of m� ≈ 140 MeV together than two constituent quarks. Similarly, the f0/a0(980)
might be built-up molecularly by KK̄ [5]. These arguments provide strong reasons to
examine the nature of the light scalars with a dynamic quark content. Note that a few of
these arguments are not exactly transferable to QCD, which is formulated relativistically
so that P = (−1)L+1 is not true any more for pure qq̄ states, and since the lightest quarks
in mesons should de�nitely not be considered as non-relativistic particles, we cannot
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make reliable, quantitative statements on this level. Because of that, we will pursue an
investigation in a covariant framework in this work.

The charmonium spectrum. Until 2003, charmonium spectroscopy was truly satis-
fying. Experiments were able to con�rm many predictions of quark model calculations
for charmonium states and the qq̄ picture seemed to be a complete description, but the
discovery of the χc1(3872) by the Belle Collaboration [6] was the birth of what we call
exotic spectroscopy today: it has quantum numbers 1++ and does not �t into the quark
model of ordinary charmonia. The low width and the closeness to the DD∗ threshold
indicates a four-quark structure with two charm and two light quarks. In the following
years, parallel to novel theoretical predictions, more of those exotic states were measured.
Traditionally1, we classify these states with the letters X, Y and Z:

• Z for a state with non-zero electric charge,

• Y for 1− states and

• X for the rest.

The charmonium-like exotic states along with the ordinary charmonia are embedded
in the charmonium spectrum, which is shown in Fig. 1.2. Refs. [2, 8–11] together give a
nice overview about all the di�erent four-quark candidates and their properties.

With the discovery of charged Z states, any doubts on the existence of composite
states with a content of at least four quarks were eliminated due to the fundamental
principle of electrical charge conservation. Over the years, the internal structures of many
XYZ states have been continuously discussed, and yet, there are no �nal agreements
between di�erent theoretical and experimental approaches. PANDA will be a promising
experiment in order to measure line shapes – these will provide useful information to
make experimentally founded statements about the inner structure [12]. In the paragraph
after next we will brie�y summarize which models are proposed in order to describe the
inner structure of exotic tetraquark candidates.

All-charm tetraquark candidates. In 2020, the discovery of a state with a mass at
around 6.9 GeV in the di-J / mass spectrum was the �rst experimental evidence of a
four-quark state with a quark con�guration of cc̄cc̄ [13]. Due to its mass and the yet
unknown quantum numbers it received the name X(6900). Di�erent from X states in the
charmonium region it is pretty unquestionable that this state is de�nitely a four-quark
state due to its energy which is far away from the ones we expect from conventional qq̄
states. The discovery of the X(6900) is very young and only little information is available
yet, which makes it an attractive candidate to investigate theoretically. Such investigations
could e.g. predict the quantum numbers or whether this state is a ground state or an
excited one. Such a determination could be helpful in understanding how physics on this
energy level works and might give hints about possible other, yet unobserved states.

1Although this scheme has been abandoned by the PDG a few years ago, it is worth to name the
traditional one here as it is still the one the majority of people is familiar with. The new scheme distinguishes
between isospin, �avour and quantum numbers P and C ; an overview is provided e.g. in Ref. [7]. In this
thesis, we will consistently stick to the new one when talking about experimentally con�rmed states.
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panel charged exotic states. Black lines represent observed charmonium levels, blue lines represent predicted levels
according to Radford and Repko [256], red lines are exotic states. The open charm thresholds are reported on the right.
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Figure 1.2: The charmonium spectrum. Black bars denote observed charmonium states; blue bars
are predicted from quark model, but not yet unobserved states; red bars are exotic
XYZ states. We distinguish between uncharged states (left panel) and charged states
(right panel) because the latter ones are no eigenstates of the charge conjugation
operator, in contrast to the former one. The spectra as shown are taken from [2].
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Inner structure. Besides ordinary quarkonia, we distinguish between four four-quark
structures. We will assume a heavy-light structure with quark content QQ̄qq̄ for the
following de�nitions as it provides the most general distinction for the states of interest
in this work:

1. heavy-light meson-meson: Two mesons constitute a composite state with quark
content [Qq̄][Q̄q]. States like this could be either bound or resonant. If the binding
energy of such a bound state is small (⇔ has a mass closely below the two-meson
threshold), we talk about a meson molecule. For an overview about the nature of
these kinds of states, see [1, 9, 14, 15].

2. hadro-quarkonium: This classi�cation is meaningful only for heavy-light QQ̄qq̄
states. The light qq̄ state is surrounding the heavy QQ̄ similar to an electron which
surrounds a proton with quark content [QQ̄][qq̄]. If there are four quarks of equal
mass, this con�guration is equal to the meson-meson one (see the latter bullet). A
discussion about the importance of this structure in the charmonium spectrum is
provided by [16].

3. diquark-antidiquark: a diquark (Qq) and an antidiquark (Q̄q̄) are tightly bound
and form a compact four-quark state, see [17] for an elucidation of the potential
importance of this kind of structure. Often, this con�guration is generally referred
as tetraquark to di�erentiate the other two con�gurations from this one. In this
thesis however, we will call every 4-quark composite state a tetraquark.

4. compact tetraquark: the four quarks are closely arranged with no assignable order.

These namings correspond to very common nomenclature in literature, so we will use
them throughout this thesis consistently. In this work we will not consider the last
con�guration (4); we will later see why. A comprehensive overview over the whole topic
is given by the review [18].

Theoretical perspective. The strength of theoretical calculations is to be able to vary
parameters such as the quark mass or the coupling systematically. Treating hadronic
states, there are many possible approaches, and comparisons between the di�erent
methods are a promising tool in order to con�rm or discon�rm di�erent results. However,
as stressed before, there is still no �nal agreement between di�erent approaches for
many experimentally observed states. Nevertheless, �ndings in one approach could
lead to enhanced e�orts in other ones, and compliant �ndings could give hints for
experimentalists to search for states in speci�c energy regions. Altogether, this makes
theoretical calculations a powerful, yet reviewable tool in order to acquire knowledge.

1.4 Theory and Experiment

Gaining knowledge about the structure of hadronic matter is the central research em-
phasis of experimental and theoretical hadron physics. The development of theories and
the search for experimental evidence are subject of nowadays research and a full under-
standing of the hadronic reality can only happen in an e�ective interplay between those
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two disciplines. While experimentalists are planning experiments at particle accelerators
and performing analyses of the extracted data in the �rst place, the task of theorists is to
develop models and re�ne theories not only to reproduce the data that experimentalists
already extracted from measurements at detectors, but also to do predictions which
can be veri�ed or rejected later on. Also, theoretical considerations may suggest, at
which energy scales experimentalists should particularly look when searching e.g. for
multiquark states such as tetraquarks.

Theoretical approaches

In the following, selected theoretical approaches to deal with hadronic bound states and
resonances are described. It should only serve as a short and non-technical overview –
a more detailed summary of many approaches is given by [7, 19]; furthermore, we will
refer on numerous review articles.

Quark Models. Quark model calculations mostly treat the fermions of strong interac-
tion, the quarks, as constituent quarks with an e�ective mass i.e. to solve the Schrödinger
equation based on spin-spin interactions. While this does not include phenomena like dy-
namical chiral symmetry breaking and pair creation/annihilation (some of the associated
e�ects such as dynamical mass are stored in model parameters like the constituent quark
mass), it is a comparably simple approach, which proved to be a good phenomenological
tool to reproduce and predict many of the states in hadronic spectra on the basis of group
theoretical aspects. The strength is especially the treatment of heavy quarks, where a
non-relativistic approach is reasonable. By construction, quark models are limited and
it is not possible to deal with certain exotic states such as glueballs and hybrids unless
one extends the model by “constituent gluons” [20]. However, in principle, tetraquark
calculations are possible, e.g. by choosing diquarks and antidiquarks as e�ective degrees
of freedom as the authors did e.g. in [21–23] on the basis of the well-known χc1(3872).

Lattice QCD. The treatment of QCD on a lattice is one of the most widespread ap-
proaches to perform non-perturbative computations in QCD, for reviews cf. [24–26]. The
idea is to introduce a minimal distance a as a regularization to discretize the spacetime
on a lattice of �nite volume. Spacetime integrals are substituted with sums over lattice
sites. As a approaches zero (“continuum limit”), the original theory is restored. It is
advantageous that conceptually, this approach yields well-determined statistical errors,
which depend e.g. on the lattice spacing and the �nite volume. Computations are done
from �rst principles since correlation functions are directly extracted from Path integrals
via Monte-Carlo methods. While this sounds promising, it turns out to be extremely
di�cult to overcome technical complexities. Auspicious progress in describing exotic
four-quark candidates was made within the last decade [27–37]. In a gauge �xed formal-
ism, correlation functions represent an important interface between the lattice approach
and functional methods such as Dyson-Schwinger equations, which are brie�y described
in the following.
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Dyson-Schwinger Equations. The Dyson-Schwinger framework is a functional ap-
proach based on the equations of motion for the one-particle irreducible Green’s functions
from QCD’s e�ective action, for reviews cf. [38–42]. The Dyson-Schwinger equations
(DSEs) of di�erent Green’s functions are coupled and include the full dynamics of QCD
as an in�nite tower of integral equations. In practice, solutions are either obtained via
an iterative solution of the coupled system of self-consistent DSEs by using suitable
truncations or via e�ective models. In combination with the formalism of Bethe-Salpeter
equations (BSEs), which can be derived from the full 2n-quark Green’s function and
thus, from the e�ective action as well, DSEs have proven to be powerful tools to ex-
tract information about bound states, resonances [43–45] and even exotica [46–48]. A
major weakness of this approach are uncertainties in the error estimate of the applied
truncations and models.

E�ective Field Theories. E�ective �eld theories play an important role for the under-
standing of how exotic states are generated and constitute a tool which substitutes the
dependence on the strong coupling at low energies with weakly interacting hadrons. In
the low energy sector, it is possible to form an e�ective chiral Lagrangian which depends
not on fundamental quark �elds, but rather on the �elds of QCD’s lowest-lying colour
singlet hadrons, e.g. the Goldstone bosons. This leads to the idea of chiral perturbation
theory (ChPT), see [49] for a pedagogical introduction. Such theories in an interplay
e.g. with lattice results provide a suitable tool to calculate observables from �rst princi-
ples [50]. Furthermore, it serves as an input for model-independent studies about the
inner structure of candidates for hadronic molecules based on Weinberg’s compositeness
criterion [51, 52]. Also based on chiral e�ective Lagrangians, many features of QCD
could be understood by studying the large-Nc limit of QCD [53–55]. In the low-energy
region, leading-order large-Nc descriptions from chiral Lagrangians [56–59] and linear
sigma models [60, 61] serve as strong tools to disentangle the nature of the light scalar
mesons, which are doubtlessly not conventional qq̄ states [62].

QCD Sum Rules. Apart from the approaches given above, it is worth to mention
that exotic states could also be described by QCD Sum Rules [63, 64] – a method where
masses, widths and decay constants are extracted by the computation of correlation
functions from fundamental degrees of freedom and from mesonic ones. This method
works under the assumption that in a certain energy region the two calculations give the
same result [2]. In the last decade, the applicability of this approach became apparent
especially for the description of the XYZ states with heavy quarks, see e.g. [65] for an
overview.

Dispersion Theory. In contrast to many other approaches, dispersion theory provides
a model independent method to extract physical observables from dispersion relations
on the basis of scattering amplitudes, see e.g. [66, 67]. A partial wave from a relativistic
quantum �eld theory has a certain analytic structure in the complex plane and establishes
cuts and poles. From the reaction threshold in a scattering experiment comes a right
hand cut and another left hand cut is a consequence of crossing symmetry. Based on
Cauchy’s theorem applied on the complex scattering amplitudes, one obtains integral
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equations which can be used to identify resonance poles in the complex s plane. Thereby,
the inclusion of the left hand cut constitutes the main di�culty; theoretically, this could
be achieved by solving the so-called Roy equations [68]. The data in order to evaluate
the dispersive integrals could be taken either from theory, e.g. from ChPT calculations,
or from experiment (“dispersive analyses”). The latter ones then provide a truly model-
independent extraction of physical observables. Today, the most advanced determinations
of the pole positions of the light scalar mesons stem from dispersive analyses [62].

Experiments

In this section, a few relevant big experiments for doing investigations of exotic hadrons
will be mentioned very brie�y. For further details, I refer to the conception drafts of the
respective collaborations.

LHCb. The LHCb (Large Hadron Collider beauty) is an experiment which is suitable
for investigating decays of hadrons with heavy quarks (charm and bottom) through
productions of bb̄ pairs [69]. It contributed to huge progress in search for exotic states
within the last decade with the discovery of tetraquark resonances as excited states of
the X(4140) [70, 71] and the pentaquarks Pc(4380)+, Pc(4450)+ [72]. Furthermore, it was
able for the �rst time to determine the quantum numbers of the χc1(3872) in 2013 [73].
In 2020, the �rst all-charm tetraquark state, the X(6900), was discovered [74, 75]. Today,
the LHCb collaboration counts 68 institutions from 15 countries. [76]

BESIII. BESIII (Beijing spectroscopy III) is an experiment with an e+e− collider, which
is active since 2009 in Beijing, China. The international collaboration consists of 72
institutions from 15 countries [77]. Amongst other things, it is set up for light hadron
and charmonium spectroscopy and provides decent high-precision experiments for char-
monium physics due to its high luminosity [78].

BELLE / BELLE II. BELLE (II) is an experiment that does high precision physics in the
beauty sector through B decays [79]. It was the �rst experiment in 2003 that detected the
�rst exotic particle, the χc1(3872) [6], and thereby initiated a new era of hadron physics.
The current �agship collider SuperKEKB performs e+e− collisions at extraordinary high
luminosity [80]. Currently, the international collaboration consists of 115 institutions
from 26 countries. [81]

PANDA. PANDA (antiProton Annihilation in Darmstadt) is an experiment under con-
struction in Darmstadt which is worth to mention here due to its huge potential to gain
knowledge about the nature of the strong interaction [12, 82]. As a pp̄ machine, the
hadron collider will be particularly important in order to investigate the structure of
exotic states like tetraquarks, glueballs and hybrid mesons. With the measurement of line
shapes e.g. of the χc1(3872) it will be instructive to reveal whether this state is a compact
state or a hadronic molecule [83].
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1.5 Theoretical Status on Exotic Four-Quark Candi-

dates

Over the years, many theoretical approaches were established for doing investigations to
describe tetraquarks and yet, we are far away from claiming that there are �nal agree-
ments. Many publications from the last years described exotic states for di�erent quark
compositions: the ones in the light quark sector, heavy-light hidden-charm tetraquarks,
open-charm and open-bottom, all-charm states and others. The �ndings presented in
various publications show that conclusions about the inner structure strongly depend on
the applied methods and models.

Take the mysteriously degenerated states a0(980) and f0(980) for example; we �nd a
whole spectrum of conclusions about the inner composition of the a0: a strong dominance
of a molecular KK̄ component [84], a dominant qq̄ with coupling to diquark-antidiquark
�elds [36], a pure diquark-antidiquark state [85] or a mixture of KK̄ and �� [47, 86].

Similar uncertainties could be found by looking at the charmonium-like candidates.
For instance, it is highly debated what the popular χc1(3872) actually is – a four-quark
state, and if so, it is unclear what it’s composed of internally. It is often the case that
certain studies are only considering one speci�c internal con�guration at once to describe
the states in question – for example, most quark model calculations, e.g. [21, 87, 88],
are based on a diquark-antidiquark description that supposes that a certain input state
like the χc1(3872) is a diquark-antidiquark state in order to gauge the model parameters.
Similarly, studies like [89] from QCD sum rules also consider only a diquark-antidiquark
structure a priori. Conversely, Ref. [90] states that the sum rule approach favours a
molecular picture. A more cautious statement about the �ndings in this approach was
given in [64], where the authors state that the χc1 is at least neither a pure cc̄ state, nor a
pure molecule.

Contrary to that, a complete description of four-quark candidates with strong conclu-
sions have to happen by considering an overlap of all possible substructures. This has been
done for speci�c charmonium-like four-quark candidates from Dyson-Schwinger/Bethe-
Salpeter equations [46, 91] by considering three possible tetraquark con�gurations. The
resulting statement was e.g. that the χc1 is predominantly a DD̄∗ molecule. However, the
inclusion of an ordinary cc̄ component is still missing. Further problems are given by
technical di�culties. Lattice QCD for example is generally a strong tool to extract observ-
ables from �rst principles, but charmonium-like states like the χc1(3872) are still hard
to describe – descriptions of heavy-light four-quark states using a Born-Oppenheimer
static-light approximation in non-relativistic lattice QCD are by now limited to b̄b̄qq
systems, see e.g. [30–32]. A positive description of the χc1(3872) from the lattice is given
by [28]; the authors see a candidate for the χc1 below the DD∗ threshold, but without
being able to make de�nite statements about the inner composition. Moreover, the
corresponding energy level still has to be con�rmed as it is quite sensitive to lattice
artefacts [8]. Ref. [35] emphasizes especially the importance of the cc̄ component on the
lattice, but also these results require con�rmation [7].

We see that several theoretical frameworks are driven by technical and conceptual
caveats and the results are diverse – many years may lie ahead of us in order to improve
di�erent methods to make them comparable on a quantitative level.
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1.6 Goal of this Work & Outline

Judging from the insight given in the last section 1.5, we notice that the ensemble of
theoretical descriptions for four-quark states is highly incomplete by now. The central
goal of this thesis is to provide di�erentiated results for the properties of bound states
and resonances in a framework which is able to describe an entirety of four-quark
con�gurations in order to gain knowledge about the nature of exotic hadrons. This is
especially valuable since most methods apart from ours are currently not considering
the mixing between all three important four-quark compositions (meson-meson, hadro-
charmonium, diquark-antidiquark) at once.

Moreover, these four-quark compositions are not necessarily the only ones that could
describe a speci�c state with quantum numbers I (J PC). Depending on the isospin I ,
quark-antiquark composite state poles should enter the 8-point Green function,

G (8)
�1…�8(x1, … , x8) = ⟨0| T  �1(x1) ̄�2(x2) ⋯ �7(x7) ̄�8(x8) |0⟩ , (1.1)

as well (along with many other ones, coming from hybrids, glueballs and other exotic
candidates) – we will further intensify this concern in chapter 3.

In this work we will present a method which makes it possible to calculate such an
overlap of di�erent tetraquark components with ordinary quarkonia. To our knowledge,
the formalism presented in this work is the only one that is implementing a mixing
on this level so far with functional methods. With that, we wish to make a valuable
contribution to the community of theoretical exotic hadron physics.

Outline. First, we will brie�y summarize the theoretical background of the Dyson-
Schwinger framework. After this, the quark Dyson-Schwinger equation (DSE) and
Bethe-Salpeter equations (BSEs) are covered. We discuss the solutions of the quark DSE
and two-quark BSEs along with the corresponding complexities and the most important
techniques in order to solve these. After that, we derive and discuss the coupled two-body
tetraquark BSE which we solve in order to insert them into the four-quark equation.
Then, results are shown for di�erent candidates of pure four-quark states and mixed ones
between four- and two-quark states. These are

• heavy-light, hidden- and open-charm XYZ tetraquark candidates in the charmo-
nium sector (e.g. χc1(3872) and Zc(3900)),

• light scalar states (�/f0(500), a0(980), f0(980)) as tetraquark states with quarkonium
mixing and

• the recently discovered resonance X(6900) as a tetraquark state.

In the end, �nal conclusions will be drawn.
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Chapter 2

The Dyson-Schwinger Framework

2.1 Functional Derivation from QCD

Similar to classical systems, it is helpful to know the equations of motion from the under-
lying theory to determine the properties of elementary particles. In QCD, the important
processes such as particle propagations and interactions are described by fully dressed
Green’s functions which can be expressed as derivatives of QCD’s e�ective action. In
this chapter we will brie�y sketch how to arrive there and in the end we will derive the
quark Dyson-Schwinger equation (DSE), the equation of motion for the (inverse) quark
propagator. Other Green’s functions such as further propagators or interaction vertices
can be derived analogously. An extensive review about numerous concepts we cover in
this chapter (and much more) is given by [92]; further details can be found in various
text books, e.g. [93, 94].

The most basic quantity of QCD is its Lagrange density, which we give in the Eucledian
space:

QCD = ∑
i
 ̄i (− /D + mi)  i +

1
4
⋅ F a��F

a
�� . (2.1)

The operator D� = )� + igtaAa
� is the covariant derivative which ensures local gauge

invariance; Aa
� and  i are the gluon and quark �elds and F a�� = )�Aa

� − )�Aa
� − gfabcAb

�Ac
� is

the gluon �eld strength tensor. The index i denotes the quark �avour.
The integral of the Lagrange density then de�nes the QCD action,

SQCD[ ,  ̄ , A�] = ∫ d4x QCD( ,  ̄ , A�), (2.2)

which in turn de�nes the generating functional, the �eld theoretic equivalent to the
partition function of a statistical mechanical system through a Legendre transformation,

Z[�, �̄, j�] = ∫ [q, q̄, A�] exp(−S[ ,  ̄ , A�] + ∫ d4x (Aa
� j

a
� + �̄i i +  ̄i�i)) . (2.3)

The quantities ja� , �i and �̄i are introduced source terms which we set zero when computing
correlation functions.
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To ensure that the integral (2.3) does not integrate over many equivalent paths in
con�guration space1, one introduces Faddeev-Popov ghosts, non-physical particles which
come into the Lagrangian by a delta function while gauge �xing:

�()�A�
a) → exp(−

1
2� ∫ d4x ()�Aa

�)
2
) = ∫ C exp(− ∫ d4x (iC

a)�Aa
� +

�
2
CaCa

))
(2.4)

The parameter � is the gauge parameter – throughout this work we will choose Landau
gauge, which is de�ned by the limit � → 0. An advantage of this is that the gluon
propagator gets fully transversal which reduces complexity. The additional �elds ca and
c̄a, are the ghost �elds with which the resulting (expanded) Lagrangian is then given by

e� =
1
2
⋅ Aa

� [−)
2��� − (

1
�
− 1) )�)�]A

a
� + c̄

a)2ca + gf abc c̄a)� (Ac
�c

b)

− gf abc ()�Aa
�)A

b
�A

c
� +

1
4
⋅ g2f abcf cdeAa

�A
b
�A

c
�A

d
�

+∑
i
 ̄i (− /) + m)  i − ig ̄i
�ta iAa

� (2.5)

with the generating functional

Z[�, �̄, � , �̄ , j�] = ∫ [ ,  ̄ , c, c̄, A�]

exp(−S[ ,  ̄ , c, c̄, A�] + ∫ d4x (Aa
� j
a
� + �̄i i +  ̄i�i + �̄c + c̄�)) .

(2.6)

From Eq. (2.5) one can immediately see which kinds of Green’s functions, including the
ones with ghost contributions, can be obtained by taking the derivatives with respect to
quark, ghost and gluon �elds:

• propagators: quark, gluon, ghost

• vertices: quark-gluon, 3-gluon, 4-gluon, ghost-gluon

While a di�erentiation of the e�ective Lagrangian in the form of (2.5) only yields the tree
level Green’s functions, the fully dressed one-particle irreducible (1PI) versions could be
derived by considering all quantum e�ects of QCD. The generating functional for those
1PI Green’s functions, the e�ective action Γ, is de�ned by

iΓ[ ,  ̄ , c, c̄, A�] = [�, �̄, � , �̄ , j�] + ∫ d4x ( ̄i�i + �̄i i + c̄� + �̄c + A�j�) (2.7)

1In non-Abelian gauge theories like QCD there is the problem of Gribov copies while gauge �xing [40,
95]. That means, it is not necessarily guaranteed that one truly integrates over a speci�c �eld con�guration
only once, and not over other equivalent ones as well. However, lattice studies on the gluon and ghost
propagators indicate that the e�ects of Gribov copies are negligibly small [96, 97] in the energy regions of
interest for us. Based on this, we will neglect their importance throughout this work.
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as the Legendre transformation of the functional :

[�, �̄, � , �̄ , j�] ∶= −i ln Z[�, �̄, � , �̄ , j�]. (2.8)

The e�ective action contains all quantum �uctuations, as it originates from the functional
, which in turn includes Z and thus, the integration over all �eld con�gurations. At
this point we introduce a few identities which result from the fact that  and Γ are
generating functionals for the �elds and sources, respectively. Eq. (2.7) yields (�avour-
index i explicit):

A�(x) = −
δ

δj�(x)
 i(x) = −

δ
δ�̄i(x)

 ̄i(x) = −
δ

δ�i(x)

j�(x) =
δΓ

δA�(x)
�i(x) =

δΓ
δ ̄i(x)

�̄i(x) = −
δΓ

δ i(x)
(2.9)

Derivatives of  and Γ are reciprocal:

∫
y

δ2[ji]
δj1(x)δj2(y)

δ2Γ['i]
δ'1(y)δ'2(z)

= −�(x − z) ⇔
δ2[ji]

δj2(x)δj1(x)
= (

δ2Γ['i]
δ'1(y)δ'2(x))

−1

(2.10)

A derivative of the e�ective action can then be written down in terms of the QCD action
with the �elds ' shifted by a derivative term. This is often referred as the “master DSE”
as it describes how the Green’s functions could be obtained on the basis of the QCD
action S.

δΓ
δ'(x)

['] =
δS

δ'(x) [
'(x) + i ∫

y (
δ2Γ

δ'(x)δ'(y))

−1
δ

δ'(y)]
(2.11)

We made use of the identity

δ

δj(x)
= ∫

y

δ2
δj(x)δj(y)

δ

δ'(y)
⇔

δ

δ'(x)
= ∫

y

δ2Γ
δ'(x)δ'(y)

δ

δj(y)
, (2.12)

which transforms between derivatives with respect to the �elds and derivatives with
respect to the sources. With that it is possible to di�erentiate the e�ective action Γ to
derive Dyson-Schwinger equations for 1PI Green’s functions. In this section we will do
so for the quark DSE as it will be the most important one in this thesis. In the end we
will make a short remark about other DSEs.
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The quark DSE from the e�ective action. As a derivative of the e�ective action,
the (inverse) quark propagator Si reads

S−1i (x, y) =
δ2Γ[ ,  ̄ , A�]
δ ̄i(x)δ i(y)

|||| ̄i= i=0
. (2.13)

The explicit form is derived via two di�erentiations of the e�ective action. We start by
performing the �rst derivative,

δΓ
δ ̄i(x)

[ ,  ̄ , A�] =
δS
δ ̄i [

−
δ

δ�i(x)
[�] +

iδ
δ�i(x)]

(2.14)

= (− /) + mi) i(x) + ig
�A�(x) i(x) + ig
�
δ2

δj�(x)δ�̄i(x)
(2.15)

and continue by taking the second derivative to obtain the inverse quark propagator in
position space:

δ2Γ
δ ̄i(x)δ i(y)

= (− /) + mi)�(x − y) + ig
�
δ

δ i(y)
δ2

δj�(x)δ�̄i(x)
(2.16)

= S−1i,0 (x − y) + ig
� ∫
s,t
D�� (x − t)Γqg

� (t, y, s)S(s − x) (2.17)

With Eq. (2.13), this is the quark DSE, the exact quantum equation of motion for the
(inverse) quark propagator. As can be seen, it includes further Green’s functions – the
ones for the full gluon propagator and the quark-gluon vertex, which have to obey their
own DSEs. Thus, solving the quark propagator in full requires the solution of a coupled
system of DSEs. The DSEs for other Green’s functions, e.g. for the gluon propagator D��
and the quark-gluon vertex Γqg

� are derived similarly:

D−1
�� (k) =

δ2Γ[ ,  ̄ , A�]
δA�δA�

Γqg,i
� =

δ3Γ[ ,  ̄ , A�]
δ ̄i δA� δ i

(2.18)

In the end, even these DSEs include ghost contributions and n-gluon vertices [40], which
would have to be calculated simultaneously. It is common practice to apply models for
Green’s functions in order to reduce the computational e�ort in numerical calculations,
although it is possible to approach the self-consistent system of DSEs as it is, albeit in a
truncated form.

Renormalization. In quantum �eld theories like QCD it is natural that loop integrals
diverge if they are not regularized somehow. Quantities like the coupling constant
or the propagators can be determined at a speci�c energy scale, at which observables
are �xed. With that we bypass the caveat that the unrenormalized Lagrangian yields
quantities which are dependent on a certain regulator, e.g. an ultraviolet cuto� Λ.1 In a

1Other schemes are possible, e.g. dimensional [98] or Pauli-Villars regularization [99], to name but a
few. However, we restrict ourselves to an ultraviolet cuto� here. Everything is simply transferable to other
schemes by replacing the cuto� Λ by a regularization parameter of another kind, e.g. " or ΛPV.
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renormalization scheme, one replaces the dependence on the cuto� with a dependence
on the energy scale, the renormalization point. The renormalized quantities are related
to the unrenormalized ones via renormalization constants, functions of the cuto� Λ and
the renormalization point � as follows:

Xi(Λ) = Zi(Λ, �)X ′
i (�) (2.19)

By de�ning the renormalization constants, the relations between the (cuto�-dependent)
�elds and the renormalized (primed) ones are

 i =
√

Zi
2 

′
i A� =

√
Z3A′� g = Zgg′ c =

√
Z̃3 c′ mi = Zmim

′
i (2.20)

and we de�ne Z1i = Zi
2Zg

√
Z3. Further relations could be deduced via Slavnov-Taylor

identities (STIs) [92]:

Z1 = ZgZ3/2
3 Z̃1 = ZgZ̃3Z1/2

3 Z4 = Z2
gZ2

3 (2.21)

Consequently, the renormalized QCD action reads1

SQCD[ ̄ ,  , c̄, c, A�]

= ∫ d4x
[
∑
i
(Zi

2 ̄i (− /) + mi)  i − Z1ig ̄i /A i) +
Z3

4
F a��F

a
�� −

Z3

2� ()�A�)
2

]
(2.22)

By calculating correlators, it turns out that every expression gets a renormalized version
in quite a simple way via (2.20); for instance, the inverse renormalized tree-level quark
propagator in momentum space reads

S−1i,0 (p, �) = Zi
2(Λ, �)(i /p − Zm(Λ, �)mi(Λ)). (2.23)

Similarly, this can be applied to other Green’s functions, and solving the associated DSEs
yields to renormalized versions of the 1PI Green’s functions as derivatives of the e�ective
action. The renormalized physical quantities mi and g then have to be extracted from
experiment to describe physics at the renormalization scale properly.

