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Preface





1
Introduction

Our current picture of the composition of the universe is dominated by the standard
model of cosmology [Lid09]. It states that the universe is made up out of three differ-
ent components: dark energy, a kind of uniformly distributed energy, that interacts
only through gravity, and the nature of which is still undetermined. Dark matter,
which also only interacts gravitationally, but, in contrast to dark energy, seems to
form clusters. Only the gravitational effects of these (electromagnetically) invisible
clusters actually hinted to the existence of dark matter [Zwi33] and its composition
is basically still unknown. And finally baryonic matter, which interacts through all
four elementary forces, and out of which all the visible objects in the universe, like
galaxies, stars and planets, are built. Remarkably the WMAP experiment found, that
only less than 5% of the energy of the universe is present in form of baryonic matter.
Dark matter accounts for about 22% and dark energy for about 73% [JBD+11]. Thus,
it is fair to say, that for the most part we do not know what the universe is made of.
However, we do know, that the mass of the atoms which form baryonic matter is al-
most totally concentrated in the atomic nuclei, which consist of nucleons (protons and
neutrons). Although being studied for over 80 years now, many features and details
of the nucleon and its inner structure are still not really understood. This thesis is
devoted to the study of the structure of the nucleon through means of the Drell-Yan
process [DY70].

1.1 Motivation

In 1911 Ernest Rutherford, in analysing the results of the famous Geiger-Marsden
experiment, discovered, that atoms are made up of a small and positively charged
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1 Introduction

nucleus and a diffuse and negatively charged electron cloud [Rut11]. Furthermore,
when bombarding nitrogen with α-particles (helium nuclei), he found that some of
the reaction products were actually hydrogen nuclei. Based on atomic mass analysis
he decided, that the hydrogen nucleus must be a building block of the nucleus of
all heavier elements and, therefore, named it the proton (Greek: the first). In 1932
his student James Chadwick discovered the neutron as the second particle in atomic
nuclei [Cha32]. While initially thought to be elementary particles, electron-proton
scattering experiments performed by Robert Hofstadter and collaborators in 1956 ac-
tually showed, that the proton has a finite diameter of about 0.8 fm [MH56]. This
proof of the non-point like nature of the proton was the advent of all further nu-
cleon structure studies. In the 1960s deep inelastic electron scattering experiments
on protons hinted to the existence of point like particles inside the proton. This led
Richard Feynman to propose the famous parton model of the nucleon which states,
that protons, neutrons and, in fact, all hadrons are composed of point like partons
[Fey69]. About the same time Murray Gell-Mann, Kazuhiko Nishijima and others
tried to organise the ever growing list of hadrons found in collider experiments. They
developed the quark model [GM64], which allowed to account for the quantum num-
bers of these hadrons by picturing them as a composition of only a few elementary
states, namely the quarks. Although the quarks were initially thought to be not real
particles, but merely invented as kind of a book keeping device, they were later on
identified through their quantum numbers as the charged partons inside the nucleon.
In this simplified picture, the proton, for example, is made up out of two up- and one
down-quark(s), which carry exactly the quantum numbers of the proton. Remark-
ably, one found, again in electron scattering experiments, that the quarks only carry
about 50% of the proton’s momentum [HM84] which hinted to the presence of un-
charged partons inside the proton. The advent of quantum chromodynamics (QCD)
in the 1970s provided an answer as to the origin of these particles. In QCD quarks, in
addition to their other quantum numbers, also carry a color charge. The interaction
among these colored objects is mediated via gauge bosons, called gluons. These glu-
ons themselves carry the color charge, but are electrically neutral. They are believed
to be exactly those particles, that carry the other half of the proton’s momentum.

Having found the elementary particles, out of which the nucleon appears to be con-
structed, one, of course, would like to study these particles further. However, QCD
has a very important property, that complicates matters: confinement. In nature,
color charge carrying objects (quarks and gluons) always appear to be confined inside
hadrons and have been, so far, never found separately. Thus, traditional approaches
to study the properties of elementary particles, like e.g. quark-quark scattering, are
not applicable. Nevertheless, another property of the strong force (as described by
QCD) provides a way out, namely asymptotic freedom, discovered by Gross, Wilczek
and Politzer in 1973 [GW73, Pol73]. The important feature of asymptotic freedom is,
that the strong coupling constant actually decreases with increasing energy or, equiv-
alently, decreasing distance. Thus, by probing strongly interacting objects, like the
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1.1 Motivation

nucleon, at very high energies, the small coupling constant actually allows the ap-
plication of the well known methods of perturbation theory. In this limit there exist
factorisation theorems, that effectively allow to separate the soft (long distance) inter-
actions among the partons from the hard (short distance) interactions of the partons
with the experimental probes. The hard subprocesses can then be evaluated using
standard perturbative QCD (pQCD) calculations, while the soft part, so far, has to be
inferred from experiment. Thus, studies of the nucleon structure have been trying
to determine the various distributions of the partons inside the nucleon, since these
distributions contain information about the soft interactions among the partons.

Until today the prevalent tool to study the parton distributions has been deep in-
elastic electron-nucleon scattering (DIS) [BD65], because of the following advantages:
electron beams are readily available, as are detectors for the outgoing electrons. In ad-
dition the partonic sub process (electron-quark scattering) is theoretically well under
control. Employing Feynman’s parton model one can fix in this way, e.g., the lon-
gitudinal parton distribution functions (PDFs), which encode the longitudinal (along
the nucleon’s direction of motion) momentum distributions of the quarks and gluons.
In the simplest parton model these distributions are functions of the parton momen-
tum fractions x (fraction of the parent hadron’s momentum, that is carried by the
parton) only. However in DIS experiments scaling violations, i.e. dependence of the
PDFs on the energy of the probe, were discovered. Perturbative QCD showed that
the violations originate in the interaction among the partons and proved successful
in describing this phenomenon, which confirmed further QCD as the correct theory
of the strong interaction. Since one can show, that the PDFs obtained in DIS and
through pQCD are universal, one can make predictions for other processes and so
test the validity of all the model assumptions.

One of these processes was first described by (and subsequently named after) Drell
and Yan in 1970 [DY70]. They anticipated, that in hadron-hadron collisions a quark
from one hadron and an antiquark from another hadron could annihilate to form a
lepton pair with large invariant mass M. This DY process is more exclusive than DIS:
since two partons are involved, one can actually probe products of two parton distri-
butions, instead of probing just one in DIS. In addition, the detection of the transverse
momentum of the produced lepton pair provides insights into the transverse distri-
butions of the participating partons. Furthermore, one can directly probe sea-quark
distributions [AMP06], i.e. distributions of virtual quarks generated by the strong in-
teraction, and at next-to-leading order (NLO) also the distribution of gluons. One
encounters, however, also additional problems, when trying to describe DY observ-
ables: the most simple scheme is the parton model description, which is a leading
order (LO) approach (O(α0

s )). In this scheme one pictures the two hadrons moving
towards each other in the hadron c.m. frame at such high momentum, that all the in-
teractions among the partons are suppressed by relativistic time dilation. Then both
hadrons basically appear as a bunch of partons, all moving in the same direction and
each carrying some momentum fraction x of the hadron’s momentum. However, this
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1 Introduction

simple approach does not fully describe the interesting observables: while the shape
of the M spectra of the DY pair can be reproduced, the absolute height can only be
accounted for by including an additional K factor. This implies that NLO corrections
are relevant, since at energies available at current experiments the strong coupling αs

is still sizable. Furthermore transverse momentum (pT) spectra are not accessible at
all [G+95], since one assumes from the beginning, that the partons carry no transverse
momentum and so, by four momentum conservation, does the DY pair.

In the literature different paths have been taken in trying to remedy these short-
comings. Since the data show Gaussian pT spectra at not too large pT, one often
simply modifies the LO calculation by folding in a phenomenological Gaussian dis-
tribution for the parton transverse momentum [DM04], but keeping the parton model
collinear kinematics in the hard subprocess. The width of the distribution then has
to be fitted to data. However, since these distributions are normalised, the absolute
size of the cross sections is still underestimated [DM04]. The next logical step is to
include hard subprocesses up to NLO (O(αs)). An example for such a process is gluon
bremsstrahlung, where one of the participating quarks radiates a gluon before anni-
hilating with the antiquark. In this scenario the DY pair can recoil against the gluon
and obtain a finite pT. However, such a calculation brings about additional problems:
since in pQCD the quarks are commonly treated as massless, the calculated pT spec-
tra are divergent for pT → 0. In fact, for massless quarks they are divergent in any
fixed order of the strong coupling αs. Note, that these divergences are of the same
nature as those leading to the scaling violations of the PDFs mentioned above. It is
possible to remove these divergences by an all-order resummation, however, since pT
is no longer a hard scale at pT → 0, additional non-perturbative (i.e., experimental)
input is needed in these (and all other pQCD) approaches to describe the region of
very small pT [CSS85, DWS85, FQZ03].

The continued interest in this process has sparked many different experiments in
the past and for the future: in antiproton-proton (pp) collisions at CERN [UA292], Fer-
milab [A+88], PAX [PAX05] and in the future at PANDA (FAIR) [TLP+09], in proton-
proton (pp) collisions at CERN [CCOR79], Fermilab [NuSea03], RHIC [BSSV00, B+08],
J-PARC [P+06, G+07, Kum08], IHEP [A+05] and JINR [SSNI09], in proton-nucleus
reactions at Fermilab [I+81, S+81, M+91, E77294] and in pion-nucleon collisions at
COMPASS [COMPASS97, COMPASS96]. An overview of the experimental situation
can be found in [Rei07]. PANDA, for example, will allow measurements at hadron
c.m. energies of a few GeV, where non-perturbative effects are expected to become
more important. Together with the shortcomings of the pQCD type approaches dis-
cussed above, this highlights the need to model these effects in a phenomenological
picture, at which this thesis is aiming at.

We will present our model in a two-step process: first an LO calculation, in which
we remedy some of the shortcomings of the standard parton model. In the latter one
always assumes that the partons move collinearly with their parent nucleon and do
not interact during the time the hard process takes place. However, this is an idealisa-
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1.2 Outline

tion of the situation in real experiments and so we take the following steps to improve
on this: we parametrise the soft interactions among the partons by incorporating phe-
nomenological transverse momentum and quark mass distributions and we take into
account the full kinematics in the hard LO subprocess, i.e., the usual collinear approx-
imation is overcome. We will show, that in this approach we can reproduce the shape
of the pT spectra, but still underestimate the data by a constant K factor. This find-
ing triggered a complete calculation of all hard subprocesses to O(αs) including the
full kinematics, which will be presented next. As mentioned above, such a calculation
would suffer from divergent pT spectra if the quarks were massless. However, we will
show that the phenomenological quark mass distributions now effectively smear out
the divergent behavior. Such mass distributions or spectral functions are a well known
concept in nuclear physics, where they are applied to the strongly coupled system of
nucleons in nuclei, see for example [DMDS90]. Thus, it is worthwhile to test the same
concept in the nucleon, which is a strongly coupled system of quarks and gluons. As
already mentioned above, the PDF scaling violations and the divergent DY pT spectra
at NLO have a common origin: they both stem from collinear (or mass) singularities
in the hard subprocesses. When calculating (pT integrated) M spectra these divergent
O(αs) contributions are commonly absorbed into the PDFs. Since we will consider
all these processes explicitly and regulate them with our mass distributions, we will
then introduce a subtraction scheme to prevent double-counting. Finally we will find,
that in our model we can describe data of DY pT and M spectra taken at different
hadronic energies and in different reactions without the need for a K factor, which en-
ables us to make predictions for DY pair production at low hadronic energies, where,
for example, the PANDA experiment will measure.

1.2 Outline

This thesis is structured in the following way: in Part II we will present selected
mathematical tools, that were employed in the calculations of our model. Since we
will have to calculate loop diagrams, we will begin in Chapter 2 with an introduction
to regularisation methods of loop integrals in quantum field theories and then focus
in detail on the method of dimensional regularisation. Furthermore a detailed walk
through the evaluation of a typical loop integral (the three-point function) will be
given in Chapter 3.

The details of the physical background for our model are presented in Part III. First
in Chapter 4 a few selected topics of renormalisation will be discussed and a calcula-
tion of the QCD field strength renormalisation for massive quarks presented, which
we will need in our model later on. Since infrared divergences play an important role
in this work, in Chapter 5 we will present a typical example. In addition we will cal-
culate the cross section for DY with soft gluon bremsstrahlung, which we will put to
use at a later stage to show that our model is actually free of soft gluon divergences.
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1 Introduction

In Chapter 6 a detailed introduction to the studies of the structure of an unpolarised
nucleon in elastic and inelastic lepton scattering will be given. Afterwards we will
introduce the parton model and describe Bjorken scaling, and then formally derive
the PDFs for DIS. The general properties of the PDFs will be discussed and a moti-
vation for the scaling violations and the resulting DGLAP equations, that govern the
evolution of the PDFs with the hard scale, will be given.
Part IV contains all the main details about our phenomenological model for DY

pair production. First we will present a detailed introduction to the DY process at
LO in Chapter 7 and then calculate the general subprocess cross section. Since we
want to study the influence of distributions of intrinsic parton transverse momentum
and quark mass on DY spectra, we will then give the details of the kinematics for
the different cases of the collinear parton model, the model with intrinsic transverse
momentum and the model with massive quarks. Furthermore, the distributions we
have chosen will be presented, followed by the results of the different LO approaches
of the chapter. We will find, that none of the LO models can account for the a priori
undetermined K factor, since they all still underestimate the data. We will, therefore,
in Chapter 8 extend our model to include all relevant processes to O(αs): first we will
present the virtual processes that modify the electromagnetic quark-photon vertex
and then cover in detail the issues related to the soft gluon divergences, gauge in-
variance and current conservation for our case of quarks with unequal masses. After
that, the real processes at O(αs), gluon bremsstrahlung and gluon Compton scatter-
ing, will be introduced and their cross sections and kinematics explored. Finally we
will study the influence of our distributions on the DY pT spectra and describe in
detail the treatment of collinear (or mass) singularities in pQCD and in our model. In
the latter part we will motivate a subtraction scheme, devised in our model to prevent
double-counting of divergent contributions of the NLO processes, which in pQCD are
already absorbed into the PDFs.
The results of our full model will be presented in Part V. First we will fix the

phenomenological parameters of our model at data taken in proton-proton reactions
at high energies in Chapter 9 and will find, that a good description of DY pT spectra
is possible in our model without an additional K factor. Using the fixed parameters
we will then in Chapter 10 compare the results of our model with data from other
experiments, performed at several different energies and in proton-nucleus as well as
in antiproton-proton reactions. Again we will show, that we are able to reproduce
well these data in our full model. Having confirmed our choice of parameters, we
will finally present our predictions for low energy DY pair production in the PANDA
kinematics.
We will close with a summary of our findings and a conclusion in Chapter 11. In the

Appendix our conventions and notation, reference formulas and information about
the used computer routines are collected.
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Part II

Mathematical tools





2
Loops and regularisation

In quantum field theoretical calculations beyond tree level one has to cope with the
complications that arise through loops. Naive loop calculations usually are not well
defined due to the divergent nature of loops. However in quantum field theories, like
for example QED and QCD, an efficient tool, namely renormalisation, can be used to
systematically remove the divergences and thus provide well defined results. Before
renormalisation can be applied the divergent expressions need to be regularised, thus
making the divergences manifest. This chapter is meant as an introduction to the con-
cept of regularisation. More details and a deeper analysis can be found for example
in [Mut98, PS95], on which this chapter is based.

2.1 The quark selfenergy

A typical loop example is the first order QCD quark selfenergy, depicted in Fig. 2.1.
We will keep the quark massless in this chapter for simplicity. Note that this will lead
to problems later on, namely mass singularities. However the following arguments
concerning the regularisation procedures are untouched by these problems and we
will take care of them later on.

According to the Feynman rules of QCD, see Appendix B, the selfenergy in Feyn-
man gauge reads:

−i Σ(p) = CF

∫
d4k

(2π)4
(igγµ)

i (/p − /k)

(p− k)2 + iǫ
(igγν)

−igµν

k2 + iǫ
. (2.1)
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2 Loops and regularisation

pp-k

k

p

Figure 2.1: The first order QCD quark selfenergy diagram.

The color factor CF can be calculated with the algebra of the SU(3) color symmetry
group, see Appendix B.2. Contracting the Lorentz indices we can rewrite the selfen-
ergy:

Σ(p) = −ig2CF

∫
d4k

(2π)4
γµ (/p − /k) γµ

[(p− k)2 + iǫ] [k2 + iǫ]
. (2.2)

Already at this point it is obvious that Σ is not well defined, since in the region of

very large k the integrand appears to behave like /k
k4
. A more thorough analysis, cf.

Sec. 2.3, reveals that in the high momentum region of the integral one finds

Σ(p) ∼
∫

d4k
1

k4
→ ∞ , (2.3)

and so the integral is logarithmically divergent as we integrate to higher and higher
momenta. The divergence appears at the upper limit (∞) of the integral and is thus
called ultraviolet (UV) divergence. Our immediate goal is now to devise a scheme in
such a form that this divergence is regularised. This can actually be done by finding
a convergent prescription in which as a certain limit we recover our original integral
of Eq. (2.2).

2.2 Regularisation schemes

There are several different procedures known by which regularisation can be per-
formed. Some of them have a rather intuitive motivation, but break some general
physical principles, for example gauge invariance or Lorentz invariance. While other
procedures retain these principles, they have different complications. In any case
renormalisation has to be performed such that one recovers a theory which again
obeys all these principles. To simplify this matter it is very useful to choose from
the start a regularisation procedure which preserves as many of the general physi-
cal principles as possible. We will present here a selected overview of regularisation
procedures, outlining their features and problems, and we treat one of the most im-
portant ones, namely dimensional regularisation, in detail in Section 2.3. A more
detailed presentation of this topic can be found in [Lei75, Mut98].
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2.2 Regularisation schemes

2.2.1 Momentum cut-off

One of the simplest possibilities to make the divergent integral finite is to introduce

an upper limit Λ for the three momentum integration, such that
∣
∣
∣~k
∣
∣
∣

2
< Λ2. Then the

divergence is controlled by the (arbitrary) parameter Λ. However in this scheme the
selfenergy is not invariant under shifts of four momenta under the integral: trans-
lational invariance is broken. In addition gauge invariance is broken [JR76], which
make this method unsuitable for regularising gauge theories.