2.2 The Quark Dyson-Schwinger Equation

QCD is the theory of quarks and gluons. While gluons are responsible for the actual forces
that bind hadronic matter, quarks can be considered as the central objects that bound
states and resonances consist of. All the information about the behaviour of a quark is
encoded in its propagator. Since it will occur as a building block in larger diagrams, e.g.
the bound state equations which we will introduce in chapter 3, it will be mandatory to
calculate it by solving its equation of motion: the quark DSE. This section is dedicated to
discuss the quark DSE and its ingredients along with how we deal with it in practice and
how the solutions look like.

1The prime symbols were dropped for convenience.
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Figure 2.1: The quark DSE in its diagrammatic form. The black blobs represent the fully dressed
quark propagator, the blue one the gluon propagator and the red one the quark-gluon
vertex. The small black dot is the bare, interaction free quark propagator.

2.2.1 The Equation

The quark DSE is the exact equation of motion for the quark propagator S(p). It is also
referred as the “gap equation” and diagrammatically shown in Fig. 2.1. The momentum
space representation is convenient for our purposes because we are interested in physics
on particular energy scales in the �rst place. It is given by the Fourier transform of
Eq. (2.17):

S−1(p, �) = S−10 (p, �) + Σ(p, �) (2.24)

Note that all indices – Dirac, colour and �avour – are suppressed for convenience. S0 is
the renormalized, bare quark propagator,

S−10 (p, �) = Z2(�2, Λ2)(i /p + Zm(�2, Λ2)mren(�2)), (2.25)

and Σ is the quark self energy, given by

Σ(p, �) = −Z1(�2, Λ2) ∫
q

g2Dab
�� (k) Γ

�
a(q, p) S(q) i
 ��b, (2.26)

where, g is the QCD coupling constant, Dab
�� is the gluon propagator, k = q − p is the

gluon momentum, Γ�a(q, p) is the quark gluon vertex and �i are the generators of SU(3),
the colour gauge group, typically represented by using the eight Gell-Mann matrices �i:

�i =
�i
2

(2.27)

It is important to note that Eq. (2.24), due to renormalization, does not depend on the
ultraviolet cuto� Λ2 any more, but on the renormalization scale �2. At this scale, the
physical quantities are �xed, which is re�ected by the renormalization condition

S−1(p, �)||p2=�2 = i /p + mren(�2)||p2=�2 . (2.28)

We see that the quark propagator in the vacuum1 can be written by using two Dirac
tensor structures, /p and 1. By attaching two dressing functions A(p2) and B(p2) for the

1By putting the quark into a medium one has to consider that the medium itself has a certain orientiation
in space-time. Then, the quark gets a further tensor structure proportional to 
 4 [100].
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general solution as follows,

S−1(p, �) = i /pA(p2, �2) + B(p2, �2), (2.29)

or equivalently
S(p, �) = −i /p�v(p2, �2) + �s(p2, �2) (2.30)

with
�v =

A
p2A2 + B2

and �s =
B

p2A2 + B2
, (2.31)

this makes the full Dirac structure of the quark propagator. All the non-trivial, energy-
dependent information is now stored in the two dressing functions A and B. The e�ective,
renormalization point independent quark mass is then given by

M(p2) =
B(p2, �2)
A(p2, �2)

. (2.32)

2.2.2 The Need for Truncations

Although the quark DSE looks like a closed equation at a �rst glance, this is only true
if every other occurring quantity is known a priori. Unfortunately, this is generally
not the case – the gluon propagator and the quark-gluon vertex obey their own DSEs,
and these DSEs contain further Green functions like 3- and 4-gluon vertices or ghost
contributions [40]. Altogether, these form an in�nite tower of coupled integral equations,
which cannot be solved entirely in a �nite amount of time by using numerical methods.
For that reason, we need to truncate the DSEs at some point to be able to make a self
consistent, iterative treatment numerically feasible. We distinguish between a Rainbow(-
Ladder) (RL) truncation and beyond Rainbow(-Ladder) (BRL) truncations. RL means
that we absorb the non-trivial structure of the full quark-gluon vertex Γ� into the gluon
dressing [38, 101]. Then, the self energy term of the quark DSE expands into a sum of
rainbow-like diagrams. RL truncations have the obvious caveat that they omit important
dynamics which are generally stored in the dressed vertex – consequently, one might have
to model them. Doing this reduces the complexity of the equation because (especially
if the gluon propagator is modelled as well) the equation turns into a closed one as it
decouples from the other DSEs. In contrast to that, BRL truncations take the quark-gluon
vertex, or at least parts of its non-trivial structure, into account, but conversely, numerical
computations may become more expensive. A comparison of di�erent truncations, RL
and BRL, on the level of light meson observables is given in [102]. In this work however,
we use RL truncated equations along with an e�ective model which is described in the
following section.

2.2.3 E�ective Gluon

In course of this work, the idea in order to solve the quark DSE in RL truncation is to
model the combination of the gluon propagator and the quark-gluon vertex to bring
Eq. (2.24) in a closed form that could be solved with manageable numerical e�ort. The
interaction model we used throughout this thesis is based on the works of Maris and
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e�ective

Figure 2.2: The Maris-Tandy model in a pictorial representation via Feynman diagrams. We
absorb the dynamics of the full gluon propagator and the quark-gluon vertex combined
by a bare quark-gluon vertex and an e�ective gluon. It contains the e�ective coupling
, the centrepiece of the model.

Tandy [103, 104] – therefore, we will call it the “Maris-Tandy model” or simply “MT
model” from here on.

We do the following replacement in the quark DSE,

Z1g2Dab
��Γ

�
a → Z2

2 ⋅ (��� −
k�k�
k2 )

(k2)
k2


 �� b, (2.33)

which is also shown in a pictorial representation in Fig. 2.2. (k2) is renormalization
group invariant, which can be made plausible by counting the renormalization constant
occurrences along with using the Slavnov-Taylor identity Z1Z̃3 = Z2 and the fact that
Z̃1 = Z̃3Zg

√
Z3 = 1 is a valid choice1 [105]:

Z1g2DΓ ∼ Z1 ⋅ Z−2
g ⋅ Z−1

3 ⋅ Z1 =
Z2
2

Z̃2
3Z2

gZ3
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

=1

= Z2
2 (2.34)

The e�ective gluon receives its name as it carries the e�ective coupling2  – it is de�ned
by an ultraviolet and an infrared part [103, 104]:

(k2)
k2

= uv
k + ir

k =
8� 2
m ⋅ [1 − exp (−

k2
Λ2t )]

ln [e2 − 1 + (1 +
k2

Λ2QCD)
2

]

+
4� 2�7k4

Λ4
exp(−

�2k2

Λ2 ) (2.35)

Whereas the ultraviolet part is determined by perturbation theory (note the logarith-
mic behaviour), the infrared part is the one which is actually modelled. Motivated by
pion physics (cf. section 3.3), we use � = 1.8 and Λ = 0.71 GeV along with 
m = 12/(33−2⋅Nf )

1That is because the ghost-gluon vertex ful�ls Γg̃g = const. ⋅ Γg̃g0 due to the transversality of the gluon
propagator in Landau gauge. The bare vertex is renormalization point independent, thus we can set Z̃1 = 1.

2Note that we not only replace the dressed gluon propagator and the quark-gluon vertex, but also the
running coupling g.
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Figure 2.3: The charge conjugation of a quark diagrammatically. The momentum �ow direction
inverts as well as the order of the Dirac indices does. The latter e�ect is nothing but
a transposition of the whole quark propagator.

and ΛQCD = 0.234 GeV.1 For light quarks u/d in the isospin symmetric limit, we set
mq = 3.8 MeV for the quark mass at the renormalization point. For numerical translation
invariance of the radial integral it is possible to multiply (k2) with a regularization
function, e.g. a Pauli-Villars regulator for some large scale Λ2PV:

RPV(k2) =
Λ2PV

Λ2PV + k2
(2.36)

The renormalization point, where “physical” quantities are �xed, is consistently set to
� = 19 GeV in this work. This interaction allows us to set the cuto� Λ → ∞ or, in
numerical calculations, as high as necessary. Altogether, the quark DSE then has the
following closed form

S−1(p) = S−10 (p) + Z2
2CF ∫

Λ

q

(k2)
k2

T�� (k)
 �S(q)
 � , (2.37)

where Λ is the ultraviolet momentum cuto� and T�� (k) denotes the transverse projector.
CF = 4/3 is the colour Casimir. In appendix B.1 we brie�y sketch how to approach this
equation numerically.

2.2.4 Charge Conjugation

From the Lagrangian and the charge conjugation of quark spinors (q → q), which
exchanges a quark with its associated antiquark, we can read o� the transformation
behaviour for the quark propagator:

quark =  ̄ (i /p + m) 
C.C.
−−−→  ̄ †(i /p + m)  (2.38)

With C† = CT = C−1 in our Euclidean convention, the charge conjugated quark (S��)c
calculates via

(S��(p))
c = †��S�� (p) �� = S�� (−p) = ST

��(−p). (2.39)

The superscript T denotes the transposition of the Dirac structur; Greek indices are Dirac
indices. Graphically, the charge conjugation of the quark propagator is displayed in
Fig. 2.3 as a Feynman diagram.

1Instead of (�, Λ), the interaction can be rewritten by using other parameters, e.g. (!, D), which can be
found in other publications. It is possible to convert between those parametrizations one-by-one [38].
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2.2.5 Singularities and Branch Cuts

We assume the quark propagator to be holomorphic as well as the whole self energy
integrand on the r.h.s. of Eq. (2.37). Due to singularities in the complex plane of the
angular variable z = p̂ ⋅ q̂ which have a dynamic position depending on p2 and q2, branch
cuts inside the complex q2 plane occur for �xed p2. For those q2, for which a singularity
occurs at some z ∈ [−1, 1], the angular integral is not de�ned and the resulting function
of q2 shows a non-removable discontinuity at this point. Blindly integrating over this
discontinuity leads to numerical artefacts – the heavier the quark is, the more signi�cant
these artefacts get. Thus, strictly speaking, the q2 integration path running from 0 to ∞
has to be deformed in a way that it doesn’t hit any branch points. To give an example, a
branch cut for k2 = (p − q)2 = 0 in the complex q2 plane with an external momentum p2
is parameterized by

c(p2) =
{
p2 (2z2 − 1) ±

√
4p4z2 (z2 − 1) ∶ z ∈ [−1, 1]

}
⊂ C (2.40)

and has a circular shape with a single opening at p2 = q2. According to the integration
rules of complex analysis, only those integration paths going through such an opening are
properly de�ned. A pedagogical introduction into the topic of branch cuts in correlators
along with simple examples is given by [108].
In practice, there are at least three possibilities to perform the radial integration:

• One can integrate over the branch cut on the real positive q2-axis naively, which
yields a numerical error. If this error is acceptably small, this makes a proper way
to calculate the quark propagator. Furthermore, it is the simplest one due to the
low numerical e�ort. This method is well-applicable for the three light quarks: up,
down and strange in our truncation and model.

• One can set the gluon momentum k as the integration variable, whose square is
held in a real domain from 0 to ∞. It is advantageous here that branch cuts are
never hit, because the gluon propagator is not a�ected by the angular integral.
The snag is given by the numerical e�ort, because the quark propagator inside
the self energy integral has to be given in a domain, which is not known a priori
during the iteration steps. E.g., for negative external p2, one requires knowledge
about the quark propagator in the interior of a parabola in the complex plane,
which could be accessed approximately by a mix of guessing and interpolating. It
is worth to note that such a change of momentum routing requires a translation
invariant integral, which is (numerically) ensured by a regularization procedure,
e.g. the insertion of a Pauli-Villars regulator. It is possible to compute the quark
propagator in the complex plane by setting up “shell parabolas” which become
greater and greater, characterized by the apex and the opening, given by the quark
momentum q2 = (p + k)2. We call this the shell method [109] which is described in
appendix B.2 in greater detail. Other strategies of solving the quark propagator
with k as an integration variable are possible as well, e.g. the direct iteration on
complex parabolas in connection with the Cauchy method [110].

• Moreover, it is possible not to change the momentum routing inside the self energy
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integral. Then, we have to deform the integration path such that no branch cut will
be hit. Under the assumption that the integrand is holomorphic, this is possible
as long as we do not overstep a pole. For this, one has to know the details about
the branch cut structure. For Maris-Tandy interaction, two cuts occur due to the
divergences from the logarithmic part of the function (k2). A possible integration
path that avoids overstepping the cuts is given by

q2(p2, t) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

exp [ln("2) + t (ln(p2) − ln("2))] t ∈ [0, 1]
|p2|t ⋅ exp (i arg(p2) ⋅ (2 − t)) t ∈ (1, 2]
exp [ln(2|p2|) + (t − 2) (ln(Λ2) − ln(2|p2|))] t ∈ (2, 3].

(2.41)

Additionally, from a numerical point of view, this integration path is a sophisticated
one, because a possible grid of integration sampling points set up for the domain
t ∈ [0, 3] ensures a proper logarithmic integration with respect to q2.

Those three methods allow us to access the quark propagator in the complex plane, but
there are important remarks to be done: For a proper description of quarks in general,
the latter two methods are the way to go; especially for heavy quarks, where the “naive”
method (the �rst one) fails because of the problematic integration over the branch cut.
For the third method it is necessary to know the location of all poles occurring in the self
energy integral. Dynamically generated poles are extremely hard to catch – in practice,
an assumption has to be made that there are no additional poles apart from the analytic
one “disturbing” the path deformation. The second method is not driven by any of those
problems; the numerical bottleneck is given by the distance between the shell parabolas
and the interpolation routine for any point in between. However, one can investigate
systematically, at which point the solution converges and �x the setup at a con�guration
where this convergence is reached su�ciently well.

2.2.6 Solution

The solution of the quark propagator is shown in Fig. 2.4 with A, B and M as functions
of p2 on the real axis. It is presented for a small current quark mass m = 3.8 MeV (left)
and for the chiral limit (right) where the quark mass is zero. We see that the e�ects of
dynamical mass generation get more and more suppressed in the ultraviolet, whereas
these e�ects are distinct in the infrared. So, in the chiral limit, the quark indeed becomes
massless for large p2, where the QCD running coupling is also vanishing asymptotically.
In the infrared limit, where chiral physics are manifested, the e�ective mass of a chiral
quark is given by around 470 − 480 MeV and for mren(�2) = 3.8 MeV (realistic u- and
d-quarks), the e�ective quark mass is given by 480 − 490 MeV. Treating heavier quarks
like strange and charm quarks consequently leads to higher quark masses and the e�ects
of dynamical mass generation are not as signi�cant as in the light quark case. A deeper
analysis of the quark propagator in the complex p2 plane entails symmetries, especially
under a sign �ip in the imaginary part of p2. The real parts of the dressing functions are
symmetric whereas the imaginary parts are antisymmetric as we complex conjugate the
momentum p2 =∶ z,

A(z∗) = A∗(z) and B(z∗) = B∗(z). (2.42)
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Figure 2.4: The quark dressing functions for a small current quark mass m = 3.8MeV (left panel)
and in the chiral limit for m = 0 MeV (right panel), respectively. The function values
for A are dimensionless, whereas the function values of B and M have the dimension
GeV.
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Figure 2.5: Heat map of the vector dressing function �v of the quark propagator as a function of
the complex momentum p2. The abscissa denotes Re(p2) and the ordinate denotes
Im(p2), both given in GeV2. The quark mass we used is given by 3.8 MeV. We �nd
singularities at p2 ≈ (−0.2 ± 0.3 i)GeV2.
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The denominator of the dressing functions of the “non-inverse” quark dressing functions
�v and �s , which reads

den(p2) = 1
p2A2(p2) + B2(p2)

, (2.43)

leads to a pole structure, which is shown in Fig. 2.5 for mren = 3.8 MeV as a heat map.
With the symmetries mentioned before in Eq. (2.42), two complex conjugate poles occur
at p2 ≈ (−0.2 ± i 0.3) GeV symmetric with respect to a re�ection on the real axis. Later
we will see that these poles play an important role in order to describe bound states of
quarks (and antiquarks) in bound state equations.
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Chapter 3

Bethe-Salpeter Eqations

As pointed out in the previous section, Dyson-Schwinger equations describe the dynamics
of quarks and gluons on the level of 1PI Green’s functions, i.e. their propagators and
vertices. In order to describe bound states and resonances, equations of motion are
required that put the quark constituents together with a binding potential. A solution of
these equations should then include information about the energy, the decay properties
and the spatial structure of the state. In hadron physics, we call these equations Bethe-
Salpeter equations (BSEs), �rstly described in the 50s [111]. In this thesis, these equations
will make the most central tool in order to do investigations for exotic hadrons. This
chapter should provide a brief, but clear overview about how to derive and solve these
equations in general. Furthermore, we will discuss the qq̄ equation and the properties of
J = 0, 1 mesons and diquarks in detail for various quark con�gurations as they will be of
great interest for the inner structure of four-quark states.

3.1 Derivation

First, we will brie�y1 derive a generic n-quark meson bound state equation with n/2
quarks and n/2 antiquarks. For that, we start with the (2n)-quark Green’s function
G which is de�ned by the vacuum expectation value of 2n time-ordered quark �eld
operators:

G(2n)
�1…�2n (x1, … , x2n) = ⟨0| T  �1(x1) ̄�2(x2) ⋯ �2n−1(x2n−1) ̄�2n (x2n) |0⟩ (3.1)

where the superindices �i summarize the Dirac, colour and �avour structure. The QCD
Hamiltonian has a variety of eigenstates |�⟩; we can formulate a corresponding complete-
ness relation as follows [112],

1 = ∑
�

1
(2�)3 ∫

d3p
2(p2 + m2

�)
|�⟩ ⟨�| . (3.2)

1This could be considered as a short, but generalized version of the derivation provided in the review
article [38]. More details along with useful comments could be found there and in [112].
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The eigenstates |�⟩ span a state space with countably in�nite elements – among others,
it contains colourless mesons, baryons and multihadron states as well as coloured states
such as diquarks. In fact, every composite state of QCD makes an element of this state
space by de�nition.

Inserting (3.2) into (3.1) and subsequently Fourier transforming the result yields the
spectral decomposition of G in momentum space:

G (2n)
�1…�2n (P , p1, … , p2n−2) = ∑

�

�,n
�1…�2n (P , p1, … , p2n−2)

P 2 + M2
�

+ regular terms (3.3)

P is the total momentum and pi are relative momenta between the quarks. It becomes
visible that the objects of interest in this thesis, namely hadrons, generate poles in G; to
each of those we can assign an individual residue

�,n
�1…�2n ∶= ⟨0|  �1 ⋯  ̄�n |�⟩ ⟨�|  �n+1 ⋯  ̄�2n |0⟩ (3.4)

which carries all the relevant non-trivial information about G in the vicinity of the bound
state pole. As an abbreviation, we de�ne the so-called Bethe-Salpeter wave function Ψ�,n

as the transition element between the vacuum and a bound state [113]:

Ψ�,n
�1…�n (P , p1, … , pn−2) ∶= ⟨0|  �1 ⋯  ̄�n |�⟩ (3.5)

From here on, we will drop the index � and act as if we were close to the pole of a speci�c
state. Alternatively to Eq. (3.1), the 2n-quark Green’s function could also be written by
using T , the non-trivial part of the scattering matrix S (indices �i implicit):

G(2n) = G(n)
0 + G (n)

0 K (n)G (2n) = G (n)
0 + G(n)

0 T (2n)G(n)
0 with

T (2n) = K (n) + K (n)G(n)
0 T (2n), (3.6)

Here, K (n) is the nPI scattering kernel with respect to quark propagators and G(n)
0 is the

product of n free, non-interacting, full quark propagators. By taking the limit P 2 → −M2

where M is the on-shell mass of the composite state we’re interested in, Eqs. (3.3) – (3.6)
yield the conditions

G(2n)(P , p1, … , p2n−2)
P2→−M2

−−−−−−−→
Ψ(n)(P , p1, … , pn−1)Ψ̄(n)(P , pn, … , p2n−2)

P 2 + M2 or

T (2n)(P , p1, … , p2n−2)
P2→−M2

−−−−−−−→
Γ(n)(P , p1, … , pn−1)Γ̄(n)(P , pn, … , p2n−2)

P 2 + M2 , (3.7)

respectively, where we de�ne the Bethe-Salpeter amplitude Γ (BSA) via an amputation of
the free n-quark propagator from the wave function:

Ψ(n)�1…�n = [G
(n)
0 Γ(n)]�1…�n (3.8)
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Altogether, we obtain the homogeneous BSEs for the wave function and for the amplitude,
respectively, as eigenvalue equations for the eigenvalue � = 1 by comparing the residues
in (Eq. 3.6):

Ψ(n)�1…�n = [G
(n)
0 K (n)Ψ(n)]�1…�n or Γ(n)�1…�n = [K (n)G(n)

0 Γ(n)]�1…�n (3.9)

The possibility of a formulation of an inhomogeneous BSE persists if we absorb the poles
in (3.7) by the amplitudes. Then, one searches for poles in Γ(P) instead.

Normalization. Due to the homogeneity of the BSEs in (3.9), the wave function Ψ and
the amplitude Γ are unspeci�ed with respect to a complex normalization constant. In
order to determine this constant, we have to specify an adequate criterion. Here, this
criterion is formulated by di�erentiating G with respect to the total momentum squared
using the chain rule, which yields the relation

dG (2n)

dP 2 = − (G (2n))
−1 dG (2n)

dP 2 (G (2n))
−1 , (3.10)

where we could insert (3.7) in order to obtain

[
Ψ̄

d (G (2n))
−1

dP 2 Ψ
]
P2=−M2

= 1 (3.11)

in the vicinity of the bound state pole, i.e. P 2 ≈ −M2. Further inserting (3.8) and using
(3.10) inversely for G0 yields the normalization criterion for the amplitude Γ:

[
Γ̄
(

dG(n)
0

dP 2 + G(n)
0

dK (n)

dP 2 G
(n)
0 )

Γ
]
P2=−M2

= −1 (3.12)

This criterion was �rstly formulated by Cutkosky and Leon in [114]. Equivalently, the
BSA could be normalized via the Nakanishi criterion which connects the di�erential of
the BSE eigenvalue1 with a closed loop of BSAs [115]:

[
d�(P 2)

dP 2 ]

−1

P2=−M2

= Γ̄ G0 Γ (3.13)

Whereas this criterion is less complex than (3.12) as it does not include a two-loop
diagram, we will use (3.12) consistently in this work because the mentioned reduction of
complexity does not hold for RL truncated kernels as we will see later.

Leptonic decay constants. An electroweak decay of a bound state |�⟩ happens through
a transition between the bound state and the QCD vacuum while coupling to a current,

1Cf. the right hand side of Eq. (3.9), which is an on-shell relation where � = 1 holds. For the Nakanishi
criterion we generalize the on-shell BSE to o�-shell momenta, where eigenvalues di�erent than 1 could
occur. Then, the BSE eigenvalue is a function of the total momentum, � = �(P2).
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Figure 3.1: Graphical sketch of the derivation for the homogeneous two-quark Bethe-Salpeter
equation (�rst line) and the normalization criterion (second line) as Feynman dia-
grams.

which de�nes the (gauge-invariant) electroweak decay constant f� [38]:

f� ∼ ⟨0| j (�)a (x) |�⟩ (3.14)

The quantum numbers of the current j, denoted by a, have to be chosen in a way that
an electroweak decay is possible. In that sense, a pseudoscalar meson couples to an
axialvector current whereas a vector meson couples to a vector current. Eq. (3.14) can be
translated into a symbolic representation as follows:

f�M� ∼ Γ̃(�)a G
(n)
0 Γ(n) (3.15)

The quantum numbers and thus the form of the vertex Γ̃(�)a is explicitly determined by
the current j (�)a .

Important cases. In practice, we will solve the BSE for the amplitude Γ(n), where the
cases n = 2 and n = 4 will be particularly interesting in course of this thesis. For a quick
comprehension of the vital parts of the derivation, we show the most important step of
the derivation along with the normalization criterion as Feynman diagrams in Fig. 3.1
for n = 2. In that sense, the following sections of this chapter will exclusively cover
two-quark BSEs; four-quark states will be addressed in chapter 4.

3.2 The Two-Quark BSE

The simplest BSE we could imagine to solve for a composite state of quarks and antiquarks
is the qq̄ meson one. It contains only one interaction kernel diagram and has comparably
simple kinematics. As a Feynman diagram, the BSE is shown in Fig. 3.2.

Due to momentum conservation at every vertex, the two-quark amplitude only links
two distinct momenta, the total momentum P and the relative momentum between the
quarks p. The momenta of the two quarks, which we call p± according to Fig. 3.2 are then
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Figure 3.2: Left panel: The meson BSE as a Feynman diagram. All indices (Lorentz, Dirac, �avour
and colour) are implicit. For convenience, spin lines and momentum �ow are always
pointing into the same direction. Right panel: The interaction kernel K has the same
form as the quark self energy kernel enforced by the axWTI.

given by
p+ = p + �P and p− = p + (� − 1)P, (3.16)

where � ∈ [0, 1] is an arbitrary momentum routing parameter, which determines how
much of the total momentum is carried by the particular quark. In the case of equal
quark masses, it is reasonable to set � = 0.5; otherwise, we will later see that a more
asymmetric routing will make sense for heavy-light states for technical reasons – although
the parameter is in fact arbitrary. The kernel K depends on three momenta: the total
momentum P and the external/internal relative momenta p/q. Applying the Feynman
rules yields the qq̄ BSE as an integral equation, graphically shown on the left hand side
in Fig 3.2:

Γ (P , p) = ∫
q
K
 (P , p, q) [S(q+)Γ(P, q)S(q−)]


 (3.17)

The calligraphic superindices … include Dirac-, �avour and colour indices; possible
Lorentz indices of the amplitudes are suppressed. At this point it is worth to mention
that the propagators of the two quarks are not necessarily the same quantities. In the
case of non-equal constituents we have to apply a more general notation and write
S(q+) → S1(q+) and S(q−) → S2(q−) for example.

The full solution of this equation, the BSA, lives in the product space of a 4 × 4 dimen-
sional Dirac space, a Nf × Nf dimensional �avour space and a Nc × Nc dimensional colour
space (where the physical value Nc = 3 is always set in our calculations). Additionally,
for a non-vanishing angular momentum (J ≠ 0) the amplitude itself is a Lorentz tensor,
otherwise a scalar:

Γ(�),��,AB,ab = Γ(�),��Dirac ⊗ Γ
AB
Colour ⊗ Γ

ab
Flavour (3.18)

In appendix A, our �avour- and colour space conventions are shown explicitly.

3.3 Truncations

So far, the form of the BSE kernel was not speci�ed, yet. The self energy kernel of
the quark DSE and the scattering kernel K from the two-quark BSE are related via the
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axial-vector Ward-Takahashi identity (axWTI) [43],

(
5Σ(p−) + Σ(p+)
5)�� = − ∫
q
K (2)
�
 ,�� (p, q, P) (
5S(q−) + S(q+)
5) , (3.19)

which retains chiral symmetry and all the associated e�ects. Since chiral symmetry
describes vital characteristics of low-energy QCD [40], a breaking of this identity would
be dramatic. The axWTI yields that most generally, we have to adopt the same form for
the scattering kernel as it occurs in the self energy term of the quark DSE. Thus, we set1

K = Z1 g2 i
� D�� (q − p) Γqg
� (P , p, q). (3.20)

We see that this kernel is driven by the exact same “problems” as the quark DSE: we have
to know the gluon propagator and the quark-gluon vertex to know the kernel exactly.
Whereas it just sounds reasonable to apply the same truncation here as we did in the
quark DSE, the axWTI even forces us to do so since the truncations and interaction
models we chose for the quark DSE propagate through the WTI (3.19) into the BSE
kernel. So, we will apply the Rainbow-Ladder truncation also for the meson BSE. Here, it
becomes obvious why the truncation in the BSE is basically called Rainbow-Ladder (RL)
truncation: its visual appearance in a Feynman diagram has a ladder-look because of
the vertical curly line of the exchange gluon; this is visualized on the right hand side of
Fig. 3.2.

Applying the MT-interaction like in the quark DSE as well, the equal-mass constituent
BSE in Eq. (3.17) is given by

Γ(�)(P , p) = −Z2
2CF ∫

q

(k2)
k2

T�� (k)
�S(q+)Γ(�)(P , q)S(q−)
� , (3.21)

where k ∶= q − p.

3.4 Quantum Numbers

In the two-body BSE we could distinguish between states with di�erent quantum numbers
I (J PC). We will work in the isospin symmetric limit – thus, the isospin quantum number
will only a�ect the �avour part of the wave functions, but not the observables. The
quantum numbers J , P and C however could be �xed by specifying the amplitudes. In
this section we will restrict ourselves to states with J = 0, 1 and discuss the amplitude
construction and the corresponding solutions.

3.4.1 (Pseudo-)Scalar qq̄Mesons

The BSA of a J = 0 qq̄ meson is a Lorentz scalar and its Dirac part can generally be
written as a linear combination of four basis elements. The di�erence between scalar
and pseudoscalar mesons is re�ected in the parity quantum number – the eigenvalue

1For readability reasons, the colour part of the kernel is suppressed.
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of the parity transformation operator  when applying it on the amplitude. The parity
transformation on a generic J = 0 BSA Γ is de�ned as follows (cf. appendix C),

(Γ(P, p)) = 
 0 Γ(ΠP, Πp) 
 0. (3.22)

The operator Π is the parity operator for four vectors, given by Π = diag(1, −1, −1, −1). A
possible choice of basis elements for scalar (P = +) mesons is given in the following [116]:

b+1 (P , p) = 1 b+2 (P , p) = −i /P
b+3 (P , p) = −i /p b+4 (P , p) = [ /P, /p] (3.23)

Factors of i and negative signs are inserted such that the dressing functions become real
and positive in all components. However, they do not change the BSA overall – any scalar
prefactor gets absorbed by the associated dressing function. The latter two basis elements
correspond to p-waves [38], which have to be considered by describing a meson as a
covariant, thus relativistic composite state. The pseudoscalar (P = −) basis is constructed
by multiplying 
5 to any basis element of the scalar basis in order to �ip the parity sign:

b−i (P , p) = 
5b
+
i (P , p) (3.24)

The full Dirac part of an amplitude is then given by

ΓDirac(P , p) =
4

∑
i=1

bi(P , p) ⋅ Fi(P , p) (3.25)

As objects consisting of quarks with colour and �avour, the BSA lives in the colour and
�avour space, too. The full amplitude is then given by the dyadic product of the di�erent
sensor parts

Γe��,AB,ab = Γ
Dirac
�� ⊗ Γcolour

AB ⊗ Γ�avour,e
ab . (3.26)

The construction of the colour and �avour part happens by

• demanding that mesons are observable particles living in the colour singlet1, which
is represented by the unity matrix in colour space:

Γcolour
AB = �AB (3.27)

• ensuring the correct �avour quantum numbers (isospin, strangeness, charm, . . . ).
For instance, pions are pseudoscalar mesons and live in the isotriplet which could
be represented by the three �avour matrices

r+ = ud̄ =
1
√
2
(�1 + i�2) ; r− = dū =

1
√
2
(�1 − i�2) ; r0 = (uū − dd̄) = �3

(3.28)
with Γ�avour,e

ab = r eab, where �i are the Pauli spin matrices. Factors of
√
2 are motivated

1The corresponding composition follows from the colour SU (3): 3 ⊗ 3̄ = 8 ⊕ 1 = octet ⊕ singlet.
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Figure 3.3: At the left: Spline-interpolated plot of the function �(P2) for the � meson. One can
see, that Eq. (3.30) produces one bound state for P2 ∈ R−, which corresponds to a
real, physical mass M > 0. At the right, the calculations for M(m) are displayed. A
corresponding �t function fa(m) =

√
am shows the typical behaviour of the GMOR

relation and veri�es that the e�ects of dynamical chiral symmetry breaking are con-
served in the chosen interaction. All calculations are done in Maris-Tandy interaction.

by the value of Nf and ensure a consistent normalization as follows:

r eabr
e
ba = Nf (3.29)

Mass iteration. As shown in the previous chapter, a BSE solution is an eigenstate of a
kernel  ∶= K (2)G(2)

0 for the eigenvalue �(P 2) = 1 on the mass shell:

�(P 2) Γ(P, p) = ∫
q
(P , p, q) Γ(P, q), (3.30)

Once a momentum P 2 is found such that �(P 2) = 1 and the dressing functions are
determined, the equation is solved and we can identify the mass with P 2 = −M2 as long
as P 2 is a negative, real number. A solution technique for this equation can be found in
chapter C.1.3. Brie�y sketched, we solve Eq. (3.30) for various P 2 numerically to extract
the eigenvalue curve �(P 2). As an example, the eigenvalue curve of the pion is displayed
on the left panel of Fig. 3.3. Besides that, another interesting function is the mass curve
M(m), the bound state mass as a function of the quark mass. Here, we vary the quark
mass consistently as we wish to calculate the properties of hypothetical1 states. Such a
curve is sketched on the right hand side of Fig. 3.3 for pseudoscalar qq̄ mesons. We see a
square root dependency here, according well to the leading term of the Gell-Mann-Oakes-
Renner (GMOR) relation [117]. This includes that the pseudoscalar qq̄ meson becomes
the massless Goldstone boson according to the e�ects of spontaneous chiral symmetry
breaking in QCD’s chiral limit (m = 0 ⇒ M = 0).

1“hypothetical” because in nature we only observe speci�c quarks with discrete masses, but in calcula-
tions we are not restricted to those.



42 CHAPTER 3. BETHE-SALPETER EQUATIONS

3.4.2 (Axial-)Vector qq̄Mesons

For vector and axialvector mesons, the BSE (3.21), has the same structure as the (pseudo-
)scalar one; the only di�erence between the (pseudo)scalar and the (axial)vector BSAs
is the on-shell Dirac structure, which is the product of the J = 0 Dirac bases and the
Lorentz structures { 
� , p� , P� }. Due to transversality of the bound state propagator on
the mass shell, the basis elements with a P� participation drop out and we just have to
consider eight basis elements in total. A possible choice for the bases of a vector (−) state
amplitude is given in the following [116]:

b �,−1 (P , p) = i
 �T b �,−2 (P , p) = 
 �T /P
b �,−3 (P , p) = (−


�
T /p + p

�
T1) (p ⋅ P) b �,−4 (P , p) = (i
 �T[ /P, /p] + 2ip

�
T /P)

b �,−5 (P , p) = 1p�T b �,−6 (P , p) = ip�T /P(p ⋅ P)
b �,−7 (P , p) = −ip�T /p b �,−8 (P , p) = p�T[ /P, /p] (3.31)

Again, an multiplication with a 
5 matrix �ips the parity quantum number and transforms
a vector (−) into an axialvector (+) element (and vice versa):

b �,+i = 
5b
�,−
i (3.32)

As in the pseudoscalar case, other choices for the basis elements are possible as long as
they are still a generating system of the corresponding Dirac space. Factors of (p ⋅ P), i
and negative signs are, again, optional and get absorbed by the dressing functions. The
full Dirac part of the amplitude can then be written down as

Γ(P, p) =
8

∑
i=1

b �i (P , p) ⋅ Fi(P , p). (3.33)

The parity quantum numbers can be checked by applying the parity transformation on
the J = 1 BSA (cf. appendix C)

(Γ�(P , p)) = −
0 Π��Γ� (ΠP, Πp) 
0. (3.34)

The mass iteration procedure happens in an analogous way as in chapter 3.4.1 and is
described in more detail in chapter C.1.3.

3.5 Normalization and Decay Constants

As already mentioned in 3.1, the BSA is undetermined up to a constant prefactor such
that a normalization criterion had to be de�ned. To become able to use a BSA in a larger
Feynman diagram, a normalization is mandatory as it de�nes important properties such
as the charge of a hadron or its decay constant. This happens e.g. via the Leon–Cutkosky
condition [114], in which we di�erentiate the trace of a closed meson-meson loop with
respect to the total momentum P 2. Doing this, it is worth the mention that the di�erential
merely acts on a few special terms, for instance the quark propagators in the �rst summand
and the kernel in the second summand of Eq. (3.35), but never on the amplitudes, whose
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Figure 3.4: The normalization condition for the bound state BSA as in Fig. 3.1. In Rainbow-
Ladder, the interaction kernel does not depend on the total momentum; therefore,
the di�erential in the second summand with respect to P2 vanishes.

total momenta are always held constant at the pole mass, Q2 = −M2. Schematically,
the full normalization condition in momentum space reads (Dirac-, colour-, �avour and
Lorentz-indices are implicit)

1 =
d

dP 2
||||P2=−M2

tr ∫
q

{

(Γ̄(−Q, q)S(q+)Γ(Q, q)S(q−))

+ ∫
q
∫
l (

S(l−)Γ̄(−Q, l)S(l+)K(P, l, q)S(q+)Γ(Q, q)S(q−))

}
||||Q2=−M2

(3.35)

and is universal for all two-quark BSAs.1 In Rainbow-Ladder truncation, the kernel K is
independent of P and vanishes in the di�erential, so that we do not have to consider the
second two-loop integral. We trace over all Dirac-, colour and �avour indices. From the
meson properties (colour ⊗ �avour structure), it follows that the product of Nc and Nf
occurs as a global prefactor. With the charge conjugation matrix  ∶= 
0
2, the required
conjugate amplitude Γ̄(Q, q) for J = 0 and J = 1 BSAs is de�ned by

Γ̄(Q, q) ∶= ΓT(Q, −q)T ; Γ̄�(Q, q) ∶= Γ�T(Q, −q)T (3.36)

(Pseudo)Scalar mesons. When solving the (pseudo)scalar BSE in Maris-Tandy inter-
action, the explicit normalization condition is given by Eq. (3.35):

1 = trscf
d

dP 2
||||P2=−M2

∫
q
Γ̄(−Q, q)S(q+)Γ(Q, q)S(q−) (3.37)

The operator trscf denotes the trace over Dirac spin, colour and �avour indices and results
from closing the loop we see in Fig. 3.4.

Choosing the basis given in Eq. (3.23), the dressing functions Fi(p) are the largest in
the infrared and approach zero in the high ultraviolet as we can see in Fig. 3.5, where the
dressing functions of a pion are graphically displayed. This indicates already that the
non-perturbative low-energy sector is particularly important for bound states of quarks

1For J ≠ 0 states one has to contract the occurring Lorentz indices by additional transverse projectors
and divide the result by the associated symmetry factor, cf. e.g. [118].
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and antiquarks. Again, as we saw by solving the quark DSE, the dressing functions mostly
start to change at around ΛQCD.

Once a qq̄ BSA is normalized, it can be used to calculate observables as an ingredient
of Feynman diagrams, e.g. for the electroweak decay constant f�. For the uncharged pion
(� = � 0), it describes the decay � 0 → e+ + e− + 
 . This decay is equivalent to a transition
from a pseudoscalar meson to an axial-vector current and de�nes the leptonic decay
constant by [43]

⟨0| j�5 (x) |�⟩ = −iP �f�e−ix⋅P . (3.38)

In Dirac space, the corresponding vertex is given by the axial-vector vertex Γ5� = 
5
� , to
which the pion BSA couples. To be more precise, evaluating the corresponding Feynman
diagram yields

if�P� = Z2Nctrs ∫
q
Γ5�S(q+)Γ(P, q)S(q−). (3.39)

Z2 is the quark renormalization constant and stems from the fact that f� as an observable
has to be renormalization group invariant. In our �avour space convention1, the pion
decay constant corresponds to its experimental value of roughly 93 MeV.

(Axial)Vectormesons. The normalization condition looks similar to the (pseudo)scalar
case and the solution technique is the same. In this case we have to contract the kernel with
a transverse projector and average over the three polarizations such that the condition is

1 = trscf
d

dP 2 ∫q
T�� (P)
3

Γ̄�(−Q, q)S(q+)Γ� (Q, q)S(q−). (3.40)

In Fig. 3.6 we see a plot of the dressing functions of the normalized � meson BSA as
functions of p2. Like the pion BSA, the dressing functions have a characteristic value in
the infrared and vanish in the ultraviolet.

With the normalized BSA, we can then calculate the leptonic decay constant as we
did by treating the pion. This time, the decay vertex is a vector, 
� , and all Lorentz indices
are contracted with a transverse projector, where an additional factor of

√
3 comes into

play. The corresponding equation to calculate the decay constant is given by [104]

if�m� =
Z2Nc√
3

trs ∫
q

�S(q+)Γ�(P , q)S(q−). (3.41)

1The �avour matrix of the axial-vector vertex Γ5� is normalized; that means, it is given by the structure
of Eq. (3.29), but overall divided by the factor of

√
2. There are other conventions with included factors of√

2. Then, for example, the decay constant also increases by a factor of
√
2 as well and gives the discrepancy

93 vs. 130 MeV.
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3.6 Diquarks

Diquarks are colour-carrying objects consisting of two quarks or two antiquarks and will
become necessary as e�ective ingredients of states consisting of more than two quarks.
Due to the non-vanishing colour, they underlie con�nement and consequently cannot
be measured as physical particles by experiment; but they may occur as building blocks
of higher bound states. For example, baryons consisting as three-quark states can be
described by a quark-diquark approximation of the three-body Faddeev equation, see
Refs. [38, 118, 119]. A similar ansatz leads to the description of higher multiquark states,
e.g. tetraquarks [47, 120].

The diquark and the corresponding BSA has to di�er from its meson equivalent in
parity due to the content: there are two quarks now instead of one quark and an antiquark.
Because of this, diquark amplitudes can be constructed by using the meson ones and
multiplying a charge conjugation matrix  = 
 0
 2 from the right to the Dirac part of the
meson BSA, which turns an antiquark into a quark and further ensures the corresponding
�ip of the parity quantum number1. Moreover, we have to correct the �avour and colour
structure: We construct the diquark amplitude such that it is potentially an ingredient of
higher multiquark states like baryons or tetraquarks. For us, that means the amplitude
has to live in the antisymmetric colour triplet, represented by a Levi-Civita tensor "ABX .
The additional index X is then the colour index of the diquark amplitude indicating the
particular state within the antitriplet. Just as mesons, the diquark amplitudes also live in
the �avour space: For Nf = 2, we have to do a case di�erentiation for distinct angular
momentum states J P as in the meson case, because diquarks with equal quark content
underlie Pauli antisymmetry. For scalar 0+ diquarks that means, the spins have to stand
antiparallel in order to form an antisymmetric wave function, as well as the isospin,
whose structure is given by the �avour singlet matrix s0ab. For axialvector 1+ diquarks,
we get a symmetric spin, and hence, also a symmetric �avour wave function, given by
the isospin triplet matrices s1,2,3ab . The matrices siab can be constructed by the standard
representation in �avour space, u .= (1, 0) and d .= (0, 1)2 and are, in the Nf = 2 case, given
by linear combinations of the three Pauli matrices, the generators of the SU(2) just as in
the meson (ms) case:

ΓDirac
dq ⊗ Γcolour ⊗ Γ�avour = ΓDirac

ms  ⊗ "ABX ⊗

{
s0ab J P = 0+

s1,2,3ab J P = 1+
(3.42)

s0 = |ud − du⟩ .= i�2 s1 = |uu⟩ .=
1 + �3√

2
s2 = |ud + du⟩ .= �1 s3 = |dd⟩ .=

1 − �3√
2
(3.43)

There are other ways to choose a Dirac basis for this amplitude, but in this choice, the
diquark BSE almost equals the meson BSE. This can be seen by evaluating the Feynman
diagram (Fig. 3.7) – we can replace the outgoing antiquark with a quark by a charge

1Using the Cli�ord algebra anticommutation relation, we see: (Γ) = 
 0Γ
 0
 2
 0 = −(Γ).
2Optionally, one can add heavy quarks like the s and the c by extending the space to a four dimensional

one. Despite the di�erent Nf, this does not change the BSA overall.
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conjugation of its antiparticle:

[Γdq(P , p)]

 = [Γms(P , p) ] = ∫

q
K
 (P , p, q) [S(q+)Γdq(P , q)ST(−q−)]


 (3.44)

The kernel K is the usual one we already used in the meson BSE, but the indices  and
 are switched due to the di�erent spin line direction. Rewriting ST(−q−) = TS(q−),
multiplying the whole equation (3.44) by EB from the right and �nally evaluating the
colour trace entails that the meson and the diquark BSE are identical up to a factor of 1/2,
which remains as a global prefactor of the diquark BSE. Hence, the diquark amplitude is
e�ectively given by Eq. (3.42) with

[Γdq(P , p)T]

 = [Γms(P , p)] =

1
2 ∫

q
K
 (P , p, q) [S(q+)Γms(P , q)S(q−)] . (3.45)

The normalization of the amplitude is analogous to the meson case, but here we have
to add a symmetrization factor of 1/2 in front of the normalization integral [121]. The
replacement of an antiquark with a quark is understood implicitly.

Using Maris-Tandy interaction entails that diquarks appear as solutions of the BSE
on the real axis and thus, appear as physical particles. This is a �aw of our model as
it disagrees with the concept of con�nement, but should not bother us further because
we only investigate colourless states and not the physical properties of diquarks. The
calculated masses only serve as theoretical reference values which we could use to explain
physics on the level of energy arguments.

Figure 3.7: The diquark BSE as a Feynman diagram. All indices are implicit. For convenience,
spin lines and momentum �ow have the same direction.
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[MeV] m� f� m� f� m� mb1

calculations 139.4 93.0 728.1 146.5 668.3 900.0
experiment [106] 138.5 92.6 775.3 152.7 400. . . 550 1229.5

Table 3.1: Physical quantities of masses and decay constants resulting from the (pseudo)scalar
and the (axial)vector BSEs with light quarks (q = u/d) when using the full tensor basis.

3.7 Two-Quark Properties in the Maris-Tandy Model

3.7.1 Full Basis

The calculated bound state properties of the � and the � meson reproduce the experimental
values in a good approximation using the Maris-Tandy interaction model with a light
quark mass of m = 3.8 MeV in the isospin symmetric limit. The relative deviations of
the pion mass and the leptonic decay constant of the pion compared to the experimental
values are smaller than 1%, which is not surprising since the model parameters are �xed
on pion physics. The mass of the � meson and the associated leptonic decay constant
however di�er from the experimentally measured values with a slightly larger relative
deviation. This exhibits a minor weakness of this model, although the errors are small
enough to conclude that it’s suitable in order to describe vector mesons. For states with
opposite parity quantum numbers, namely scalar and axialvector mesons, the model
shows tremendous weaknesses; in the light quark sector, the scalar qq̄ meson and the
corresponding axialvector state (known as b1) are showing up too light. Although this
is not obvious from Tab. 3.1 as the experimental � meson is lighter than the calculated
one, we expect the experimental � not to be a qq̄ state. It is more plausible here that the
actual qq̄ ground state is lying above 1 GeV instead [102, 107] – the f0(1370) may be such
a candidate. Another issue of any Rainbow-Ladder bound state equation is the absence
of (hadronic) decay diagrams, which is why we cannot make a statement about a strong
decay width here. To be able to make these, we have to take additional BRL diagrams into
account. Studies on this topic were done e.g. in [45] with BRL corrections, which lead to
widths when decay terms are explicitly included. However, the � meson for instance gets
even lighter in these approaches as it falls below 700 MeV.

3.7.2 Truncated Basis

While the solution of the BSE with a complete Dirac basis might lead to the most accurate
description of the physical properties, it is conceivable that a truncated form of the basis
might lead to acceptable results as well with a considerably lower e�ort. Comparing
the solution using a full basis with truncated ones leads to statements about whether
certain elements are “leading” or “sub-leading”. In this part, we will discuss this for light
pseudoscalar and vector mesons as well as the consequences for future calculations in
this work. The results are shown graphically in Fig. 3.8.

Pseudoscalar mesons. We �nd that the leading basis element is the �rst one, 
5. While
the full basis leads to a pion mass of 139.4 MeV and a decay constant of 93.0 MeV, only
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Figure 3.8: The �gure shows the masses and decay constants of the � and the � meson for
di�erently truncated Dirac tensor bases. We start with only include one tensor
structure (red bars) and complete the bases step by step (blue, green and orange bars)
until we show the values we computed by taking into account the complete bases
(black bars).

taking into account the �rst element yields a mass of 122.3 MeV and a decay constant of
69.3 MeV. Adding only the second basis element (
5 /P) already shifts the mass into the
correct region, and further including the third element, 
5 /p, entails an accurate decay
constant. The remaining element, 
5[ /P, /p], only leads to small corrections, yielding the
mass and decay constant we decided about by �xing the model parameters.

Vector mesons. In vector meson calculations, we �nd analogous results as we did in
the pseudoscalar case. The �rst tensor structure, 
� , already produces a vector meson with
a mass of 887.8 MeV and a decay constant of 140.2 MeV, which is in a reasonable mass
region, and the relative deviation from the values using the full basis (m = 728.1 MeV,
f = 146.5 MeV) is similar to the pseudoscalar case; the decay constant is actually much
less sensitive in the vector case. The inclusion of tensor structures 2–3 does not change
the mass so much, but the fourth one decreases the mass signi�cantly towards the region
where we �nd a mass in the full model while the value of the decay constant increases.
Completing the basis with tensor structures 5–8 further decreases the mass and decay
constant to the values we already mentioned before.

Treatment. As we can see, the leading components of the BSAs already lead to solutions
of the equations and display the physical observables in a reasonable region – for the pion,
taking into account the �rst tensor structure 
5 exclusively gives a relative error of 12% for
the mass and 25% for the decay constant in comparison to the values we get by taking into
account the full basis. We conclude that the leading order basis element is already a good
approximation for the full amplitude, and therefore, as ingredients of larger diagrams,
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we will use this leading order in almost any further calculation. Although a technical
implementation of more than one basis element is straightforward, the inclusion of only
one basis element brings tremendous simpli�cations into numerical calculations of higher
diagrams as we will see later in chapter 4. On the other hand, meson propagators remain
untouched (not approximated by a basis truncation) in those calculations because of
the absence of the complex Dirac structure. This approximation corresponds to mesons
as pure s-wave particles – p-wave properties are stored only in those tensor structures
which explicitly depend on the relative momentum between the quarks [38].

Similar arguments hold for vector mesons; the leading component 
� is already
yielding observables in the correct energetic region. With relative deviations of 20% for
the mass and only 4% for the decay constant, we assume that only taking into account
the leading tensor structure in larger diagrams will be a good approximation of the full
BSA.

We expect those statements to be applicable for scalar and axialvector diquarks as
well because the BSEs are essentially identical up to a factor of 1/2 (cf. 3.6).

3.7.3 Dynamic Interaction Model

We can vary the coupling by �nding di�erent parameter sets which we �x at pion
and kaon physics1 consistently to estimate a model error in this energetic region. The
parameters we vary are the light and strange quark mass (mq, ms) at the renormalization
point, the parameter Λ and a global prefactor a in front of the infrared part of the running
coupling. A variation of � in the interval [1.6, 2.0] is possible as well, but the impact on
the observables is considerably small [38]. Altogether, besides the variation of the quark
masses, the infrared part of the model function  changes its de�nition as follows:

ir(k2, Λ, �) → a ⋅ ir(k2, Λ′, �′) (3.46)

The structure of the ultraviolet part is well-determined by perturbation theory and thus,
remains untouched.

The parameter sets we found for a ∈ [0.8, 1.2] are given in Tabs. 3.2 and 3.3. The
standard values for the model parameters, the ones for a = 1.0, which we use as the
“standard parameter set” are given in the third line. As a quick crosscheck, we also show
the masses of the vector mesons � and K ∗ and the ones for the scalar diquarks qq and qs
as a result of the variation. We see that the “strengths” of the model – the description
of pseudoscalar and vector mesons – are preserved during the variation. The � meson
is still too light in any setup, but the overall impact on observables remains bearable,
although this doesn’t necessarily need to hold for other quantum numbers or multiquark
states like tetraquarks as well. The same holds for the K ∗ meson. In our calculations
we have to implement the dynamics for all ingredients consistently to comply with the
axial-vector WTI, which preserves the e�ects of dynamical chiral symmetry breaking in
the light quark sector.

1Our goals are to restore an accurate pion mass m� , decay constant f� and kaon mass.
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a Λ [GeV2] mq [MeV] m� [MeV] f� [MeV] m� [MeV] mqq [MeV]
0.8 0.78 4.2 140.6 93.0 733.0 770.7
0.9 0.74 4.0 139.8 92.7 728.3 785.2
1.0 0.71 3.8 139.4 93.0 728.1 801.3
1.1 0.68 3.6 138.5 92.7 723.9 810.4
1.2 0.66 3.5 140.1 93.4 727.2 826.4

Table 3.2: We see di�erent variations of the Maris-Tandy coupling function, which reproduce
pion physics (m� and f� ) su�ciently well. All deviations are within the numerical
error bars. Since we expect the � meson basically to consist of two pions, all parameter
sets potentially correspond to suitable e�ective models for describing that state. In
two additional columns, the masses of the � meson and the scalar qq diquark for the
particular parameter set are shown as well.

a Λ [GeV2] mq [MeV] ms [MeV] mK [MeV] mK ∗ [MeV] msq [MeV]
0.8 0.78 4.2 82.5 499.6 934.0 1051.5
0.9 0.74 4.0 84.0 500.1 928.2 1072.7
1.0 0.71 3.8 85.5 500.3 927.7 1108.5
1.1 0.68 3.6 87.5 499.8 925.2 1126.5
1.2 0.66 3.5 89.0 500.0 929.2 1146.3

Table 3.3: We see di�erent variations of the Maris-Tandy coupling function, which reproduce
the kaon mass su�ciently well. All deviations are within the numerical error bars. In
additional columns, the masses of the K ∗ meson and the scalar, heavy-light sq diquark
for the particular parameter set are shown as well.
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3.8 Pole Restrictions

Naively, one can assume that we could calculate the eigenvalue of a bound state candidate
with arbitrary masses by looking for a momentum P 2 where �(P 2) = 1 holds. In practice,
the momentum range is usually restricted by the singularities of the quark propagator
since it is part of the BSE integrand. Using the Maris-Tandy interaction model, there are
multiple poles occurring in the timelike half plane, which restricts the total momentum
P we put into the equation. Refs. [122, 123] identify some pole positions of the quark
propagator in the complex plane for dynamic quark masses using the MT model, but an
analytic description and the corresponding residues are still unknown – therefore, we
must stick to numerical methods to avoid integrating over those poles as good as possible.
If the momentum routing for the quarks using the parameter � ∈ [0, 1] is given by

q+ = q + �P (3.47)
q− = q + (1 − �)P (3.48)

with q2 ∈ [0,∞), we have to integrate over right-hand opened parabolas in the complex
plane with their apices at

�2P 2 in the q+ case
(1 − �)2P 2 in the q− case

For � = 0.5, the parabolas are equal, but if we increase/decrease the routing parameter �,
one parabola shifts away from the origin of the complex plane, whilst the other parabola
shifts towards it. Then, if we increase the bound state mass (⇔ decrease the bound
state total momentum squared), both parabolas shift away from the origin. Assuming
that there are complex-conjugate poles up from some p2crit with Re(p2crit) < 0, we are
restricted by a critical value of the total momentum squared (or of the bound state mass,
respectively), such that

P 2 !> P 2crit or equivalently M < Mcrit. (3.49)

All this is visualized in Fig. 3.9.

Example (Pion BSE and MT interaction). The pion BSE includes two light quarks
which have two complex-conjugated-symmetric poles at momenta Re(p2crit) ≈ −0.20 GeV2

when using Maris-Tandy interaction with a standard parameter set (cf. section 2.2.3). A
safe scenario would therefore be to set the apex of the parabola at p2 = −0.20 GeV2. We
choose symmetric momentum routing due to equal-mass constituents (� = 0.5) and get:

P 2

4
> −0.2 GeV2 ⇒ P 2 > −0.8 GeV2 ⇒M < 0.894 GeV. (3.50)

We see that the restricting critical mass is far above the physical pion mass and the
quark poles should not interfere with our integration domain to calculate pion properties.
Anyhow, we will see that for other quantum numbers or excited states, the quark poles
restrict the domain heavily since the corresponding masses lie above the critical threshold.
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Figure 3.9: A visualization of the variation of the momentum routing parameter � for a �xed
bound state mass with M < Mcrit. The orange/blue dashed lines on the left panel
stand for the parabolas one has to integrate over with symmetric momentum routing,
� = 0.5. The orange/blue crosses denote the light/heavy Maris-Tandy quark poles. The
BSE integral is de�ned i� the light quark poles (orange crosses) do not lie inside the
interior of the orange parabola (denoted by the orange shaded region). Equivalently,
the blue shaded interior (on the left panel, the blue and the orange parabolas overlap
as they are identical) of the blue parabola must not include the heavy quark poles
(blue crosses). One can easily see that the symmetric routing does not satisfy these
conditions in this example, but there exists a choice for the momentum routing
parameter � > 0.5 such that the BSE poles are excluded from the integration domains,
but this is only possible up to a critical bound state mass.

General considerations. Pole restrictions will be important for the calculation of
heavy-light mesons/diquarks, which may have large masses, but are restricted by light
quark poles. In addition, higher bound states such as multiquark states and other exotics
are restricted as well by such a condition. The obvious strategy to calculate the heavy-
lights anyway is to increase the bound state mass as far as we are able to without crossing
the poles and extrapolate from this point into the desired region which is inaccessible
by a direct calculation. This could be very di�cult due to the amount of extrapolation
e�orts and leaves us with additional error bars, whose sizes depend on the extrapolation
distance.
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3.9 Heavy(-Light) Mesons and Diquarks

Varying the quark input makes it possible to plug in various quark masses into the BSE
in order to calculate either heavier equal-mass mesons and diquarks as well as mesons
and diquarks with non-equal quark content, kaons for example. First steps in calculating
heavy-light mesons with heavy constituent quarks (charm, bottom) in RL truncation
were done in [124], albeit without an inclusion of the lightest quarks u/d . As mentioned
in the previous section, quark poles in the integration domain may cause di�culties,
and the pole structure of the quark propagator in the Maris-Tandy model is not known
analytically; instead, one has to apply numerical tools. Since it is a di�cult challenge to
perform a numerical integration over poles properly, we have (at least) three possibilities
to do calculations in the heavy-light meson and diquark sector:

• We can go as far as we can without crossing the poles by varying the total momen-
tum and momentum routing parameter. It is possible to estimate the pole positions
by solving the quark propagator roughly.

• We deform the integration path of the radial integral in the meson BSE since we
expect the self energy integrand to be holomorphic everywhere except for the pole
locations, which the deformation circumvents by construction.

• We bring the propagator in an analytic form, e.g. by doing �ts and predict
the poles using sophisticated numerical methods such as the Schlessinger-Point
method [125].

The �rst possibility restricts us to critical bound state masses and the nearer we close up
to the poles, the less stable gets our numerical calculation. The second possibility requires
a good knowledge about the pole positions of the Maris-Tandy quarks, which is a big
challenge. The third possibility would give us an analytic structure of the quarks and thus
the corresponding residues of the poles, which allows us to perform analytic integrals.
Unfortunately, we have not yet found a reliable technique to bring the propagator into
an analytic structure. Due to these technical issues, we proceed with the �rst possibility.
With that, we are able to solve BSEs for various con�gurations of mesons and diquarks,
although we might have to extrapolate the eigenvalue curve to get a solution when
the mass di�erence of the two quarks is too large. Doing all this, the mass curves for
pseudoscalar and vector mesons as well as scalar and axialvector diquarks are given in
Fig. 3.10 with the heavy quark set as a charm quark with an input mass of mc = 795MeV.

Heavy-Light Two-Quark Bethe-Salpeter amplitudes

Although we are not able to solve the BSE for many heavy-light two-quark states directly
on the mass shell to obtain a solution, it is still required to have knowledge about the
corresponding amplitudes to be able to use them as building blocks of larger diagrams.
In this thesis, this was done by a combination of �tting and extrapolating. To approach
a heavy-light Qq state, we can extrapolate in two directions: from below, by raising
the mass of one light quark, qq → Qq and from above, by lowering the mass of a
heavy quark, QQ → Qq. We evaluate speci�c points of the (normalized) two-quark
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Figure 3.10: Mass curves for equal-mass (�lled squares) and heavy-light (un�lled squares) two-
quark states. Heavy-light meson and diquark masses may result from the extrapola-
tion of their eigenvalue curves, but equal-quark two-quark state masses never do
for these quantum numbers.
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Figure 3.11: The extrapolation procedure for pseudoscalar and vector mesons taking the example
of p2 = 5 GeV2 for the leading amplitudes. The levels of the black lines correspond
to the values of the heavy-light amplitudes for p2 used in our calculations. This
procedure is done for a p2 grid to obtain amplitude shapes by using the �t function
(3.51).
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Figure 3.12: The continuation of the pion BSA into the complex plane with positive Re(p2) using
di�erent methods. On the left hand side, we see the real part of the leading pion
amplitude and on the right hand side, we see the imaginary part. It is clearly visible
that all of the methods lie on top of each other – the accordance is so precise that the
naive reiteration curve is almost completely covered by the other ones. We conclude
that it should be su�cient to implement the cheap �t in most practical calculations.