2.2.2 Pauli-Villars regularisation

Another regularisation method dates back to Pauli and Villars [PV49]. The idea is to
subtract from the propagator, in our case for example of the photon, another propa-
gator of a fictitious particle with a very large mass M:

1

k2 + iǫ
→ 1

k2 + iǫ
− 1

k2 −M2 + iǫ
=

−M2

[k2 + iǫ] [k2 −M2 + iǫ]
, (2.4)

which implies that in the limit of M→ ∞ our original divergent integral is recovered.
The regularised integral now reads

ΣPV(p) = −ig2CF

∫
d4k

(2π)4
γµ (/p − /k) γµ(−M2)

[(p− k)2 + iǫ] [k2 + iǫ] [k2 −M2 + iǫ]
. (2.5)

For small k2 and large M2 the integrand in Eq. (2.5) is basically unchanged. On the
other hand for very large k2 ≫ M2 the integrand behaves like k−6 and so the integral
is convergent. This is exactly what we want: The behavior of our original integral in
Eq. (2.2) is recovered in the small momentum region and ΣPV is finite.
This method of regularisation preserves translational and Lorentz invariance. It was

also found that this method respects gauge invariance in QED and QCD (actually in
all massless Yang-Mills theories), but fails in massive Yang-Mills theories: the selfen-
ergy of the W-boson cannot be regularised in a gauge invariant way by this method
[Mut98, tH71].

2.2.3 Lattice regularisation

A totally different approach to regularisation is the lattice method. The idea is to
discretise space-time with a fixed distance d between lattice points. This implies that
short-range correlations are suppressed in this scheme. Since short distances corre-
spond to large momenta one effectively provides a cut-off, basically of O

(
d−1
)
, in the

momentum integration. However problems are imminent: Lorentz invariance is not
preserved and translational invariance is broken, since arbitrary translations will end

13



2 Loops and regularisation

up outside the grid. However one can formulate the theory such that gauge invariance
is manifestly preserved. While the aforementioned problems make this procedure not
really satisfying for regularising a gauge theory, it allows for a non-perturbative cal-
culation of gauge theories, especially QCD [Cre83].

2.2.4 Analytic regularisation

A precursor to Section 2.3 is the analytic continuation method [Lei75]. The idea is
to change the exponent of the propagator such, that the integral converges. For this
purpose one introduces a complex parameter α with ℜ(α) > 1 and rewrites the prop-
agator:

1

k2 + iǫ
→ 1

(k2 + iǫ)
α . (2.6)

Then the integrand of

ΣAC(p) = −ig2CF

∫
d4k

(2π)4
γµ (/p − /k) γµ

[(p− k)2 + iǫ] [k2 + iǫ]
α (2.7)

behaves like k−2(1+α) for large k2 and thus the result is finite (remember that for α = 1
the integral is logarithmically divergent). This result is now continued analytically
to α = 1 and the original divergence shows up as a pole at α = 1. Unfortunately
the method is not gauge invariant [Mut98], however the idea of analytic continuation
is also crucial for the concept of dimensional regularisation, to which we devote the
entire next section.

2.3 Dimensional regularisation

The method of dimensional regularisation, first formulated by ’t Hooft and Veltman in
the early 1970s [tH71, tHV72], is one of the most important regularisation procedures
for gauge theories today. The basic idea behind it is the following: certain types of
integrals are divergent when calculated in a certain number of dimensions, while they
converge for other numbers. In this section we will apply this concept on the quark
selfenergy in Eq. (2.2) and work out the necessary mathematical ingredients along the
way.

2.3.1 Example

Here is a simple example: Let a > 0 and consider the integral

I2 =
∫

a<|x|
d3x

1

|x|3
. (2.8)
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2.3 Dimensional regularisation

Then using spherical coordinates we find

I2 =
∫

dΩ lim
K→∞

K∫

a

x2dx
1

x3

= 4π lim
K→∞

log

(
K

a

)

→ ∞ , (2.9)

and so in three dimensions the integral is not well defined. However in two dimension
the integral poses no problem:

I1 =
∫

a<|x|
d2x

1

|x|3

=

2π∫

0

dφ lim
K→∞

K∫

a

xdx
1

x3

= 2π lim
K→∞

(

− 1

K
+

1

a

)

=
2π

a
. (2.10)

In fact the integral will converge as long as the dimension d < 3. In dimensional
regularisation one can exploit this fact: one first calculates the integral without fixing
the number of dimensions d and only requiring that d is chosen such that the integral
converges. Then one continues analytically d to the number of dimensions d′ of the
divergent integral. The divergence then shows up as poles in d − d′. Using our
example for the quark selfenergy of Eq. (2.2) we will present this procedure in detail
in the next sections.

2.3.2 Extension to d dimensions

As we have seen in Eq. (2.3) our quark selfenergy Σ(p) is not well defined in d = 4
dimensions. However looking back at our example in Section 2.3.1 we anticipate that
Σ(p) is well defined if only d is small enough. To verify this we have to rewrite Σ(p)
for a general number of space-time dimensions d. At first we will restrict ourselves to
integer numbers for d.
Changing the number of dimensions has several consequences. First of all momenta

now have d − 1 instead of three space components. To evaluate the contractions of
the Dirac γ-matrices in d dimensions we need a metric tensor for d dimensions and
especially its contraction identity

gµνgµν = d . (2.11)
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2 Loops and regularisation

Since we have the anticommutation relation for the Dirac matrices

{γµ,γν} = 2gµν , (2.12)

the contraction identities for the Dirac matrices are modified, see Appendix A.4.2.
The Dirac algebra is however otherwise unchanged. The trace relations for the Dirac
matrices, see Appendix A.4.2, are in general modified in d dimensions. However in
the end we are always only interested in results for d→ 4 and we can also stick to the
trace relations in four dimensions [Mut98]:

Tr [γµγν] = 4gµν . (2.13)

For the integral measure we choose

ddk

(2π)d
. (2.14)

Note that this is a convention and instead of (2π)d we could have also chosen (2π)4,
since again in the end we are only interested in the limit d→ 4.
Of great importance is also the fact, that the coupling constant g is generally not

dimensionless for an arbitrary number of space time dimensions d. One can deduce
the dimension of g by observing, that the QCD action S has to be a dimensionless
quantity:

dim[S ] = dim

[∫

ddxL
]

= 0 , (2.15)

where L is the QCD Lagrangian and dim[A] is the mass dimension of the expression
A. In natural units, see Appendix A.1, the mass dimension of lengths is −1 and so

dim[ddx] = −d⇒ dim[L] = d . (2.16)

The classical QCD Lagrangian reads [Mut98]:

L =

N f

∑
k=1

Ψ̄k (i /D−mk)Ψk − 1

4
F

µν
a Faµν (2.17)

where the sum runs over all quark flavors k and mk are the quark masses. Dµ is the
covariant derivative,

Dµ = ∂µ − igtaA
µ
a , (2.18)

and F
µν
a the QCD field strength tensor:

F
µν
a = ∂µAν

a − ∂νA
µ
a + g fabcA

µ
bA

ν
c . (2.19)
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2.3 Dimensional regularisation

Here A
µ
a is the gluon field, fabc are the structure constants of SU(3) and ta its genera-

tors, see also Appendix A.5. Now we immediately find for the mass dimension of the
quark fields Ψk:

dim[Ψ̄kmkΨ
k] = d⇒ dim[Ψk] =

d− 1

2
. (2.20)

Since

dim[∂µ] = dim

[
∂

∂xµ

]

= 1 , (2.21)

we find

dim[F
µν
a Faµν] = dim[∂µAν

a∂µAaν] = d⇒ dim[A
µ
a ] =

d− 2

2
. (2.22)

Therefore

dim[Ψ̄k /DΨk] = dim[ΨkgA
µ
a Ψk] = d⇒ dim[g] =

4− d

2
, (2.23)

and so g is only dimensionless for d = 4. However we can relate g to a dimensionless
coupling constant g0 if we introduce an arbitrary mass scale µ:

g := g0 · µ
4−d
2 . (2.24)

The arbitrary mass scale µ can of course have no observable physical consequences.
Thus, after undergoing a suitable renormalisation procedure, the observable quanti-
ties are independent of µ, cf. Sec. 4.1.
With our conventions given above the quark selfenergy of Eq. (2.2) becomes in d

dimensions

Σ(p) = −ig2CF

∫
ddk

(2π)d
γµ (/p − /k) γµ

[(p− k)2 + iǫ] [k2 + iǫ]

= −ig2CF

∫
ddk

(2π)d
(2− d) (/p − /k)

[(p− k)2 + iǫ] [k2 + iǫ]
, (2.25)

where in the last step we have used the contraction identity

γµγαγµ = (2− d)γα . (2.26)

Note that the denominator of Eq. (2.25) is quite unpleasant: there are terms of order
k2, k3 and k4. One would like to have a denominator which is quadratic in k, since the
integrals of such forms are well known. We will demonstrate in the next section how
to accomplish this for the general case of integrals with propagator denominators.
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2 Loops and regularisation

2.3.3 Feynman parameters

The idea of Feynman parameters is to rewrite products of propagator denominators
into sums, since by shifting the integration variable it is then easy to acquire a de-
nominator quadratic in the shifted variable. The concept is however rather general
and can also be applied in different contexts.
Consider a general expression of the form 1

A·B . Then we claim

1

A · B =

1∫

0

dx

1∫

0

dy
δ(1− x− y)

[xA+ yB]2
. (2.27)

The proof goes as follows: we exploit the δ function and obtain

1∫

0

dx

1∫

0

dy
δ(1− x− y)

[xA+ yB]2
=

1∫

0

dx
1

[xA+ (1− x)B]2

=

1∫

0

dx
1

[x(A− B) + B]2

=

[
1

A− B
· −1
x(A− B) + B

]1

0

=
−1

(A− B) · A +
1

(A− B) · B
=

1

A · B . (2.28)

Note that one can easily extend this concept with A and B raised to integer powers
by repeatedly differentiating Eq. (2.27) by A and/or B. However one can find an even
more general identity with an arbitrary number n of factors in the denominator, each
raised to some complex power. The claim reads

1

Aα1
1 · A

α2
2 · · · Aαn

n
=

Γ(∑n
i=1 αi)

∏
n
i=1 Γ(αi)

1∫

0

dx1

1∫

0

dx2 . . .

1∫

0

dxn
∏

n
i=1 x

αi−1
i δ (1−∑

n
i=1 xi)

[∑n
i=1 xiAi]

(∑n
i=1 αi)

(2.29)

and we require

ℜ(αi) > 0 . (2.30)

Γ(x) is the Gamma function, which has many different representations, one of which
is

Γ(x) =

∞∫

0

dz zx−1 · exp(−z) , (2.31)
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for x 6= −n with n ∈ N0. Note that Γ interpolates the factorial function, since one
finds

x ∈ N ⇒ Γ(x) = (x− 1)! . (2.32)

Note also that Γ has poles at all integers n ≤ 0, which will be of relevance later on.
At this point it is worthwhile to introduce a related function, namely the Beta func-

tion, which can be written as

B(x, y) =

1∫

0

dz zx−1(1− z)y−1 , (2.33)

where we require that ℜ(x) > 0 and ℜ(y) > 0. Beta and Gamma function are con-
nected via

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (2.34)

Now we have all the tools we need to prove Eq. (2.29). First we consider the case of
two factors in the denominator (n = 2):

I2 =
Γ(α1 + α2)

Γ(α1)Γ(α2)

1∫

0

dx1

1∫

0

dx2
xα1−1
1 xα2−1

2 δ (1− x1 − x2)

[x1A1 + x2A2]
(α1+α2)

=
Γ(α1 + α2)

Γ(α1)Γ(α2)

1∫

0

dx1
xα1−1
1 (1− x1)

α2−1

[x1A1 + (1− x1)A2]
(α1+α2)

. (2.35)

Note that the prefactor in Eq. (2.35) immediately reminds us of Eq. (2.34) and the
powers in the numerator remind us of Eq. (2.33), which gives us a hint what to do:
rewrite Eq. (2.35) into the representation of the Beta function Eq. (2.33), so that the
integral basically cancels the prefactor. We substitute

y =
x1A1

x1A1 + (1− x1)A2
(2.36)

⇒ 1− y =
(1− x1)A2

x1A1 + (1− x1)A2
(2.37)

and so for the integral measure we find

dy

dx1
=

A1

x1A1 + (1− x1)A2
− x1A1(A1 − A2)

[x1A1 + (1− x1)A2]
2
=

A1A2

[x1A1 + (1− x1)A2]
2
. (2.38)
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2 Loops and regularisation

Then

I2 :=
Γ(α1 + α2)

Γ(α1)Γ(α2)

1∫

0

dy
[x1A1 + (1− x1)A2]

2

A1A2

yα1−1(1− y)α2−1

Aα1−1
1 Bα2−1

1 [x1A1 + (1− x1)A2]
2

=
1

Aα1
1 Bα2

1

Γ(α1 + α2)

Γ(α1)Γ(α2)

1∫

0

dy yα1−1(1− y)α2−1

=
1

Aα1
1 Bα2

1

Γ(α1 + α2)

Γ(α1)Γ(α2)
B(α1, α2)

=
1

Aα1
1 Bα2

1

, (2.39)

and so Eq. (2.29) holds for n = 2. The proof for general n now goes by induction: if
Eq. (2.29) holds for a certain n, then for n+ 1 we find

1

Aα1
1 · A

α2
2 · · · Aαn

n
· 1

A
αn+1
n+1

=
Γ(∑n

i=1 αi)

∏
n
i=1 Γ(αi)

1∫

0

dx1 . . .

1∫

0

dxn
∏

n
i=1 x

αi−1
i δ (1−∑

n
i=1 xi)

[∑n
i=1 xiAi]

(∑n
i=1 αi) · Aαn+1

n+1

.

(2.40)

Now we can make use of our result for I2 and combine the two factors in the denom-
inator of Eq. (2.40):

Cn+1 :=
1

[∑n
i=1 xiAi]

(∑n
i=1 αi) · Aαn+1

n+1

=
Γ(∑n

i=1 αi + αn+1)

Γ(∑n
i=1 αi)Γ(αn+1)

1∫

0

dxn+1

1∫

0

dy
x
(αn+1−1)
n+1 y(∑

n
i=1 αi−1)δ(1− y− xn+1)

[y (∑n
i=1 xiAi) + xn+1An+1]

(∑n
i=1 αi+αn+1)

=
Γ(∑n+1

i=1 αi)

Γ(∑n
i=1 αi)Γ(αn+1)

1∫

0

dxn+1

1∫

0

dy
x
(αn+1−1)
n+1 y(∑

n
i=1 αi−1)δ(1− y− xn+1)

[∑n
i=1(y · xi)Ai + xn+1An+1]

(∑n+1
i=1 αi)

. (2.41)

Now we insert Cn+1 into Eq. (2.40):

In+1 :=
1

Aα1
1 · A

α2
2 · · · A

αn+1
n+1

=
Γ(∑n

i=1 αi)

∏
n
i=1 Γ(αi)

1∫

0

dx1 . . .

1∫

0

dxn
n

∏
i=1

x
αi−1
i δ

(

1−
n

∑
i=1

xi

)

× Γ(∑n+1
i=1 αi)

Γ(∑n
i=1 αi)Γ(αn+1)

1∫

0

dxn+1

1∫

0

dy
x
(αn+1−1)
n+1 y(∑

n
i=1 αi−1)δ(1− y− xn+1)

[∑n
i=1(y · xi)Ai + xn+1An+1]

(∑n+1
i=1 αi)

. (2.42)
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Substituting

x̂i = y · xi ⇒ dxi =
dx̂i
y

(2.43)

for i = 1 . . . n, we recover

In+1 =
Γ(∑n+1

i=1 αi)

∏
n+1
i=1 Γ(αi)

1∫

0

dy

1∫

0

dx̂1 . . .

1∫

0

dx̂n
1

yn

n

∏
i=1

(
x̂i
y

)αi−1
δ

(

1−
n

∑
i=1

x̂i
y

)

×
1∫

0

dxn+1

x
(αn+1−1)
n+1 y(∑

n
i=1 αi−1)δ(1− y− xn+1)

[∑n
i=1 x̂iAi + xn+1An+1]

(∑n+1
i=1 αi)

=
Γ(∑n+1

i=1 αi)

∏
n+1
i=1 Γ(αi)

1∫

0

dy

1∫

0

dx̂1 . . .

1∫

0

dx̂n
n

∏
i=1

x̂
αi−1
i δ

(

1−
n

∑
i=1

x̂i
y

)

×
1∫

0

dxn+1

x
(αn+1−1)
n+1 δ(1− y− xn+1)

[∑n
i=1 x̂iAi + xn+1An+1]

(∑n+1
i=1 αi)

(

y−n · y(−∑
n
i=1 αi+n) · y(∑n

i=1 αi−1)
)

︸ ︷︷ ︸

y−1

.

(2.44)

Now we note that

1∫

0

dy

1∫

0

dx̂n

1∫

0

dxn+1

δ
(

1−∑
n
i=1

x̂i
y

)

δ(1− y− xn+1)

y

=

1∫

0

dy

1∫

0

dx̂n

1∫

0

dxn+1
δ (y−∑

n
i=1 x̂i) · y · δ(1− y− xn+1)

y

=

1∫

0

dx̂n

1∫

0

dxn+1 δ

(

1− xn+1 −
n

∑
i=1

x̂i

)

. (2.45)

Finally we can again replace everywhere x̂i with xi and thus

In+1 =
Γ(∑n+1

i=1 αi)

∏
n+1
i=1 Γ(αi)

1∫

0

dx1 . . .

1∫

0

dxn+1

∏
n+1
i=1 x

αi−1
i δ

(

1−∑
n+1
i=1 xi

)

[

∑
n+1
i=1 xiAi

](∑n+1
i=1 αi)

. (2.46)

This concludes our proof of Eq. (2.29).
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2 Loops and regularisation

After this short detour, we are now ready to rewrite the quark selfenergy in Eq. (2.25)
into a more pleasant form. Using Eq. (2.28) we combine the propagators:

Σ(p) = −ig2CF

1∫

0

dx
∫

ddk

(2π)d
(2− d) (/p − /k)

[x ((p− k)2 + iǫ) + (1− x) (k2 + iǫ)]
2

= −ig2CF

1∫

0

dx
∫

ddk

(2π)d
(2− d) (/p − /k)

[k2 − 2xp · k+ xp2 + iǫ]
2
. (2.47)

Now one can complete the square in the denominator,

Σ(p) = −ig2CF

1∫

0

dx
∫

ddk

(2π)d
(2− d) (/p − /k)

[(k− xp)2 − x2p2 + xp2 + iǫ]
2

(2.48)

and shift the momentum integration

k→ l = k− xp⇒ d4k→ d4l . (2.49)

Then

Σ(p) = −ig2CF

1∫

0

dx
∫

ddl

(2π)d
(2− d) (/p − /l − x/p)

[l2 + x(1− x)p2 + iǫ]
2

= −ig2CF

1∫

0

dx
∫

ddl

(2π)d
(2− d) ((1− x)/p − /l )

[l2 + x(1− x)p2 + iǫ]
2
. (2.50)

2.3.4 Wick rotation

We now have to tackle the momentum integral in

Σ(p) = −ig2CF

1∫

0

dx
∫

ddl

(2π)d
(2− d) ((1− x)/p − /l )

[l2 − ∆ + iǫ]
2

, (2.51)

with ∆ = −x(1− x)p2.
Before we start calculating we note that

∫

ddl
lµ

[l2 − ∆ + iǫ]
2
= 0 . (2.52)
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2.3 Dimensional regularisation

This follows directly from symmetry considerations: the numerator is antisymmetric
in the momentum component lµ while the denominator is symmetric. Thus the inte-
gral over dlµ vanishes. The same argumentation can immediately be generalised to
all integrals of the type of Eq. (2.52) with an odd power of l in the numerator:

∫

ddl
∏

2n+1
i=1 lµi

[l2 − ∆ + iǫ]
k
= 0 (2.53)

with n ∈ N0 and k ∈ N . Then one also finds

∫

ddl
lµlν

[l2 − ∆ + iǫ]
k
= 0 for µ 6= ν (2.54)

and so only for µ = ν the last integral does not vanish. Thus, since there are no
Dirac matrices involved, Lorentz covariance of the integral requires that it must be
proportional to the metric tensor gµν:

∫

ddl
lµlν

[l2 − ∆ + iǫ]
k
=
∫

ddl
f (l2)gµν

[l2 − ∆ + iǫ]
k
. (2.55)

f (l2) is readily found by contracting both sides of Eq. (2.55) with gµν:

gµνl
µlν = f (l2)gµνgµν

⇒ f (l2) =
l2

d
(2.56)

and so

∫

ddl
lµlν

[l2 − ∆ + iǫ]
k
=
∫

ddl
1
d l

2gµν

[l2 − ∆ + iǫ]
k
. (2.57)

Similar identities to Eq. (2.57) hold for other combinations with even numbers of
components of l in the numerator [PS95].
Now back to the quark selfenergy: Eq. (2.52) tells us, that we can drop the term

/l = γµl
µ in Eq. (2.51). So there remains

Σ(p) = −ig2CF

1∫

0

dx
∫

ddl

(2π)d
(2− d) ((1− x)/p)

[l2 − ∆ + iǫ]
2

. (2.58)

Note that the last integral is defined in d-dimensional Minkowski space. One could
now carry out the l0 integration via a contour integral in the complex l0 plane. It is
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2 Loops and regularisation

thus useful to study the pole structure of the integrand in Eq. (2.58). For ∆ > 0 we
find:

l2 − ∆ + iǫ =(l0)2 − (~l)2 − ∆ + iǫ
!
= 0

⇒ l0 =±
√

(~l)2 + ∆− iǫ

=±
√

(~l)2 + ∆∓ iǫ

2

√

(~l)2 + ∆

+O(ǫ2)

≈±
√

(~l)2 + ∆∓ iǫ′ . (2.59)

The integrand has poles in the upper left and in the lower right quadrant of the com-

plex l0 plane, see Fig. 2.2. Since for large
∣
∣l0
∣
∣ the integrand behaves like

∣
∣l0
∣
∣
−2

, we can
close the integration contour either in the upper or lower half plane, while the infinite
half-circle does not contribute to the integral in either case. Thus the l0 integration
is determined by the poles inside the integration contour and we could now apply
the residue theorem. Then only a (d− 1)-dimensional integral over the spatial com-
ponents in Euclidean space would remain. However there is a more elegant method,
namely the Wick rotation.

l0 → i · l0

ℜ(l0)

ℑ(l0)

Figure 2.2: Position of the poles in the complex l0 plane. The dashed line indicates the
contour of the integration. By rotating this contour 90 degrees counter clockwise the
dashed line does not cross a pole and so the result of the integration is unchanged.

We note that by rotating the path of the l0 integration in the complex plane by 90
degrees counter clockwise, the contour does not cross any pole:

l0 → i · l0E , (2.60)
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2.3 Dimensional regularisation

where E stands for Euclidean. The residue theorem now states that the value of the
integration is unchanged by this procedure. We find

dl0 → i · dl0E , (2.61)

l2 = (l0)2 − (~l)2 → −(l0)2 − (~l)2 = −l2E (2.62)

and the integral of Eq. (2.58) becomes

Σ(p) = −ig2CF

1∫

0

dx
∫

i · ddlE
(2π)d

(2− d) ((1− x)/p)
[
−l2E − ∆ + iǫ

]2

= g2CF

1∫

0

dx
(2− d) ((1− x)/p)

(2π)d

∫
ddlE

[
l2E + ∆− iǫ

]2
. (2.63)

Now we have to solve a d-dimensional integral in Euclidean space and we note that
the integrand only depends on the absolute value of lE, which makes the use of
spherical coordinates a good choice.

2.3.5 d-dimensional spherical coordinates

To calculate the second integral in Eq. (2.63), we here consider the general solution for
integrals of the type:

I =
∫

ddx · (x2) n
2

[x2 + ∆− iǫ]
k
, (2.64)

with n + d < 2k. We introduce d-dimensional spherical coordinates and note that
for ∆ > 0, i.e. p2 < 0, the integrand has no poles and we can drop the iǫ term.
Therefore we will keep p space-like in the following calculations and later on continue
analytically the result to time-like p, keeping in mind that ∆ has a tiny negative
imaginary part.
It is instructive to study the construction of spherical coordinates in the common

two and three dimensions and then to expand the scheme to d dimensions. In all
dimensions we understand the absolute value of the coordinate vector to be defined
as r = |~x|.
In two dimensions spherical (polar) coordinates are defined via

x1 = r sin(θ1) ,

x2 = r cos(θ1) , (2.65)

with 0 < θ1 < 2π. For three dimensions one finds:

x1 = r sin(θ1) sin(θ2) ,

x2 = r cos(θ1) sin(θ2) ,

x3 = r cos(θ2) , (2.66)
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2 Loops and regularisation

with 0 < θ1 < 2π and 0 < θ2 < π. We now continue along this path and define

x1 = r sin(θ1) sin(θ2) . . . sin(θd−1) ,
x2 = r cos(θ1) sin(θ2) . . . sin(θd−1) ,

...

xd−1 = r cos(θd−2) sin(θd−1) ,
xd = r cos(θd−1) , (2.67)

with 0 < θ1 < 2π and 0 < θi < π for i = 2 . . . (d − 1). To transform the integral
measure in Eq. (2.64),

ddx = |Dd| · dr ·
d−1
∏
i=1

dθi , (2.68)

we calculate the determinant of the Jacobian

Dd = det

[
∂(x1, . . . , xd)

∂(r, θ1, . . . , θd−1)

]

= det









∂x1
∂r . . . ∂xd

∂r
∂x1
∂θ1

. . . ∂xd
∂θ1

...
...

∂x1
∂θd−1

. . . ∂xd
∂θd−1









. (2.69)

For Dd we claim:

Dd = (−1)d−1rd−1
d−1
∏
i=1

sini−1(θi) . (2.70)

The proof is not difficult and goes by induction. For d = 2 one finds

D2 = det

(
∂x1
∂r

∂x2
∂r

∂x1
∂θ1

∂x2
∂θ1

)

= det

(
sin(θ1) cos(θ1)
r cos(θ1) −r sin(θ1)

)

= −r , (2.71)

which confirms Eq. (2.70) for d = 2. If the claim holds for d− 1 (d ≥ 3), we find for d:

Dd = det












∂x1
∂r . . .

∂xd−1
∂r

∂xd
∂r

∂x1
∂θ1

. . .
∂xd−1

∂θ1
0

...
...

...
∂x1

∂θd−2
. . .

∂xd−1
∂θd−2

0
∂x1

∂θd−1
. . .

∂xd−1
∂θd−1

∂xd
∂θd−1












, (2.72)
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2.3 Dimensional regularisation

where the zeros in the last column are a consequence of xd being a function of r and
θd−1 only. A Laplace expansion along the last column yields:

Dd =(−1)d+1 · ∂xd
∂r
· det







∂x1
∂θ1

. . .
∂xd−1

∂θ1
...

...
∂x1

∂θd−1
. . .

∂xd−1
∂θd−1







+(−1)2d · ∂xd
∂θd−1

· det









∂x1
∂r . . .

∂xd−1
∂r

∂x1
∂θ1

. . .
∂xd−1

∂θ1
...

...
∂x1

∂θd−2
. . .

∂xd−1
∂θd−2









. (2.73)

According to Eq. (2.67) one finds for i = 1 . . . (d− 1):

∂xi
∂θd−1

=
cos(θd−1)
sin(θd−1)

xi =
r cos(θd−1)
sin(θd−1)

∂xi
∂r

, (2.74)

and so

det







∂x1
∂θ1

. . .
∂xd−1

∂θ1
...

...
∂x1

∂θd−1
. . .

∂xd−1
∂θd−1







=
r cos(θd−1)
sin(θd−1)

· det









∂x1
∂θ1

. . .
∂xd−1

∂θ1
...

...
∂x1

∂θd−2
. . .

∂xd−1
∂θd−2

∂x1
∂r . . .

∂xd−1
∂r









= (−1)d−2 · r cos(θd−1)
sin(θd−1)

· det









∂x1
∂r . . .

∂xd−1
∂r

∂x1
∂θ1

. . .
∂xd−1

∂θ1
...

...
∂x1

∂θd−2
. . .

∂xd−1
∂θd−2









, (2.75)

where in the last step we have exploited that determinants change their sign under ex-
change of two neighboring lines. Note that the d-dimensional coordinates x1 . . . xd−1
are related to the (d − 1)-dimensional coordinates x̂1 . . . x̂d−1 via xi = sin(θd−1) · x̂i,
cf. Eq. (2.67). Since multiplication of one line of a matrix with a factor a changes also
the determinant by a factor a we find

det









∂x1
∂r . . .

∂xd−1
∂r

∂x1
∂θ1

. . .
∂xd−1

∂θ1
...

...
∂x1

∂θd−2
. . .

∂xd−1
∂θd−2









= sind−1(θd−1) · det









∂x̂1
∂r . . .

∂x̂d−1
∂r

∂x̂1
∂θ1

. . .
∂x̂d−1

∂θ1
...

...
∂x̂1

∂θd−2
. . .

∂x̂d−1
∂θd−2









= sind−1(θd−1) · Dd−1 (2.76)
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Therefore,

Dd =

[

(−1)d+1 · ∂xd
∂r
· (−1)d−2 · r cos(θd−1) sind−2(θd−1) (2.77)

+ (−1)2d · ∂xd
∂θd−1

· sind−1(θd−1)
]

· Dd−1

=(−1)2d · sind−2(θd−1) ·
[

−r cos2(θd−1)− r sin2(θd−1)
]

· Dd−1

=− r · sind−2(θd−1) · Dd−1

=− r · sind−2(θd−1) · (−1)d−2rd−2
d−2
∏
i=1

sini−1(θi)

=(−1)d−1rd−1
d−1
∏
i=1

sini−1(θi) . (2.78)

This concludes our proof of Eq. (2.70).

Since |r| = r, sin0(θ1) = 1 and 0 ≤ sin(θi) ≤ 1 for i = 2 . . . (d − 1), the integral
measure of Eq. (2.68) becomes:

ddx = rd−1
d−1
∏
i=1

sini−1(θi) · dr
d−1
∏
i=1

dθi = rd−1drdΩd . (2.79)

Thus, we can rewrite Eq. (2.64):

I =
∫

ddx(x2)
n
2

[x2 + ∆]
k
=
∫

dΩd

∞∫

0

dr
rn+d−1

[r2 + ∆]
k
. (2.80)

As mentioned above the integrand in Eq. (2.80) is independent of all angles and we can
evaluate the integration over the surface dΩd separately. Now, instead of integrating
over all (d− 1) angles, we will apply a more elegant method [PS95], which uses the
well known result for the Gaussian integral:

∞∫

−∞

dx exp(−x2) =
√

π . (2.81)
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Then

(
√

π)d =





∞∫

−∞

dx exp(−x2)




d

=

∞∫

−∞

d

∏
i=1

dxi exp(−x2i )

=
∫

ddy exp(−y2)

=
∫

dΩd

∞∫

0

dy yd−1 exp(−y2)

=
∫

dΩd

∞∫

0

1

2
dy2(y2)

d−2
2 exp(−y2)

=
∫

dΩd
1

2
Γ

(
d

2

)

, (2.82)

where in the last step the definition of the Gamma function was exploited, cf. Eq. (2.31).
Now one finds for the surface integral:

Sd :=
∫

dΩd =
2(
√

π)d

Γ
(
d
2

) , (2.83)

which is nothing but the surface area of the d-dimensional unit sphere. We note the
special and well known cases:

d = 2⇒ S2 = 2π , (2.84)

d = 3⇒ S3 = 4π , (2.85)

where the following properties of the Gamma function were employed:

Γ

(
1

2

)

=
√

π , (2.86)

Γ(x+ 1) = x · Γ(x) . (2.87)

Eq. (2.80) now becomes:

I =
2(
√

π)d

Γ
(
d
2

)

∞∫

0

dr
rn+d−1

[r2 + ∆]
k
. (2.88)
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Note that the Beta function can be written as (ℜ(x) > 0, ℜ(y) > 0)

B(x, y) =

∞∫

0

dt
tx−1

(1+ t)x+y , (2.89)

which hints at how to rewrite Eq. (2.88):

I =
2(
√

π)d

Γ
(
d
2

)

∞∫

0

rdr
rn+d−2

∆k
[
r2

∆
+ 1
]k

=
2(
√

π)d

Γ
(
d
2

) ∆( n+d
2 −k)

∞∫

0

1

2
d

(
r2

∆

)
(
r2

∆

) n+d−2
2

[
r2

∆
+ 1
]k

=
(
√

π)d

Γ
(
d
2

) ∆( n+d
2 −k)B

(
n+ d

2
, k− n+ d

2

)

=
(
√

π)d

Γ
(
d
2

) ∆( n+d
2 −k)

Γ
(
n+d
2

)

Γ
(

k− n+d
2

)

Γ(k)
. (2.90)

Eq. (2.90) is a general result for the type of momentum integrals that occur in loop
calculations. We remember that in general ∆ has a tiny negative imaginary part.

Finally we are in a position to proceed with the evaluation of the quark selfenergy
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in Eq. (2.63):

Σ(p) = g2CF

1∫

0

dx
(2− d) ((1− x)/p)

(2π)d
· (
√

π)d

Γ
(
d
2

) ∆( d2−2)
Γ
(
d
2

)

Γ
(

2− d
2

)

Γ(2)

= g2CF

1∫

0

dx
(2− d) ((1− x)/p)

(4π)
d
2

· ∆( d−42 ) · Γ
(
4− d

2

)

= g2CF
(2− d)/p

(4π)
d
2

Γ

(
4− d

2

) 1∫

0

dx(1− x)
(

−x(1− x)p2
)( d−42 )

= g2CF
(2− d)/p

(4π)
d
2

Γ

(
4− d

2

)

(−p2)(
d−4
2 )

1∫

0

dx x(
d−4
2 ) (1− x)(

d−2
2 )

= g2CF
(2− d)/p

(4π)
d
2

Γ

(
4− d

2

)

(−p2)(
d−4
2 ) · B

(
d− 2

2
,
d

2

)

= g2CF
(2− d)/p

(4π)
d
2

Γ

(
4− d

2

)

(−p2)(
d−4
2 ) ·

Γ
(
d−2
2

)

Γ
(
d
2

)

Γ(d− 1)
, (2.91)

where again the definition of the Beta function, Eq. (2.33), was used.