BSAs for certain momenta p2 along those two paths and �nd �t functions such that the
values of the amplitudes roughly match in the heavy-light case as seen in Fig. 3.11. The
extracted value of the amplitude is then the mean of the two extrapolated values. Then,
we collect those values on a speci�c p2 grid and continue these functions using a �t
function, Eq. (3.51), which will be discussed in the next section. For simplicity, we neglect
the angular dependence of the BSA completely. Apparently, this is a good approximation
if the dressing functions are �at and symmetric in the angular variable z. We found that
this is mostly true, although for far-heavy-light states, the dressing functions may lose
their �atness near the border points, z ≈ ±1. The fact that these border points just account
for a small part of the integration domain strengthens the value of our approximation.

3.10 Bethe-Salpeter Amplitudes in the Complex Plane

As BSAs are vertices occurring in loop diagrams, the relative momentum p2 may become
a complex number in a Euclidean calculation. The mass determination can be done by
iterating on the real axis only, which yields the results we saw already in Figs. 3.5 and 3.6.
Calculating the dressing functions in the complex plane however could be done naively
just like in the quark DSE, but with the same numerical issues as we already had to
deal with before, namely the integration over branch cuts in the radial integral. It is
also possible to apply the already known method using “shell parabolas” to continue the
amplitudes, and besides that, we can try to �nd an analytic continuation by �nding good
�t functions or using the Schlessinger-Point continuation method [125]. In terms of this
thesis, we systematically compared the di�erent methods to �nd a proper and e�cient1

1e�cient in terms of computation time.
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way of calculating the amplitudes for complex momenta. Fig 3.12 shows the agreement
between the di�erent methods. The naive reiteration, the shell method and the analytic
continuation via rational polynomials were implemented numerically, and the used �t
function is given by

f (p2) =
1

1 + a p2
+ b exp(−c p2) (3.51)

with a, b, c as �t parameters.
The excellent agreement between di�erent methods and the �t function in the relevant

domain led to the conclusion that, if possible, �t functions will be implemented to perform
calculations with occurring internal meson/diquark amplitudes. However, a caveat of
using the �t function is that it’s meant to give accurate results in the right half plane
(the one for space-like momenta), whereas the results in the left half plane (the time-like
one with a negative real part) are not trustworthy and thus, the important pole structure
is not caught. If this region is required, it is a more reasonable choice to go with the
shell method or the naive reiteration. In this thesis, we dynamically switch between the
methods as needed.

3.11 Meson and Diquark Propagators

When calculating the bound state propagators, we distinguish again between J = 0 and
J = 1 states due to the di�erent Lorentz structure. In this section we will describe how
we calculate certain bound state propagators and how we deal with them in practical
calculations.

Pseudoscalar Mesons and Scalar Diquarks

The meson and diquark propagators for vanishing angular momentum near the mass
shell are given by the “bare” mass pole of the bound state mass M :

Don-shell(P 2) =
1

P 2 + M2 (3.52)

As ingredients of larger diagrams, in which the total meson/diquark momentum P is
a�ected by the loop momentum, the propagators may be required in the far o�-shell
region as well. One can derive the expression for the bound state propagator using the
self-consistent de�nition of the T -matrix for the interaction between two quarks,

T = K + KG0T . (3.53)

Recalling the derivation of the Bethe-Salpeter equation where we have set the amplitudes
ΓΓ̄ as the residue of the T -matrix (T = ΓDon-shell Γ̄) at the mass pole, we are now interested
in the general, o�-shell bound state propagator D(P 2). Plugging this into Eq. (3.53) and
closing the open quark legs with an amplitude and its conjugate leads to

Γ̄G0Γ D Γ̄G0Γ = Γ̄G0KG0Γ + Γ̄G0KG0Γ D Γ̄G0Γ. (3.54)
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With M2n ∶= ΓG0Γ and M2k ∶= ΓG0KG0Γ, motivated by the notation in Refs. [118, 126],
Eq. (3.54) simpli�es to

D−1 = M2 (nk−1n − n) . (3.55)

This constitutes a two-loop integral which would have to be solved. However, we will
approximate the two-loop part by the analytic functions given in [118] and shown in
appendix C.

Vector mesons and axialvector diquarks

For vector mesons and axialvector diquarks we can split the propagator in a transverse
part DT and a longitudinal part DL, which means:

D�� = DTT�� + DLL�� and D−1
�� = D

−1
T T�� + D

−1
L L�� (3.56)

With the projections

D−1
T = (nk−1n)T − nT D−1

L = (nk−1n)L − nL (3.57)

we can calculate those propagators, too. For convenience [118], we set

(nk−1n)T = (nk−1n)L. (3.58)

So, the full (axial-)vector (diquark/) meson propagator is given by

D−1
�� = nk

−1n ��� − nTT�� − nLL�� = nk−1n ��� − n�� . (3.59)

Propagator �ts

Once the amplitudes are determined, the propagators can be evaluated in the complex
plane via a direct calculation, but this becomes numerically expensive when they are
included in larger diagrams. We found that the �t functions

f (T )(P 2) =
1

P 2 + M2 + � ⋅
P 2 + a1
P 2 + a2

+ a3 exp(−a4 P 2)

fL(P 2) =
b1

P 2 + b2
−

b3
(P 2 + b4)2

+ � (3.60)

are a good choice to describe the calculated propagators. The variables ai , bi and � are �t
parameters which describe the regular part of the propagator and M is the corresponding
bound state mass. The function f(T ) reproduces the propagator of J = 0 states and the
transverse part of J = 1 ones, whereas fL is a function proved to be a good choice for
the longitudinal part of a J = 1 propagator. The shared parameter � is an asymptotic
ultraviolet variable coming from the fact that the longitudinal and the transverse part of
propagators of J = 1 states match in the far ultraviolet. With those �ts, the propagators
are described quite precise for momenta P 2 that satisfy Re(P 2) > −M2. In terms of this
thesis, that is a su�cient region because the pole structure is given analytically and we
exclude integrations where we go far into the region where Re(P 2) < −M2 holds.
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3.12 O�-shell Meson and Diquark Amplitudes

Pseudoscalar Mesons and Scalar Diquarks

In the course of calculations based on the methods given in this chapter we solve the
BSE for an on-shell J = 0 bound state like mesons or diquarks satisfying the condition
P 2 = −M2. Instead of solving the whole equation for o�-shell momenta, we model the
amplitude by doing two some assumptions:

• the leading amplitude is nearly una�ected by the degree of “o�shellness” of the
bound state and

• the subleading amplitudes are suppressed for highly o�-shell momenta.

Thus, we assume that the leading amplitude stays the same and the subleading amplitudes
are suppressed by an insertion of a suppressing function g. Moreover, we introduce a
function ℎ. The functions are given by [118, 126]

g(P 2) = M2(P 2 + 2M2)−1 ℎ(P 2) = −i
√

P 2

P 2 + 2M2 . (3.61)

These functions are inserted such that every sub-leading amplitude is multiplied by g
and every occurring P � in the basis elements is multiplied by ℎ. So, in case of the pion
BSE, the o�-shell amplitude is modeled by

Γ(P, p) = 
5F1(P , p) + gℎ 
5 /PF2(P , p) + gℎ 
5 /p(P ⋅ p)F3(P , p) + gℎ 
5[ /P, /p]F4(P , p). (3.62)

Crosschecking the physical point indeed leads back to the calculated on-shell amplitude:

g(−M2) = 1 = ℎ(−M2) (3.63)

Vector mesons and axialvector diquarks

The o�-shell amplitudes of vector mesons and axialvector diquarks are also a�ected by
the functions g and ℎ [118]. One has to multiply a g to all subleading dressing functions
again, an ℎ to the 1st, 2nd, 3rd, 7nd dressing function and an ℎ2 to the 5th one. The
on-shell (ax-)vector bound state propagator is forced to be transverse to the absolute
momentum, whereas the o�-shell one has longitudinal contributions. Omitting the
transverse projections inside the basis of the calculated (on-shell) bound states, we get
the general expression for the o�-shell amplitude. On the mass shell, the longitudinal
parts will be suppressed by a factor of P 2 +M2 due to the pole in the propagator to ensure
a reasonable expression for the T -matrix. As an ansatz and to ensure that the correct
on-shell behaviour is reached by taking the limit P 2 → −M2, we insert the on-shell
dressing functions Fi(i = 1… 8).
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Chapter 4

Tetraqarks

Tetraquarks are exotic states consisting of a combination of two quarks and two antiquarks.
As a hot topic in elementary particle physics these composite states are a subject of broad
research. Due to con�nement, observable (colourless) states are only possible with
a (qq̄qq̄) con�guration. As already mentioned in the introduction, one of the main
motivations to study these kinds of bound states is the paradox mass ordering in the
spectrum of light, scalar meson candidates: The isoscalar f0(500) has a lower mass than the
corresponding isotriplet state, but assuming a qq̄ structure, these states should roughly
lie in the same mass region. Additionally, due to the p-wave nature enforced by the
non-relativistic quark model, the mass of the isoscalar state is too small for an ordinary
quarkonium – we would expect it to be heavier than the corresponding vector mesons;
but apparently, this is not the case. Early on, quite basic re�ections already led to the
proposal that these states might not be conventional quarkonia: in the 70s, Ja�e [4]
concluded �rst that a four-quark structure would be the solution for the “inverse” mass
ordering in the spectrum of scalar mesons.

Finally, after many years of lacking experimental evidence, the observation of the
χc1(3872) in 2003 engaged the attention of hadron physicists all over the world. It showed
properties which disagree with the picture of ordinary charmonia and was the �rst and
yet, most prominent candidate for a four-quark state. After that, many other of these
exotic states were discovered. At least since the discovery of Z states (which have a non-
zero electric charge), the existence of states consisting of more than a quark-antiquark
pair is unquestionable.

A theoretical description of those states in the frameworks of DSEs and BSEs is
ambitious. As one could have guessed, the amount of kinematic complexity is increasing
exponentially with an increasing number of quarks considered. Di�erent to the (compa-
rably simple) meson BSE, an exact four-body equation must include every interaction
between the di�erent quarks, and a simple Rainbow-Ladder truncation on the level of
two-body interactions is not respecting 3PI and 4PI scattering kernels which may occur
in the bound state equation. Despite the e�ort which was made by solving the four-
quark equation in previous works [46, 47, 91], we will stick to an approximate two-body
equation in this work due to kinematic simplicity, �rstly introduced in [120]. Due to
its similarity to a two-body description of quark-antiquark states, we will see that it
could easily be extended to the coupling of four-quark states to ordinary quarkonia, as
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advertised in section 1.3.
This chapter is dedicated to the main equation which we will solve in order to

obtain results in this work: the two-body tetraquark BSE. Along with a derivation
from the full four-body BSE and the coupling to the two-body BSE, we will discuss
the idiosyncracies and technical di�culties of the equation and point out the central
di�erences in comparison to the four-quark BSE.

4.1 The Two-Body Equation

For bound states of four quarks in the Dyson-Schwinger/Bethe-Salpeter framework,
we expect (as in the Baryon case) a homogeneous eigenvalue equation similar to the
three-body Faddeev equation. To be able to derive such an equation, we start with the
full four quark propagator G(4):

G(4) = G(4)
0 + G(4)

0 K (4)G (4) (4.1)

G(4)
0 = SSSS is the interaction-free four body propagator and the four-body scattering

kernel K (4) includes two-, three- and four-quark interactions, denoted by quantities with
a tilde [127],

K (4) = K̃ (2) + K̃ (3) + K̃ (4). (4.2)

In the following, we will neglect three- and four-body interactions, i.e. we set that
K̃ (3) = K̃ (4) = 0. We do this on the basis of previous works on baryons [38, 44, 128] and
tetraquarks [46, 47, 91, 120], see [129] for a mini-review, where it is argued that the
quark-antiquark interactions dominate the equation over the three- or four-particle
irreducible contributions. The consistent and physically meaningful results from the past
decade justify this approximation. By omitting those three- and four-particle irreducible
contributions, we can further distinguish between the remaining two-quark interactions
of distinct quark pairs and therefore apply an index notation as follows:

K (4) ≈ K̃ (2) = ∑
i
K̃ (2)
i with K̃ (2)

i = K (2)
rs S

−1
t S

−1
u + S−1r S

−1
s K

(2)
tu − K (2)

rs K
(2)
tu , (4.3)

where i ∈ {1, 2, 3}1. It speci�es the interactions between the quarks r , s and t, u separated
(�rst two terms) and together (last term). The negative sign results from a double-counting
of the two-pair interaction kernel which could be seen by expanding G into a series
and considering that independent scattering kernels commute for distinct r , s, t , u, i.e.
[Krs , Ktu] = 0. Based on these “subkernels” we could de�ne four-body T -matrices and
work with their self-consistent series:

T̃ (2)
i = K̃ (2)

i + T̃ (2)
i G(4)

0 K̃
(2)
i (4.4)

1The index i is uniquely related to an ordered con�guration (rs, tu). One can thus de�ne a bijective
function f ∶ {1, 2, 3} → {(12, 34), (13, 24), (14, 23)}.



62 CHAPTER 4. TETRAQUARKS

Independent from that and by making use of the residue ansatz for a bound state amplitude
(cf. section 3.1), the full four-body on-shell tetraquark BSE is given by

Ψ = K (4)G(4)
0 Ψ, (4.5)

where Ψ is the four body bound state amplitude. With that and the segmentation of the
interaction kernel, Eq. (4.3), we can de�ne “sub-amplitudes” Ψi ,

Ψ (4.5)= K (4)G(4)
0 Ψ ≈ ∑

i
K̃ (2)
i G(4)

0 Ψ =∶ ∑
i
Ψi , (4.6)

and an insertion of Eq. (4.4) yields

Ψi = T̃ (2)
i G (4)

0 (Ψ − Ψi) = ∑
j≠i

T̃ (2)
i G(4)

0 Ψj . (4.7)

Now, we can plug in the two body pole ansatz T (2)
rs = ΓrsDΓrs (cf. 3.1) inside Ti with

i = (rs, tu),

T̃ (2)
i = T (2)

rs 1t1u + 1r1s T
(2)
tu − T (2)

rs T
(2)
tu = ΓrsDΓ̄rs + ΓtuDΓ̄tu − ΓrsDΓ̄rs ΓtuDΓ̄tu, (4.8)

to derive a kernel including bound state amplitudes out of Eq. (4.7). De�ning an e�ective
tetraquark two-body amplitude Φ such that

Ψi =∶ ΓrsΓtuG (2,2)
0 Φi (4.9)

with G(2,2)
0 = DD and i = (rs, tu), then closing the quark legs by multiplying Γ̄rsΓ̄tuG(4)

0
from the left side leads to

(Γ̄rsG
(2)
0 Γrs)(Γ̄tuG

(2)
0 Γtu)G

(2,2)
0 Φi

= [(Γ̄rsG
(2)
0 Γrs)D + (Γ̄tuG

(2)
0 Γtu)D − (Γ̄rsG

(2)
0 Γrs)(Γ̄tuG

(2)
0 Γtu)DD]

× Γ̄rsΓ̄tuG(4)
0 ΓrtΓsuG

(2,2)
0 Φj

+ [(Γ̄rsG
(2)
0 Γrs)D + (Γ̄tuG

(2)
0 Γtu)D − (Γ̄rsG

(2)
0 Γrs)(Γ̄tuG

(2)
0 Γtu)DD]

× Γ̄rsΓ̄tuG(4)
0 ΓstΓruG

(2,2)
0 Φl . (4.10)

Isolating Φi yields:

Φi = [(Γ̄tuG
(2)
0 ΓtuD)

−1
+ (Γ̄rsG

(2)
0 ΓrsD)

−1
− 1]

× [Γ̄rsΓ̄tuG
(4)
0 ΓrtΓsuG

(2,2)
0 Φj + Γ̄rsΓ̄tuG(4)

0 ΓstΓruG
(2,2)
0 Φl] (4.11)

With Eqs. (4.6) and (4.9), this de�nes the full two-body tetraquark BSE, a system
of coupled integral equations. Working with the Born series of the T -matrix and the
two-body BSE, in which �rs is the BSE eigenvalue of the meson/diquark amplitude Γrs for
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an arbitrary total momentum, entails:

Γrs D Γ̄rsG (2)
0 Γrs = TG

(2)
0 Γrs = (K + KG0T ) G(2)

0 Γrs

= ∑
i
(KG

(2)
0 )

i
Γrs = (

1
1 − �rs

− 1)Γrs

= (
�rs

1 − �rs)
Γrs (4.12)

It follows that

(ΓrsDΓ̄rsG
(2)
0 )

−1
=
1 − �rs
�rs

=
1
�rs

− 1 (4.13)

and so, we can plug in this expression for the one-loop prefactors:

Φi = [
1
�rs

+
1
�tu

− 3] [Γ̄rsΓ̄tuG
(4)
0 ΓrtΓsuG

(2,2)
0 Φj + Γ̄rsΓ̄tuG (4)

0 ΓstΓruG
(2,2)
0 Φl] (4.14)

Specifying the quark content to (q1q̄2q3q̄4), the corresponding meson and diquark am-
plitudes are needed. The whole tetraquark equation can then be written as a matrix
multiplication including two meson amplitudes and one diquark amplitude, where Kij
are quark exchange kernel elements:

⎛
⎜
⎜
⎝

ΦM1
ΦM2
ΦD

⎞
⎟
⎟
⎠
=
⎛
⎜
⎜
⎝

0 K12 K1D
K21 0 K2D
KD1 KD2 0

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

ΦM1
ΦM2
ΦD

⎞
⎟
⎟
⎠

(4.15)

This system of equations is shown in Fig. 4.1 as Feynman diagrams. Emphasizing the
two-body structure in tetraquarks, we neglect the single two body interactions and
write T̃ (2)

i = −TrsTtu, which has been proven to be a good approximation in previous
works [126]. Then, the tetraquark BSE simpli�es in the sense that the one loop diagrams
in the prefactor of Eq. (4.11) vanish completely and we get

− Φi = Γ̄rsΓ̄tuG(4)
0 ΓrtΓsuG

(2,2)
0 Φj + Γ̄rsΓ̄tuG(4)

0 ΓstΓruG
(2,2)
0 Φl . (4.16)

This is a system of coupled two-loop integral equations which has to be solved. With Q
as the total tetraquark momentum and p as the relative meson/diquark momentum we
calculate the amplitudes Φi(Q, p) explicitly with the same methods as we used to solve
the meson and diquark BSEs. At this point it is worth to mention that the full index
structure of a tetraquark amplitude is given by

Φ = Φ�…(AB) (4.17)

where � … are potential Lorentz indices, coming into play for quantum numbers J ≠ 0,
and A, B are colour indices especially occurring in diquark-antidiquark amplitudes. Φ
does not have a Dirac structure; it is fully carried by the attached two-quark BSAs which
complete the four-body amplitudes, see Eq. (4.9).
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Figure 4.1: The tetraquark BSE system as Feynman diagrams. Prefactors and indices are sup-
pressed here. Mij stand for meson- and Di for diquark amplitudes, whereas Φi denote
the three coupled two-body tetraquark amplitudes. Continuous lines are fully dressed
quark propagators, �lled dots are the corresponding meson/diquark ones. The system
of equations inside the blue (equidistantly) dashed rectangle represents the full BSE,
the equations caught inside the orange (non-equidistantly) dashed rectangle represent
the BSE with suppressed diquark contributions.

Amplitude exclusions. The two-body tetraquark BSE has an interesting feature
allowing the analysis of the amplitude for identifying dominant substructures. Let’s take
a look at Eq. (4.15) for that, where an exclusion of all parts containing a diquark is possible.
Doing this allows us – besides a comparison with the full solution – to decide whether
this part is sub-dominant (which it is in case the solution does not change signi�cantly)
or not. For candidates having an experimentally observed candidate, e.g. XYZ states in
the charmonium spectrum, we can do predictions for the inner structure of those. The
exclusion of the diquarks is just an example – we could also exclude the M1 or the M2
component, respectively.

Comparison to the four-body equation. Although we derived the two-body equation
from the four-body one, there are limitations and therefore di�erences which have to
be discussed. In order to prevent confusion in this paragraph, we want to clarify the
nomenclature: we mean the tetraquark BSEs when we talk about “four- and two-body
BSEs”. Quark-antiquark or diquark BSEs however are always referred as “two-quark
BSEs”, although, technically speaking, they are also “two-body” BSEs. Further details on
four-quark states in the DSE/BSE framework could be found in our mini review [129].

The two-body equation relies on the information provided by the BSAs and the
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occurrence of internal poles in the four-body BSA in order to describe the qq̄ interactions.
In contrast to the four-body equation, the two-body one is not suitable to describe states
which do not have a structure di�erent from clusters in dqdq or meson-meson. Therefore,
compact components of tightly arranged constituent quarks will always be missing here.
Technically, this is connected to the fact that the number of basis elements is highly
restricted due to the enforcement of meson and diquark constituents. Moreover, after
doing the two-body approximation, the inclusion of three- and four-body forces is not
possible any more; viz. the equation is founded on the fact that the three- and four-body
irreducible kernels are negligible.

When comparing the two- and the four-quark BSE, we have a conservation of com-
plexities. In the four-quark equation the kinematics is more complex, but in turn, the
diagrams are conceptionally simpler (especially when using RL truncation) because only
one kernel type has to be speci�ed (given that three- and four-body forces are neglected).
In contrast, the two-quark BSAs and the meson/diquark propagators have to be known
in the complex plane in order to be able to solve the two-body BSE.

In practice, one uses very similar truncations in both approaches on the level of the
Dirac structure, which makes the solution process feasible. Whereas one omits all basis
elements up to a few in the four-body equation, we only consider the leading Dirac tensor
structures of the two-quark BSAs in the two-body equation. If one reduces the tensor
structures of the four-body equation to the product of the leading structures we use in
the two-body BSE and insert the corresponding constituent poles by hand as done e.g.
in [46, 91], the truncations and therefore the results in both approaches are comparable.

Another direct consequence of the de�nition of the “e�ective” T matrices T̃ (2)
i is that

the diagonal terms of the interaction kernel of the three sub-amplitudes are non-existent.
The reason for that is based on the approximation of the two-quark T matrices using the
meson and diquark BSAs as pole residues, (4.8). That yields the internal occurrence of the
two-quark BSAs in the four-quark amplitude, (4.9), which, through the corresponding
(generally inhomogeneous) BSE absorb the diagonal two-quark kernels. This makes an
isolation of only one speci�c component (through the exclusion of all other components)
impossible – the only interactions which are not already stored in the e�ective amplitudes
Ψi are quark exchanges which transition one amplitude into another.

So, again, the main di�erence between the equations is that one relies on the correct
(o�-shell) behaviour of the two-quark BSAs, which is particularly di�cult to acquire and
incorporate, even for simple truncations like Rainbow-Ladder.

In this work we will recalculate the properties of certain heavy-light four-quark
candidates in the charmonium spectrum in order to check whether the results in both
approaches agree with each other or not. An agreement would indicate consistency
because the two equations start from the exact same outset, then redistribute the kinematic
dynamics, get truncated similarly and meet again on the level of quantitative results. In
the sector of scalar mesons this was already done in course of the pioneer work of Heupel
et. al. [47, 120] who showed an excellent agreement between the methods qualitatively
for the light scalars. In this work we will extend that to the comparison with the most
recent results in the four-body approach [46, 91].
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4.2 Quantum Numbers

Scalar tetraquarks

“The simple one”. Treating tetraquarks in the two-body formalism is, in the simplest
way, possible by setting every quantum number in the calculation to J = 0, thus choos-
ing pseudoscalar mesons and scalar diquarks as building blocks inside the tetraquark
kernel with vanishing orbital angular momentum. That brings technical and numerical
simplicity:

• There are no Lorentz contractions needed by solving the BSE.

• The tetraquark amplitude is completely scalar (up to the diagonal colour structure
of the diquark-antidiquark amplitudes) and has only one basis element, the 1.

• The Dirac bases of the mesons/diquarks have the minimal number of linear inde-
pendent tensor structures.

Additionally, we can go one step further by specifying only one meson type in the
amplitudes. The two meson-meson amplitudes are, due to identical quantum numbers,
equal up to a symmetry factor so that the three-lined bound state equation (4.15) collapses
into a two-lined one:

(
ΦM
ΦD)

= (
KMM KMD
KDM 0 )(

ΦM
ΦD)

(4.18)

“The simple one.”

If we concentrate on the meson-only case, in which the diquark contribution is neglected,
the whole tetraquark BSE collapses further into just one homogeneous equation of the
meson-meson amplitude:

ΦM = KMMΦM (4.19)

“The even simpler one.”

Here, KMM is just a scalar integral operator, ΦM is a function of the total tetraquark
momentum Q and p is the relative momentum between the two mesons. Calculations
in the past showed that the latter equation is already a good approximation for the
calculation of the lightest tetraquark candidate with two pions as ingredients [120].

Non-scalar tetraquarks

The χc1(3872) – a motivating candidate. The particle known as χc1(3872), �rstly
detected in 2003, was originally expected to be a cc̄ state since it is clearly located midway
through the spectrum of ordinary charmonia and is uncharged without having charged
isospin partners, but its quantum numbers (1++) in combination with its small width do
not �t into quark model predictions. Its mass, lying slightly below the DD∗ threshold,
and the observed decay into DD̄∗ strongly promotes the suggestion that it could be a
four-quark state with constituents (cc̄qq̄), where q ∈ {u, d}. Another observed decay in
mesons is given by ! J / [106], which also emphasizes the expected quark content and
gives us an idea how to potentially set up a two-body object:
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• the quark con�guration is (cc̄qq̄)

• a diquark-antidiquark structure is possible with (cq, c̄q̄)

• meson pairs can be chosen to be DD̄∗ and ! J / 

• the two-body amplitudes live in the Lorentz space with

(1) two Lorentz indices (DD̄∗ amplitude)

(2) three Lorentz indices (! J / amplitude)

(3) two or three Lorentz indices (diquark-antidiquark amplitude)

We can justify these numbers by taking a deeper look into the amplitude structure.

Due to the degrees of freedom in the multidimensional Lorentz space and the Lorentz
contractions whilst projecting on the dressing functions, the numerical e�ort is much
larger in this setup than it was by treating scalar tetraquarks. For technical details, I refer
on appendix C.2.

General considerations. While the upper candidate, theχc1(3872), is pretty motivating
from an experimental point of view, we are, within our calculations, not restricted to states
which are already measured by experiment and thus, we should be able to do predictions.
Besides experimentally observed candidates, which are generally hidden-charm objects,
open-charm objects are possible ones as well, although an experimental creation of those
is much more di�cult. Whereas we can vary the angular momentum quantum number
and the quark mass, we can also “play around” with parity and charge conjugation,
determining a whole spectrum of pure four-quark states resulting from Bethe-Salpeter
calculations. An aim of this thesis is to perform those calculations and to investigate how
speci�c states are structured. For hidden charm states in the charmonium sector, it will
be also interesting to see how the states are mixing with ordinary charmonia, which we
are able to calculate from the corresponding two-quark Bethe-Salpeter equations. In the
end, those are, besides the two-body meson-meson / diquark-antidiquark components,
also just components of the full Bethe-Salpeter amplitude, which we can switch on and
o� to investigate whether this it plays an important role within the full description or
not.

4.3 Amplitude Construction

The full tetraquark amplitude Ψ as the four-quark-meson vertex lives in the Dirac, colour
and �avour space, carrying four Dirac, four colour and four �avour indices. With mo-
mentum conservation at the vertex, it depends on four momenta in total. Without loss of
generality, we consider the total tetraquark momentum Q and three independent, relative
quark momenta q1,2,3; any other momentum appearing in the equation can be written as
a linear combination of the four given momenta. The number of Lorentz indices depends
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on the angular momentum of the four-quark state. So, we can write down the amplitude
in general as

[Ψ(µ… )(Q, q1, q2, q3)]��
�,abcd,ABCD =∶ [Ψ(µ… )(Q, q1, q2, q3)] , (4.20)

where we introduced calligraphic superindices to shorten the expressions. Traces are
then performed simultaneously by closing the diagrams.

Without loss of generality, we combine two two-quark bound state amplitudes in the
following way to build up the four-quark amplitude:

[Ψ
(µ… )(Q, q1, q2, q3)]

∼ Γ(ρ… )1,(q+, q1) Γ
(σ… )
2,(q−, q2) D

(ρ…α… )
1 (q1) D(σ…β… )

2 (q2) Φ(µ…α…β… ) (Q,
q1 + q2
2 )

(4.21)

We see that the Dirac, colour and �avour structure is now stored inside the two-quark
amplitudes, whereas the two-body tetraquark amplitude only carries a Lorentz structure, if
indeed1, along with scalar dressing functions. Though, the diquark-antidiquark amplitude
is an exception: in that case, the corresponding diquark-antidiquark two-body amplitude
has a diagonal colour structure. This is because diquarks are never colourless, therefore
cannot live in a colour singlet and always carry a colour index by themselves.

Quantum numbers

The tetraquark is characterized by the quantum numbers isospin I , angular momentum
J , parity P and charge conjugation C , usually summarized by the notation

I (J PC). (4.22)

Whereas the angular momentum is connected to the number of Lorentz indices, we want
to focus on isospin, parity and charge conjugation transformation in the following.

Isospin. If light quarks (u/d) are involved, the isospin quantum number is determined
by well-chosen coe�cients of the linear combination of possible compositions. Treating a
heavy-light QQ̄qq̄ tetraquark with q = u/d ≠ Q, the isospin is determined by the �avour
structure of the qq̄ part – the mesonic clusters as well as the diquarkonic ones have to
show the correct structure by extracting the qq̄ �avour wave function. A construction of

1As in case of the four-quark amplitude, that depends on the angular momentum.
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an uncharged QQ̄qq̄ with isospin I has the following �avour wave function:

Ψ[QQ̄qq̄],Iabcd ∼
√
2
⎛
⎜
⎜
⎝

0
0

1

⎞
⎟
⎟
⎠ab

⎛
⎜
⎜
⎝

1 0
0 (−1)I

0

⎞
⎟
⎟
⎠cd

(4.23)

=
√
2
⎡
⎢
⎢
⎣

⎛
⎜
⎜
⎝

0
0 0
1 0

⎞
⎟
⎟
⎠ac

⎛
⎜
⎜
⎝

0 1
0 0

0

⎞
⎟
⎟
⎠db

+ (−1)I
⎛
⎜
⎜
⎝

0
0 0
0 1

⎞
⎟
⎟
⎠ac

⎛
⎜
⎜
⎝

0 0
0 1

0

⎞
⎟
⎟
⎠db

⎤
⎥
⎥
⎦

(4.24)

=
√
2
⎡
⎢
⎢
⎣

⎛
⎜
⎜
⎝

0
0 0
1 0

⎞
⎟
⎟
⎠ad

⎛
⎜
⎜
⎝

0 1
0 0

0

⎞
⎟
⎟
⎠cb
+ (−1)I

⎛
⎜
⎜
⎝

0
0 0
0 1

⎞
⎟
⎟
⎠ad

⎛
⎜
⎜
⎝

0 0
0 1

0

⎞
⎟
⎟
⎠cb

⎤
⎥
⎥
⎦

(4.25)

Expression (4.23) is the �avour structure with focus on the [QQ̄]/[qq̄] clusters, and
(4.24/4.25) are the ones for the [Qq̄]/[qQ̄] and the [Qq]/[Q̄q̄] compositions. Factors of√
2 come into play due to �avour space conventions applied by inserting the two-quark

amplitudes. The upper decomposition also shows that isospin violating decay diagrams
drop out algebraically. States without light quark contributions do not carry an isospin
and thus, there is nothing to care of then.