2.3.6 Laurent expansion around d = 4 dimensions

Eq. (2.91) is the expression for the quark selfenergy in d space-time dimensions. How-
ever we are interested in the case d = 4 and now have to carefully extract the behavior
of Σ(p) around this value of d (remember that our aim is to make the divergence
of the selfenergy at d = 4 manifest). For this purpose it is common and useful to
introduce a new variable,

ǫ =
4− d

2
, (2.92)

since we expect the divergence to show up as poles in ǫ. Also considering Eq. (2.24)
one has to replace the coupling constant g and finds:

Σ(p) = g20 · (µ2)ǫCF
(2ǫ− 2)/p

(4π)(2−ǫ)
Γ(ǫ)(−p2)(−ǫ) · Γ(1− ǫ)Γ(2− ǫ)

Γ(3− 2ǫ)

= g20CF
/p

(4π)2

(
4πµ2

−p2

)ǫ

· Γ(ǫ) (2ǫ− 2)Γ(1− ǫ)Γ(2− ǫ)

Γ(3− 2ǫ)
. (2.93)
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We are interested in the limit ǫ → 0 and thus have to expand Σ(p) in ǫ to O(ǫ0) =
O(1). The expansion of the Gamma function near ǫ = 0 reads [PS95]:

Γ(ǫ) =
1

ǫ
− γ +O(ǫ) , (2.94)

where γ is the Euler-Mascheroni constant. Note that all other expressions in Eq. (2.93)
are convergent for ǫ → 0. Since Γ(ǫ) diverges like 1

ǫ , it is thus sufficient to expand
these expressions to O(ǫ). With Γ(x+ 1) = xΓ(x) we recover

Γ(1− ǫ) = −ǫΓ(−ǫ) = −ǫ

(

−1

ǫ
− γ +O(ǫ)

)

= 1+ γǫ +O(ǫ2) (2.95)

and so

(2ǫ− 2)Γ(1− ǫ)Γ(2− ǫ)

Γ(3− 2ǫ)
=

(2ǫ− 2)Γ(1− ǫ)(1− ǫ)Γ(1− ǫ)

(2− 2ǫ)(1− 2ǫ)Γ(1− 2ǫ)

=
(−1)(1− ǫ)(1+ γǫ +O(ǫ2))2

(1− 2ǫ)(1+ 2γǫ +O(ǫ2))

=
(−1)(1− ǫ)(1+ 2γǫ +O(ǫ2))

(1+ 2γǫ− 2ǫ +O(ǫ2))

= (−1)(1− ǫ)(1+ 2γǫ +O(ǫ2))(1− 2γǫ + 2ǫ +O(ǫ2))

= (−1)(1− ǫ)(1+ 2ǫ +O(ǫ2))

= (−1)(1+ ǫ +O(ǫ2)) (2.96)

In addition we find:

(
4πµ2

−p2

)ǫ

= exp

(

ǫ ln
4πµ2

−p2

)

= 1+ ǫ ln
4πµ2

−p2
+O(ǫ2) . (2.97)

Collecting the pieces, Eq. (2.93) becomes:

Σ(p) = g20CF
/p

(4π)2

(

1+ ǫ ln
4πµ2

−p2

)(
1

ǫ
− γ

)

(−1)(1+ ǫ) +O(ǫ) . (2.98)

Now we drop all terms that vanish for ǫ → 0 and obtain the final result for the
regularised one loop quark selfenergy:

Σ(p) = − g20
(4π)2

CF/p

(
1

ǫ
− γ + 1+ ln

4πµ2

−p2

)

. (2.99)

For space-like p the logarithm in Eq. (2.99) is unambiguous, however at p2 > 0 our
logarithm has a branch cut, cf. Appendix A.3. We remember that ∆ = −x(1− x)p2
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2.3 Dimensional regularisation

has a tiny negative imaginary part and since 0 < x < 1, so does −p2. Thus for
time-like p one has to replace in the logarithm −p2 → −p2 − iǫ′.
Note that the selfenergy has become a function of the arbitrary mass scale µ, which

we introduced to keep the coupling constant dimensionless. Any physical observable
calculated from Σ(p) must be independent of µ, which has to be achieved through
renormalisation, cf. Sec. 4.1.
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3
One-loop integrals

This chapter is devoted to the methods of calculating one-loop integrals in quantum
field theoretical contexts. We will illustrate these methods with the help of a common
example, which will prove to be useful in Sec. 8.1. There we will have to calculate
certain loop corrections for DY pair production. These calculations are straightfor-
ward, but lengthy, and therefore we already give their derivation in this chapter. The
mathematics presented here are based on the excellent paper by ’t Hooft and Veltman
[tHV79], to which we refer for more details.

3.1 The three-point function

A typical example for a one-loop process is the three-point function with three parti-
cles in the loop. Fig. 3.1 shows such a process with scalar particles. While in standard
calculations the particles are fermions and bosons, the additional complications in-
troduced, for example by the Dirac algebra, do not interfere with the methods of
calculation presented here. Therefore the result we will obtain, will be generally use-
ful.

Note that for our purposes we restrict ourselves to the case where the masses of the
internal and external particles are identical:

p21 = m2
1 ,

p22 = m2
2 , (3.1)

and to the particle with momentum k we assign a mass m3. Then the amplitude of
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3 One-loop integrals

p1

p2

k

p1 − k

p2 + k

q = p1 + p2

Figure 3.1: Loop process with three scalar particles in the loop.

the process in Fig. 3.1 is proportional to the loop integral

I =
∫

ddk
1

(p1 − k)2 −m2
1 + iǫ

· 1

(p2 + k)2 −m2
2 + iǫ

· 1

k2 −m2
3 + iǫ

. (3.2)

3.1.1 Feynman parametrisation

Now we can make use of the results of Chapter 2. First we introduce Feynman pa-
rameters to combine the propagators:

I =

1∫

0

dxdydz δ(x+ y+ z− 1)
∫

ddk

× 2
[
x
(
(p1 − k)2 −m2

1 + iǫ
)
+ y

(
(p2 + k)2 −m2

2 + iǫ
)
+ z

(
k2 −m2

3 + iǫ
)]3

=

1∫

0

dxdydz δ(x+ y+ z− 1)
∫

ddk
2

K3
. (3.3)

The next step is to rewrite K so we can shift the variable of the momentum integral:

K = −2xp1 · k+ 2yp2 · k+ (x+ y+ z)(k2 + iǫ)− zm2
3

= [k+ (−xp1 + yp2)]
2 − (−xp1 + yp2)

2 − zm2
3 + iǫ

= l2 − (x2m2
1 − 2xyp1 · p2 + y2m2

2)− zm2
3 + iǫ

= l2 −
[

m2
1x(x+ y) +m2

2y(x+ y)− xyq2 + (1− x− y)m2
3 − iǫ

]

= l2 − ∆ , (3.4)
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3.1 The three-point function

where we have used the onshell relations (3.1), x + y + z = 1 and q2 = (p1 + p2)
2.

Since ddk = ddl, the momentum integral is now solved by first Wick rotating the
zeroth component of l and then integrating in d-dimensional spherical coordinates:

I2 =
∫

ddl
1

[l2 − ∆]
3

l0→il0E = −i
∫

ddlE
1

[
l2E + ∆

]3

= −i
∫

dΩd ·
∫

d |lE| |lE|d−1
1

[∣
∣l2E
∣
∣+ ∆

]3

Eq. (2.83) = −i2
√

π
d

Γ
(
d
2

) ·
∫

d |lE| |lE|d−1
1

[

|lE|2 + ∆
]3

Eqs. (2.88- 2.90) = −i
√

π
d

Γ
(
d
2

) · ∆( d2−3) ·
Γ
(
d
2

)

Γ
(

3− d
2

)

Γ(3)
. (3.5)

The last result is convergent for d = 4 and so one finds:

I2 = −
iπ2

2
· 1

∆
. (3.6)

We define

I3 :=
I

−iπ2
=

1∫

0

dxdydz δ(x+ y+ z− 1)∆−1

=

1∫

0

dx

1−x∫

0

dy
[

m2
1x(x+ y) +m2

2y(x+ y)− xyq2 + (1− x− y)m2
3 − iǫ

]−1
.

(3.7)

The structure of the integrand is simplified by the following substitution, which re-
moves the term proportional to y in the denominator:

a = x+ y , (3.8)

b = x− y , (3.9)

⇒ dxdy =
1

2
dadb , (3.10)
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3 One-loop integrals

which implies

x =
a+ b

2
, (3.11)

y =
a− b

2
, (3.12)

xy =
a2 − b2

4
. (3.13)

Then Eq. (3.7) becomes

I3 =
1

2

1∫

0

da

a∫

−a
db

[

m2
1a

a+ b

2
+m2

2a
a− b

2
− a2 − b2

4
q2 + (1− a)m2

3 − iǫ

]−1
. (3.14)

Once more we substitute

b′ =
b+ a

2
⇔ b = 2b′ − a (3.15)

⇒ db = 2db′ , (3.16)

and obtain

I3 =

1∫

0

da

a∫

0

db′
[

m2
1ab
′ +m2

2(a− b′)a− a2 − 4b′2 + 4b′a− a2

4
q2 + (1− a)m2

3 − iǫ

]−1

=

1∫

0

da

a∫

0

db′
[

a2m2
2 + b′2q2 + ab′(m2

1 −m2
2 − q2) + a(−m2

3) +m2
3 − iǫ

]−1

=

1∫

0

dx

x∫

0

dy
[

k1x
2 + k2y

2 + k3xy+ k4x+ k5

]−1
. (3.17)

Note that all coefficients in Eq. (3.17) are real numbers, with the exception of k5:

k1 = m2
2 , (3.18)

k2 = q2 , (3.19)

k3 = m2
1 −m2

2 − q2 ⇒ m2
1 = k1 + k2 + k3 , (3.20)

k4 = −m2
3 , (3.21)

k5 = m2
3 − iǫ . (3.22)

The idea how to solve Eq. (3.17) is the following: substitute for y such, that the de-
nominator becomes linear in x. Then by interchanging the order of integrations, one
can easily integrate over x. The remaining integral is not analytically solvable but
connected to the Dilogarithm or Spence function, the properties of which are well
known, see Sec. 3.1.2.
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3.1 The three-point function

3.1.2 Spence function (Dilogarithm)

As shown in [tHV79] all integrals to one-loop order can be written in terms of Spence
functions, which we shortly introduce in this section. Note that if the particles in the
loop are massless these Spence functions usually reduce to logarithms and constants.

The Spence function or Dilogarithm for complex argument x is defined by [Lew81]:

Sp(x) = −
x∫

0

dz
ln(1− z)

z

= −
1∫

0

dt
ln(1− xt)

t
. (3.23)

Note that there exist deviating definitions for the Spence function, see for example
[AS64]. In this work we will stick to the definition in Eq. (3.23). In our definition of
the complex logarithm, cf. Appendix A.3, it has a branch cut along the negative real
axis and so the Spence function has a branch cut along the positive real axis for x ≥ 1.
Important properties are:

Sp(x) = −Sp(1− x) +
π2

6
− ln(x) ln(1− x) , (3.24)

Sp(x) = −Sp
(
1

x

)

− π2

6
− 1

2
ln2(−x) , (3.25)

which imply

Sp(0) = 0 , (3.26)

Sp(1) =
π2

6
. (3.27)

The Spence function can be approximated by truncating the following series expan-
sion:

Sp(x) =
∞

∑
n=0

Bn
[− ln(1− x)]n+1

(n+ 1)!
, (3.28)

where Bn are the Bernoulli numbers, with

B0 = 1 , B1 = −
1

2
, B2 =

1

6
, . . . . (3.29)
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3 One-loop integrals

3.1.3 Integral transformations

As already pointed out in Sec. 3.1.1, we now have to transform the integral in Eq.
(3.17). Substituting

y′ = y− αx (3.30)

⇒ dy′ = dy , (3.31)

one finds

I3 =

1∫

0

dx

(1−α)x
∫

−αx

dy′
[

k1x
2 + k2(y

′2 + 2y′αx+ α2x2) + k3x(y
′ + αx) + k4x+ k5

]−1

=

1∫

0

dx

(1−α)x
∫

−αx

dy′
[

(k1 + k2α2 + k3α)x2 + k2y
′2 + (2k2α + k3)xy

′ + k4x+ k5

]−1
.

(3.32)

Now we can choose α such that the coefficient of x2 vanishes:

k1 + k2α2 + k3α
!
= 0

⇒α± = − k3
2k2
±
√

k23
4k22
− k1

k2
. (3.33)

Note that α± are real numbers, since the argument of the square root in Eq. (3.33) is
positive. The proof goes as follows:

A =
k23
4k22
− k1

k2

=
(m2

1 −m2
2 − q2)2

4q4
− m2

2

q2

=
(m2

1 −m2
2)

2 + q4 − 2m2
1q

2 + 2m2
2q

2 − 4m2
2q

2

4q4

=
(m2

1 −m2
2)

2 + q2(q2 − 2m2
1 − 2m2

2)

4q4
. (3.34)

To find the minimum of the numerator we differentiate by q2 and note that
q2 = (p1 + p2)

2 ≥ (m1 +m2)
2:

∂(4q4A)

∂q2
= (q2 − 2m2

1 − 2m2
2) + q2

= 2(q2 −m2
1 −m2

2)

≥ 4m1m2

> 0 . (3.35)
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3.1 The three-point function

The derivative is always positive and thus the numerator of A has its minimum at the
minimum of q2:

4q4A ≥ (m2
1 −m2

2)
2 + (m1 +m2)

2((m1 +m2)
2 − 2m2

1 − 2m2
2)

= (m1 +m2)
2(m1 −m2)

2 + (m1 +m2)
2(−1)(m1 −m2)

2

= 0

⇒ A ≥ 0 . (3.36)

α± ∈ R is proven and from now on we choose α = α+. Eq. (3.32) then becomes:

I3 =

1∫

0

dx

(1−α+)x∫

−α+x

dy′




k2y

′2 + (2k2α+ + k3)
︸ ︷︷ ︸

h1

xy′ + k4x+ k5






−1

=

1∫

0

dx

(1−α+)x∫

−α+x

dy′
[

x(k4 + h1y
′) + k2y

′2 + k5

]−1
. (3.37)

We have achieved our goal and the denominator of the integrand has become linear
in x. The next step is to change the order of integrations, so we can integrate over x
first. Since α+ is real, one can easily rewrite the integral:

1∫

0

dx

(1−α+)x∫

−α+x

dy′ =
1∫

0

dx

(1−α+)x∫

0

dy′ −
1∫

0

dx

−α+x∫

0

dy′ (3.38)

Note that if α+ were complex, one would have to check the integrand for singularities
inside the triangle (0, (1− α+)x,−α+x) in the complex y′ plane, since they would
spoil the transformation in Eq. (3.38). The order of integration can now be changed
by realising that for a > 0:

1∫

0

dx

ax∫

0

dy =
∫

dx
∫

dy Θ(ax− y)Θ(y)Θ(x)Θ(1− x)

=
∫

dx
∫

dy Θ(x− y

a
)Θ(y)Θ(x)Θ(1− x)

=
∫

dx
∫

dy Θ(x− y

a
)Θ(y)Θ(1− x)

=
∫

dx
∫

dy Θ(x− y

a
)Θ(y)Θ(a− y)Θ(1− x)

=

a∫

0

dy

1∫

y
a

dx . (3.39)
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3 One-loop integrals

A similar equation holds for a < 0. Then Eq. (3.38) becomes

1∫

0

dx

(1−α+)x∫

0

dy′ −
1∫

0

dx

−α+x∫

0

dy′ =

1−α+∫

0

dy′
1∫

y′
1−α+

dx−
−α+∫

0

dy′
1∫

y′
−α+

dx . (3.40)

Finally the x integration can be performed:

I3 =

1−α+∫

0

dy′
1∫

y′
1−α+

dx
[

x(k4 + h1y
′) + k2y

′2 + k5

]−1

−
−α+∫

0

dy′
1∫

y′
−α+

dx
[

x(k4 + h1y
′) + k2y

′2 + k5

]−1

=

1−α+∫

0

dy′
1

k4 + h1y′
ln




k4 + h1y

′ + k2y
′2 + k5

y′
1−α+

(k4 + h1y′) + k2y′2 + k5





−
−α+∫

0

dy′
1

k4 + h1y′
ln




k4 + h1y

′ + k2y
′2 + k5

y′
−α+

(k4 + h1y′) + k2y′2 + k5





=

1−α+∫

−α+

dy′
1

k4 + h1y′
ln
(

k4 + h1y
′ + k2y

′2 + k5

)

−
1−α+∫

0

dy′
1

k4 + h1y′
ln

(
y′

1− α+
(k4 + h1y

′) + k2y
′2 + k5

)

+

−α+∫

0

dy′
1

k4 + h1y′
ln

(
y′

−α+
(k4 + h1y

′) + k2y
′2 + k5

)

. (3.41)

The arguments of the logarithms in the last equation are quadratic in y′. If we can
factorise them, we will obtain logarithms with arguments linear in y′. Then the inte-
grand will already bear a great resemblance to the definition of the Spence function
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3.1 The three-point function

in Eq. (3.23). However before we proceed with the factorisation, we add 0 in the form:

0 = −
1−α+∫

−α+

dy′
1

k4 + h1y′
ln
(

k2y
2
0 + k5

)

+

1−α+∫

0

dy′
1

k4 + h1y′
ln
(

k2y
2
0 + k5

)

−
−α+∫

0

dy′
1

k4 + h1y′
ln
(

k2y
2
0 + k5

)

, (3.42)

where y0 is the root of the prefactor:

y0 = −
k4
h1

. (3.43)

The reason for this will become clear immediately:

I3 =

1−α+∫

−α+

dy′
1

k4 + h1y′
[

ln
(

k4 + h1y
′ + k2y

′2 + k5

)

− ln
(

k2y
2
0 + k5

)]

−
1−α+∫

0

dy′
1

k4 + h1y′

[

ln

(
y′

1− α+
(k4 + h1y

′) + k2y
′2 + k5

)

− ln
(

k2y
2
0 + k5

)]

+

−α+∫

0

dy′
1

k4 + h1y′

[

ln

(
y′

−α+
(k4 + h1y

′) + k2y
′2 + k5

)

− ln
(

k2y
2
0 + k5

)]

. (3.44)

We have achieved a convenient form for I3: the residue at the pole y′ = y0 vanishes
and so later on we can choose the most convenient integration contour to solve the
integrals. Since all three integrals in I3 are essentially of the same type except for the
integration boundaries, we substitute to get three very similar integrals:

1. y = y′ + α+ ⇒ dy′ = dy ,

y1 = y0 + α+ ⇒ y0 = y1 − α+ , (3.45)

2. y =
y′

1− α+
⇒ dy′ = (1− α+)dy ,

y2 =
y0

1− α+
⇒ y0 = (1− α+)y2 , (3.46)

3. y =
y′

−α+
⇒ dy′ = −α+dy ,

y3 =
y0
−α+

⇒ y0 = −α+y3 , (3.47)
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3 One-loop integrals

for the first, second and third integral of I3, respectively. Eq. (3.44) becomes:

I3 =

1∫

0

dy
1

k4 + h1y− h1α+

[

ln
(

k4 + h1(y− α+) + k2(y− α+)
2 + k5

)

− ln
(

k2(y1 − α+)
2 + k5

)]

−
1∫

0

dy
1− α+

k4 + h1y(1− α+)

[

ln
(

y(k4 + h1y(1− α+)) + k2y
2(1− α+)

2 + k5

)

− ln
(

k2y
2
2(1− α+)

2 + k5

)]

+

1∫

0

dy
−α+

k4 − h1yα+

[

ln
(

y(k4 − h1yα+) + k2y
2α2

+ + k5

)

− ln
(

k2y
2
3α2

+ + k5

)]

. (3.48)

Using the defining equation for α+,

k1 + k2α2
+ + k3α+ = 0 (3.49)

and

h1α+ = 2α2
+k2 + k3α+ = −k1 + k2α2

+ (3.50)

one can rewrite the logarithms and so I3 reads:

I3 =
1

h1

1∫

0

dy
1

y− y1

[

ln
(

k2y
2 + k3y+ k1 + k4 + k5

)

− ln
(

k2y
2
1 + k3y1 + k1 + k4 + k5

)]

− 1

h1

1∫

0

dy
1

y− y2

[

ln
(

(k1 + k2 + k3)y
2 + k4y+ k5

)

− ln
(

(k1 + k2 + k3)y
2
2 + k4y2 + k5

)]

+
1

h1

1∫

0

dy
1

y− y3

[

ln
(

k1y
2 + k4y+ k5

)

− ln
(

k1y
2
3 + k4y3 + k5

)]

. (3.51)
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3.1 The three-point function

We have rewritten I3 in terms of three integrals,

I3 =
1

h1
(J1 − J2 + J3) , (3.52)

which are of exactly the same type:

S =

1∫

0

dx
1

x− x0

[

ln
(

ax2 + bx+ c
)

− ln
(

ax20 + bx0 + c
)]

. (3.53)

Now all left to do is to solve Eq. (3.53).

3.1.4 Reduction to Spence functions

In this section we will show that the integral in Eq. (3.53) can be entirely rewritten
in terms of Spence functions, which were introduced in Sec. 3.1.2. To do this we
have to factorise the arguments of the logarithms. Since the factorisation involves
manipulation of the complex logarithm, which has a branch cut along the negative
real axis, it is worthwhile to realise the following relations:

ln(ab) = ln(a) + ln(b) , if sgn(ℑ(a)) 6= sgn(ℑ(b)) , (3.54)

ln
( a

b

)

= ln(a)− ln(b) , if sgn(ℑ(a)) = sgn(ℑ(b)) . (3.55)

The proof goes as follows: let a = |a| exp(iφa)with 0 ≤ φa ≤ π and let b = |b| exp(iφb)
with −π ≤ φb ≤ 0. Then obviously:

ℑ(a) = |a| · sin(φa) ≥ 0 , (3.56)

ℑ(b) = |b| · sin(φb) ≤ 0 , (3.57)

ℑ(ab) = |a| · |b| · sin(φa + φb) . (3.58)

Since −π ≤ φa + φb ≤ π, one finds that ln(a), ln(b) and ln(ab) are all on the same
branch and the branch cut is never crossed. Therefore no additional terms of ±2πi ap-
pear in Eq. (3.54). The proof for ln

(
a
b

)
is analogous with b→ b−1 = |b|−1 exp(−iφb).

Note that y1, y2, y3, k1, k2, k3, k4 ∈ R and k5 ∈ C. Therefore we also have x0, a, b ∈ R
and the only complex number in S is c. Then one finds:

ax2 + bx+ c
!
= 0 (3.59)

⇒ x± = − b

2a
︸︷︷︸

∈R

±
√

b2

4a2
− c

a
︸ ︷︷ ︸

∈C

(3.60)

⇒ ℑ(x+) = −ℑ(x−) (3.61)

⇒ ln(ax2 + bx+ c) = ln [a(x− x+)(x− x−)] = ln(a) + ln(x− x+) + ln(x− x−) .
(3.62)
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3 One-loop integrals

Eq. (3.53) now becomes:

S =

1∫

0

dx
1

x− x0
[ln(x− x+)− ln(x0 − x+) + ln(x− x−)− ln(x0 − x−)] . (3.63)

Once again we have to solve two similar integrals and thus we define:

S2 =

1∫

0

dx
1

x− x0
[ln(x− x1)− ln(x0 − x1)] . (3.64)

To rewrite S2 in terms of Spence functions we substitute x′ = x− x1:

S2 =

1−x1∫

−x1

dx′
1

x′ + x1 − x0

[
ln(x′)− ln(x0 − x1)

]
. (3.65)

Note that the residue at the pole x′ = x0 − x1 vanishes and that ℑ(−x1) = ℑ(1− x1)
and so along the triangle (0,−x1, 1− x1) the logarithms do not cross a branch cut.
Therefore one can change the integration contour:

S2 =

1−x1∫

0

dx′
1

x′ + x1 − x0

[
ln(x′)− ln(x0 − x1)

]

−
−x1∫

0

dx′
1

x′ + x1 − x0

[
ln(x′)− ln(x0 − x1)

]
. (3.66)

The integration boundaries in the definition of the Spence function (3.23) are 0 and
1 and thus we substitute z = (1− x1)

−1x′ in the first integral in Eq. (3.66) and z =
(−x1)−1x′ in the second:

S2 =

1∫

0

dz
1− x1

(1− x1)z+ x1 − x0
[ln(z(1− x1))− ln(x0 − x1)]

−
1∫

0

dz
−x1

−x1z+ x1 − x0
[ln(−x1z)− ln(x0 − x1)]

=

1∫

0

dz
∂

∂z
(ln((1− x1)z+ x1 − x0)) [ln(z(1− x1))− ln(x0 − x1)]

−
1∫

0

dz
∂

∂z
(ln(−x1z+ x1 − x0)) [ln(−x1z)− ln(x0 − x1)] . (3.67)

46



3.1 The three-point function

Since

∂

∂z
ln(x1 − x0) = 0 (3.68)

and

sgn (ℑ(x1(1− z))) = sgn (ℑ(x1)) = sgn (ℑ(x1 − x0)) , (3.69)

we can add 0 without having any logarithm crossing a branch cut:

S2 =

1∫

0

dz
∂

∂z

(

ln

(
(1− x1)z+ x1 − x0

x1 − x0

))

[ln(z(1− x1))− ln(x0 − x1)]

−
1∫

0

dz
∂

∂z

(

ln

(−x1z+ x1 − x0
x1 − x0

))

[ln(−x1z)− ln(x0 − x1)] . (3.70)

Integrating by parts yields:

S2 = ln

(
1− x0
x1 − x0

)

[ln(1− x1)− ln(x0 − x1)]−
1∫

0

dz
1

z
ln

(
(1− x1)z

x1 − x0
+ 1

)

− ln

( −x0
x1 − x0

)

[ln(−x1)− ln(x0 − x1)] +

1∫

0

dz
1

z
ln

( −x1z
x1 − x0

+ 1

)

= ln

(
1− x0
x1 − x0

)

[ln(1− x1)− ln(x0 − x1)] + Sp

(
x1 − 1

x1 − x0

)

− ln

( −x0
x1 − x0

)

[ln(−x1)− ln(x0 − x1)]− Sp

(
x1

x1 − x0

)

. (3.71)

With

ℑ(1− x1) = ℑ(−x1) = ℑ(x0 − x1) (3.72)

we can combine the logarithms, since again no branch cut is crossed:

S2 = ln

(
1− x0
x1 − x0

)

ln

(
1− x1
x0 − x1

)

+ Sp

(
x1 − 1

x1 − x0

)

− ln

( −x0
x1 − x0

)

ln

( −x1
x0 − x1

)

− Sp

(
x1

x1 − x0

)

. (3.73)
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3 One-loop integrals

Finally the Spence functions can be rewritten with the help of Eq. (3.24):

S2 = ln

(
1− x0
x1 − x0

)

ln

(
1− x1
x0 − x1

)

− Sp

(

1− x1 − 1

x1 − x0

)

+
π2

6

− ln

(
x1 − 1

x1 − x0

)

ln

(

1− x1 − 1

x1 − x0

)

− ln

( −x0
x1 − x0

)

ln

( −x1
x0 − x1

)

+ Sp

(

1− x1
x1 − x0

)

− π2

6

+ ln

(
x1

x1 − x0

)

ln

(

1− x1
x1 − x0

)

=Sp

(
x0

x0 − x1

)

− Sp

(
x0 − 1

x0 − x1

)

. (3.74)

Then S of Eqs. (3.53,3.63) reads:

S = Sp

(
x0

x0 − x+

)

− Sp

(
x0 − 1

x0 − x+

)

+ Sp

(
x0

x0 − x−

)

− Sp

(
x0 − 1

x0 − x−

)

. (3.75)

The last equation is the solution for each of the three integrals J1, J2, J3 in Eq. (3.52)
and, thus, the integral I in Eq. (3.2) is solved:

I = −iπ2 1

2k2α+ + k3
[J1 − J2 + J3] . (3.76)

The auxiliary functions are:

J1 = Sp

(
y1

y1 − a+

)

− Sp

(
y1 − 1

y1 − a+

)

+ Sp

(
y1

y1 − a−

)

− Sp

(
y1 − 1

y1 − a−

)

, (3.77)

with

y1 = α+ −
k4

2k2α+ + k3
, (3.78)

a± = − k3
2k2
±
√

k23
4k22
− k1

k2
+ iǫ . (3.79)

J2 = Sp

(
y2

y2 − b+

)

− Sp

(
y2 − 1

y2 − b+

)

+ Sp

(
y2

y2 − b−

)

− Sp

(
y2 − 1

y2 − b−

)

, (3.80)

with

y2 = −
k4

2k2α+ + k3

1

1− α+
, (3.81)

b± = − k4
2(k1 + k2 + k3)

±
√

k24
4(k1 + k2 + k3)2

+
k4

k1 + k2 + k3
+

iǫ

k1 + k2 + k3
. (3.82)
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3.2 Expansion for small mass m3

J3 = Sp

(
y3

y3 − c+

)

− Sp

(
y3 − 1

y3 − c+

)

+ Sp

(
y3

y3 − c−

)

− Sp

(
y3 − 1

y3 − c−

)

, (3.83)

with

y3 =
k4

2k2α+ + k3

1

α+
, (3.84)

c± = − k4
2k1
±
√

k24
4k21

+
k4
k1

+
iǫ

k1
. (3.85)

Finally we have everywhere

α+ = − k3
2k2
±
√

k23
4k22
− k1

k2
. (3.86)

3.2 Expansion for small mass m3

In Sec. 8.1 we will calculate the QCD one-loop correction to the electromagnetic vertex
for DY pair production. There we will identify the exchange particle with momentum
k in Fig. 3.1 with a gluon to which we assign a (fictitious) gluon mass λ to regularise
infrared divergences. However in the end we will only be interested in the real part of
terms that do not vanish for λ→ 0, i.e. only in constants and in divergent terms in 1

λ .
The expansion is lengthy, and therefore we present it already at this point.
We will treat the three integrals J1, J2, J3 separately for simplicity. For J1 one finds:

a = k2 , (3.87)

b = k3 , (3.88)

c = k1 + k4 + k5 , (3.89)

y1 = −
k4
h1

+ α+ , (3.90)

⇒ a± = − k3
2k2
±
√

k23
4k22
− k1

k2
+ iǫ

ǫ≪1 ≈ α± ± iǫ . (3.91)

Then

ℜ(J1) =ℜ
[

Sp

(
y1

y1 − a+

)

− Sp

(
y1 − 1

y1 − a+

)

+ Sp

(
y1

y1 − a−

)

− Sp

(
y1 − 1

y1 − a−

)]

=ℜ
[

Sp

(−k4 + h1α+
−k4 − h1iǫ

)

− Sp

(−k4 + h1(α+ − 1)

−k4 − h1iǫ

)

+ Sp

( −k4 + h1α+
−k4 + h1(α+ − α−) + h1iǫ

)

− Sp

( −k4 + h1(α+ − 1)

−k4 + h1(α+ − α−) + h1iǫ

)]

.

(3.92)
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3 One-loop integrals

In the limit −k4 = m2
3 → 0 this reads (note that we can drop the iǫ terms, since the

real part is not sensitive to the branch cuts):

ℜ(J1) =ℜ
[

Sp

(
h1α+
−k4

)

− Sp

(
h1(α+ − 1)

−k4

)

+ Sp

(
α+

α+ − α−

)

− Sp

(
α+ − 1

α+ − α−

)]

Eqs. (3.25-3.27) =ℜ
[

Sp

(
α+

α+ − α−

)

− Sp

(
α+ − 1

α+ − α−

)

+
1

2
ln2
(

k4
h1(α+ − 1)

)

− 1

2
ln2
(

k4
h1α+

)]

. (3.93)

For J2 the variables read:

a = k1 + k2 + k3 , (3.94)

b = k4 , (3.95)

c = k5 , (3.96)

y2 = −
k4
h1

1

1− α+
(3.97)

⇒ b± = − k4
2(k1 + k2 + k3)

±
√

k24
4(k1 + k2 + k3)2

+
k4

k1 + k2 + k3
+

iǫ

k1 + k2 + k3

k4→0 ≈ ±
√

k4
k1 + k2 + k3

± iǫ′ , (3.98)

and in the limit k4 → 0 we note that

y2 − b± → b∓ (3.99)

⇒ y2
y2 − b±

→ 0 , (3.100)

y2 − 1→ −1 . (3.101)
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3.2 Expansion for small mass m3

The real part of J2 can then be written as:

ℜ(J2) =ℜ
[

Sp

(
y2

y2 − b+

)

− Sp

(
y2 − 1

y2 − b+

)

+ Sp

(
y2

y2 − b−

)

− Sp

(
y2 − 1

y2 − b−

)]

=ℜ
[

−Sp
(−1
b−

)

− Sp

(−1
b+

)]

Eqs. (3.25-3.27) =ℜ
[

π2

6
+

1

2
ln2(b−) +

π2

6
+

1

2
ln2(b+)

]

=ℜ
[

π2

3
+

1

2
ln2

(√

k4
k1 + k2 + k3

)

+
1

2
ln2

(

−
√

k4
k1 + k2 + k3

)]

=ℜ
[

π2

3
+

1

2
ln2

(√

k4
k1 + k2 + k3

)

− 1

2
π2 +

1

2
ln2

(√

k4
k1 + k2 + k3

)]

=ℜ
[

−π2

6
+

(
1

2
+ ln

(
k4

k1 + k2 + k3

))2
]

=ℜ
[

−π2

6
+

1

4
+ ln

(
k4

k1 + k2 + k3

)

+ ln2
(

k4
k1 + k2 + k3

)]

. (3.102)

For J3 the variables read:

a = k1 , (3.103)

b = k4 , (3.104)

c = k5 , (3.105)

y3 = −
k4
h1

1

(−α+)
, (3.106)

⇒ c± = − k4
2k1
±
√

k24
4k21

+
k4
k1

+
iǫ

k1

k4→0 ≈ ±
√

k4
k1
± iǫ′ , (3.107)

and in the limit k4 → 0 we note that

y3 − c± → c∓ (3.108)

⇒ y3
y3 − c±

→ 0 , (3.109)

y3 − 1→ −1 . (3.110)

This is completely analogous to J2 and so we can read off the result for J3 of Eq.
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3 One-loop integrals

(3.102):

ℜ(J3) =ℜ
[

−π2

6
+

1

4
+ ln

(
k4
k1

)

+ ln2
(
k4
k1

)]

. (3.111)

Then the real part of I3, Eq. (3.52), becomes:

ℜ(h1 · I3) = ℜ(J1 − J2 + J3)

= ℜ
[

Sp

(
α+

α+ − α−

)

− Sp

(
α+ − 1

α+ − α−

)

+
1

2
ln2
(

k4
h1(α+ − 1)

)

− 1

2
ln2
(

k4
h1α+

)

− ln

(
k4

k1 + k2 + k3

)

− ln2
(

k4
k1 + k2 + k3

)

+ ln

(
k4
k1

)

+ ln2
(
k4
k1

)]

= ℜ
[

Sp

(
α+

α+ − α−

)

− Sp

(
α+ − 1

α+ − α−

)

+
1

2
ln2 (α+ − 1)− 1

2
ln2 (α+) + ln

(
k4
h1

)

ln

(
α+

α+ − 1

)

+ ln

(
k1 + k2 + k3

k1

)

− ln2
(

h1k4
h1(k1 + k2 + k3)

)

+ ln2
(
h1k4
h1k1

)]

= ℜ
[

Sp

(
α+

α+ − α−

)

− Sp

(
α+ − 1

α+ − α−

)

+
1

2
ln2 (α+ − 1)− 1

2
ln2 (α+) + ln

(
k4
h1

)

ln

(
α+

α+ − 1

)

+ ln

(
k1 + k2 + k3

k1

)

− ln2
(

h1
k1 + k2 + k3

)

+ ln2
(
h1
k1

)

+ ln

(
k4
h1

)

ln

(
k1 + k2 + k3

k1

)]

. (3.112)

We will need this result in Sec. 8.1 and Appendix C.1 to calculate the one loop vertex
correction to DY pair production.
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Part III

Physical background





4
Remarks on renormalisation

In this chapter we will touch briefly on the basics and a few selected topics of renor-
malisation, which are relevant for the model presented in this thesis. These remarks
are by no means complete and only serve the purpose to provide some very intro-
ductory insights. A much more detailed introduction to renormalisation is given for
example in [PS95, Mut98, Col84], which provide the basis for this chapter.

4.1 Basics of renormalisation

In Part II we have studied regularisation procedures for the UV divergent loop pro-
cesses, which one encounters in quantum field theoretical calculations, for example in
QED and in QCD. However, regularisation is just a mathematical tool, which enables
us to handle the infinite contributions arising from the loops. The physically impor-
tant procedure is called renormalisation. Renormalisation schemes provide means
to systematically and consistently remove the UV divergences from the calculated
physical quantities, such that only predictions of finite observables remain. We will
illustrate this procedure in the following on the example of QED.