Parity. At �rst, we recall the parity transformation matrix

Π ∶= diag(1, −1, −1, −1) (4.26)

which was already de�ned in course of the parity transformations of two-quark BSAs,
see Eq. (3.22). With this, by parity transforming the bound state amplitude, the Dirac
structure as the tensor product of two two-quark BSAs is transformed individually via
the parity transformation matrix 
0. As a transformation in the Poincaré group, the
parity transformation matrix also acts on the tetraquark amplitude itself for any external
Lorentz index. Furthermore, it acts on any momentum on which the amplitude depends.
We suppress the colour and �avour structure here, because it is not a�ected by parity
transformations:

[Ψ(µ… )(Q, q1, q2, q3)]

��
� ∼ (−1)L(
0 Γ

(ρ… )
1 (Πq+, Πq1) 
0)��(
0 Γ

(σ… )
2 (Πq−, Πq2) 
0)
�

× D(ρ…α… )
1 (Πq+)D(σ…β… )

2 (Πq−)
× ΠµνΦ(ν…α…β… )(ΠQ, Πq) (4.27)

Charge conjugation. The charge conjugation is done in an equivalent way as the
parity transformation. We have to conjugate the two-quark amplitudes (the transposition
acts on Dirac, colour and �avour); �nally, we have to reverse the relative momentum
between the tetraquark constituents and interchange quarks of indistinguishable quark
pairs. The following transformation holds for [Qq̄]/[qQ̄] clusters; for other clusters we
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have to adapt the di�erent index distribution.

[Ψ(µ… )(Q, q1, q2, q3)]

��
� ∼ ( [Γ

(σ… )
2 (q−, −q2)]

T
T

)
��

( [Γ
(ρ… )
1 (q+, −q1)]

T
T

)

�

× D(ρ…α… )
1 (−q−)D(σ…β… )

2 (−q+)
× Φ(µ…α…β… )(Q, −q) (4.28)

Choice of basis elements

The challenge is to set appropriate conditions for the basis elements of the two-body
amplitudes Φ. So, to get the correct quantum numbers, we apply the corresponding
transformations on the full amplitude Ψ and demand that Φ ensures the correct quantum
numbers.

Example: The χc1(3872) candidate. For the χc1(3872) candidate (quantum numbers
1++), the wave functions are schematically constructed from the following building blocks,
which are partially1 motivated from leading decay channels:

(1) D and D∗ mesons (and the appropriate antimesons) to guarantee an uncharged
object:
ΨD,D∗ = D0D̄∗0 + D∗0D̄0 + D+D∗− + D∗+D−

(2) ! and J / :
Ψ!,J / = ! J / 

(3) for diquarks, we choose a combination of an axial-vector and a scalar one:
ΨAx Sc = Ax Sc + Sc Ax

Imposing the symmetry conditions resulting from the positive parity condition, we get
the following bases:

ΦDD̄
∗

�� (Q, q) ∼ ({ qT
� } × {Q� , q� }) ∪ { T�� }

Φ!J / ��� (Q, q) ∼ { "���� } × {Q
� , q� }

ΦAx Sc
�� (Q, q) ∼ ({ qT

� } × {Q� , q� }) ∪ { T�� }

Each basis element already corresponds to an eigenstate of the charge conjugation
operator. To specify speci�c quantum numbers, one has to impose the corresponding
even- or oddness of the product of each single basis element and its attached dressing
function. The multiplication of a scalar product (Q ⋅ q) is possible as well to enforce the
amplitudes to be either even or odd. As in the two-quark meson/diquark case, this is just
cosmetic and has does not a�ect the solution, since those prefactors get absorbed in the
BSAs.

1Obviously, there is no decay channel for diquarks and antidiquarks due to con�nement.



71

4.4 Poles and Thresholds

The two-body tetraquark BSE includes many poles, which could turn out to be problematic
in order to solve integrals numerically. A kernel expression K as used e.g. in Eq. (4.15)
involves four quark- and two meson or diquark propagators. We choose a momentum
routing where the relative momenta between the quarks of the internal two-quark BSAs
don’t depend on the total momentum of the tetraquark, see appendix C.2.

Quarks. As a result, all quark propagators inside the quark exchange diagram have a
momentum dependence which can be written as

S(f (q, p, l) ± Q/4) (4.29)

With that, the quark dressing functions �v,s carry a squared momentum argument like

�v,s(⋯ − M2/16), (4.30)

where M2 = −Q2 is the squared tetraquark mass. Doing similar considerations as in
Sec. 3.8, we come to the conclusion that the tetraquark input mass is restricted by quark
poles as given in Tab. 4.1 (where mq is the mass of the lightest quark in the system and
M < Mcrit).

Mesons and Diquarks. Besides quarks, there are also diquark and meson poles oc-
curring in the equation. Usually, the mesons are the lightest subclusters and restrict the
tetraquark mass the most, even stronger than the quark poles. The calculation of the crit-
ical mass from these is straightforward with m as the mass of the lightest meson/diquark
in the equation:

M < Mcrit = 2 ⋅ m (4.31)

For internal pions as lightest subclusters, we get a critical mass of 0.28 GeV; a � would
lead to 1.5 GeV. This relation holds universally since we use a symmetric momentum
routing between the two mesons/diquarks for a good reason: Another routing would
propagate into the quark loop and forces us to know the dressing functions of the meson
and diquark amplitudes in the complex relative momentum plane. While this is feasible
for amplitudes which we can calculate directly, see Sec. 3.10, it is a vague endeavour to
do so for highly heavy-light amplitudes, which we have to extrapolate already on the
real axis.

mq [MeV] Mcrit [GeV]
3.8 2.0
85.5 2.8
795.0 7.0

Table 4.1: Critical tetraquark input masses Mcrit dependent on mq , the mass of the lightest quark
in the system from quark poles. Note that these are usually not the real threshold
masses as described further in the text.
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4.5 Quarkonium Mixing

It is nice to see how observables like the mass or the inner structure can be investigated by
using the pure two-body tetraquark BSE, but as speci�c four-quark candidates are lying in
the middle of quarkonium mass spectra, it would indeed be even more impressive to open
up the possibility of a mixing between two- and four-quark states. This requires an exten-
sion to the two-body ansatz we already used to set up a BSE. With the two-body meson
BSE, we have the possibility to calculate the amplitudes of quarkonia straightforwardly –
the task then is to insert them sophisticatedly into the ansatz, which is the main content
of this section. The derivation in this section is based on a phenomenological insertion as
we will see later and thus, is not motivated from �rst principles. Such a derivation would
have to be performed e.g. like it was done in [130] for a single-component relativistic
scalar �eld theory. However, as argued by the authors, the generalization to theories
with a condensed vacuum (like QCD) is quite an involved task.

T -matrix extension. We recall the ansatz for the four-body T -matrices Ti we used to
derive1 the two-body tetraquark BSE with similar symbolic quark indices 1, 2, 3, 4:

Ti = T (2)
rs 1t1u + 1r1sT

(2)
tu − T (2)

rs T
(2)
tu (4.32)

A mixing with ordinary quarkonia is only possible if at least two quarks have the same
�avour. The idea is now to include an expression for the T matrix including two-quark
interactions for a possible bound state of a quark and an antiquark.

We use the self consistent equation of motion of the qq̄ T matrix,

T = K + KG0T , (4.33)

which is equivalent to
T = (1 − KG0)−1K, (4.34)

and extend the T -matrix ansatz by the following term:

T 2q
i = K (2)

rs K
(2)
tu Sst G

(2)
0 [(1 − KG0)−1K]ru G

(2)
0 SstK (2)

tu K (2)
rs (4.35)

Due to the loss of de�nite information by using symbolic quark indices r , s, t , u, the
idea is graphically sketched in Fig. 4.2. From the T -matrix de�nition we can read o�
the structure of the corresponding sub-amplitude and write down this part of the full
amplitude Ψ in the following way, where Γ∗ is the pure quark-antiquark BSA, ensuring
the correct quantum numbers.

Ψ2q = K (2)
rs SstK

(2)
tu G (2)

0 Γ∗ (4.36)

Performing equivalent steps as done in deriving the two-body tetraquark BSE leads
to three ‘new’ types of kernel expressions occurring within the mixed BSE among the
already known quark exchange kernel from the two-body tetraquark BSE – one kernel
expression, with which four-quark states transition into two-quark ones and vice versa

1We omit the tilde over Ti from here on.
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Figure 4.2: The �gure graphically shows the de�nition of the T matrices. The �rst line shows the
T matrices we already used by deriving the two-body tetraquark BSE, whereas the
second line corresponds to a two-quark contribution to be able to mix four- and two-
quark states with each other. The index i is symbolic for the possible permutations.
For the sake of readability, quark propagators are implicit in this �gure.

for the other kernel type. A fourth kernel type, the transition from a two-quark to another
two-quark state, also comes into play and is basically given by the two-quark interaction,
e.g. via Rainbow-Ladder.
Going into detail, the kernels are enumerated in the following:

(1) An amplitude Φ4-quark transitions into an amplitude Φ4-quark:

K 4→4 = −Γ̄rsΓ̄tu G(4)
0 ΓrtΓsu (4.37)

We know this one already from the two-body tetraquark BSE.

(2) An amplitude Φ4-quark transitions into an amplitude Φ2-quark:

K 4→2 = −Γ̄rsΓ̄tu SstSrSu (4.38)

(3) An amplitude Φ2-quark transitions into an amplitude Φ4-quark:

K 2→4 = KruSrSstSuΓrsΓtu (4.39)

(4) An amplitude Φ2-quark transitions into an amplitude Φ2-quark:

K 2→2 = K (2)
ru , (4.40)

where K (2)
ru is the interaction that binds the quarks r and u together to build up the

two-quark state – in the simplest case, this is a RL truncated interaction.

The appropriate expressions occurring within the mixed BSE are sketched as Feynman
diagrams in Fig. 4.3. This provides a completely new tool to investigate mixings between
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Figure 4.3: The four kernel types occurring in the mixed BSE with one quarkonium component
included. Type (1) is the already known quark exchange kernel from the pure two-
body tetraquark BSE, types (2) and (3) are mixing kernel diagrams coming into play
by including the quarkonium component and type (4) is the ordinary two quark
interaction, e.g. a Rainbow-Ladder based one.

two- and four-quark states in the Dyson-Schwinger/Bethe-Salpeter framework with a
classical mixing equation:

(
Φ
Γ∗) = (

KΦΦ KΦΓ
KΓΦ KΓΓ)(

Φ
Γ∗) (4.41)

As before in this work, Φ denotes tetraquark components, whereas Γ∗ is the putative
two-quark state. If the mixing terms Kij with i ≠ j are considerably small, the two
con�gurations decouple and we discard the interpretation of a mixed state.

Besides the possibility of performing calculations on this level, there are technical
di�culties arising though. While it is always su�cient to only have knowledge about
the two-quark Bethe-Salpeter wave function on the real axis by treating diagrams of
type (1), we need those wave functions in the complex plane by doing calculations with
diagrams of type (2) and (3). Furthermore, it is di�cult to do calculations with heavy
quarks included. A possibility here could be using the dressing function B of the inverse
quark propagator to have an approximate expression for the leading BSA for pseudoscalar
mesons through

F0(p2, z) ≈ B(p2)/f0− . (4.42)

This is especially applicable when using light u/d quarks, because relation (4.42) holds
exactly in the chiral limit [43]. Actually, this approach has been applied several times in
the past to have an approximation of the leading pion dressing function in the complex
plane, e.g. in Ref. [45]. Because of this, mixing a scalar two-quark � with its tetraquark
candidate is feasible without having to perform a deep investigation of the pole structure
of mesonic wave functions in the complex plane. Especially for heavier quarks, we must
apply one of the methods described in section 3.10.

A comment about irreducibility. The mixed BSE as it is shows a qq̄ irreducible kernel
as pointed out in [131]. It is important to note that this does not imply inconsistency
on any level, as extensively demonstrated in [132]. An alternative form for the coupled
BSE with a qq̄ irreducible kernel, where the 2-quark kernel K in the equation of Type (3)
in Fig. 4.3 does not occur, was derived in [133]. It is possible in our approach to derive
the exact same equations by not inserting the T matrix in Eq. (4.35), but simply the full
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two-quark propagator G,

G = G0 + G0KG = (1 − G0K)−1G0. (4.43)

This propagator can alternatively be rewritten by using the T matrix,

G = G0 + G0TG0. (4.44)

By comparing with Eq. (4.35), we merely inserted the second summand, G0TG0, into the
expression of T 2q. While it may be a more general approach to use G, as it is adding
G0 as a further diagram, it should be subleading since it does not bind the quarks in
question together directly by gluon exchange.1 In [132] we showed that the e�ects are
indeed merely on a few-percent level – all physical statements remain una�ected for the
states we investigate, cf. chapter 5.2. Based on this, every calculation with quarkonium
mixing in this work was done using the reducible kernel (4.39), although the usage of
the irreducible kernel would bring further numerical simplicity as (4.39) is only one-loop
then.

Box diagrams. The attentive reader may remember the absence of diagonal elements
in the two-body equation as formulated in (4.15). In chapter 4.1 it was argued that the
missing diagonal terms which appear in the full four-body equation are virtually absorbed
by the two-quark amplitudes. Beyond that however, one could still think of box diagrams
where the quark exchange does not occur “diagonally” as it is the case for the interaction
kernel of type (1) in Fig. 4.3, but vertically between two constituent partners of one
con�guration. The qq̄-inclusion e�ectively brings those (as of yet) missing terms into
the four-quark part of the equation – internally, by substituting the two-quark part back
into the four-quark BSE, the box diagrams appear. The occurrence of diagrams could be
understood intuitively and was already proposed in [134]. In our formulation as given
above, the quarks inside the box diagrams further exchange a gluon; this gluon vanishes
if we derive the coupled system from the full two-quark propagator G instead of the T
matrix, as described in the prior paragraph.

4.6 Resonances and the Complex Q2
Plane

Path deformations. As many tetraquark candidates are expected to be resonances,
one expects the T -matrix poles to lie in the complex Q2 plane, where the width can be
determined by using the kinematic relation

Q� = (iM − Γ/2, 0)� . (4.45)

As can be seen, this relation is given in the rest frame, but it can be rotated arbitrarily as
long as Q2 remains constant. Since the BSE would produce the corresponding pole at

1We expect a putative two-quark component to be dominated by gluon exchange rather than by quark
exchange. While the latter interaction is de�nitely possible, we discard it with clear conscience as we
obtain rich qq̄ spectra which are in impressive accordance with experimental results by not considering a
quark(-antiquark) exchange as part of the scattering kernel at all.
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a speci�c position Q2 in the second Riemann sheet, where �(Q2) = 1 holds, it would be
desirable to �gure out the exact position in the complex plane. If the eigenvalue curve is
evaluated above the threshold determined by the ingredient masses, a branch cut starts to
open. Going over the threshold and evaluating the eigenvalue curve for some non-zero
values of Γ is only possible by performing a suitable path deformation of the radial BSE
integral, ensuring that the poles as critical points (meson/diquark and quark poles) are
never hit by any propagator argument. Since the meson and/or diquark propagators
include the disruptive poles which determine the threshold in the �rst place within the
tetraquark BSE kernel with a momentum partitioning

q+ = q + �Q q− = q + (� − 1)Q, (4.46)

the conditions are given by
q2± ≠ −m

2
±, (4.47)

where m± are the masses of the respective ingredients. Performing such a deformation
and tracing the solution Q2 back to M and Γ gives the resonance mass and width. A
possible deformation and a path for the light f0(500) tetraquark candidate is given in
Fig. 4.4; the analytic form of the spiral-shaped path above the two-meson threshold
(M > 2m) with an input tetraquark mass M and width Γ is given by


M,Γ,m(t) = exp [ − i sgn(Γ) ⋅ �/4 ⋅ (5 + 3t)] ⋅
√
3 + 3t
2

⋅ ||m
2 + (iM − Γ/2)2/4|| (4.48)

for t ∈ [−1, 1]. Furthermore, Fig. 4.5 shows the e�ect of the path deformation on the
integration domain in the complex q±2 domain, where we see in which way the poles
are bypassed. We have to keep in mind that we have to access the propagators for
complex values with a real part smaller than −m2

±, and this is the problematic domain for
the propagator �ts as pointed out in section 3.11. However, the region closely around
q2± = −m2

± is dominated by the bound state pole and thus, numerically induced deviations
are a manageable issue.

The branch cut (blue, solid path in Fig. 4.4) is described by the divergence criterion
q2± = −m2

±. For these values of q2, the corresponding angular integral in the BSE has at
least one point in the respective domain, where the kernel diverges because we hit a
bound state pole. Of course, integrals like this cannot be solved numerically and might
lead to non-removable singularities in the complex q2 plane. The deformed path exploits
the fact that the branch cut has an opening and thus, is going through this opening to
be continued to q2 → ∞ in a certain way. One has to note at this point that there are
additional branch cuts coming from the quark propagator and excited states of mesons
and diquarks, but these occurrences are mostly irrelevant for the calculations in this
thesis; they show up only at masses far above the expected resonance masses M .

Note that the path given in Eq. (4.48) is not unique – other paths are possible as well,
e.g. the one used in [45]. While our proposed path resolves a weakness1 of the one in the

1The referred path crosses the cut when the tetraquark input mass is very close to the threshold. This
merely leads to small numerical artefacts in just a very small region, such that the two paths could be
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Figure 4.4: Examples for pion branch cuts and integration paths calculating the eigenvalue of the
f0(500) candidate. L.h.s.: (M, Γ) = (0.24, 0.3) GeV; a ‘normal’ integration on the real
axis is possible since the mass M is lower than 2 m� ≈ 0.280 GeV so that the branch
cut does not cut through the positive real axis. R.h.s.: (M, Γ) = (0.4, 0.01) GeV; the
branch cut goes over the real axis and the integration path has to be deformed.

Figure 4.5: A visualization of the integration domain in the variables q±. We show the complex
plane and the integration area (green) coming from the radial q2 and the angular z
integral. We see that the pole (in this example it’s a pion pole, denoted by the orange
star) is never hit.
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Ref. in the proximity of the two-meson threshold, we will frequently cross-check our
results by changing the path.

A caveat of our path (4.48) is that the path spreads farer into the timelike half plane
than it has to. For very heavy tetraquarks such as all-charm candidates this could lead to
an integration region that includes the diquark poles as they are relatively much closer1

to the meson poles for heavy systems. This is numerically unfortunate; therefore, we will
use another path for the investigation of all-charm tetraquark candidates in the complex
plane which we basically assume to consist of di-J / . For the spiral-shaped part and
t ∈ [−1, 1] we use:


M,Γ,m(t) =

{
−0.01 ⋅ [1 + 500 ⋅ ( M

2m − 1)] ⋅ (t + 1) t < 0
−0.01 ⋅ [1 + 500 ⋅ ( M

2m − 1)] ⋅ 6
t ⋅ exp (−i�t3) t ≥ 0

(4.49)

Note that this path is by far not as general and sophisticated as the one in Eq. (4.48) as
it is constructed only for di-J / states in order to prevent additional poles from being
crossed.

Analytic continuations. Our calculations are restricted to the �rst Riemann sheet,
but poles of resonances are located in the second [135]. Although we can not evaluate
eigenvalues there directly, we can predict the behaviour of the curve by continuing it
analytically. For that, we use the information in the �rst Riemann sheet and extrapolate
these values into the “interesting” area, cf. Fig. 4.6. These extrapolations could happen
either via polynomial �ts or by using more advanced methods, e.g. Schlessinger’s method
of continued fractions (SPM) [125]. Apparently, it strongly depends on the mathematical
behaviour of the function, which method is suitable and which is not. In practice, we
will mostly apply the method of sticky curves, which will be described in the following
paragraph.

Sticky Curves. Practical calculations show that a two-dimensional SPM continuation
is not applicable for every eigenvalue curve in the complex plane. Technically, it is
possible to bypass that problem by calculating sticky curves. The idea is to extrapolate
to speci�c values (M, Γ) where Re(� − 1) and Im(�) are identical, thus “stick together”. A
solution is obtained at the point where the sticky curve crosses the zero. The single points
are calculated via one-dimensional continuations, e.g. for a �xed mass M in a Γ domain,
as illustrated in Fig. 4.7. Note that this is not the only way do those continuations –
especially for heavy-light tetraquark candidates, we will also perform the one-dimensional
continuations diagonally as showed on the right hand side of Fig. 4.6. This technique is
individually tailored to the problems in this work and was not used in other works, yet.

considered both as suitable for the problems of this work.
1One can see this in Fig. 4.5. If the diquark pole is close to the left of the meson pole, it may enter the

integration domain, which we should avoid absolutely.
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Figure 4.6: The analytic continuation procedure displayed schematically. The horizontal axis
is showing the width Γ; the vertical axis is showing the mass M . The grey dashed
line is marking the threshold mass. The orange line denotes the branch cut coming
into play because of the internal meson/diquark poles. Note that the branch cut is
only present while “staying” in one Riemann sheet; the function is continuous when
transitioning from one into the other sheet. We continue a set of input points (blue
area on the left hand side) from the �rst to the second Riemann sheet by using a
method of analytic continuation. We show two sets of input points, which provide
two di�erent views into the second Riemann sheet.

Figure 4.7: An illustration of a sticky curve and its computation. Left panel: Calculated in-
put points of the eigenvalue curve (dark blue) with shadowed background. The
partially transparent blue arrows and the bright blue points they point on de-
note one-dimensional extrapolations. The red curve is the sticky curve for which
Re(�−1) = Im(�) holds. Right panel: Three dimensional illustration of the sticky curve
with the eigenvalue axis as the ordinate. The non-transparent surface corresponds to
Re(� − 1) = 0 = Im(�), where the BSE is considered to have a solution, if the sticky
curve crosses it.
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Chapter 5

Results

5.1 Pure Heavy-Light Tetraquarks

This section includes mass curves of calculations with pure tetraquarks in the charmonium
sector. The clusterings are generally either mesonic, hadro-charmonium or diquarkonic
as de�ned beforehand in this thesis. Furthermore, we can distinguish between hidden
and open charm states. Hidden charm states are having a charm quantum number equal
to zero, thus contain a cc̄ pair internally. The quark content of a pure tetraquark with
light quark contributions is then cc̄qq̄. Besides that, it is potentially possible to �nd open
charm states, which are consequently de�ned to have a non-vanishing charm quantum
number. Such states can be clearly distinguished from ordinary quarkonia due to their
non-vanishing heavy �avour, and a mixing with an ordinary quarkonium is impossible.
The quark content is set to ccq̄q̄ (or the corresponding antiparticles). Obviously, there is
no possibility for the open charm state to cluster into hadro-charmonium, indicating that
a separation into two mesons can only happen with heavy-light ones. This section shows,
to which extent di�erences between those states are showing up in our calculations and
which predictions we could make on that basis.

5.1.1 Hidden Charm

The hidden charm states we investigated were the following, where the meson-meson
clusters are, if possible, motivated by leading decay channels of experimental states,
see Tab. 5.1. The calculated mass curves are shown in Fig. 5.1 – 5.4. Dashed lines are

I J P(C) exp. candidate clusters

0 0+(+) – DD̄, ! J / , SS
1 0+(+) – DD̄, ��c , SS
0 1+(+) χc1(3872) DD̄∗, ! J / , AS
1 1+(−) Zc(3900) DD̄∗, � J / , AS

Table 5.1: The investigated quantum numbers with potential experimental candidates and the
di�erent clusterings for hidden charm tetraquarks. Diquarks are distinguished via A
(axialvector) and S (scalar).
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�ts for the mass curve of the full setup. All errors come from extrapolations via SPM
continuation.

I (J PC) = 0(0++)

Going down the mass curve starting from an all-charm tetraquark, we see that the hadro-
charmonium component is not dominant at all since switching it o� doesn’t do much.
Switching o� the diquarkonic component increases the mass in the heavy-light region
slightly, and switching o� the mesonic DD̄ component leads to no solution of the BSE
at all, highlighting its importance. We interpret that the tetraquark is dominated by the
DD̄ component with a small diquarkonic component consisting of two scalar diquarks.
Incorporating the possibility of a tetraquark with open-strange decay channels, we get
the masses

M0(0++)
cc̄qq̄ = 3.49(25) GeV (5.1)

M0(0++)
cc̄ss̄ = 3.69(18) GeV. (5.2)

I (J PC) = 1(0++)

We see a non-negligible hadro-charmonium component for the hidden-charm 1(0++)
tetraquark because switching it o� increases the mass along the mass curve by almost
1 GeV consistently. Diquarks do not play a signi�cant role here and switching o� the DD̄
component gives no solution again. This leads us to the conclusion that this tetraquark
is basically dominated by the mesonic DD̄ and the hadro-charmonium �c� component.
Compared to the isoscalar equivalent discussed beforehand, this makes sense, since the
included pion as a light particle favours lower-energy states. With

M1(0++)
cc̄qq̄ = 3.20(31) GeV, (5.3)

the mass is considerably smaller than the isoscalar with M0(0++)
cc̄qq̄ = 3.49(25) GeV.

I (J PC) = 0(1++)

As this tetraquark has experimental candidates for q = u/d, s, namely the χc1(3872) and
the X(4140), we have values to compare by going down the mass curve. We see that the
diquarks have absolutely no in�uence on the mass curve at all and the hadro-charmonium
component only has a negligibly small in�uence, which leads to the conclusion that this
tetraquark is unambiguously dominated by the mesonic DD̄∗ component. This agrees
with recent four-body DSE/BSE-calculations [46] and so con�rms those. At the up/down
(q) and the strange (s) quark mass, our results are

M0(1++)
cc̄qq̄ = 3.85(18) GeV (5.4)

M0(1++)
cc̄ss̄ = 4.10(16) GeV, (5.5)

covering the experimental candidates χc1(3872) and X(4140) pretty well within error bars.
Apparently, the error bars are too large to talk about calculations on a high precision
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Figure 5.1: Mass curves for the 0(0++) hidden charm tetraquark.
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Figure 5.2: Mass curves for the 1(0++) hidden charm tetraquark.
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Figure 5.3: Mass curves for the 0(1++) hidden charm tetraquark.
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Figure 5.4: Mass curves for the 1(1+−) hidden charm tetraquark.
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Figure 5.5: The hidden-charm tetraquark mass spectrum. Blue shaped rectangles denote the
calculated results including error bars. Blue shaded rectangles denote heavy-light
states with strange content, cc̄ss̄. Values for experimental candidates are given by
the black bars.

level, but this inaccuracy does not transfer to the statement about the inner structure,
which shows up to be mesonic (DD̄∗/DsD̄∗

s).

I (J PC) = 1(1+−)

With the Zc(3900) as an experimental candidate, we can again do a comparison between
our calculations and the physical value from literature. With the pion as a light particle
in the hadro-charmonium component, we see again, as in the scalar case, that this
component gets more relevant for the state and that the overall mass decreases slightly
compared to the I = 0 equivalent state, even though the experimental candidate does not
re�ect this decrease. The diquarkonic component remains unimportant over the whole
mass curve and the calculated mass for light q = u/d quark masses is given by

M1(1+−)
cc̄qq̄ = 3.79(31) GeV, (5.6)

which makes it possible to identify it with the experimental Zc(3900).

Summary

After all, we got a ground state spectrum of hidden charm tetraquark states for di�erent
quantum numbers, given in Fig. 5.5. The mass ordering seems natural – states with
higher angular momentum are more massive than those with lower. Also, the masses of
the isovector states are slightly lower than their isoscalar equivalents, and the reason for
this may be the light pion being a possible ingredient. In the axialvector spectrum this
disagrees with experimental results, where the isovector state is slightly heavier than
the isoscalar one. Within these calculations however, it is important to point out that
any statement of higher-/lower-lying states are not absolute due to the large error bars
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I J P exp. candidate clusters

1 0+ – DD, D∗D∗, AA
0 1+ – DD∗, D∗D∗, AS
1 1+ – DD∗, D∗D∗, AA

Table 5.2: The investigated quantum numbers with potential experimental candidates and the
di�erent clusterings for open-charm tetraquarks.

we get, and this should also not be the main statement of this chapter. Instead, we focus
on those about the dominance of certain substructures: The hidden-charm states seem
to be strongly dominated by mesonic clusters. Heavy-light states always have a strong
DD̄(∗) component, whereas the hadro-charmonium component becomes vital whenever
we have isovector states. Diquarks are mostly irrelevant except for the 0(0++) case, where
they seem to play a minor role.

5.1.2 Open Charm

The open charm states we investigated are displayed in Tab. 5.2 Note that, since there
are always indistinguishable quarks, Pauli symmetry conditions have to be satis�ed.
E�ectively, this reduces the amount of possible diquark clusterings. An explanation how
to determine the correct diquark clusters based on the spin, colour and �avour structure
of the individual diquark wave functions is given in appendix C.

I (J P ) = 0(0+)

We can �gure out directly that diquarks are playing a minor role here again and that
mesonic contributions consisting of DD are dominant. Exchanging the DD component
with D∗D∗ component raises the mass signi�cantly, letting us conclude that the DD com-
ponent is the important mesonic component for the ground state. Since the pseudoscalar
D has a lower mass than the vector D∗, this seems natural. Setting q = u/d the tetraquark
mass shows up to be

M1(0+)
ccq̄q̄ = 3.214(17) GeV. (5.7)

Due to Pauli symmetry, it is impossible to generate a scalar/isoscalar tetraquark with a
diquarkonic clustering, so we didn’t focus on that one.

I (J P ) = 0(1+)

Going down the mass curve here shows that diquarkonic components are irrelevant
and that mesonic components dominate. As in the 1(0+) case, the mesonic component
(here: DD̄∗) seems to be more important for the state than the D∗D∗ component; the
corresponding D∗D∗ masses show up to be at order 6–10 GeV and therefore are way too
heavy for being a signi�cant component of the ground state. The masses for q = u/d, s
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Figure 5.6: Mass curves for the 1(0+) open charm tetraquark.
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Figure 5.7: Mass curves for the 0(1+) open charm tetraquark.
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Figure 5.8: Mass curves for the 1(1+) open charm tetraquark.
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Figure 5.9: The open-charm mass spectrum. Blue shaped rectangles denote heavy-light states
with ccq̄q̄ and q = u/d including the error bars from extrapolations; blue shaded
rectangles denote heavy-light states with strange content, ccs̄s̄.

are given by

M0(1+)
ccq̄q̄ = 3.49(48) GeV (5.8)

M0(1+)
ccs̄s̄ = 3.76(35) GeV. (5.9)

I (J P ) = 1(1+)

The axialvector isovector state also shows a similar behaviour as its isoscalar partner, as
it is clearly dominated by DD∗ and not by D∗D∗, whereas diquarks are almost irrelevant
again since we get similar results as in the 0(1+) case. The mass for q = u/d is given by

M1(1+)
ccq̄q̄ = 3.47(24) GeV. (5.10)

Summary

Similar as in the hidden charm case, we also see a reasonable mass ordering for di�erent
angular momentum quantum numbers; J = 1 states are heavier than J = 0 states. Since
there are no experimental candidates yet, we cannot do a corresponding comparison.
Again, we can visualize the spectrum as seen in Fig. 5.9.

5.1.3 Comparison between Hidden- and Open-Charm Candidates

The transition between hidden- and open charm states is done by shifting the “anti-
particle property” from a quark to another one of the other type. Although one can
intuitively expect that this should not result in a huge mass di�erence, it seemingly
does in our calculations. In general one could say that axialvector open charm states
appear lighter than the corresponding hidden charm states within our equations. A
possible explanation for that on the level of the BSE is the interaction – pure D-mesonic
quark exchange diagrams couple stronger, which can also be seen by comparing the
associated BSAs: the values of the amplitudes are numerically larger for D mesons than
those included in hadro-charmonium and diquark con�gurations, which supports that
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the largest BSE eigenvalue (which corresponds to the ground state) is dominated by D
mesons. Keeping in mind that the error bars are large, de�nite statements about the mass
remain vague, but so do not the statements about substructure dominances. That the
calculated open-charm tetraquarks are bound and thus, comparably stable, aligns oneself
into arguments from Ref. [136], where the authors demonstrated that QQq̄q̄ states are
stable in the heavy quark symmetric limit. We see that diquarks are irrelevant in almost
every channel and mesonic contributions prevail over any other. Hadro-charmonium
structures only become relevant, when pions are possible substructures, and this is the
case only for isovector states. We assume that this is due to the low mass of the pion,
which makes a bound state lower in mass than a state with heavier components. But
even if hadro-charmonium is a signi�cant component of the full state, the molecular
component is dominating the full solution in every case (note that we often get no
solution at all when we exclude it). This is mostly in good accordance with recent
DSE/BSE results in an e�ective four-body picture [46, 91] and encumbers several diquark
model calculations [21–23].

5.2 Quarkonium Mixing in the Light Quark Sector

In this section we present results for four- and two-quark states in the light quark sector
(q = u, d, s) by mixing them together to make statements about the inner structure. In the
�rst part of this section, we will investigate the �/f0(500) by evaluating the eigenvalue
curves for real Q2. In the second part we will repeat this calculation for complex Q2 in
order to make also statements about the decay width. Then, we transfer this procedure to
setups with strange content and conclude the section with a description of the heavy-light
four-quark candidates f0(980) and a0(980).

5.2.1 Real Momenta

The �/f0(500) on the real axis

We approach the light 0(0++) meson, also called � or f0(500), which has T -matrix poles at
√
−Q2 = [i (400… 550) ± (200… 350)] MeV (5.11)

in the second Riemann sheet, according to a collection of lots of analyses, including the
most advanced model-independent ones from Roy-like dispersion relations [106, 137].
The pure Bethe-Salpeter Rainbow-Ladder results for a scalar qq̄ meson with Maris-Tandy
interaction, around M ≈ 650MeV, are known for years now and are clearly not located in
the domain given in Eq. (5.11). However, this does not seem too astonishing, since a pure
RL calculation does not include any decay terms which could �nd expression in a width.
Therefore, a serious treatment of a scalar meson could only happen via BRL calculations.
It shows however, that the currently most advanced BRL calculations of a pure scalar qq̄
meson with an analysis on the real axis primarily lead to higher meson masses [56, 116]
and do not make statements about the width at all as they don’t include decay diagrams.
From recent two-body calculations, a width of the scalar qq̄ meson, generated from the
� → �� decay as an additional diagram to the RL kernel, could be determined with a
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Figure 5.10: The eigenvalue curves �(Q2) of the �/f0(500) for di�erent setups. The notations
�� (mesonic) and SS (scalar diquark-antidiquark) stand for two-body tetraquark
components and qq̄ is obviously denoting the quarkonium component. The r.h.s.
shows the section located inside the red dotted rectangle on the l.h.s. and provides
an insight to the details of the mixed curves.

pole located at
√
−Q2 ≈ (600 − i 90) MeV [138]. While the real part of the mass decreased

by the kernel extension, the eigenvalue curve is still dominated by the RL part and one
can expect that it will further increase by taking a more realistic interaction than the
Maris-Tandy one. Since quark model calculations predict a scalar qq̄ state in a higher
mass region as well, a tetraquark character seems natural, and DSE/BSE studies in the
past [47, 120] strengthened this expectation as we �nd a pure tetraquark state with a
mass around 350 − 450 MeV in both, two- and four-body calculations. We have to keep
in mind that these values result only from extrapolations of the eigenvalue curves on
the real axis and do not consider the potential behaviour in the complex plane and the
branch cut structure. It is now interesting to see how, and if, how signi�cant a qq̄ state
couples to a qq̄qq̄ state. To gain knowledge about this, we perform calculations based on
the technicalities described in chapter 4.5 and compare the resulting masses as well as
the eigenvalue curves coming from solving the BSE on the real axis.
In this section, di�erent setups will be compared:

• a pure tetraquark state with only the pionic substructure (�� ),

• a pure tetraquark with pionic and diquarkonic ingredients (�� + SS),

• a quark-antiquark state (ordinary quarkonium) using RL truncation and the Maris-
Tandy interaction model (qq̄),

• a mixing state of a pionic tetraquark and the quark-antiquark state (�� + qq̄) and

• a mixing state of a pionic/diquarkonic tetraquark and the quark-antiquark state
(�� + SS + qq̄).

Via Fig. 5.10, the analysis of the eigenvalue curve of a pure tetraquark state yields
what we already got from calculations in the past [120]: diquarks do not play a role at all
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setup ground state mass [MeV] 1st excited state mass [MeV]

�� 416(26) 970(130)
�� + SS 416(26) 970(130)
qq̄ 667(2) 1036(8)

�� + qq̄ 472(22) 1080(280)
�� + SS + qq̄ 456(24) 1110(110)

Table 5.3: The masses of the ground state and the �rst excited state using di�erent setups isolating
and mixing tetraquark components and quarkonia from and with each other according
to extrapolations on the real axis. The error estimates come from the extrapolations.
We calculate the mass by using the on-shell mass relation Q2 = −M2.

here. The pure qq̄ state, calculated via Rainbow-Ladder truncation using the Maris-Tandy
model, follows an eigenvalue curve that crosses � = 1 at P 2 ≈ −0.5GeV2, which compares
well to RL results from the literature, e.g. from [116]. Looking further at the states with
quarkonium mixing, we see that the eigenvalue curves almost match with the qq̄ curve
in the spacelike region and deviate from that when going into the timelike region, where
they start to increase signi�cantly stronger than the qq̄ curve. On the right panel, we see
that the curve with diquarkonic contributions is lying a bit higher than the one without
when the mixing with the qq̄ state is enabled, whereas in the pure tetraquark case, the
curves with and without the diquarkonic SS component match quite precisely.

A quantitative investigation of the eigenvalue curves using the SPM yields the re-
sults shown in Tab. 5.3, where we also extrapolated the solutions of the second largest
eigenvalue, which provides information about the �rst radial excitation.

Concluding remarks. From this analysis we conclude that tetraquark components
are basically responsible for the low mass of the �/f0(500). While the qq̄ curve seems to
dominate also the mixing curves in the spacelike region where the eigenvalues of the
pure tetraquark states are quite low, the rise of the tetraquark curve starts to dominate
the solution such that the mass decreases overall in comparison with the qq̄ state. The
responsibility of the tetraquark components regarding the low mass also makes sense
by keeping in mind that tetraquarks are an explanation for the ‘inverse’ mass ordering
we �nd in the light scalar meson spectrum as pointed out in the introduction. It is
interesting to see that the diquark-antidiquark component becomes more relevant for the
full solution when the mixing with ordinary quarkonia is enabled, whereas it seems to
have almost no in�uence on the solution with only tetraquark components. We have no
deep explanation for this e�ect, but we observe that the diquark-antidiquark component
seems to couple stronger to the qq̄ component than it does to the �� one. At this point,
we rely on extrapolations from the information we got for the eigenvalue curve on the
real axis, but for an investigation of the state as a resonance, calculations in the complex
plane have to be performed using a path deformation for the radial integral to avoid the
internal poles, which prevent us from evaluating the eigenvalue curve apart from real
axis. Such a path deformation is addressed in section 4.6.
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5.2.2 Complex Momenta

Going above the threshold requires knowledge of the eigenvalue curve in the complex
plane since a resonance state should appear in the second Riemann sheet as a T matrix
pole or as a solution of the BSE, respectively. We perform those calculations for the
lightest scalar meson, the �/f0(500) by doing a path deformation of the radial integral
as described in section 4.6. Other than in the last section, we restrict our calculations
to the timelike region where the mass M and the width Γ are positive real numbers. We
expect that the information about the pole in the second Riemann sheet is stored above
the threshold anyway, as it is the case e.g. in [45].

We will distinguish between di�erent setups again, with and without four- and two-
quark contributions, and compare the calculated data points as well as the data we
conclude from extrapolations into the second Riemann sheet. We will also compare the
results for di�erent parameters of the Maris-Tandy model while varying the coupling
consistently as a whole parameter set.

The �/f0(500)

The eigenvalue curve in the (M, Γ) plane for a renormalized quark mass of 3.8 MeV is
shown in Fig. 5.11 as a three dimensional plot. The real part of the eigenvalue curve
is subtracted by one and the imaginary part got a negative sign. In that way, we can
visually distinguish the two curves and conclude a solution of the equation, if both curves
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Figure 5.11: An exemplary example: the complex eigenvalue curve of the mixed �/f0(500) in-
cluding all components: four- and two-quark candidates. The values of the real
part (red/�lled circles) and the imaginary part (blue/open circles) are shown in a
form where the equation shows a solution, i� both curves cross the ‘zero plane’
simultaneously; that zero is illustrated by the black lattice. Also, the two-pion branch
cut is shown by the thick black line on the (M, Γ) domain.
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Figure 5.12: Projections of the sticky curves of the mixed �� + SS + qq̄ state for di�erent sets of
model parameters in the sense of Tab. 3.2. Left panel: the sticky curves projected
onto the (M, �) plane. Right panel: the sticky curves projected onto the (Γ, �) plane.
The ordinate shows the real as well as the imaginary part of the eigenvalue �, which
have the same value, cf. 4.6.

cut the zero (black lattice) simultaneously. Also, the two-pion cut is shown by the thick,
black bar in the (M, Γ) domain. As it is not possible otherwise, the plotted points are
given in a speci�c domain in the �rst Riemann sheet, which is restricted by the following
constraints:

0.24 GeV ≤ M ≤ 0.36 GeV and 0.05 GeV ≤ −Γ/2 ≤ 0.20 GeV (5.12)

By looking at the imaginary part of the curve, we instantly see the threshold e�ects: the
opening of the characteristic branch cut.1 Also, the imaginary part as well as the “reduced”
real part of the eigenvalue curve approach the zero plane by going towards the real axis.
Besides this curve, which includes all components (mesonic, diquarkonic and two-quark),
we calculated the curves with component exclusions as well, although we will not show
those curves in this work because of the similar appearance. Instead, we show the results
for the extrapolated solutions following from computing the sticky curves, which are
shown in Fig. 5.12. For readability reasons, we do not show the three-dimensional plot,
but the projections onto the mass and width coordinates. We see the sticky curves for the
full �/f0(500) candidate as a mixed state for di�erent model parameter sets as shown in
Tab. 3.2. The mass of the state barely depends on the model parameter variation; merely
the width changes signi�cantly for di�erent setups. Altogether, this delivers a model
error for our results. We note that the extrapolation error, which is in this case part of
the sticky curves for the Γ projection, is at the order of 10% and overshadowed by the
model error – therefore, it is neglected in the following.

The sticky curves for the mixed state as given in Fig. 5.12 deliver a stable mass in
the range of 290… 300 MeV and a half width in the range of 90… 150 MeV. We show
the results for the masses and widths as well as the model errors in Tab. 5.4. We denote

1The eigenvalue curve has to be symmetric under complex conjugation when staying in a Riemann
sheet and the imaginary part is clearly non-vanishing near the real axis.
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setup M [MeV] �/2 [MeV]

�� + SS + qq̄ 291(5) 121(22)
�� + SS 302(7) 148(31)
�� 301(7) 158(29)
qq̄ 661(8) 0

Table 5.4: The results for the �/f0(500) candidate. The left column denotes the di�erent compo-
nents which are included in the respective calculation and the other columns show the
mass and half width as well as the model error we extracted from the sticky curves.

the mass as the imaginary part of the Mandelstam variable √
s and Γ/2 as the associated

negative, real part. It is clearly visible that the qq̄ and the SS component only provide
small corrections on a few-percent level to the mass of the �� state, but larger ones
(on a 20% level) to the width. Furthermore, the pure qq̄ state mass is still far o�. We
conclude that the state is basically a �� state and thereby comply with our �ndings
from calculations on the real axis. A comparison with these �ndings from a quantitative
point of view entails that the mass resulting from an analysis in the complex plane is
signi�cantly lower and thereby also lower than the PDG mass [106]. We suppose that
these discrepancies could be traced back to our truncations and the interaction model,
which binds the tetraquark state stronger than it is bound in reality. To investigate
this, it is possible to vary the coupling between di�erent components inside the BSE
consistently – we found that the pole location is especially sensitive to the coupling of
meson-meson and meson-quarkonium diagrams. Lowering those couplings by 30% of
their strengths in these channels results in a solution (M, Γ/2) = (309(14), 232(54)) MeV,
which is somewhat closer to the PDG value and supports our supposition of a model issue.
Concerning the comparison with the former extrapolation on the real axis, it is important
to note that the statements about the inner structure remain stable, although the mass
fell signi�cantly into a region which is clearly away from the PDG region. That leaves
us with the belief that the statements about the dominant substructures of heavy-light
4-quark states from section 5.1 remain valid as well, though it is clear that it would need
a deeper investigation to do reliable statements.

With our qualitative results of a lucid non-qq̄ interpretation of the � , we are in
accordance with results of a variety of approaches, such as lattice QCD [27, 139–141],
dispersion theory [142], e�ective �eld theories [58, 59, 143], DSEs [47, 120] and model
studies [56, 61, 144], which also indicate a four-quark nature as already stressed in
section 1.3.

Stranged, equal-mass mixed states

Besides a description of four-quark states with light quark content, it is also possible
to consistently raise the quark masses simultaneously to investigate the behaviour of
di�erent setups. Especially, a central question would be, if the four-quark dominance
persists while doing that, or not. The calculations have been done in the same manner
as in the previous paragraph – the eigenvalue curves were calculated inside a square in
the �rst Riemann sheet above the threshold mass and analytically continued into the
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second one by computing the sticky curves. We show the results quantitatively as masses
and widths in Tab. 5.5 and qualitatively as ovals in the complex plane in Fig. 5.13, whose
widths and heights correspond to the model error. From a light quark mass of 3.8MeV, we
increase the mass in three steps to arrive at the strange quark mass, given by 85.5MeV1.

We see that the mixed state for the light quark mass, which corresponds to the � , is
clearly dominated by the 4-quark component since the states lie on top of each other, but
this is nothing but the result we know already from previous calculations. By increasing
the quark mass, it is interesting that the four-quark dominance seems to get lost during
this process. While there is a pretty mixed picture visible for quark masses of 20 and
50 MeV, the state shows up to be dominated by the two-quark component for strange
quarks, since the corresponding states overlap and the 4-quark state appears to be far
o�. This is how we would expect the results from a physical point of view, since the
dominance of 4-quark components in the � is a chiral e�ect in the �rst place. For heavier
quarks such as the strange one, these chiral e�ects lose relevance more and more.2 For
us, this acts as a proof of principle for our approach and shows its potential, even though
there are no experimental candidates for an all-strange 4-quark state, yet. It motivates
the next part, namely the description of heavy-light mixed states with strange quark
contributions, for which experimental candidates de�nitely exist: the f0(980) and the
a0(980).

Stranged, heavy-light mixed states: the f0(980) and a0(980)

As scalar states close to the KK̄ threshold, the f0(980) and the a0(980) with masses and
widths of

(M, Γ/2)f0(980) = (970… 1010, 5… 50) MeV (5.13)
(M, Γ/2)a0(980) = (960… 1000, 25… 50) MeV (5.14)

according to the PDG [106] are predestinated four-quark state candidates, and an analysis
as mixed states is a reasonable step towards a description of these particles. Essentially,
both states are identical apart from isospin: the f0(980) is an isoscalar and the a0(980) is
an isovector. Correspondingly, mixing with a quarkonium state is possible for the a0(980)
only if the quarkonium consists of two light quarks, but a mixing to a “strangeonium” is
forbidden due to isospin conservation. The f0(980) however could have an ss̄ component,
which makes this object particularly interesting for the studies in this work.
For a description of the two setups, we generally consider the following substructures
motivated by decay channels and general possibilities that allow the respective quantum
numbers:

○ f0(980) = KK̄ + �� + SS + (uū + dd̄) + ss̄

△ a0(980) = KK̄ + �� + SS + (uū − dd̄)

1This mass is �xed in a way that our model yields a good kaon mass at around 500 MeV for standard
MT model parameters, cf. Tab. 3.3.

2This is basically because two constituent quarks become lighter than two (pseudoscalar) mesons.
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Figure 5.13: Plot of the extrapolated solutions of the equal-mass states for di�erent quark masses.
The abscissas indicate the mass M in MeV and the ordinates indicate the half width
Γ/2 in MeV as well. The ovals denote the solutions with the corresponding error
bars coming from model variations. Note that for readability reasons, ovals are
drawn thicker, if the error is too small. The numerical values can be drawn from
Tab. 5.5. For the light quark case, mq = 3.8 MeV, the PDG region for the �/f0(500) is
also drawn as a yellow rectangle. Clear, green ovals represent pure 2-quark states,
dotted, blue ovals are 4-quark states, and shaped, red ovals represent the mixed state
with 4- and 2-quark components combined.

mq [MeV] 3.8 20.0 50.0 85.5
mixed 291(5) − i ⋅ 121(22) 669(3) − i ⋅ 11(13) 827(3) 1047(12)

4-quark 302(7) − i ⋅ 148(31) 665(10) − i ⋅ 110(41) 1045(9) − i ⋅ 74(22) 1414(21) − i ⋅ 34(20)
2-quark 661(8) 739(6) 881(13) 1073(10)

Table 5.5: The numerical values for the plot above. All values are given in MeV and errors come
from model variations. The �rst row states the renormalized quark masses and the
values below are the pole positions of the BSE solutions for the respective setups in
the form M − i ⋅ Γ/2.
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In our calculations, we will only consider the underlined clusters for technical reasons:
The �� component will not be considered because it would require internal conversion
of quark �avours – on the one hand, this is tremendously di�cult to implement into
our equation consistently as it would have to be derived from the outset and on the
other hand, it should not signi�cantly a�ect the mass of the state as the corresponding
diagram should be OZI suppressed1. Furthermore, although a �� state would be a possible
candidate e.g. for the a0(980) [86], the light pion pole heavily restricts the domain where
an evaluation of the BSE eigenvalue curve is possible. That entails that extrapolations
would lose their accuracy to an extent where a prediction is not reasonable any more.
Because of that, we will cut out pionic contributions completely. Furthermore, we will
exclude the (uū ± dd̄) components in our pure RL calculations, because they represent
the pure qq̄ as a � candidate and its isospin partner, which yet are way too light in our
model and thus, is not a realistic choice for a quarkonium mixing in this energetic region:
It would spuriously dominate the state due to its low mass. However, more realistic BRL
calculations show that the mass of the scalar two-quark state is at around 1.1 GeV, and
recent lattice results indicate that the a0(980) is indeed a superposition of a tetraquark
and such an ordinary qq̄ state [36]. A corresponding DSE/BSE calculation would require
model improvements �rst to provide a convincing comparison. We will include those
light quark states into the equation later in this chapter by modelling the BRL e�ects in a
very simple way.

With the emphasized choice we treat the f0(980) as an a0(980) with an additional ss̄
component in a pure RL calculation2. The setups we investigated are the following:

○ a fully mixed state (KK̄ + SS + ss̄)

△ a pure four-quark state (KK̄ + SS)

○ a strangeonium state with kaonic contributions (ss̄ + KK̄ )

○ a strangeonium state with diquarkonic contributions (ss̄ + SS)

○ a pure RL strangeonium state (ss̄)

Points with a circle (○) correspond to potential f0(980) candidates and the triangle (△)
corresponds to an a0(980) candidate. Note that the latter is a truncated, four-quark
exclusive version of the full f0(980) candidate as well since we are working in the isospin
symmetric limit.

The numerical results are shown in Tab. 5.6; errors stem from model variations. Note
that bound states below the mass threshold could not have a width di�erent than zero
due to the absence of a decay channel in our diagrams. Because of this, we interpret all
non-zero widths for states below the corresponding thresholds (every state except the
pure four-quark state) as numerical artefacts. In Tab. 5.6, these widths are starred.

1Internal gluon lines for a �avour conversion yields to disconnected diagrams once the gluon lines are
cut. According to the OZI rule, these diagrams are suppressed. [145–147]

2and a di�erent isospin, but this only attracts attention when looking at the amplitudes – the �avour
traces remain the same
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f0 a0 setup mass [MeV] half width [MeV]

✔ ss̄ + SS + KK̄ 915(20) 2(3)∗
✔ ✔ KK̄ + SS 1001(4) 24(16)
✔ ss̄ + KK̄ 927(18) 1(3)∗
✔ ss̄ + SS 1057(14) 0(1)∗
✔ ss̄ 1073(10) 0

Table 5.6: The comparison of the masses and the (half) widths between di�erent setups for the
mixed f0(980) and the a0(980) candidate with quark content ss̄(qq̄). The S’s denote
scalar diquarks as possible building blocks of the tetraquark. Checkmarks denote
whether a state is a potential a0(980) or f0(980) candidate. The starred widths are the
ones which have to be treated as zeroes as explained in the text.

Two-quark state. We see the pure Rainbow-Ladder ss̄ bound state at 1073(10) MeV.
Compared to a more realistic beyond-RL description of scalar quarkonia in that re-
gion [102], this mass appears too small, similar to the two-quark RL description of the �
candidate.

Four-quark contributions. Adding diquarks to the pure two-quark state decreases
the mass slightly – but still, they only provide corrections on a few-percent level (1073 →
1057 MeV). It is quite a di�erent picture when adding the KK̄ component instead. Here,
the mass of the state goes down signi�cantly. We get an average solution clearly below
the KK̄ threshold at 927(18) MeV and therefore, it tends to appear as a bound state in
our equations. When adding the diquark-antidiquark component to the ss̄ + KK̄ , we see
that the e�ect is again negligible within error bars (927 vs. 915 MeV). We �nd a fully
mixed state at 915(20) MeV including all three components. We can further compare this
with a pure four-quark state by excluding the ss̄ component. We arrive at a state slightly
above the KK̄ threshold with a mass of 1001(4) MeV and a half width of 24(16) MeV; the
corresponding sticky curve is shown in Fig. 5.14.

The f0(980). We conclude that the KK̄ component is vital for a description of the
ground state of the f0(980) candidate. It lowers the ground state mass of the pure ss̄ state
signi�cantly into a region between 900 and 1000 MeV, where potential candidates are
expected and establishes a state with a reasonable mass (927MeV) even without adding a
diquarkonium component at all. In general, the mass never falls below 1 GeV unless we
include the kaonic structure. With the diquarkonium component added, we get a mass
of 915 MeV, indicating that it only plays a minor role for a description of the ground
state. This is as expected due to the fact that heavy-light diquarks are much heavier than
kaons. The inclusion of the ss̄ state lowers the mass of the pure four-quark signi�cantly
(1001 → 915), which underlines the importance in this setup with a RL interaction – in
a BRL calculation, this importance might change. Similar to the light quark sector, we
�nd a state which is considerably lighter than the experimental candidate – although,
the deviation from the PDG value is much smaller (< 10%).
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Figure 5.14: The sticky curves for the a0(980) candidate as a state KK̄ + SS. The left panel shows
the (M, �) plane and the right panel shows the (Γ, �) plane. Di�erent sticky curves
correspond to di�erent sets of model parameters (see Tab. 3.3), each yielding a good
kaon mass.

The a0(980). Our mass for the only a0(980) candidate, the pure four-quark state con-
sisting of KK̄ + SS, lies at 1001(4) MeV with a half width of 24(16) MeV and is therefore
qualitatively in good agreement with the experimental interval of 980(20) MeV where
the state was seen. The error bars are in fact overlapping. It is the only state in our
calculation that appears as a resonance above the KK̄ threshold.

Summary and Conclusions. We �nd candidates for the states f0(980) and a0(980).
The strangeonium component, which is the only di�erence between both states on the
BSE level1, shows to be signi�cant as it reduces the mass of the four-quark state by circa
90 MeV. We see a di�erent behaviour here compared to the �/f0(500) candidate, where
the quarkonium component was much heavier than the pure four-quark state. For a
reasonable integration into the spectra of light mesons, it would be mandatory to include
also the light qq̄ component with q ∈ {u, d} instead of the ss̄, since the qq̄ mass is located
in a similar mass region as the four-quark mass in an advanced BSE calculation [102].
Quite recently, lattice calculations indicated that there is a non-negligible mixing of the
four-quark candidate of the a0(980) and a quark-antiquark state [36]. Due to model issues2,
calculations like these are not convincing at this point in our formulation. Further lattice
studies also propose a coupling to the �� component [86]. For a complete investigation
of the f0(980) and the a0(980), an inclusion of these channels along with an inclusion
of the second mesonic component (��/��) are the remaining pieces in the puzzle of
understanding the inner structures of these states.

1The occurring �avour traces in the tetraquark kernel diagrams are identical for both isospin con�gu-
rations. The second mesonic con�guration would show a isospin di�erence as well (�� vs. ��), but we
explicitly excluded this component for technical reasons, as explained above.

2As stated before, the scalar RL qq̄ state with q = u/d is way too light.
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f0 a0 setup

M − i ⋅ �/2 [MeV]

RL BRL model

✔ ss̄ 1073(10) 1479(39)
✔ ✔ ss̄qq̄ 1001(4) − i ⋅ 24(16) 1001(4) − i ⋅ 24(16)
✔ fully mixed 915(20) 994(7)

Table 5.7: Results for di�erent setups (pure ss̄ two-quark, pure ss̄qq̄ four-quark and fully mixed
ss̄qq̄ + ss̄) in a pure RL calculation in contrast to a calculation where BRL e�ects for the
ss̄ state are modeled in a simple way as described in the text. Checkmarks (✔) indicate
whether a state is a potential f0 or a0 candidate similar to Tab. 5.6.

“BRL model”

For energetic reasons, it is reasonable to believe that an ss̄ state becomes less important,
if a BRL coupling would be implemented into the equation, although we are currently
unable to perform calculations like this due to technical limitations. Furthermore, it
would make us capable of including a meaningful light qq̄ component into the equations
for the a0 and the f0. For that reason, we exploratively lower our RL coupling by attaching
a factor c < 1 to the occurring RL diagrams of type (3) and (4) (cf. Fig. 4.3), which should
model BRL e�ects in a very simple way. We did two calculations:

• one for a mixed ss̄ + ss̄qq̄ candidate with a factor c = 0.5 and

• one for a mixed qq̄ + qq̄ss̄ candidate with a factor c = 0.2.

As a result, the masses of the scalar ss̄ and qq̄ states get pushed into a reasonable region:
the ss̄ gets a mass of 1.4 − 1.5 GeV and the qq̄ is lying at around 1.3 GeV. Although these
are not precise values motivated by a true BRL calculation, they seem reasonable to us,
since the two-quark � candidate has a BRL mass of 1.1(1) GeV in [102] and we expect
realistic scalar qq̄ states to have an even higher mass. We substantiate that by looking at
the potential quarkonium candidates that were seen by experiment: candidates for the
pure qq̄ state would be the f0(1370) or the a0(1450), which �nds further support by linear
sigma model studies [61]; correspondingly, the scalar ss̄ would have an even higher mass.
Findings in an e�ective description of QCD strengthen our assumptions [56].

Modi�ed ss̄. The results for the ss̄(qq̄) candidate are shown in Tab. 5.7. In course of
the modi�cation, the ss̄ state increases by roughly 400MeV (1073 → 1479MeV). Thereby,
the mixed state mass shifts close to the four-quark mass (915 → 994 MeV), such that the
two setups have an overlap in terms of error bars (994(7) vs. 1001(4) MeV).

Modi�ed qq̄. We show the results in Tab. 5.8. By looking at the RL result we see that
the pure qq̄ state and the mixed state are in a similar region (661 vs. 644 MeV), whereas
the pure qq̄ss̄ state is far o� with the mass we already know from previous calculations
(1001 MeV). This indicates that the two-quark state clearly dominates the mixed one,
which we expected beforehand. When we apply the BRL model, the pure qq̄ mass almost
doubles to a value of 1288 MeV, whereas the pure qq̄ss̄ state remains the same since the
associated diagrams are not modi�ed as in the ss̄ modi�cation. Contrary, the mass of the
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f0 a0 setup

M − i ⋅ �/2 [MeV]

RL BRL model

✔ ✔ qq̄ 661(8) 1288(38)
✔ ✔ qq̄ss̄ 1001(4) − i ⋅ 24(16) 1001(4) − i ⋅ 24(16)
✔ ✔ fully mixed 644(6) 999(4) − i ⋅ 17(8)

Table 5.8: Results for di�erent setups (pure qq̄ two-quark, pure qq̄ss̄ four-quark and fully mixed
qq̄ss̄ + qq̄) in a pure RL calculation in contrast to a calculation where BRL e�ects for
the qq̄ state are modeled in a simple way as described in the text. Checkmarks (✔)
indicate whether a state is a potential f0 or a0 candidate similar to Tab. 5.6.

fully mixed state strongly shifts towards the pure four-quark mass (644 → 999MeV); the
two states are now in fact overlapping within error bars (999(4) vs. 1001(4) MeV).