4.1.1 Example: renormalisation in QED

The Lagrangian of QED reads:

L = −1

4
(Fµν)0(F

µν)0 + Ψ̄0 (i/∂ −m0)Ψ0 − e0Ψ̄0γµΨ0A
µ
0 , (4.1)

where (Fµν)0 = ∂µAν
0 − ∂νA

µ
0 . Note the index 0 on the fields Ψ and A and on the

electron mass m and charge e, which we will explain in a minute. Suppose one would

55



4 Remarks on renormalisation

like to measure one of these quantities, for example the charge. The Lagrangian in
Eq. (4.1) tells us, that obviously the charge e0 is associated with the electron-photon
vertex. Thus, a simple (but too naive) idea to measure the charge e0 is a scattering
experiment (e.g. e−e+ → e−e+), where the exchanged photon interacts with the elec-
tron (or positron), see the left diagram in Fig. 4.1. However, we cannot switch off the
interactions among the particles while we perform the measurement, and so what one
actually measures is the coherent sum of all the processes in Fig. 4.1. Thus, the bare

e0

+

e0
e0

e0

+

e0

e0

e0

+ . . .

Figure 4.1: The bare electromagnetic vertex and its loop corrections.

charge e0 is not an observable quantity, since it somehow hides behind all the higher-
order corrections. The same holds for the other quantities in the Lagrangian, which
is why they all carry the index 0 to mark them as bare (unmeasurable) quantities. In
fact, instead of measuring e0, one measures

e0

(

1+ e20A1(q
2) + e40A2(q

2) + . . .
)

. (4.2)

When trying to calculate the loop corrections, which give rise to the coefficient func-
tions Ai(q

2), one encounters the UV divergences mentioned above. So not only is
e.g. the bare charge not directly measurable, but it also receives infinite corrections
from higher-order processes. While at first glance the situation looks awkward, there
is actually an elegant way to resolve it: neither the bare quantities nor the infinite
loop corrections are actually physical observables. Thus, there is nothing wrong with
absorbing both into new renormalised quantities. The renormalised charge then reads:

er = e0

(

1+ e20A1(q
2) + e40A2(q

2) + . . .
)

. (4.3)

Note, that while the bare charge is a (non-measurable) constant, the renormalised
charge er is a function of the hard scale q2 at which the experiment probes the charge.
This property has very important consequences and gives rise to the renormalisation
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4.1 Basics of renormalisation

group equation, cf. Sec. 4.1.2. The virtue of renormalisation is now the following: if
one calculates the amplitude M of any specific process (e.g. e−e+ → e−e+) to a cer-
tain loop-order in terms of the bare quantities e0,m0, . . . and neglects the processes
that modify the external legs (field strength), one encounters the infinities associated
with the UV divergences. However, a special class of theories, called renormalisable
theories, has a distinct feature: if one performs the same calculation of M in terms of
the renormalised quantities er,mr, . . . all the UV divergences exactly cancel and only
finite quantities remain, since the field strength renormalisation factors are automat-
ically taken into account. QED and QCD are important examples for renormalisable
theories and the proof of renormalisation actually paved the way for their success in
describing the electromagnetic and the strong interaction.
A systematic approach to remove the divergences is the introduction of counter-

terms in the Lagrangian. The idea is to split the Lagrangian into two parts: one
unperturbed part, which only depends on the renormalised quantities and fields, and
a counterterm part, which contains all the infinities. In the QED case the Lagrangian
then becomes [PS95]:

L =− 1

4
(Fµν)r(F

µν)r + Ψ̄r (i/∂ −mr)Ψr − erΨ̄rγµΨrA
µ
r

− 1

4
δ3(Fµν)r(F

µν)r + Ψ̄r (iδ2/∂ − δm)Ψr − erδ1Ψ̄rγµΨrA
µ
r . (4.4)

Note, that we have just rewritten the original Lagrangian in Eq. (4.1). The renormali-
sation parameters δ1, δ2, δ3 and δm are connected to the bare quantities and fields as,
for example, one finds Ψ̄r (δm +mr)Ψr = Ψ̄0m0Ψ0. Obviously the splitting into un-
perturbed part (e.g. mr) and counterterms (e.g. δm) is not unique and in fact arbitrary
and, therefore, one has to choose a certain renormalisation scheme to fix the renormal-
isation parameters. A common choice for QED is to choose the physical (pole) mass
m and the physical charge e (at q2 = 0!) of the electron for the renormalised values
mr and er. In this case the first line of Eq. (4.4) is just the standard QED Lagrangian
with bare quantities and fields replaced by their renormalised versions. The second
line containing the counterterms gives rise to additional Feynman rules, which auto-
matically take care of the cancellation of all the UV divergences in the theory. This
kind of calculational scheme is called renormalised perturbation theory and it can be
understood as a useful bookkeeping device when dealing with the UV divergences.
Remember, however, that the Lagrangian in Eq. (4.4) was just a rewrite of the original
Lagrangian in Eq. (4.1). Therefore, it is evident that renormalised perturbation theory
must be completely equivalent to bare perturbation theory, which is based on Eq. (4.1),
i.e. to calculating the relevant processes with the bare quantities, taking into account
all the propagator, vertex and external leg corrections. The latter, though, can become
very tedious in multi-loop calculations, which is why for these cases renormalised
perturbation theory is advantageous.
Note, that in the chosen case of mr = m and er = e the renormalisation parameters

can also be expressed in terms of field strength and charge renormalisation in the
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4 Remarks on renormalisation

following way:

δ2 = Z2 − 1 , (4.5)

which implies

Ψ0 =
√

Z2Ψr , (4.6)

where Z2 is called the field strength renormalisation of the electron field. We will
explore the significance of this quantity in more detail in Sec. 4.3. Similarly with

δ3 = Z3 − 1 , (4.7)

δ1 = Z1 − 1 , (4.8)

δm = Z2m0 −m (4.9)

one finds

A
µ
0 =

√

Z3A
µ
r , (4.10)

e0Z2

√

Z3 = eZ1 . (4.11)

Here Z3 is the field strength renormalisation of the photon field. In QED the charge
renormalisation Z1 is actually not an independent quantity, since the Ward-Takahashi
identities show, that Z1 = Z2 [PS95].

4.1.2 Renormalisation group equation

In Sec. 4.1.1 we discussed, that to fix the renormalised charge, and, in fact, all renor-
malisation parameters, one has to choose a certain renormalisation scheme. This
includes fixing the hard scale q2, which we found e.g. in Eq. (4.3), at a certain value
µ2, which is called the renormalisation scale. Once again the choice of this scale is
completely arbitrary and, thus, any observables calculated in the renormalised per-
turbation theory must not depend on it. This basically acknowledges, that the renor-
malised perturbation theory must give the same answers as the bare perturbation
theory, which, just like nature, does not know anything about a renormalisation scale.
Thus, the derivative with respect to µ of any amplitude M calculated in the renor-
malised scheme must vanish. For the case of QED we found Z1 = Z2, so M can only
depend on three independent renormalisation parameters (e.g. e, Z1 and Z3) and one
finds:

µ
d

dµ
M(e,Z1,Z3) =

[

µ
∂

∂µ
+ µ

∂e

∂µ

∂

∂e
+ µ

∂Z1

∂µ

∂

∂Z1
+ µ

∂Z3

∂µ

∂

∂Z3

]

M(e,Z1,Z3) = 0 .

(4.12)
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4.2 The massive quark selfenergy

This equation shows, that any infinitesimal change of the scale µ → µ + δµ is exactly
compensated by infinitesimal changes of the renormalisation parameters. The coef-
ficient of the derivative with respect to e is an important mathematical object, called
the β-function (of QED):

β(e) = µ
∂e

∂µ
. (4.13)

It describes the change of the renormalised charge (coupling) with the scale µ at which
the charge is probed. This scale-dependence of the electric coupling constant is called
the running of the coupling. Note, that in contrast the bare coupling e0 is really a
constant. The β-function of QED to one-loop order reads [PS95].

β(e) = +
e3

12π2
. (4.14)

Note the sign of β(e), which is positive. This indicates that the charge increases with
increasing scale (or energy) µ. In this picture e reaches its minimum value at µ = 0,

where it is measured to be e(µ = 0) ≈
√

4π
137 (in natural units). However, one has to

be careful when extrapolating to very large energies, since as soon as e becomes O(1)
the concept of perturbation theory breaks down and the derivation of β(e) becomes
invalid.
In QCD the situation is completely different. The β-function of the strong renor-

malised coupling constant g reads [PS95]

β(g) = −
(

11− 2n f

3

)
g3

16π2
, (4.15)

where n f is the number of quark flavors. For n f = 6, as in the standard model of par-
ticle physics, the sign of β(g) is negative! This implies, that with increasing energy
the coupling strength decreases and eventually perturbation theory becomes applica-
ble. This very important physical phenomenon is called asymptotic freedom and it was
discovered by Wilczek, Gross and Politzer [GW73, Pol73]. Unfortunately, asymptotic
freedom also implies that at small (soft) energy scales the strong coupling becomes
really strong, i.e. O(1) and, thus, perturbative methods alone are no longer applica-
ble. This is why the soft interactions among the quarks and gluons in the nucleon
are so hard to access theoretically. Therefore, non-perturbative phenomenological ap-
proaches to this problem might help to improve the theoretical situation. This thesis
is exactly aiming at producing such an approach.

4.2 The massive quark selfenergy

In Chapter 2 we calculated the massless quark selfenergy to one-loop order in QCD,
cf. Fig. 2.1. We want to repeat this calculation here for massive quarks and for gluons
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4 Remarks on renormalisation

with a (fictitious) finite mass. This calculation will serve as input for Sec. 4.4, where we
will determine the field strength renormalisation constant for the massive quark case.
This constant will then enter into our model in Sec. 8.1. To regularise anticipated
infrared divergences, a finite gluon mass is assumed. It is clear that any physical
observable must not depend on this fictitious mass and in Sec. 8.1.3 we will show
why this is indeed not the case.
Introducing a quark mass m and a gluon mass λ the quark selfenergy to one-loop

order reads:

Σ(p) = −ig2CF

∫
ddk

(2π)d
γµ (/p − /k +m) γµ

[(p− k)2 −m2 + iǫ] [k2 − λ2 + iǫ]
. (4.16)

Again we can draw on our results of Sec. 2.3. Introducing a Feynman parameter the
selfenergy becomes:

Σ(p) = −ig2CF

∫
ddk

(2π)d

1∫

0

dx
γµ (/p − /k +m) γµ

[(1− x) ((p− k)2 −m2 + iǫ) + x (k2 − λ2 + iǫ)]
2
.

(4.17)

Shifting the momentum integration,

l = k− (1− x)p , (4.18)

one finds:

Σ(p) = −ig2CF

∫
ddl

(2π)d

1∫

0

dx
γµ (x/p − /l +m) γµ

[l2 − ∆(x)]
2

, (4.19)

with

∆(x) = −x(1− x)p2 + (1− x)m2 + xλ2 − iǫ . (4.20)

The Dirac structure in the numerator can be simplified by noting, that the term pro-
portional to /l vanishes due to symmetry considerations, and by contracting the γ
matrices:

Σ(p) = −ig2CF

1∫

0

dx ((2− d)x/p + dm)
∫

ddl

(2π)d
1

[l2 − ∆(x)]
2
. (4.21)

The momentum integral is solved by a Wick rotation and an integration over d-
dimensional spherical coordinates, cf. Eq. (2.90):

Σ(p) = −ig20 · (µ2)ǫCF

1∫

0

dx ((2− d)x/p + dm)
i

(4π)
d
2

Γ

(

2− d

2

)

∆2− d
2 (x) , (4.22)

60



4.3 Field strength renormalisation

where we have replaced the coupling constant g by a dimensionless coupling g0 and a

mass scale µ, cf. Sec. 2.3.2. With ǫ′ = 4−d
2 and expanding around ǫ′ = 0 the selfenergy

now reads:

Σ(p) =
g20

(4π)2
CF

1∫

0

dx
(
(2ǫ′ − 2)x/p + (4− 2ǫ′)m

)
[
1

ǫ′
− γ + ln

(
4πµ2

∆(x)

)]

. (4.23)

Finally, dropping all terms that vanish for ǫ′ → 0, one obtains:

Σ(p) =
g20

(4π)2
CF

[

/p − 2m+ (−/p + 4m)

(
1

ǫ′
− γ + ln

(

4πµ2
))

+

1∫

0

dx 2(x/p − 2m) ln (∆(x))



 . (4.24)

The evaluation of the last integral in Eq. (4.24) is straightforward, however for our
purposes we postpone this calculation to Sec. 4.4.

4.3 Field strength renormalisation

In this section we introduce the concept of field strength renormalisation. To motivate
this concept, we recall that the propagator of a scalar particle in a free field theory has
the following form in momentum space [PS95]:

D(p,m0) =
i

p2 −m2
0 + iǫ

=
∫

d4x exp(ipx) 〈0|Tφ(x)φ(0)|0〉 , (4.25)

which is the Fourier transform of the time-ordered two-point function. The analytic
structure of D(p,m0) can be read off immediately:

D(p,m0) =
i

(

p0 −
√

~p2 +m2
0 + iǫ

) (

p0 +
√

~p2 +m2
0 − iǫ

) . (4.26)

The free propagator has two isolated poles in the complex p0 plane and thus it de-
scribes the propagation of a pure one-particle state with mass m0, which is the (bare)
mass from the associated Lagrangian. Note that while for spin-12 fields the propagator
has additionally a Dirac structure, it still retains the analytic properties of the scalar
propagator concerning the pole structure.
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= + + . . .

Figure 4.2: The full propagator as a sum of the free propagator and an infinite series
of selfenergy insertions.

4.3.1 The full spin-1
2
propagator

In an interacting field theory the picture changes: due to self-interactions the prop-
agator acquires a more complicated analytic structure, which we will explore in the
following. In Fig. 4.2 we illustrate the concept of the full propagator for an interact-
ing theory with spin-12 particles: by ordering diagrams by the number of selfenergy
insertions Σ, one finds, that the full propagator is represented by an infinite series of
diagrams.

In formulas, the full (interacting) propagator DI can thus be written as [PS95]:

DI(p) =
i(/p +m0)

p2 −m2
0 + iǫ

+
i(/p +m0)

p2 −m2
0 + iǫ

[−iΣ(p)] i(/p +m0)

p2 −m2
0 + iǫ

+ . . .

=
∞

∑
n=0

i(/p +m0)

p2 −m2
0 + iǫ

[

Σ(p) · (/p +m0)

p2 −m2
0 + iǫ

]n

. (4.27)

Exploiting the known limit of the geometric series, Eq. (4.27) becomes:

DI(p) =
i(/p +m0)

p2 −m2
0 + iǫ

[

1− Σ(p) · (/p +m0)

p2 −m2
0 + iǫ

]−1

=
i

/p −m0 − Σ(p)
, (4.28)

where we have dropped the iǫ term in the last step. Note how the analytic structure
of the propagator has changed from the free case: the pole mass m0 has been shifted
to a value m, where m is the solution of

[/p −m0 − Σ(p)]
/p=m = 0 . (4.29)
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4.3 Field strength renormalisation

Close to the pole /p = m one can expand Eq. (4.29) and finds [PS95]:

[/p −m0 − Σ(p)] = 0+ (/p −m)

[

1− ∂Σ(p)

∂/p

∣
∣
∣
∣

/p=m

]

+O((/p −m)2) . (4.30)

Ignoring all terms of O((/p −m)2) and higher, the full propagator becomes:

DI(p) ≃
i

/p −m
·
[

1− ∂Σ(p)

∂/p

∣
∣
∣
∣

/p=m

]−1

=
iZ2

/p −m

=
iZ2(/p +m)

p2 −m2
. (4.31)

The last result is very similar to the first term in Eq. (4.27): close to the pole the full
propagator looks like the propagator of a free particle with mass m, weighted by the
factor

Z2 =

[

1− ∂Σ(p)

∂/p

∣
∣
∣
∣

/p=m

]−1
. (4.32)

This factor is known as the field strength renormalisation factor and it is common to
name it Z2.

4.3.2 Spectral decomposition of the full propagator

We will now explore the physical meaning of Z2, as well as of the higher order contri-
butions in Eq. (4.30) (for simplicity we will use a scalar field theory for that purpose).
To do this, one has to investigate the time ordered two point function for the interact-
ing theory, which is, just as in the free case, the Fourier transform of the momentum
space propagator:

∫
d4p

(2π)4
exp (−ip(x− y)) · DI(p) = 〈V|Tφ(x)φ(y)|V〉, (4.33)

where |V〉 is the vacuum (ground state) of the interacting theory. To simplify matters,
we will investigate the structure of the free propagator first and then generalise the
result for an interacting theory.
A very simple case of a free (non-interacting) field is the free Klein-Gordon field.