For being able to compare with the lattice studies from [36] which used a pion mass
of around 300 MeV, we set our light quark mass to 20 MeV which yields a pion mass of
m� = 328 MeV. Our statements by using the BRL model remained the same: the mixed
state is still dominated by the KK̄ . The mass and width increase in this process so that
we arrive at the following values for the fully mixed state consisting of KK̄ + SS + qq̄:

(M − i Γ/2)m�=328 MeV = 1090(3) − i 55(21) MeV (5.15)

Conclusions and Interpretations. For both modi�cations we observe the e�ects
that we expected beforehand: the mixed states become heavier and shift closer to the
corresponding pure four-quark states. We conclude that the quarkonium components
therefore do not play an important role in the description of fully mixed states as the in-
and exclusion of the qq̄/ss̄ components does not change the masses signi�cantly – we
observe only small e�ects of the order of 1%. Interestingly, the modi�cation of the pure
qq̄ state brings the mixed state closer towards the four-quark state than the modi�cation
of the ss̄ component although the latter one is considerably heavier. We trace that back
to our model and the small factor of c = 0.2 (vs. c = 0.5 for the ss̄ modi�cation) which
might result in a stronger suppression of the mixing diagrams.

However, our �ndings here yield the suspicion that the calculated masses for the
mixed RL-states given in Tab. 5.6 should receive a correction which favours a four-quark
interpretation of the f0(980) and the a0(980) over a two-quark or mixed one when real
BRL e�ects are considered.
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5.3 All-Charm Four-Quark Resonances

In order to investigate the nature of four-quark resonances consisting of cc̄cc̄, we �rst
have to recall the properties of the only observed one, the X(6900). It is a narrow state
which was discovered above the di-J / threshold with a Breit-Wigner mass and width
of [13]

M(X(6900)) = 6905 ± 11 ± 7 MeV
Γ(X(6900)) = 80 ± 19 ± 33 MeV. (5.16)

Its quantum numbers are yet unknown which motivates an investigation of putative
states in various channels. We do this for four di�erent possible con�gurations,

1. 0+ with internal �c�c + AA

2. 0+ with internal J / J / + AA

3. 1+ with internal �c J / + AA

4. 1+ with internal J / J / + AA

where A stands for an axialvector cc (anti-)diquark. Quantum numbers di�erent from
AA are forbidden because we use diquarks from the colour (anti-)triplet, see appendix C.
Due to the observation of the X(6900) in the invariant mass spectrum of J / pairs, the
candidates 2 and 4 which have the corresponding content are particularly interesting
ones. To get a proper description of the J / meson, we use a current charm quark mass
of mc = 845 MeV as input. The corresponding RL masses for �c , J / and the axialvector
ccA diquark are given in Tab. 5.9.

We solve the pure two-body four-quark BSE and omit mixing with ordinary quarkonia
since physical quark masses are not indicating that a state with that energy is a cc̄ or bb̄
state. For being able to extract a whole spectrum, we exploit the fortunate circumstance
that we have equal mass content. That implies comparably small extrapolations and the
possibility of an extraction of the masses of excited states, similar to the investigation of
the f0(500) on the real axis in section 5.2. First, we will stick to determinations of masses
on the real axis in order to extract a spectrum. We postpone the investigation of certain
states in the complex plane to a later calculation.

The results for the mass spectrum for di�erent con�gurations is shown in Fig. 5.15.
Shaped rectangles denote states which are predominately meson-meson states and �lled
rectangles are states with signi�cant diquark-antidiquark components. The height of
the rectangles indicates the error which results from extrapolations via SPM and model
variations. We did not apply a dynamic interaction model as detailed as in Tab. 3.2 here,
but only vary the model parameter � within the range [1.6, 2.0] instead.

J P = 0+

The values for the masses of the scalar candidates are given in the upper row of Tab. 5.10.
We see a light and strongly bound ground state which essentially consists of two (pseu-
doscalar) �c mesons and has a mass of 5.34(2) GeV. Keeping this con�guration, we see one
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state �c J / ccA

mass [GeV] 2.92 3.10 3.54

Table 5.9: The RL masses of the two-quark states that we used as ingredients in order to describe
all-charm tetraquark candidates. All numerical values are given in GeV.
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Figure 5.15: The calculated all-charm spectrum for di�erent quantum numbers and setups.
Shaped rectangles denote meson-meson dominated states, whereas �lled ones stand
for states with explicit diquark-antidiquark corrections. Dashed lines denote steps
of 0.5 GeV on the mass axis and the continuous blue line slightly below 7 GeV de-
notes the mass of the X(6900) (with errors), taken from [13] and stated numerically
in (5.16).

J P meson/diquark content ground state 1st excited 2nd excited

0+ �c�c + AA 5.34(2) 6.30(13) 6.70(30)
J / J / + AA 6.30(3) 6.71(14) 6.87(12)

1+ �c J / + AA 6.07(2) 7.03(26) –
J / J / + AA 6.28(4) 6.92(12) –

Table 5.10: The results for the ground states and excited states for scalar (0+) and axialvector (1+)
all-charm tetraquarks for di�erent meson/diquark content.
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excited mesonic resonance at 6.30(13) GeV and another second excitation at 6.70(30) GeV
with small diquark-antidiquark corrections.1 If we enforce the meson-meson part to be
J / J / , a slightly di�erent picture emerges. A resonant mesonic ground state is obtained
just little above the two-J / threshold at 6.30(3) GeV and we obtain two excited states at
6.71(14) and 6.87(12) GeV. As in the case with di-�c meson input, the �rst excited state is
a pure mesonic one and the second excitation includes small diquark corrections.

J P = 1+

For the axial-vector channel we show the numerical results in the lower row of Tab. 5.10.
We see a ground state consisting of �cJ / at 6.30(3) GeV and an excited state at 6.71(14) GeV,
both dominated by the mesonic content of �c J / . Specifying the meson content to J / J / ,
the same picture emerges. A light ground state resonance occurs at 6.28(4) GeV and we
�nd the �rst excitation at 6.87(12) GeV; both states are dominated by the mesonic content.
Diquark-antidiquark contributions seem completely irrelevant for the lowest-lying states,
although it is worth to note that the eigenvalue spectrum indicates that higher excited
states do have diquark contributions, similar to the 0+ case. For technical reasons2 it was
not possible to extract masses for these higher states which include diquark corrections,
which is why we only show the �rst excitations.

Summary

We see that the ground states we observe are not suitable candidates for the X(6900). In
both the scalar and the axialvector channel, they appear too light as they all have a mass
much lower than 6.5 GeV and the scalar �c�c ground state is even strongly bound. The
excited states however are lying in a proper ballpark, which could be seen in comparison
with the dark blue bar which spans the whole diagram (Fig. 5.15) and denotes the Breit-
Wigner mass for the X(6900) extracted by the LHCb collaboration including systematic
and statistical errors [13].

In the 0+ case, the states that �t the experimental candidate the most are the second
excitations of the (di-�c +AA) and (di-J / +AA) con�gurations with diquark-antidiquark
components and masses of 6.70(30) and 6.87(12) GeV. Note that the two setups di�er
regarding the mesonic content, but share the same diquark input. This indicates that
diquark-antidiquark states gain relevance especially near their corresponding threshold.

The 1+ case also shows too light ground states, but in contrast to that, the �rst
excitations are in the correct ballpark. Here, both con�gurations, the �rst excitations of
�c J / and J / J / , share their error bars with the experimental one. Thus, one could
speculate that both excitations together could correspond to just one state which is an
overlap of �c J / and J / J / , although this assumption would have to withstand a
theoretical analysis that mixes those states together in a BSE. We did not do this yet
because it would require a massive e�ort to adjust the program code that is used to solve

1We could not do a statement about how much percent the diquark-antidiquark component contributes
to the state; we conclude the non-negligibility from discrepancies between the meson-only and the fully-
mixed calculations on the level of eigenvalues curves.

2far extrapolations and thus, unreasonably large error bars.
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the two-body tetraquark BSE.1
Our �ndings could be compared with numerous model calculations from the last years

around this topic which assume a diquark-antidiquark structure [148–152]. These model
calculations are mostly in agreement with each other that the most promising X(6900)
candidates are not the ground states, but the �rst radial excitations of the s-wave solutions
(2S states). In our equations, we also see an excitation in the 0+ channels with small
diquark corrections, but a corresponding lower-lying diquark-dominated ground state is
missing. Therefore, we could not con�rm the existence of those states in our model, but
in turn see possible candidates for the X(6900) in the scalar and the axialvector channel,
which are rather mesonic. Our �ndings partly agree with very recent calculations in a
non-relativistic quark model that uses a spin-independent Cornell potential based on
lattice calculations to investigate meson-meson resonances [153]; the agreements are
especially present in the 1+ channel, where the J / J / ground and excited state are in
a very similar mass region, which supports the interpretation of an axialvector di-J / 
resonance.

Complex energies. For the states with equal-meson content, namely for di-�c and
di-J / , we could also investigate the eigenvalue curves in the complex plane. Using the
path deformation speci�ed in (4.49), we could go a little above the two-meson threshold
to continue the eigenvalue curve into the complex plane to explore the respective ground
states as done in section 5.2. The di-�c ground state is bound and thus, there is no need
to make further investigations here, but the di-J / states in the scalar and axialvector
channels are located slightly above threshold and thus, are suitable candidates.
The calculations in the complex plane entail that for both states we �nd the following
solutions:

(M − i Γ/2)0+ = 6.26(2) + i ⋅ 0.014(16) GeV (5.17)
(M − i Γ/2)1+ = 6.24(2) + i ⋅ 0.011(9) GeV (5.18)

Note the plus sign of the imaginary part which denotes that we �nd the average solutions
in the �rst Riemann sheet. Whereas the error bar of the scalar state has a small overlap
with the second Riemann sheet, the one from the axialvector state doesn’t. This indicates
that the states we observe are not necessarily physical. However, we want to stress that
the eigenvalue curves are very sensitive to details. The fact that our equations are heavily
truncated – for example, we only take into account one single meson/diquark Dirac
tensor structure – makes a de�nite statement about whether the state is physical or not
very vague. It is de�nitely conceivable that a slight modi�cation of the model or the
inclusion of one more tensor structure shifts the pole position back into the second sheet.
For that reason, we will keep this result in mind but not attribute too much explanatory
power to it.

1It would particularly require that the M1 and M2 components contain both, the �c J / and the J / J / 
component. Right now, the code is constructed in a way that the M1 and M2 component merely describe
only one con�guration each.
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Chapter 6

Conclusion and Outlook

Summary. In this work we explored the properties of potential four-quark states by
using the framework of Dyson-Schwinger and Bethe-Salpeter equations (DSEs and BSEs).
We did so by applying Rainbow-Ladder (RL) truncation along with an e�ective model
to describe the interaction between the single quarks and by adopting a reduced two-
body approximation of the full four-body BSE, �rstly used in [120] in which we could
describe meson-meson and diquark-antidiquark composite states. In the heavy-light
sector (with quark content QQ̄qq̄) a third setup is a hadro-charmonium con�guration.
We further extended this equation phenomenologically in order to couple it to two-quark
states. Altogether, this provides a tool to describe mixed systems as overlaps of two and
four-quark states with congruent quantum numbers. Beyond that, the coupled system of
equations allows us to disable speci�c components in order to investigate whether certain
internal con�gurations are dominant or not. We focused on di�erent energy regions
(light scalars ≤ 1 GeV, charmonium-like ∼ 4 GeV, all-charm ∼ 6-7 GeV) and probed a
number of experimentally con�rmed candidates. We found that a four-quark description
of many states is appropriate, in some cases even compulsory.

We obtained that the f0(500) can only be described in a four-quark picture as a ��
resonance and showed that qq̄ states are subleading components by coupling the four-
with the two-quark BSE. We further showed that this four-quark dominance is an e�ect
of dynamical chiral symmetry breaking: it turns into a two-quark dominance once we
increase the quark masses systematically towards the ones of heavier quarks such as the
strange quark. We further used the coupled equation in order to describe the heavy-light
four-quark candidates f0/a0(980). Using RL truncation, we observed that the states are
very well described in a pure four-quark picture as we observe an overlap of error bars
with the experimental ones by using kaons and diquarks as e�ective degrees of freedom.
Once we enable the ss̄ component for a mixed description of the f0(980), it lowers the
mass signi�cantly, but a simple model of beyond RL (BRL) e�ects indicates that the
signi�cance of the ss̄ component might be overestimated, here. The BRL model further
indicates that the coupling to the light qq̄ with q ∈ { u, d } is small. Without exceptions,
diquark-antidiquark components only yield negligible corrections.

In the charmonium sector we were able to extract a whole spectrum of hidden-
and open-charm candidates and described the χc1(3872) and the Zc(3900) very well as
molecular four-quark states consisting of DD̄∗. A comparison of the spectra entails that
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the open-charm states are lower in mass than the hidden-charm ones in our model. The
dominance of the heavy-light mesonic component is ubiquitous; hadro-charmonium
components only gain relevance for isovectors. Except for the scalar isoscalar state with
hidden charm, diquark-antidiquark components are also negligible in every channel.
Coupling the isoscalar four-quark candidates to ordinary charmonia was not done for
technical reasons.

For the recently discovered X(6900) we also calculated a whole all-charm spectrum
for 0+ and 1+ candidates with �c and J / mesons and axialvector diquarks as ingredients.
The meson-meson dominated ground states are too light for a suitable description of
the X(6900) in every channel. By contrast, we �nd possible candidates in the excitation
spectra which indicates that the measured resonance corresponds to an excited meson-
meson state consisting of �c and/or J / mesons. Diquark-antidiquark components are
only signi�cant in the 0+ channel.

Uncertainties. Our results in this work are without exceptions qualitative. Concerning
this, we should record a few important reasons which we classify as “systematic” and
“numerical”.

Let us �rst turn our attention to the systematic uncertainties in the two-body BSE
employed in this work. As the foundation of the whole two-body approximation which
we apply, we irrevocably omit the irreducible three- and four-body forces of the full
four-quark scattering kernel completely. Because of that, an important class of potential
components is missing: the ones of tightly arranged quarks whose structure could not be
divided into two-quark clusters. Furthermore, the two-body equation is heavily truncated
the way we use it since we only consider the leading components of the Bethe-Salpeter
amplitudes of the constituent mesons and diquarks. That omits the dynamics of the
sub-leading components of the constituent BSAs completely. Although Ref. [126] showed
that the e�ects of including the �rst sub-leading basis element are small for four-quark
states which are e�ectively consisting of pseudoscalar mesons, we did not do this check
for vector mesons and rely on the fact that the leading tensor structure already yields
good approximations of the meson properties in the respective channels, cf. Fig. 3.8. The
error that results from those systematic simpli�cations is hardly estimable and because
of that, we restrict the results within this work to be qualitative only.

Besides that, there are numerical uncertainties such as the extrapolation of eigenvalue
curves and BSAs. Also, meson and diquark propagators are �tted in order to be able to
compute them e�ciently within the diagrams. These numerical approaches together
introduce an additional error which is yet controllable and nowhere near as uncertain as
the systematic ones for the following reasons: the applied �ts are particularly appropriate
and based on direct calculations (see e.g. Fig. 3.12) and the extrapolations were done by
varying the input points randomly in order to obtain a reliable statistical error.

Altogether, we expect all those uncertainties together not to a�ect the results on a
qualitative level. With regard to this work, this is the case for statements about dominant
and sub-dominant components of a physical, mixed state. In fact, the results in this thesis
validate our expectation – for example, our �ndings that the four-quark dominance of the
f0(500) is only present in the energy region where chiral e�ects dominate are physically
meaningful. However, the (seemingly) good accordance of the calculated mass of the
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χc1(3872) candidate with the experimental value is surely unstable.

Outlook. The calculations we did in this thesis could be considered as groundwork for
further research because at quite a few points there is room for further development. For
the heavy-light charmonium-like candidates, it will be reasonable to improve the technical
treatment of integrals so that it is possible to reduce the length of the extrapolation path.
This however is connected to the di�culty of determining the D and D∗ amplitudes in
the complex plane. With that however, it is technically possible to mix charmonium-like
exotics, e.g. the χc1(3872), with ordinary charmonia. Together with a description in the
complex plane, this would open up the possibility to make �rst steps towards a description
of the width of this fascinating state.

For the spectrum of light scalars an implementation of the (as of yet missing) ��
component will provide the possibility to compare to studies that underline its importance
for the a0(980). The same holds for a proper inclusion of physical (scalar) qq̄ components
which is directly connected to an improvement of the interaction and/or the consideration
of BRL diagrams that push the masses into the right direction. Our results for the “modi�ed
Rainbow-Ladder” in section 5.2 are pointing the way ahead, but its implementation is
too naive to lead to strong conclusions.

For getting quantitative results, there is no way to bypass the four-body equation.
Only it includes the dynamics apart from two-body correlations that describe a potential
compact tetraquark component of tightly arranged quarks. Therefore, sooner or later,
it will be a mandatory step to cross-check the calculations in this work by a four-body
calculation as we did in reverse order in this work; in particular, we con�rmed most of the
the four-body results of [46, 91] in the charmonium sector qualitatively. The comparison
with this work would require a consistent implementation of qq̄ couplings and complex
integrals, but since the two-body equation is derivable from the (truncated) four-body
one, a similar approach is imaginable.

Conclusively, this work demonstrated the potential of non-perturbative, functional
methods in order to describe physics on the level of exotic four-quark hadrons. We
were able to describe a variety of spectra with plausible mass orderings and consistently
produced physically meaningful results. With the novel possibilities of coupling four-
and two-quark states and the possibility even to describe them in the complex plane as
dynamic resonances, the framework of DSEs/BSEs represents an encouraging approach
to decode the nature of several exotic hadrons that puzzled the minds of elementary
particle physicists for so long.
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Appendix A

Conventions

Notations. We consistently use Einstein’s sum convention in this thesis, in which one
sums over all indices which appear in pairs:

aibi = ∑
i
aibi (A.1)

The contraction of a four vector with the Dirac matrices de�nes the Feynman slash:

/p = 
�p� (A.2)

Integrals are performed in Euclidean hyperspherical coordinates. For that, we frequently
use the shorthand

∫
q
∶= ∫

d4q
(2�)4

=
1

(2�)4 ∫
∞

0
dq2 q

2

2 ∫
1

−1
dz

√
1 − z2 ∫

1

−1
dy ∫

2�

0
d� (A.3)

Euclidean space. In this thesis we consistently work in Euclidean metrics. That means,
every four-vector gets rede�ned,

x0 → −ix0, (A.4)

in order to ensure that scalar products are evaluated in a Euclidean way:

x�y� = −∑
i
xiyi =∶ −x ⋅ y (A.5)

We see that the Euclidean scalar product then di�ers from the Minkowski one by a minus
sign and entails that a four vector is spacelike, i�

x ⋅ y > 0. (A.6)

Integrals get Wick rotated [155]:

∫
∞(1+i�)

−∞(1+i�)
dx0 → −i ∫

∞

−∞
dx0 (A.7)
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With that, an integration in four-dimensional spherical coordinates, Eq. (A.3), is possible.
Note that this merely corresponds to a relabelling of the zeroth coordinate and does not
�aw any calculation. Consistency with calculations in Minkowski space is preserved via
the corresponding back-transformations.

Diracmatrices. We have to work with a Euclidean representation of the Dirac matrices
in order to not having to rede�ne the Dirac slash. This concerns the spherical ones,
� = 1, 2, 3. The matrices are given by


0 = (
1 0
0 −1) 
i = (

0 −i�i
i�i 0 ) 
5 = (

0 1

1 0) (A.8)

where 1 ≡ 12×2 and �i are the Pauli spin matrices, de�ned by

�1 = (
0 1
1 0) �2 = (

0 −i
i 0) �3 = (

1 0
0 −1) . (A.9)

In that form, the Dirac matrices are Hermitian,


†� = 
� (A.10)

The Dirac matrices obey the Cli�ord algebra anti-commutation relation

{
� , 
�} = 2��� . (A.11)

Slashed expressions are a shorthand for a contraction of a Dirac matrix with a four vector:

/p = 
�p� (A.12)

The four Dirac matrices anti-commute with the �fth Dirac matrix:
{

� , 
5

}
= 0 (A.13)

Dirac matrices transform as follows under usual transformations:
Transposition.

• 
T
� = (
T

0 , 
T
1 , 
T

2 , 
T
3 ) = (
0, −
1, 
2, −
3)

• 
T
5 = 
5

Parity transformation.

• 
� → 
0(
0, 
1, 
2, 
3)
0 = (
0, −
1, −
2, −
3) = (Π
)�

• 
5 → −
5

Charge conjugation.

• 
� → 
0
2
T
� 
T

2 
T
0 = 
0
2(
T

0 , 
T
1 , 
T

2 , 
T
3 )
2
0 = (−
0, −
1, −
2, −
3) = −
�

• 
5 → 
5
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Gell-Mann matrices. The Gell-Mann matrices are the generators of the SU(3) symme-
try group. They are given by

�1 =
⎛
⎜
⎜
⎝

0 1 0
1 0 0
0 0 0

⎞
⎟
⎟
⎠

�2 =
⎛
⎜
⎜
⎝

0 −i 0
i 0 0
0 0 0

⎞
⎟
⎟
⎠

�3 =
⎛
⎜
⎜
⎝

1 0 0
0 −1 0
0 0 0

⎞
⎟
⎟
⎠

�4 =
⎛
⎜
⎜
⎝

0 0 1
0 0 0
1 0 0

⎞
⎟
⎟
⎠

�5 =
⎛
⎜
⎜
⎝

0 0 −i
0 0 0
i 0 0

⎞
⎟
⎟
⎠

�6 =
⎛
⎜
⎜
⎝

0 0 0
0 0 1
0 1 0

⎞
⎟
⎟
⎠

�7 =
⎛
⎜
⎜
⎝

0 0 0
0 0 −i
0 i 0

⎞
⎟
⎟
⎠

�8 =
1
√
3

⎛
⎜
⎜
⎝

1 0 0
0 1 0
0 0 −2

⎞
⎟
⎟
⎠

(A.14)

and de�ne the colour structure of the gluons in the fundamental representation via
�a = �a/2 as already mentioned in chapter 3.



Appendix B

Solving the�ark DSE

This chapter includes details about the solution of a quark DSE. We do so for Maris-Tandy
interaction, because then the quark DSE could be solved independently from other DSEs.

B.1 Solving on the Real Axis

To solve the quark propagator numerically, we have to determine the two dressing
functions A(p2) and B(p2) separately. Thus, we project them out on the left side of
Eq. (2.37), which looks like

i /pA(p2) + B(p2) = Z2 (i /p + Zmmren)

− Z 2
2CF ∫

Λ

q

(k2)
k2 (��� −

k�k�
k2 )
 � (−i /q�v(q2) + �s(q2)) 
 �

=∶ S0(p) + c ∫
Λ

R(q, p2). (c = const.) (B.1)

Determination of projectors. The set of projectors Pabi corresponding to a basis
 = {babi }1≤i≤n is de�ned by

Pabi b
ba
j = �ij . (B.2)

Because the dressing functions A and B are scalars, we have to project them out of the
tensor structures by performing a Dirac trace. Furthermore, the inner tensor structure of
the projector (let’s call it pi) should only depend on the inner structure of the expression
that has to be projected. To be more precise, we de�ne projection functions

Pabi x
ba = ∑

k
�ikbabk x

ba. (B.3)

Combining this with Eq. B.2 and making use of the linearity of the trace operator leads to

Pabi b
ba
j = ∑

k
babk b

ba
j �ik

!= �ij (B.4)
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or, equivalently, B�i = �i with Bij ∶= tr(bjbi), �ij and �ij as before. This is equivalent to a
system of linear equations:

⎛
⎜
⎜
⎜
⎝

bab1 bba1 bab2 bba1 ⋯ babn bba1
bab1 bba2 bab2 bba2 ⋯ babn bba2

⋮ ⋮ ⋱ ⋮
bab1 bban bab2 bban ⋯ babn bban

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

�i1
�i2
⋮
�in

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎜
⎝

�i1
�i2
⋮
�in

⎞
⎟
⎟
⎟
⎠

(B.5)

Solving this for the quark DSE with the basis  = { i /p,1 } yields

�1 = (
−1/4p2
0 ) ⇒ Pab1 = −

i /pab
4p2

�2 = (
0
1/4) ⇒ Pab2 =

1ab

4
. (B.6)

Note that this procedure is generally applicable for the determination of projectors, e.g.
those for the Bethe-Salpeter amplitudes.

Scalar valued equations. Performing the traces can be done by an algebra evaluation
program, e.g. FORM [156] or Mathematica, or by hand using the Dirac trace rules. A
suitable Mathematica package for a CPU supported evaluation is given by FeynCalc [157,
158].
With that, the dressing functions can be computed:

A(p2, �2) = Z2 + Z 2
2 ⋅

1
3p2� 3 ∫q2,z

(k2)
k2 (

2(k ⋅ p)(k ⋅ q)
k2

+ (p ⋅ q)) �v(q2, �2)

=∶ Z2 + Z 2
2 ⋅ ΣA(p

2, �2) (B.7)

B(p2, �2) = Z2Zmmren(�2) + Z 2
2 ⋅

1
� 3 ∫q2,z

(k2)
k2

�s(q2, �2)

=∶ Z2Zmmren(�2) + Z 2
2 ⋅ ΣB(p

2, �2) (B.8)

Z2(�2, Λ2) =
1

1 + Z2 ⋅ ΣA(�2, �2)
(B.9)

Zm(�2, Λ2) =
1
Z2
−
Z2 ⋅ ΣB(�2, �2)
mren(�2)

. (B.10)

Note that in the chiral limit, mren(�2) → 0, the right hand side of Eq. (B.10) is not
de�ned. It is then recommended to calculate the cuto� dependent bare mass m(Λ2) =
Zm(�2, Λ2)mren(�2) instead, for which the divergence cancels out.
Once the renormalization constants are determined completely, the functions A and B
themselves are determined by the following subtractions of the self energy integral:

A(p2, �2) = 1 + Z 2
2 ⋅ (ΣA(p

2, �2) − ΣA(�2, �2)) (B.11)
B(p2, �2) = mren(�2) + Z 2

2 ⋅ (ΣB(p
2, �2) − ΣB(�2, �2)) (B.12)
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B.2 Continuation into the Complex Plane: The “Shell

Method”

As described in the main text, we have a few problems with the quark momentum as the
integration momentum in the quark DSE, namely

• the e�ective coupling  is constructed for being meaningful on the real axis only,
but would be required in the complex plane and

• branch cuts are arising from the angular integral because of singularities in the
self energy integrand.

In the Maris-Tandy model for example, the e�ective coupling and thus, the self energy
integral gets singular for

e2 − 1 + (1 +
k2

Λ2QCD)

2

= 0. (B.13)

The idea is to iterate on shells and use the gluon momentum k as a (real) integration
momentum. Given that we know the quark propagator on the real axis, we “open a shell
parabola” around the real axis, see the innermost parabola in Fig. B.1. This parabola is
characterized by its apex Δ2 and the condition

q2 = (k ± Δ)2 = k2 + Δ2 ± 2
√
k2
√
Δ2. (B.14)

One can easily verify (e.g. with Mathematica) that for any point on this parabola, we
only need information from inside the parabola itself. Given that, we proceed as follows:

1. We start by setting up the �rst shell grid. My choice was to characterise any grid
point via its shell apex and the contraction in real q2 direction:

q2 = (k + iΔ)2 = k2 − Δ2 + 2i
√
k2
√
Δ2 (B.15)

After some algebra we come to conditions for the apex Δ2 and the gluon momentum
k2:

Δ2 =
1
2 (|q2| − Re q2) (B.16)

k2 = Re q2 + Δ2 (B.17)

This provides the transformation (Re q2, Im q2) → (Δ2, k2) which will be vital for
the necessary interpolations. As a cross-check: if we set Im q2 = 0 we obtain Δ2 = 0.
Thus, the “real” grid is in the correct form and does not have to be transformed,
which corresponds to our original DSE solution on the real axis – great!

2. From now on, the iteration momenta are (assuming a numerical calculation) on a
2D grid (Λ2, k2):

• the k2 grid can follow a simple quadrature rule
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• the Λ2 grid could e.g. be ∼ i3. A linear grid ∼ i is not a clever choice since we
need to start with very small shells, characterised by very small apices.

3. After extending the grid to a larger Λ2, our start guess of the dressing functions on
the parabola will be identical to the values of the former one. In the calculation,
we only focus on the upper half plane and use A∗(q∗) = A(q) and B∗(q∗) = B(q)
afterwards to obtain the values on the lower half plane.

4. The iteration goes on and we arrive at a function on a (Λ2, k2) grid on which we
could easily interpolate. If we, for instance, are interested in the function A(q2) for
some q2 ∈ C, we must transform q2 into the 2-tuple (Λ2, k2) via Eqs. B.16 and B.17.

Figure B.1: The principle of the shell method visualized in the complex q2 plane. From the known
solution on the positive real axis we continue into the complex plane by spanning
shell parabolas (green dots) around.



Appendix C

BSEs

C.1 Two-Quark Case

Similar to the section before, we will now focus on a solution of BSEs using Maris-Tandy
interaction.

C.1.1 Index Structure of a Two-Quark BSE

To solve a two-quark Bethe-Salpeter equation, one has to handle the indices correctly.
Basically, the quantities inside the BSE are the interaction kernel K (and its rainbow-
ladder ingredients Γqg and D), the quark propagators and the Bethe-Salpeter amplitude.
They carry lots of indices, which are summarized in table C.1.
In the following, Dirac indices are given by italic Greek letters (�, �, ...), colour indices
by capital Roman letters (A, B, ...), �avour indices by small roman letters (a, b, ...) and
Lorentz-indices by upright Greek letters (µ,ν, ...). Another index, here e is an isospin
index. Lorentz-indices of the bound state amplitudes will be suppressed. The BSE index
structure is then given by the following equation:

Γe�Aa,�Bb = K
�Ss,
Cc
�Aa,�Bb S

�Dd

Cc Γ

e
�Dd,�Rr S

�Rr
�Ss⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Ψe
Cc,�Ss

, (C.1)

whereas
Ψe

Cc,�Ss = S

�

 Γ

e
�Cc,�Ss S

�
� = (SΓS)
� ⊗ ΓCS ⊗ Γ

e
cs . (C.2)

quantity symbol #Dirac ind. #colour ind. #�avour ind. #Lorentz ind.

interaction kernel K 4 4 4 0
quark-gluon vertex Γqg 2 2 3 1
gluon propagator D 0 0 2 2
quark propagator S 2 2 2 0

bound state amplitude Γ 2 2 3 n ∈ N0

Table C.1: All quantities inside the Bethe-Salpeter equation with the number of Dirac-, colour-,
�avour- and Lorentz indices.
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Figure C.1: The index structure of the BSE in a graphical form. The Lorentz indices of the bound
state amplitudes are suppressed. Greek letters denote Dirac-, capital roman letters
colour and small roman letters �avour indices.