The excitations of this field are scalars (spin-0 particles) and in the following we briefly
summarise important properties [PS95]. The Lagrangian reads:

L =
1

2
(∂µφ)(∂µφ) +

1

2
m2

0φ2 , (4.34)
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4 Remarks on renormalisation

from which the equation of motion follows directly:

(∂µ∂µ +m2
0)φ = 0 . (4.35)

Generalising the concept of the description of the harmonic oscillator in terms of
ladder operators, one finds for the time-independent field operator (with φ = φ†):

φ(~x) =
∫

d3p

(2π)3
1

√
2Ep

(

ap + a†−p

)

exp(i~p~x) , (4.36)

where Ep =
√

~p 2 +m2
0 is the energy of a particle with momentum ~p and the creation

and annihilation operators obey a commutation relation:

[

ap, a
†
p′

]

= (2π)3δ(3)
(
~p− ~p′

)
. (4.37)

The Hamiltonian can be written as:

H =
∫

d3p

(2π)3
Ep

1

2
(a†pap + apa

†
p) (4.38)

and the momentum operator is given by:

~P =
∫

d3p

(2π)3
~p a†pap . (4.39)

For the commutator of H and ~P one finds:

[

H, ~P
]

=
∫

d3p

(2π)3
Ep

2

d3q

(2π)3
~q
[

a†pap + apa
†
p, a

†
qaq
]

. (4.40)

With the help of Eq. (4.37) one can evaluate the commutator in Eq. (4.40):

[

a†pap + apa
†
p, a

†
qaq
]

= (2π)3δ(3) (~p−~q) (a†paq − a†qap)

= (2π)3δ(3) (~p−~q) (a†pap − a†pap)

= 0 . (4.41)

Inserting this result into Eq. (4.40) gives:

[

H, ~P
]

=
∫

d3p

(2π)3
Ep

2
~p(a†pap − a†pap) = 0 . (4.42)

Since H and ~P commute they have a common set of eigenstates. These eigenstates
can be easily constructed, in total analogy to the harmonic oscillator, by successively
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4.3 Field strength renormalisation

applying creation operators on the ground state of the theory. We denote the ground
state for this free theory by |0〉 and note that, as usual:

ap|0〉 = 0 . (4.43)

A one-particle state with momentum ~p is given by:

|p〉 =
√

2Epa
†
p|0〉 , (4.44)

where the normalisation factor
√

2Ep ensures, that the scalar product of one-particle
states is invariant under Lorentz transformations:

〈q|p〉 = 〈0|aq
√

4EqEpa
†
p|0〉 = (2π)32Epδ(3)(~p−~q) , (4.45)

where in the last step we have used the commutator relation (4.37) and the normali-
sation 〈0|0〉 = 1. Lorentz invariance of 〈q|p〉 follows directly from the Lorentz invari-
ance of

d3p

2Ep
≡ d4pδ(4)(p2 −m2

0)Θ(p0) . (4.46)

Many-particle states are of a different nature than one-particle states: their energy is
not fixed for a fixed total momentum ~p, but depends on the momenta of the particles
of the state. For example, for a two-particle state the energy is given by:

E =
√

~p 2
1 +m2

0 +
√

~p 2
2 +m2

0 , (4.47)

where ~p1 and ~p2 = ~p−~p1 are the momenta of the two particles. However, we can also
express E in terms of the total momentum ~p and the invariant mass of the state M:

E =
√

~p 2 + M2 . (4.48)

For a given invariant mass M the lowest energy of the state is realised for ~p = 0:

E = M = 2
√

~p 2
1 +m2

0 ≥ 2m0 . (4.49)

Since ~p1 is not fixed, the energy spectrum of two-particle states is continuous. Ob-
viously, the same statement holds for all states with n > 1 particles. Thus, we can
characterise all states by their number of particles n, their total momentum ~p and the
specific combination nλ of the momenta of each of the n particles:

|nλ,p〉 . (4.50)
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4 Remarks on renormalisation

We assume the states |nλ,p〉 to be orthonormalised and so the completeness relation
for the full Hilbert space of states can then be written as:

1 = |0〉〈0|+
∞

∑
n=1

∑
nλ

∫
d3p

(2π)3
1

2Ep(mλ)
|nλ,p〉〈nλ,p| . (4.51)

Later on we will also need the completeness relation for the pure one-particle states
(n = 1, mλ = m0):

11 part. =
∫

d3p

(2π)3
1

2Ep(m0)
|10,p〉〈10,p| . (4.52)

Before we study the structure of the two-point function in detail, we note, that in the

Heisenberg picture one finds for the four momentum operator P = (H, ~P) and for an
operator O:

[Pµ,O] = −i∂µO , (4.53)

from which immediately follows [PS95]:

φ(x) = exp(iPx)φ(0) exp(−iPx) , (4.54)

where φ(x) = φ(t,~x) is the time-dependent field operator. Especially the time evolu-
tion of φ(~x) as given in Eq. (4.36) reads:

φ(~x, t) = exp(iHt) · φ(~x) · exp(−iHt) . (4.55)

The series expansion of the exponential reads:

exp(iHt) =
∞

∑
n=0

(iHt)n

n!
, (4.56)

and so to interchange the first exponential and φ(~x) in Eq. (4.55), one needs these
commutators:

[
H, ap

]
= −apEp (4.57)

[

H, a†p

]

= a†pEp . (4.58)

Then the time-dependent field operator becomes:

φ(x) =
∫

d3p

(2π)3
1

√
2Ep

exp(iHt)
(

ap exp(i~p~x) + a†p exp(−i~p~x)
)

exp(−iHt)

=
∫

d3p

(2π)3
1

√
2Ep

(

ap exp(−iEpt) exp(i~p~x) + a†p exp(iEpt) exp(−i~p~x)
)

=
∫

d3p

(2π)3
1

√
2Ep

(

ap exp(−ipx) + a†p exp(ipx)
)

. (4.59)
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Finally we are ready to investigate the time-ordered two point function of the free
Klein-Gordon field: first we insert a complete set of states, cf. Eq. (4.51). Then for
x0 > y0 one finds:

〈0|φ(x)φ(y)|0〉 =〈0|φ(x)|0〉〈0|φ(y)0〉

+
∞

∑
n=1

∑
nλ

∫
d3p

(2π)3
1

2Ep(mλ)
〈0|φ(x)|nλ,p〉〈nλ,p|φ(y)|0〉 . (4.60)

The first term vanishes, since the annihilation and creation operators in φ(x) act on
the vacuum state to the right and to the left, respectively, giving 0. The matrix element
for all the particle states can be simplified with the help of Eq. (4.54):

〈0|φ(x)|nλ,p〉 = 〈0| exp(iPx)φ(0) exp(−iPx)|nλ,p〉
= 〈0|φ(0)|nλ,p〉 exp(−ipx) , (4.61)

where in the last step we have used, that the vacuum has total momentum ~p = ~0.
The momentum dependence of the matrix element has been factorised out into the
exponential, which can be seen in the following way [PS95]: we define a Lorentz

transformation Λp, which performs a boost from ~p to ~0. Then we twice insert the

identity 1 = Λ−1p Λp:

〈0|Λ−1p Λpφ(0)Λ−1p Λp|nλ,p〉 = 〈0|φ(0)|nλ,0〉 , (4.62)

where the Lorentz invariance of the vacuum and of φ(0) have entered. Inserting Eqs.
(4.61,4.62) into Eq. (4.60), the two point function is thus given by:

〈0|φ(x)φ(y)|0〉 =
∞

∑
n=1

∑
nλ

|〈0|φ(0)|nλ,0〉|2
∫

d3p

(2π)3
1

2Ep(mλ)
exp(−ip(x− y)) . (4.63)

For y0 > x0 the result (4.63) is identical with x and y interchanged. Therefore, the
time-ordered two point function reads:

〈0|Tφ(x)φ(y)|0〉 =
∞

∑
n=1

∑
nλ

|〈0|φ(0)|nλ,0〉|2
∫

d3p

(2π)3
1

2Ep(mλ)

×
[

exp(−ip(x− y))|x0>y0 + exp(−ip(y− x))|y0>x0

]

. (4.64)

The momentum integral is nothing but the Fourier transform of the Feynman (time-
ordered) propagator of a particle with mass mλ:

〈0|Tφ(x)φ(y)|0〉 =
∞

∑
n=1

∑
nλ

|〈0|φ(0)|nλ,0〉|2
∫

d4p

(2π)4
i exp(−ip(x− y))

p2 −m2
λ + iǫ

. (4.65)
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All left to do is to calculate the matrix element in the last equation, which is straight-
forward for the free Klein-Gordon field (note that for the one-particles states we have
|p〉 = |10,p〉):

〈0|φ(0)|nλ,0〉 =
∫

d3p

(2π)3
1

√
2Ep
〈0|
(

ap + a†p

)

|nλ,0〉

=
∫

d3p

(2π)3
1

2Ep
〈10,p|nλ,0〉 . (4.66)

Remember that many-particle states |nλ,0〉 are created by successively applying cre-
ation operators on the vacuum:

|nλ,0〉 ∼
n

∏
i=1

a†pi |0〉 , (4.67)

with ∑
n
i=1 ~pi = 0. Thus, the matrix element in Eq. (4.66) can be evaluated with the

help of the commutator (4.37):

〈10,p|nλ,0〉 ∼ 〈0|ap
n

∏
i=1

a†pi |0〉

= 〈0|
(

a†p1ap + (2π)3δ(3)
(
~p− ~p′

)) n

∏
i=2

a†pi |0〉

= 0+ 〈0|
n

∏
i=2

a†pi |0〉(2π)3δ(3)
(
~p− ~p′

)

= δn1(2π)3δ(3)
(
~p− ~p′

)
, (4.68)

and so obviously the matrix element vanishes for n > 1, since any creation operator
acting on the vacuum to the left gives zero. Thus, we find:

〈0|φ(0)|nλ,0〉 =
∫

d3p

(2π)3
1

2Ep
〈10,p|10,0〉

=
∫

d3p

(2π)3
1

2Ep
2Ep(2π)3δ(3) (~p) δn1

= δn1 , (4.69)

and so:

〈0|Tφ(x)φ(y)|0〉 =
∞

∑
n=1

∑
nλ

|〈0|φ(0)|nλ,0〉|2
∫

d4p

(2π)4
i exp(−ip(x− y))

p2 −m2
λ + iǫ

=
∫

d4p

(2π)4
i exp(−ip(x− y))

p2 −m2
0 + iǫ

. (4.70)
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In a free field theory the time-ordered two-point function is just the Fourier trans-
form of the momentum space propagator of a particle with mass m0, i.e. it describes
the propagation of an exact one-particle state, since the matrix element in Eq. (4.68)
vanishes for all particle numbers n 6= 1.
Finally we will consider the case of an interacting theory, building on the statements

above. First one has to find the full Hamiltonian:

HF = Hfree +Hint , (4.71)

which commutes with the momentum operator ~PF for the interacting theory. This
again implies, that they have a common basis of eigenstates, which are characterised
by particle number n, momentum state nλ and total momentum ~p. The completeness
relation for the full Hilbert space then reads (|V〉 is the vaccum of the interacting
theory):

1 = |V〉〈V|+
∞

∑
n=1

∑
nλ

∫
d3p

(2π)3
1

2Ep(mλ)
|nλ,p〉〈nλ,p| . (4.72)

Here mλ is again the invariant mass of the n-particle momentum state nλ. For n = 1
one finds mλ = m, which is the physical mass of an exact one-particle state and which
for an interacting theory in general differs from the bare mass m0 in the Lagrangian.
The lower bound of mλ might be somewhat below n ·m, since in an interacting theory
bound states of n > 1 particles may form. Employing the same formalism as above
for the free theory, one finds for the time-ordered two-point function:

〈V|Tφ(x)φ(y)|V〉

= const.+
∞

∑
n=1

∑
nλ

|〈V|φ(0)|nλ,0〉|2
∫

d4p

(2π)4
i exp(−ip(x− y))

p2 −m2
λ + iǫ

= const.+ |〈V|φ(0)|10,0〉|2
∫

d4p

(2π)4
i exp(−ip(x− y))

p2 −m2 + iǫ

+
∞

∑
n=2

∑
nλ

|〈V|φ(0)|nλ,0〉|2
∫

d4p

(2π)4
i exp(−ip(x− y))

p2 −m2
λ + iǫ

, (4.73)

where |10,0〉 is a one-particle state with mass m and momentum ~p = 0. The constant
term usually vanishes (as in the free case above) [PS95] and so the first contributing
term in this expansion by particle numbers is just the one-particle state. Then the
propagator in the interacting theory (the Fourier transform of the time-ordered two-
point function) takes the form:

D̃I(p) =
i |〈V|φ(0)|10,0〉|2
p2 −m2 + iǫ

+mult.-particle contributions . (4.74)
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Close to the pole p2 = m2 the propagator looks like a propagator for a free particle

with mass m, multiplied by the factor Z2 = |〈V|φ(0)|10,0〉|2. Thus, the interpretation
of Z2 for the interacting theory has become clear. It is the probability to create from
the vacuum an exact one-particle state. In contrast to the free theory this probability
is in general no longer 1, but one finds 0 ≤ Z2 < 1 [BD65].
This result for Z2 can be generalised to spin-12 fields [PS95] and so returning to Eq.

(4.31) we can write for the full spin-12 propagator:

DI(p) =
iZ2(/p +m)

p2 −m2 + iǫ
+mult.-particle contributions

close to the positive-energy pole ≈∑
s

i
(√

Z2ūs(p)
) (√

Z2us(p)
)

p2 −m2 + iǫ
, (4.75)

where we have used the completeness relation for the Dirac spinors, see Appendix
A.4.3. Finally, Eq. (4.75) implies how to modify the Feynman rules for the interacting
theory: for every external fermion assign an additional factor

√
Z2.

4.4 QCD field strength renormalisation for massive

quarks

In Sec. 8.1 we will need the field strength renormalisation factor Z2 calculated to first

order in the QCD coupling αs =
g20
4π and we will calculate this quantity already at this

point. Starting from Eq. (4.32) an expansion in αs yields:

Z2 =

[

1− ∂Σ(p)

∂/p

∣
∣
∣
∣

/p=m

]−1

= 1+
∂Σ(p)

∂/p

∣
∣
∣
∣

/p=m

+O(α2
s ) . (4.76)

Inserting the expression for the quark selfenergy derived in Eq. (4.24) one finds:

∂Σ(p)

∂/p

∣
∣
∣
∣

/p=m

=
αs

4π
CF

[

1− 1

ǫ′
+ γ− ln

(

4πµ2
)

+

1∫

0

dx

(

2x ln (∆)|
/p=m + 2(x− 2)m

∂ ln (∆)

∂/p

∣
∣
∣
∣

/p=m

)

 , (4.77)

with

∆ = −x(1− x)p2 + (1− x)m2 + xλ2 − iǫ . (4.78)
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Using p2 = (/p)
2 the integral becomes:

I =

1∫

0

dx

(

2x ln (∆)|
/p=m + 2(x− 2)m

∂ ln (∆)

∂/p

∣
∣
∣
∣

/p=m

)

=

1∫

0

dx 2x ln
(

(1− x)2m2 + xλ2 − iǫ
)

+

1∫

0

dx 4m2 x(1− x)(2− x)

(1− x)2m2 + xλ2 − iǫ
. (4.79)

We note that:

∂

∂x
ln
(

(1− x)2m2 + xλ2 − iǫ
)

=
−2(1− x)m2

(1− x)2m2 + xλ2 − iǫ
+

λ2

(1− x)2m2 + xλ2 − iǫ
,

(4.80)

and so we can rewrite the second integral:

I2 =

1∫

0

dx 4m2 x(1− x)(2− x)

(1− x)2m2 + xλ2 − iǫ

=

1∫

0

dx 2x(2− x)

[

− ∂

∂x
ln
(

(1− x)2m2 + xλ2 − iǫ
)

+
λ2

(1− x)2m2 + xλ2 − iǫ

]

.

(4.81)

Integration by parts yields:

I2 = −2 ln
(

λ2 − iǫ
)

+

1∫

0

dx 4(1− x) ln
(

(1− x)2m2 + xλ2 − iǫ
)

+

1∫

0

dx 2
λ2

(1− x)2m2 + xλ2 − iǫ
. (4.82)

Then:

I =− 2 ln
(

λ2 − iǫ
)

+

1∫

0

dx 4 ln
(

(1− x)2m2 + xλ2 − iǫ
)

−
1∫

0

dx 2x ln
(

(1− x)2m2 + xλ2 − iǫ
)

+

1∫

0

dx 2
λ2

(1− x)2m2 + xλ2 − iǫ
. (4.83)
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Substituting y = 1− x we find:

I =− 2 ln
(

λ2 − iǫ
)

+

1∫

0

dy 2 ln
(

y2m2 + (1− y)λ2 − iǫ
)

+

1∫

0

dy 2y ln
(

y2m2 + (1− y)λ2 − iǫ
)

+

1∫

0

dy 2
λ2

y2m2 + (1− y)λ2 − iǫ
. (4.84)

The fictitious gluon mass λ was introduced to regularise possible infrared divergences
in the integrals. However all three remaining integrals are actually convergent for
λ = 0, which we will show in the following. We begin with:

I3 =

1∫

0

dy 2 ln
(

y2m2 + (1− y)λ2 − iǫ
)

. (4.85)

For λ = 0 the argument of the logarithm is always positive and we can drop the iǫ
term:

I3 =

1∫

0

dy 2 ln
(

y2m2
)

= 2 ln
(

m2
)

+ 4

1∫

0

dy ln (y)

= 2 ln
(

m2
)

− 4 . (4.86)

For the second integral one finds analogously:

I4 =

1∫

0

dy 2y ln
(

y2m2 + (1− y)λ2 − iǫ
)

λ→0 =

1∫

0

dy 2y ln
(

y2m2
)

= ln
(

m2
)

+

1∫

0

dy 4y ln (y)

= ln
(

m2
)

− 1 . (4.87)
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The integrand of the third integral vanishes for λ→ 0, except for the null set consist-
ing of y = 0, where the integrand approaches one. Thus:

I5 =

1∫

0

dy 2
λ2

y2m2 + (1− y)λ2 − iǫ

λ→0 =

1∫

0

dy 0 = 0 . (4.88)

Summing up the results, we find:

I = −2 ln
(

λ2 − iǫ
)

+ 3 ln
(

m2
)

− 5 . (4.89)

Since λ2 > 0 one can drop the iǫ term and so the field strength renormalisation factor
to O(αs) reads:

Z2 = 1+
∂Σ(p)

∂/p

∣
∣
∣
∣

/p=m

= 1+
αs

4π
CF

[

−4− 1

ǫ′
+ γ− ln

(
4πµ2

m2

)

− 2 ln

(
λ2

m2

)]

. (4.90)

Note again the appearance of the fictitious gluon mass λ, which was introduced to
regularise the infrared divergences. Any physical observables calculated with the
help of Z2 must be independent of this mass and we will show in Sec. 8.1.3 why this
is indeed the case.
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5
Infrared divergences and soft radiation

In theories with massless states loop integrals usually suffer from infrared diver-
gences, as was seen in Chapter 3 and 4. However, such divergences can also arise
from other processes, namely those involving the radiation of soft (close to vanishing
energy) particles. In this chapter we will explore an example for such a process and
then calculate the divergent contribution of soft gluon bremsstrahlung for massive
quarks. In Sec. 8.1.3 we will then see, that this divergent contribution exactly cancels
against the soft loop divergences, which is an explicit proof of the Kinoshita-Poggio-
Quinn [KU76, Kin62, PQ76] and Kinoshita-Lee-Nauenberg [Kin62, LN64] theorems
for our special case.