The latter term is the decomposition of Dirac-, �avour and colour index structure.
Specifying the kernel to be truncated by Rainbow-Ladder, it is given by

K �Ss,
Cc
�Aa,�Bb = g2 (Γqg,bare

µ )
�Ss
�Bb,i (D

µν)ij (Γqg
ν )


Cc
�Aa,j

= g2 (i
µ)
�
� (�i)

S
B �

s
b D

µν� ij (Γqg
ν )



� (�j)

C
A �

c
a

= g2 (i
µ)
�
� D

µν (Γqg
ν )



� ⊗ (�i)SB (�

i)
C
A ⊗ � sb �

c
a (C.3)

Closing two open quark legs by multiplying χe
Cc,�Ss leads consequently to the full right
hand side of the BSE in Eq. (C.1). We apply the colour and �avour structure of the pion
at this point, which means ΓCS = �CS and Γecs = r ecs .

Γe�Aa,�Bb = K
�Ss,
Cc
�Aa,�Bb χ

e

Cc,�Ss = g2 (i
µ)

�
� D

µν (Γqg
ν )



� (SΓS)
� ⊗ (�i)SB (�

i)
C
A �CS ⊗ � sb �

c
ar

e
cs

= ig2Dµν (Γqg
ν SΓS
µ)�� ⊗ (�i� i)AB ⊗ r eab (C.4)

The �rst structure in Eq. (C.4) is the Dirac part of the BSE and given by a simple matrix
multiplication. The second structure is the colour part, which is in the pion case given
by (�i� i)AB = 4/3 ⋅ �AB, re�ecting the typical colour trace factor CF = 4/3 in front of the left
side of the meson BSE. We see, that the �avour structure is completely una�ected by the
quark loop, so we do not get a �avour-prefactor.
For convenience, it is often the case that one applies calligraphic superindices ,, ... to
shorten expressions like the bound state amplitude in the following way:

Γe�Aa,�Bb = Γ
e


C.1.2 Flavour- and Colour-Space Conventions

A Bethe-Salpeter amplitude as the main part of the wave function has the following space
decomposition:

Γ = ΓDirac ⊗ ΓColour ⊗ ΓFlavour (C.5)

The Dirac structure includes its spin and determines its behaviour under parity transfor-
mation. If the state is an eigenstate of the charge conjugation operator, it also determines
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these properties together with the momentum-dependent coe�cients, the dressing func-
tions. The colour- and �avour structure only denote the strong charge and the quark
content of a state and could be normalized arbitrarily – in a normalization procedure
as described in chapter 3, all conventional prefactors get absorbed within the dress-
ing functions. For �avour part of the two-quark meson amplitudes, we always use the
normalization criterion

tr
{
Γ̄Flavour ΓFlavour

}
= 2, (C.6)

whose choice is motivated by pion physics, where Nf = 2 holds. To prevent confusions
and to retain comparability, we will use this factor even if Nf = 2 does not hold any more.
The colour part of mesons however is always normalized by

tr
{
Γ̄Colour ΓColour

}
= Nc = 3. (C.7)

It follows that ΓColour = 1 holds in that case. This is not true for diquarks in the antisym-
metric colour triplet, which is described by the antisymmetric tensor "ABX . Here, the
colour parts trace out via

"ABX "ABY = 2�XY . (C.8)

C.1.3 Solving the Two-Quark BSE in Maris-Tandy Interaction

Similar to the quark DSE, the BSEs for pseudoscalar and vector mesons are solved by
an iterative procedure as well. This section serves as a brief summary of how to solve
the two-quark BSE; further details, also on the quark propagator and baryon BSEs with
potential non-RL interactions could be found in [154]. Looking at the Feynman diagram
tells us, on what vectors the involved quantities can depend. So, naively assumed, the BSA
depends on three four momenta due to the presence of three external legs, namely the
total momentum P and the two quark momenta p±. Due to momentum conservation at
any vertex, and the BSA is one, one degree of freedom is killed and the BSA only depends
on two four vectors, for instance the total momentum P and the relative momentum p,
which is given by the momentum conservation condition

{
p+ = p + �P
p− = p + (� − 1)P.

(C.9)

The relative momentum is consequently given by

p =
p+ + p− − (2� − 1)P

2
. (C.10)

In Maris-Tandy interaction, the observables do not depend on �, hence we set it 0.5 in
almost every calculation.
Specifying the rest frame such that the BSA only depends on scalars, we obtain three of
them, the absolute value of the meson momentum P 2, the absolute value of the second
momentum p2 and the angle between them, z̃, such that

Γ = Γ(P 2, p2, zp).
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Figure C.2: The homogeneous Bethe-Salpeter equation including the relevant quark and meson
momenta. The BSA and the kernel can only depend on the momenta they “feel” –
to give an example, the pion BSA on the right hand side of the equation can not
depend on p, because the kernel K “sits” between to manipulate the relative quark
momentum, “before” the bound state is built. Black blobs denote fully dressed quark
propagators.

We solve the mesons in the rest frame1, hence we specify the total momentum P = (iM, 0)
and the relative one p =

√
p2 (zp ,

√
1 − zp , 0, 0).2 The right hand side of the BSE includes,

besides the BSA, the kernel K and a loop, thus we have to introduce a new degree of
freedom due to the indeterminate loop momentum q. Due to momentum conservation,
the BSA now depends on q and P , while the kernel depends on three momenta, q, p and
P . This additional momentum q contributes three additional scalars into the kernel, the
loop momentum q2 and two angles zq and yq, such that

K = K(P 2, p2, zp , q2, zq, yq).

These dependencies can also be understood intuitively by looking at Fig. C.2.
In practice, we compute this equation by a matrix multiplication procedure and iterate in
course of a power iteration until a convergence criterion is satis�ed. As we have done
by solving the quark DSE, we calculate the projectors in the same way. This is possible
because the equation has a similar form:

4

∑
i=1

bi(P , p)Fi(P 2, p2, zp) = Γ(P 2, p2, zp)

=
4

∑
i=1

∫
q
K(P 2, p2, zp , q2, zq, yq)S(q+)bi(P , q)Fi(P 2, q2, zq)S(q−)

(C.11)

1Calculating the moving frame mesons is completely similar to the procedure presented here. The
only di�erence is the higher number of arguments in the functions and consequently the higher numerical
e�ort. We did the calculations for the pion in the moving frame and found no notable deviations from the
solutions in the rest frame. The same holds for the leptonic decay constant.

2The other two components of the three momenta are suppressed, because they vanish by a suitable
rotation of the coordinate system, as mentioned in chapter 3.



119

Applying the projectors on both sides yields equations of the form

Fi =
4

∑
j=1

∫
q
ijFj ≈

4

∑
j=1

∑(Weights × Jacobians ×ij)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶Kij

Fj . (C.12)

The kernel elements ij are now the “traced” quantities with respect to one basis element
each and can be calculated/stored separately. Eq. (C.12) shows, how the analytic equation
transitions into a numerical one.1 In practice, one evaluates the integral corresponding
to the inner angle y inside the kernel, because the BSA does not depend on this quantity.

Mass iteration procedure. The iteration can be done with the power iteration proce-
dure. In general, we look for the eigenvalue of the BSE for some P 2. First, we discuss the
procedure for a general eigenvalue equation.
Let f ∶ S→ S be an operator and X an element of some algebraic structure S, e. g. Cn.
X is de�ned to be an eigenstate of f , if ∃ � ∈ C such that

f X = �X . (C.13)

Moreover, let || ⋅ || ∶ S→ R+
0 be a norm. Then, the recursive sequence (Xn)n∈N de�ned by

Xn =
f Xn−1
||f Xn−1||

usually2 converges to an eigenstate X̂ corresponding to the largest eigenvalue �max.3 The
eigenvalue is then determined by the eigenvalue equation (C.13) itself. Treating the BSE,
∑Kij is equivalent to the operator f and Γj is equivalent to the state X . A possible choice
for a norm is to set ||Γ|| ∶= |F1(P 2, p2 = 1 GeV, z = 0)|.
The convergence criterion is de�ned by the comparison of the values of Fi before and
after one iteration step by a division. Here, we compute the quotient � = (∫  Γ)i/Γi for
every grid point and put them into a new set  ∶= { �i }. If

� ∶=
√
⟨�2⟩ − ⟨�⟩2 < "

for some small " > 0, the convergence is de�ned to be satis�ed and ⟨�⟩ is the correspond-
ing eigenvalue. A state Γ(P 2) can be interpreted as a bound state with mass M2 = −P 2,
if ⟨�(P 2)⟩ = 1. Hence, it is recommended to implement a root �nding method for the

1The overlined sum sign denotes a numerical sum over the integration variables, here ∑ =
2� ∑q ∑z ∑y . The factor 2� stems from the fact that we can evaluate one angle trivially.

2The usual case is when there is one largest eigenvalue in the sense that there are no other ones in the
spectrum of f with the same absolute value, i.e. ∃�i ∈ spec(f ) ∧ @�j ∈ spec(f ) ∶ |�j | ≥ |�i |. Then, only an
unfortunate choice of the starting vector X0 inhibits the convergence.

3Here, a complex value �1 is de�ned to be larger than �2, if |�1| > |�2|.
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function f (P 2) = ⟨�(P 2) − 1⟩, e. g. Newton’s method, in which the sequence (xn)n with

xn = xn−1 −
f (xn−1)
f ′(xn−1)

converges, if it does, to a root of f . f ′ denotes the derivative of f , which can be computed
numerically with a simple, symmetric di�erence quotient.

Normalization. The normalization is done by setting Γ(P, p) = Γnorm. Schematically,
one can evaluate then the integral

tr d
dP 2 ∫ Γ(−K, q)S(q+)Γ(K, q) S(q−) = 2 d

dP 2 tr ∫ Γnorm S Γnorm S
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=1

= 2 (C.14)

and divide the BSA by the normalization constant  , which yields the normalized BSA.
The charge conjugated BSA is given by Eq. (3.36), e.g. for a pseudoscalar:

Γ(−K, q) = Γ(−K, −q)T (C.15)

Specifying the basis elements and the dressing functions as bi(K , q) and Fi(K , q) leads
with some calculus to

Γ(−K, q) =  bi(−K, −q) T
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=bi (−K,q)

Fi(−K, −q)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=Fi (K ,q)

= bi(−K, q)Fi(K , q). (C.16)

Transformations. Most generally, the two-body BSAs transform as follows under
parity () and charge conjugation ():

 (Γ��…(P , p)) = (−1)J Π��Π�� ⋯
0Γ��…(ΠP, Πp)
0 (C.17)
 (Γ��…(P , p)) = 
0
2Γ��…(P , −p)
2
0 (C.18)

In appendix A we showed how the Dirac matrices transform under those transformations.

Diquarks and Pauli symmetry. Diquarks are coloured objects which could consist
of two indistinguishable quarks. If that is the case, the diquark must ful�l Pauli (anti-
)symmetry. In this thesis, we only use the diquarks from the colour antitriplet coming from
3 ⊗ 3 = 6 ⊕ 3̄ since two of those diquarks could form a colourless state: 3 ⊗ 3̄ = 8 ⊕ 1̄. Pauli
symmetry imposes that the wave function must be antisymmetric under the exchange
of identical particles. The general wave function consists of spin, colour and �avour,
whereas the colour part is always antisymmetric by our choice. That implies that spin
and �avour always have the same symmetry (or antisymmetry, respectively). That means
that equal-mass diquarks which consist of non-light quarks, i.e. ss or cc, always carry the
spin 1. For light quarks, the story is di�erent to the approximate isospin symmetry. Here,
it depends on the total isospin: I = 0 implies an antisymmetric �avour wave function
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and thus a diquark with J = 0, whereas I = 1 enforces that the diquark has S = 1. That
makes it directly plausible that the all-charm tetraquark candidate could only have AA
as a diquark-antidiquark con�guration.
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C.2 Four-Quark Case

C.2.1 Precalculations

To be able to solve the four-quark equation in the two-body approximation, one needs
the following precalculated quantities:

• quark propagators in the complex plane

• meson and diquark propagators in the complex plane

• meson and diquark Bethe-Salpeter amplitudes (in the complex plane, if mixed with
quarkonia and/or described for complex total momenta Q2)

Quark propagators. The quark propagators are calculated by using the techniques
described in appendix B, i.e. the shell method. Here, one has to go as far as possible with
the shell apex. When going from the up to the charm quark, possible apices for quarks in
the Maris-Tandy model with the standard parameter set are:

quark mass [MeV] 3.8 20.0 50.0 85.5 150 210 350 500 650 795
shell apex [GeV2] 0.25 0.31 0.39 0.49 0.69 0.85 1.32 1.90 2.45 3.10

Mcrit [GeV] 2.00 2.23 2.50 2.80 3.32 3.69 4.60 5.51 6.26 7.04

Here, also the critical quark thresholds for the tetraquark masses are given in the last
row via Mcrit = 4

√
Λ2, which provides information about how heavy the tetraquark could

be until quark poles are problematic. We see directly that states like the f0(500) and
f0/a0(980) are not restricted by quark thresholds. This is not the case for heavy-light
states in the charmonium region. The χc1(3872) for example is a�ected by the poles of
the light quark and thus, 2.00 GeV is the limit.

Meson propagators. The meson and diquark propagators are already described in 3.11.
Theoretically, it is possible to calculate the whole two-loop integral denoted by nk−1n, but
we will not do this here as it is connected to much e�ort. We rather apply the approach
�rstly applied in [118] to calculate a propagator:

D−1 = M2 (nk−1n − n) . (C.19)

The one loop diagram n is nothing but the normalization integral multiplied with M−2

ensuring a dimensionless quantity. The inverse propagator has to behave as follows in
the physical limit:

D−1(P 2)
P2→−M2

−−−−−−−→ P 2 + M2 (C.20)

Therefore, the derivative in this limit is also given by

dD−1

dP 2
||||P2=−M2

= 1. (C.21)
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From this asymptotic behaviour we can extract two conditions for the loop integrals n
and k:

n(−M2) = k(−M2)
dn
dP 2 (−M

2) = M−2 +
dk
dP 2 (−M

2) (C.22)

We expand the two-loop integral around the physical point and shift the non-trivial
content into an analytical ansatz function f :

nk−1n (P 2) → nk−1n (−M2) +
d(nk−1n)

dP 2
||||P2=−M2

⋅ f (P 2) (C.23)

with
d(nk−1n)

dP 2
||||P2=−M2

= M−2 +
dn
dP 2

||||P2=−M2
=∶ � (C.24)

and the boundary conditions

f (−M2) = 0 and df
dP 2

||||P2=−M2
= 1. (C.25)

Ref. [118] showed that the function

f (P 2) =
M2

4 (
1 +

P 2

M2 (P
2/M2 + 2)

3)
(C.26)

is a good choice for scalar diquarks and pseudoscalar mesons as well. Note that we di�er-
entiate the whole norm integral with respect to P 2 now, not only the quark propagators
inside it as done in the normalization procedure. So, the inverse bound state propagator
is modeled by

D−1(P 2) = M2 [n(−M2) − n(P 2) + �f (P 2)] . (C.27)

with the de�nitions above. Doing a cross-check and setting P 2 = −M2 leads to the correct
(pointwise) behaviour:

D−1(−M2) = 0
dD−1

dP 2
||||P2=−M2

= 1. (C.28)

The symmetric momentum routing in the equation (see the section C.2.2) enforces that
the meson threshold appears at a mass of

Mcrit = 2 ⋅ M. (C.29)

Thus, for pions as ingredients, the threshold is at about 0.28 GeV; for the ! we are at
1.5 GeV. The thresholds of other con�gurations could be calculated straightforwardly.

Meson and diquark amplitudes. The amplitudes are calculated as described in 3.12.
For the standard momentum routing for the tetraquark BSE (see next section) on the real
axis, the amplitudes are only required on the real axis. This is especially good if we could
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easily access the physical solution of the two-quark BSE via iteration. For extrapolated
amplitudes such as the D/D∗ amplitudes and the ones of heavy-light scalar and axialvector
diquarks it was the only possibility in this thesis to do the extrapolations on the real axis.
In the complex plane one would have to deal with many more complexities.

C.2.2 Structure

The BSE kernel diagrams are structurally given by Fig. C.3 including the kinematics we
choose. First, we focus only on the �rst diagram, which is in this form a meson-meson
interaction kernel. We also denote loops by grey circle arrows and see immediately that
the diagram is a two-loop one. As a term, it reads

S(l − Q/4) Γ11(p + Q/2, l + p/2) S(l + p + Q/4) Γ22(q − Q/2, l + p + q/2)
× S(l + p + q − Q/4) Γ12(p − Q/2, l + p/2 + q) S(l + q + Q/4) Γ21(q + Q/2, l + q/2)
× D21(q + Q/2)D22(q − Q/2)
× Φ(Q, q). (C.30)

One can see that the relative momenta of the amplitudes Γij do not depend on the total
momentum Q any more – thus, we only need those amplitudes on the real axis in this
argument. This is a fortunate circumstance since a complex description is much more
expensive than a real one for BSAs. This changes when we look at the other diagrams.
The second one reads

S(q−Q/2)Γ12(p−Q/2, q−p/2−Q/4)S(q−p)Γ11(p+Q/2, q−p/2+Q/4)S(q+Q/2)Γ∗(Q, q), (C.31)

and the third one

K(Q, p, l)
× S(l + Q/2) Γ21(q + Q/2, l − q/2 + Q/4) S(l − q) Γ22(q − Q/2, l − q/2 − Q/4) S(l − Q/2)
× D21(q + Q/2) D22(q − Q/2)
× Φ(Q, q). (C.32)

Here, the amplitudes Γij are required in the complex plane since the relative momen-
tum squared gets contributions from Q2 < 0 (assuming physical, positive masses with
Q2 = −M2).

Flavour. The �avour part of the diagrams is relatively easily constructed. It follows
the same order as Eqs. (C.30–C.32). The �avour wave functions for the di�erent mesons
are given as follows:

� 0 = (
1 0
0 −1) �+ =

√
2(

0 1
0 0) �− = (�+)T (C.33)

K+ =
√
2
⎛
⎜
⎜
⎝

0 0 1
0 0 0
0 0 0

⎞
⎟
⎟
⎠

K 0 =
√
2
⎛
⎜
⎜
⎝

0 0 0
0 0 1
0 0 0

⎞
⎟
⎟
⎠

K− = (K+)T K̄ 0 = (K 0)T (C.34)
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Figure C.3: The loop diagrams inside the (mixed) two-body tetraquark BSE. The leftmost diagram
is the only one that contributes to the pure tetraquark BSE without mixing e�ects.
The fourth diagram, which we not show here is only a simple meson BSE and adopts
its kinematics, which are already discussed in the last section about two-quark BSEs.

The wave functions for the D/D∗ mesons are similar to the ones of the K mesons, merely
in a 4 × 4 dimensional space. The wave functions are normalized such that tr(M1M2) = 2.
Diquark wave functions are constructed analogously. With that, the �avour traces of the
diagrams could be taken easily. Linear combinations of di�erent four-quark amplitudes1

have to be constructed such that the four-quark amplitudes are normalized via tr(ΨΨ̄) = 4.

Colour. The colour structure is where mesons and diquarks di�er. Mesons are in the
colour singlet and diquarks are in the antisymmetric colour triplet with associated wave
function of

M = �AB and D = "ABX . (C.35)

With that, the diquark amplitude has an additional, third index X which gets contracted
with the two-body amplitude Φ. It then has a colour wave function of

Φcol = �XY (C.36)

to ensure a colourless (physical) con�guration.

C.2.3 Complications

We have to deal with several complications here. In general, the �rst and obvious one
is the location of poles in the integration region. When we are far below the meson
threshold, this is not much of a problem, but going very close or even above the threshold
induces numerical artefacts if one does not counter them in some sense. That means, in
a practical calculation one should not evaluate the eigenvalue curve directly below the
threshold, but a bit more below. This is a numerical issue because the functions in the
proximity of poles in the integration region are not slowly varying. Since the handling
of the number of integration points is always an economic choice, one does not simply
increase the number of points arbitrarily, but stays away from the questionable region.

When we go above the threshold, we have to do the path deformation. In principle,
this is simple to do, but one has to take care about the in�uence on other poles in the

1e.g. D0(D̄∗)0 + D+(D̄∗)− + D−(D̄∗)+ for the χc1(3872)
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equation. If we avoid meson poles with a path deformation, it is possible that we catch
other poles, such as those coming from diquarks. This is shown in Fig. 4.5 where the
e�ective integration domain for q± goes into a region where other poles might lie. It has
to be checked in every case if that’s a problem. If we enable quarkonium mixing, one
would have to check as well if quark poles are hit. Also, the meson propagators should be
well-de�ned in the area left from the meson pole in Fig. 4.5. If this is not the case from the
�t functions (which are constructed in a way that it yields good results in the space-like
region), it is always a possibility to switch to bare propagators. Usually, they deliver also
good results since the non-trivial corrections are suppressed by the UV-behaviour of the
BSAs inside the diagrams (cf. Fig. C.3).



Appendix D

Numerical Toolkit

Gauß Quadrature

In order to evaluate integrals in this work, we use the numerical method of Gauß Quadra-
ture in which one �rst assumes that an integral over a function f (x) could be expressed
via a weight function !(x) and a remainder g(x):

∫
b

a
dx f (x) = ∫

b

a
!(x)g(x) dx (D.1)

The quadrature rule is always connected to a speci�c set of orthogonal polynomials,
where the associated inner product is de�ned via the characteristic weight function !(x)
in the following sense:

(f , g)! = ∫
b

a
!(x)f (x)g(x) dx (D.2)

This leads to a sophisticated approximation of one-dimensional integrals by a weighted
sum:

∫
b

a
f (x) dx ≈ ∑

i
wif (xi) (D.3)

With this description it is possible to evaluate integrals over polynomials with degree
2n − 1 exactly by using only n sampling points [159]. The weights wi and the sampling
points xi are determined by properties of the chosen polynomial. In this work we always
use the Legendre polynomials to do so, unless we evaluate angular integrals which go
like f (z) =

√
1 − z2 ⋅ g(z); in this case, we use Chebyshev polynomials since in this case,

the weight function !cheby = (1 − z2)−1/2 cancels this factor. The sampling points of an
integration rule of a polynomial p(x) are given by its zeroes:

{xi ∶ p(xi) = 0} (D.4)

The weights are calculated via [160]

wi =
an
an−1

∫ b
a !(x)pn−1(x)2 dx
p′n(xi)pn−1(xi)

(D.5)
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where aj is the coe�cient of the highest order term of a polynomial of degree j. pn denotes
the polynomial of degree n and p′ is the derivative.
For the Gauß-Legendre integration we used a C routine which is given in [161].

Newton’s method

For root-�nding, we use Newton’s method. The idea is to approximate a zero of a function
f (x) by generating tangents iteratively and subsequently searching the zeroes of this
tangent. If we start at some guess value x0, the sequence (xi)i≥0 is de�ned recursively via

xi = xi−1 −
f (xi−1)
f ′(xi−1)

(D.6)

where the prime symbol denotes the �rst derivative. Numerically, we could iterate the
values xi until a convergence criterion, e.g. f (xi) < " for some small " > 0 is satis�ed.
Other than the bisection method for example, Newton’s is not necessarily converging.

Solving for Eigenvalues

For solving for eigenvalues in this work, we used the power method if we are only
interested in the largest eigenvalue and the Eigen library [162] for C++ if we need to get
knowledge about the subleading eigenvalues as well. The power method is described
already in appendix C and for the methods used in the Eigen library we refer to the
documentation [162].

Interpolation

For the interpolations used in this work we used one- and two-dimensional cubic Hermite
spline interpolations. All interpolation routines were coded by myself in course of this
project. The associated mathematical description could be taken e.g. from [163] or from
various textbooks about numerical mathematics.

Schlessinger-Point Method

The Schlessinger-Point method (SPM) is an interpolation method with continued fractions
with which it is possible to continue functions analytically which are only given at speci�c
points [125]. If we have a set of n data points we interpolate between those points by
using a rational function

f (x) =
p(x)
q(x)

=
f1

1 + a1(x−x1)
1+ a2(x−x2)1+⋯

. (D.7)

The coe�cients are determined recursively via

a1 =
f1/f2 − 1
x2 − x1

(D.8)
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arti�cial true

Newton’s m
ethod

reasonable unreasonable

0

Figure D.1: We show possible issues by using the SPM. Left hand side: The big red dots are
the input points, the red (dashed) line is the resulting rational function from the
SPM. The green (dotted) line is the arti�cial pole that appears due to numerical
inaccuracies. The blue (solid) line denotes the true pole which corresponds to a
solution of the eigenvalue curve (where log �(m) = 0). Right hand side: We show the
possible overstepping of a reasonable solution (denoted by the blue, dotted line) and
as a result, an unreasonable solution (blue, erratic dashed/dotted line) which was
obtained by an un�t starting point of the Newton’s method (dark blue, solid line).

and
ai =

1
xi − xi+1 (

1 +
ai−1(xi+1 − xi−1)

1+
ai−2(xi+1 − xi−2)

1+
⋯
a1(xi+1 − x1)
1 − f1/fi+1 ) . (D.9)

A very nice overview of what is possible with this method on the basis of spectral
functions is given in [164].

Arti�cial poles. Mostly, we use this continuation for eigenvalue curves �(m) so that
we search for the value �(m) = 1. Then, it is advisable to transform the input tuples
(mi , �i) where �i ∶= �(mi) to tuples like (mi , 1/ log(�i)). Then, it is possible to search for
the solution by looking for poles. However, we should distinguish between true and
arti�cial poles. This distinction could be understood easily: the SPM is an interpolation
and not a �t that assumes a certain structure and minimizes errors of �t parameters.
Conversely, it generates a (rational) function where all points are truly lying on the
function itself. In numerical calculations, we are technically restricted in evaluating
mathematical expressions – we generally have to assume that not a single point is
evaluated exactly – at least, the 64 bit architecture of our CPU only makes it possible
to describe real numbers in a certain precision. The SPM produces rational functions
which establish a number of arti�cial poles; these poles will compensate the inaccuracy
of our numerics and are only providing corrections. The corresponding residues are
small, but non-zero and might lead to arti�cial solutions when applying a numerical pole
�nder. Therefore, these poles have to be excluded, e.g. by setting an acceptance threshold
for residues, i.e. all poles will be accepted by the algorithm which have a residue larger
than some Resthreshold > 0. The distinction between arti�cial and real poles is shown
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graphically on the left side of Fig. D.1.

Wrong solutions. A further point is the localization of unreasonable poles. This could
be understood by the following: the easiest way of locating poles is to invert the function
and to look for zeroes. The residue is then given by the inverse slope of the function at
the zero of interest. By implementing a Newton’s root-�nding method, we iteratively
estimate the location of a zero of the function step by step by looking for the zero of a
tangent. If the �rst derivative is not slowly varying, the root-�nder might skip the pole
of interest and �nds a pole which is lying in an unreasonable region. We will therefore
do a further restriction besides the one about residues: we will only accept poles in a
speci�c interval [mmin, mmax], where this region is chosen generously around the point
where we expect the pole to be roughly. This position could be estimated e.g. by using
a polynomial �t of the function. The problem of overstepping the reasonable pole by
applying Newton’s method on the curve log �(m) is visualized on the right hand side of
Fig. D.1.

Error estimation. We use this method also to perform an error estimation. Say we
have n input points from a direct calculation of a function f which make a set of 2-tuples,

n = { (mi , �i) ∶ i ∈ N, i ≤ n } . (D.10)

Then, we choose a number j with 0 < j ≤ n and generate a set of all subsets of n with
cardinality j:

Sj ∶= {j ∶ j ⊆ n, ∣j | = j } (D.11)

From that, we de�ne vectors whose elements are 2-tuples and which span a set of all
possible permutations of all elements of the subsets m as follows:

Ωj ∶= { x ∶ x ∈ (C × C)j , xi ∈ X ∈ Sj , xi ≠ xk ∀i ≠ k } (D.12)

Then, we condense many sets of the kind (D.12), viz.

Ω =
n

⋃
j=jmin

Ωj (D.13)

for jmin ≫ 0 in order to vary the number of input points as well. Ω then contains all
possible permutations of j ≥ jmin input points which are part of j , in every possible order.
For every of those permutations, each represented by a vector x we apply the SPM in
order to search for a BSE solution. Thus, we would have to perform

N =
n

∑
j=jmin

(
n
j) ⋅ j! (D.14)

continuations. From each of those continuations we obtain a solution for a certain mass
m. If this solution satis�es the conditions (su�ciently large residue and within the
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acceptance interval) we put the corresponding masses into a solution set

 ∶= {m ∶ m corresponds to an accepted solution } . (D.15)

From that we de�ne the mean value m̄ and the standard deviation � from this set in
order to obtain an extrapolated solution and a corresponding error:

M = m̄ ± � (D.16)

The N from Eq. (D.14) is usually a very large number due to the factorial of j. In practice,
the e�ects of these reorderings on the results are very small. Thus, it is su�cient to
consider only the di�erent (unordered) sets within Sj , counted by the binomial coe�cient.



Appendix E

Technical Tools

Programming

By solving the tetraquark BSE, it is necessary to apply an e�cient way of performing
numerical calculations. For this work, we used C++ as a programming language by using
the GNU Compiler Collection (GCC) [165]. Various scripts were written in Python 3 [166].

Algebra Calculus

Much algebra was done by dedicated evaluation programs. We recommend Wolfram
Mathematica [167], especially the package FeynCalc [157, 158] to determine the BSA basis
elements, the projectors and to simplify the algebraic expressions in order to implement
them into the program code. We wish to emphasize the e�cient optimization features of
FORM [156], which saved us a factor of 8 in terms of CPU time for solving the tetraquark
BSE.

Plotting and Graphics

We consistently used gnuplot for data plots in this work [168]. For embedding the plots
into this work, we used the terminals tikz and epslatex. For �gures which serve as an
illustration of several things we used Inkscape [169] and Adobe Illustrator [170].

Typesetting

This work was written in LATEX [171] using the TEX Live setup [172].
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