5.1 Example of an infrared divergence

To provide a simple example, we consider the process depicted in Fig. 5.1: two scalar
particles with momenta p1 and p2 and identical mass m scatter into two different
scalar particles, one with momentum q and mass M2 (zigzag line) and one with mo-
mentum k and mass λ (dashed line). The exchange particle we assume also as scalar
and having mass m. We will now calculate the cross section for this process and then
study the massless limits λ→ 0 and m→ 0.

Since the scattering can occur through any of the two diagrams, we have to add
their amplitudes coherently and, omitting constants, we find:

M = M1 + M2 =
1

(p2 − k)2 −m2
+

1

(p1 − k)2 −m2
, (5.1)
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→
p1,m

m

→
q ,M

→
p2,m

→
k ,λ

→
p1,m

m

→
k ,λ

→
p2,m

→
q ,M

Figure 5.1: Scattering of two scalar particles into two different scalar particles.

and the relevant part of the cross section reads:

dσ ∼ δ(4) (p1 + p2 − q− k) |M|2 d
3q

2Eq

d3k

2Ek
. (5.2)

One can now rewrite the q integration into a four momentum integral times a δ-
function:

dσ ∼ δ(4) (p1 + p2 − q− k) δ
(

q2 −M2
)

|M|2 d4q
d3k

2Ek

= δ
(

(p1 + p2 − k)2 −M2
)

|M|2 d
3k

2Ek
.

In the center-of-mass (c.m.) frame, with the initial particles moving along the z-axis,
the four-momenta of the particles become:

p1 =

(√
s

2
, 0, 0,

√
s

4
−m2

)

, (5.3)

p2 =

(√
s

2
, 0, 0,−

√
s

4
−m2

)

, (5.4)

k =
(

Ek,~k
)

, (5.5)

q =
(√

s− Ek,−~k
)

, (5.6)

with Ek =
√

|~k|2 + λ2. Then:

(p1 + p2 − k)2 −M2 = s−M2 + λ2 − 2
√
sEk

!
= 0

⇒ Ek =
s−M2 + λ2

2
√
s

⇒ δ
(

(p1 + p2 − k)2 −M2
)

=
δ
(
s−M2+λ2

2
√
s
− Ek

)

2
√
s

, (5.7)
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and so one can replace the δ-function in the cross section (note that dEk =
|~k|
Ek
d|~k|):

dσ ∼
δ
(
s−M2+λ2

2
√
s
− Ek

)

2
√
s

|M|2 |
~k|dEkdΩk

2
. (5.8)

The propagator denominators in Eq. (5.1) become:

(p1 − k)2 −m2 = λ2 − 2p1 · k = λ2 +
(

−
√
sEk +

√

s− 4m2|~k| cos θk

)

, (5.9)

(p2 − k)2 −m2 = λ2 − 2p2 · k = λ2 +
(

−
√
sEk +

√

s− 4m2|~k| cos(π − θk)
)

= λ2 +
(

−
√
sEk −

√

s− 4m2|~k| cos θk

)

, (5.10)

and, thus, the squared matrix element reads:

|M|2 =
∣
∣
∣
∣

1

(p2 − k)2 −m2
+

1

(p1 − k)2 −m2

∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣

2λ2 − 2
√
sEk

λ4 + (sE2
k − (s− 4m2)|~k|2 cos2 θk)− 2λ2

√
sEk

∣
∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣

2λ2 − 2
√
sEk

λ4 + sλ2 + s|~k|2(1− cos2 θk) + 4m2|~k|2 cos2 θk − 2λ2
√
sEk

∣
∣
∣
∣
∣

2

. (5.11)

Inserting Eq. (5.11) into the cross section formula (5.8) and carrying out the Ek inte-
gration yields:

dσ ∼
∣
∣
∣
∣
∣

λ2 − s+ M2

λ4 + sλ2 + s|~k|2(1− cos2 θk) + 4m2|~k|2 cos2 θk − 2λ2
√
sEk

∣
∣
∣
∣
∣

2 |~k|dΩk

4
√
s

, (5.12)

with:

|~k|2 = E2
k − λ2 =

(
s−M2 + λ2

2
√
s

)2

− λ2 . (5.13)

As long as λ and m are finite this cross section is well defined. However for λ → 0 it
shows a soft divergence:

lim
λ→0

dσ ∼

∣
∣
∣
∣
∣
∣
∣

−s+ M2

s
(
s−M2

2
√
s

)2
(1− cos2 θk) + 4m2

(
s−M2

2
√
s

)2
cos2 θk

∣
∣
∣
∣
∣
∣
∣

2

s−M2

2
√
s

dΩk

4
√
s

∼
∣
∣
∣
∣

4s

s(1− cos2 θk) + 4m2 cos2 θk

∣
∣
∣
∣

2 dΩk

8s (s−M2)
. (5.14)
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5 Infrared divergences and soft radiation

If we lower the c.m. energy down to
√
s ≃ M, the cross section becomes infinite,

which is unphysical. The divergence is called soft, since |~k| ∼ s−M2, and thus close
to the threshold, the energy of the particle with momentum k becomes arbitrarily
small. However, the cross section even bears another type of divergence, namely a
collinear divergence, as one can see by letting in addition m→ 0:

lim
λ,m→0

σ ∼
1∫

−1
d cos θk

1

(1− cos2 θk)2
→ ∞ , (5.15)

which is clearly a divergent quantity. The divergence occurs for cos θk = 1, i.e. for
θk = 0, which implies that the particle with momentum k is emitted collinearly. Thus,
this kind of divergence is called collinear. In physical terms this divergence can be
understood by acknowledging that collinearly emitted particles continue to interact
and cannot be assumed to be asymptotic states. Therefore, in the collinear regime the
scattering cannot be described by the two simple diagrams in Fig. 5.1, but one would
have to take into account all the interaction processes among the collinear particles.

In this section we have explored two types of infrared divergences, namely soft and
collinear ones. As we have seen, soft divergences can be regularised by assigning a
finite (fictitious) mass to the emitted particle. This is exactly analogous to regularis-
ing infrared divergences occurring in loop calculations, cf. for example Sec. 4.4. As
already mentioned, physical observables must not depend on this fictitious mass and
we will see that this is indeed the case. Note that the collinear divergences obviously
only occur when both the emitted and the exchanged particle are treated as mass-
less. Thus, collinear divergences are absent in any calculation with massive exchange
particles.

5.2 Soft gluon bremsstrahlung

In Sec. 8.3 we will calculate the cross section for gluon bremsstrahlung in DY pair pro-
duction. Since the gluon is massless, this cross section also suffers from a divergence
originating in the emission of soft gluons. Therefore, we will introduce in Sec. 8.3 a
fictitious gluon mass to regulate this divergence, just as we did for the loop process
in Sec. 3.2. To proof that the cancellation of these soft divergences still holds in our
scheme, we will calculate the cross section for qq̄ → γ∗g (which is closely related to
DY pair production, see Sec. 7.3.2) in the soft gluon limit and isolate the divergent
piece. This piece we then can compare to the divergent part of the loop correction in
Sec. 8.1.3 and there we will see that they exactly cancel.
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→
p1

→
q

→
p2

→
k

µ

α

→
p1

→
k

→
p2

→
q

α

µ

Figure 5.2: Quark-antiquark annihilation into a virtual photon with gluon emission.

5.2.1 Cross section

The relevant processes are depicted in Fig. 5.2. We employ the following conventions
for the masses of the particles:

p21 = m2
1 , (5.16)

p22 = m2
2 , (5.17)

q2 = M2 , (5.18)

k2 = λ2 , (5.19)

and we keep the mass of the quark fixed at the quark-gluon vertex. Thus, in the left
diagram the exchange quark has mass m2 and in the right diagram mass m1. Note,
that we break current conservation at the quark-photon vertex, since there the quark
mass changes. However, this is of no consequence to the argumentation in this section
and in DY pair production this problem is overcome, see Sec. 7.3.3. α and µ represent
the Dirac indices at the vertices. Using the Feynman rules of Appendix B one finds
for the sum of the amplitudes:

M = egta · v̄s(p2)
[

γα −/p2 + /k +m2

(p2 − k)2 −m2
2

γµ + γµ /p1 − /k +m1

(p1 − k)2 −m2
1

γα

]

us′(p1) · ǫ∗µ(q)ǫ∗α(k)

= egta · v̄s(p2)Sαµus′(p1) · ǫ∗µ(q)ǫ∗α(k) , (5.20)

where ta are the SU(3) color matrices, cf. Appendix A.5. Averaging over initial and
summing over final states, one recovers:

∣
∣M
∣
∣
2
=

1

4 ∑
s,s′

∑
polaris.

e2g2CF · v̄s(p2)Sαµus′(p1)ūs′(p1)S
νβvs(p2) · ǫ∗µ(q)ǫ∗α(k)ǫν(q)ǫβ(k)

= CF
e2g2

4
Tr
[

(/p2 −m2)S
αµ(/p1 +m1)S

νβ
]

· gµνgαβ , (5.21)
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5 Infrared divergences and soft radiation

where the calculation of the color factor CF is given in Appendix B.2. The cross section
for qq̄→ γ∗g then reads:

dσ =
(2π)4δ(4)(p1 + p2 − k− q)

4
√

(p1 · p2)2 −m2
1m

2
2

∣
∣M
∣
∣
2 d3q

(2π)32Eq

d3k

(2π)32Ek
. (5.22)

We are performing calculations in the soft gluon limit (cf. introduction of Sec. 5.2) and
we define this limit by choosing an energy scale ω, which is much smaller than the
energies and momenta of the participating quarks. Then we require for the energy Ek

and the momentum~k of the gluon:

Ek ≤ ω , (5.23)

|~k| ≤ ω , (5.24)

and so we can neglect k in the following places:

δ(4)(p1 + p2 − k− q)→ δ(4)(p1 + p2 − q) , (5.25)

and

(/p2 −m2)S
αµ(/p1 +m1)

=(/p2 −m2)

[

γα −/p2 + /k +m2

(p2 − k)2 −m2
2

γµ + γµ /p1 − /k +m1

(p1 − k)2 −m2
1

γα

]

(/p1 +m1)

→(/p2 −m2)

[

γα−/p2 +m2

−2p2 · k
γµ + γµ /p1 +m1

−2p1 · k
γα

]

(/p1 +m1) . (5.26)

Now we note that:

(/p2 −m2)γ
α(/p2 −m2) = (2pα

2 − γα(/p2 +m2))(−/p2 +m2)

= 2pα
2(−/p2 +m2) . (5.27)

An analogous relation holds for (/p1 +m1)γ
α(/p1 +m1). Then:

(/p2 −m2)S
αµ(/p1 +m1)→ (/p2 −m2)γ

µ(/p1 +m1)

[
pα
2

p2 · k
− pα

1

p1 · k

]

(5.28)

and:

(/p1 +m1)S
νβ(/p2 −m2)→ (/p1 +m1)γ

ν(/p2 −m2)

[

p
β
2

p2 · k
− p

β
1

p1 · k

]

. (5.29)
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Therefore the squared matrix element becomes:

∣
∣M
∣
∣
2 → CF

e2g2

4
Tr
[
(/p2 −m2)γ

µ(/p1 +m1)γ
ν
]
·
[

pα
2

p2 · k
− pα

1

p1 · k

] [

p
β
2

p2 · k
− p

β
1

p1 · k

]

· gµνgαβ

= CF
e2g2

4
Tr
[
(/p2 −m2)γ

µ(/p1 +m1)γ
ν
]
·
[

pα
2

p2 · k
− pα

1

p1 · k

]2

· gµν , (5.30)

where the square of the expression in brackets indicates contraction over the Lorentz
index α. Inserting Eqs. (5.25) and(5.30) into the cross section formula (5.22) one finds:

dσ =
(2π)4δ(4)(p1 + p2 − q)

4
√

(p1 · p2)2 −m2
1m

2
2

CF
e2g2

4
Tr
[
(/p2 −m2)γ

µ(/p1 +m1)γ
ν
]

·
[

pα
2

p2 · k
− pα

1

p1 · k

]2

· gµν
d3q

(2π)32Eq

d3k

(2π)32Ek

=
(2π)4δ(4)(p1 + p2 − q)

4
√

(p1 · p2)2 −m2
1m

2
2

e2

4
Tr
[
(/p2 −m2)γ

µ(/p1 +m1)γ
ν
]
· (−gµν)

d3q

(2π)32Eq

· CF(−g2)
[

pα
2

p2 · k
− pα

1

p1 · k

]2 d3k

(2π)32Ek
. (5.31)

We have effectively separated the phase space of the virtual photon and the gluon and
so all left to do, is to solve the following integral:

I =
∫

|~k|≤ω

d3k

Ek

[
pα
2

p2 · k
− pα

1

p1 · k

]2

=
∫

|~k|≤ω

d3k

Ek

[

m2
1

(p1 · k)2
+

m2
2

(p2 · k)2
+

m2
1 +m2

2 − q2

(p1 · k)(p2 · k)

]

, (5.32)

where we have used, that in the soft gluon limit (p1 + p2)
2 → q2.

The first part of Eq. (5.31) is just the Born cross section for the process qq̄→ γ∗ and
so the cross section for soft gluon emission becomes:

dσ = dσqq̄→γ∗ · CF
αs

4π2
(−I) . (5.33)

5.2.2 Phase space integral for soft gluons

The idea how to solve the integral I in Eq. (5.32) is the following [tHV72]: in the last
term shift one of the momenta by a parameter α (cf. Sec. 3.1.3) and then introduce a
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Feynman parameter to combine the two factors in the denominator. Then all three
integrands will be of the same type and thus all we have to do is to find their solution
once:

1

(p1 · k)(p2 · k)
=

α

(p · k)(q · k) , (5.34)

with p = αp1 and q = p2. We will see in a minute which value to choose for α. First
we introduce Feynman parameters to combine the two denominators:

1

(p · k)(q · k) =

1∫

0

dx [xp · k+ (1− x)q · k]−2

=

1∫

0

dx [(xp+ (1− x)q) · k]−2

=

1∫

0

dx
[

k̂ · k
]−2

. (5.35)

Now all three terms in Eq. (5.32) are of the same form and we have to solve the
following integral, where we use p2 = (p0)2 − |~p|2 = m2:

I2 =
∫

|~k|≤ω

d3k

Ek

1

(p · k)2

=

ω∫

0

|~k|2d|~k|
1∫

−1
d cos θ

2π∫

0

dϕ
1

√

|~k|2 + λ2

1
(

p0
√

|~k|2 + λ2 − |~p||~k| cos θ

)2

= 2π

ω∫

0

|~k|2d|~k|
1∫

−1
dx

1
√

|~k|2 + λ2

1
(

p0
√

|~k|2 + λ2 − |~p||~k|x
)2

= 2π

ω∫

0

|~k|2d|~k| 1
√

|~k|2 + λ2

1

|~p||~k|




1

p0
√

|~k|2 + λ2 − |~p||~k|x





1

−1

= 4π

ω∫

0

|~k|2d|~k| 1
√

|~k|2 + λ2

1

(p0)2(|~k|2 + λ2)− |~p|2|~k|2

= 4π

ω∫

0

|~k|2d|~k| 1
√

|~k|2 + λ2

1

m2|~k|2 + (p0)2λ2
. (5.36)
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Euler substitution of the first kind gives:

u =

√

|~k|2 + λ2 + |~k| ⇒ |~k| = u2 − λ2

2u
, (5.37)

d|~k|
du

= 1− u2 − λ2

2u2
=

u2 + λ2

2u2
, (5.38)

and so the integral becomes:

I2 = 4π

√
ω2+λ2+ω∫

λ

du
u2 + λ2

2u2

(
u2−λ2

2u

)2

(

u− u2−λ2

2u

)((
u2−λ2

2u

)2
m2 + λ2(p0)2

)

= 4π

√
ω2+λ2+ω∫

λ

du

(
u2 − λ2

)2

u
(

(u2 − λ2)
2
m2 + 4u2λ2(p0)2

) . (5.39)

Partial fraction decomposition yields:

I2 = 4π

√
ω2+λ2+ω∫

λ

du
1

um2
− 4π

√
ω2+λ2+ω∫

λ

du
4λ2 (p

0)2

m2 u

u4m2 + u2(2(p0)2 −m2)2λ2 + λ4m2
.

(5.40)

The integrand of the second integral in the last equation at most diverges like 1
u3

near
u = 0, thus:

lim
λ→0

...∫

λ

du
λ2

u3
= lim

λ→0

[−λ2

2u2

]...

λ

=

[

· · ·+ 1

2

]

= const. , (5.41)

and so the second integral is not divergent for λ→ 0. Since we are only interested in
the divergent piece, we retain only the first integral of Eq. (5.40):

Idiv2 = 4π

√
ω2+λ2+ω∫

λ

du
1

um2

=
4π

m2
log

(√
ω2 + λ2 + ω

λ

)

λ≪ω→ 4π

m2
log

(
2ω

λ

)

. (5.42)
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5 Infrared divergences and soft radiation

We have finally found the divergent part of the integral in Eq. (5.32):

Idiv = 8π log

(
2ω

λ

)

+ 4π(m2
1 +m2

2 − q2)

1∫

0

dx
α

k̂2
log

(
2ω

λ

)

. (5.43)

Only one integral remains:

1∫

0

dx
α

k̂2
=

1∫

0

dx
α

[x(p− q) + q]2
=

1∫

0

dx
α

x2(p− q)2 + 2x(p− q)q+ q2
. (5.44)

One can make use of the parameter α, so that the coefficient (p− q)2 of x2 vanishes,
which simplifies the x-integration:

(p− q)2
!
= 0⇒ α2p21 − 2αp1p2 + p22

!
= 0 . (5.45)

In the soft gluon limit (p1 + p2)
2 = q2 and so we find for α:

α2m2
1 + α(m2

1 +m2
2 − q2) +m2

2
!
= 0 (5.46)

⇒α± = −m2
1 +m2

2 − q2

2m2
1

±

√
√
√
√

(

m2
1 +m2

2 − q2

2m2
1

)2

− m2
2

m2
1

. (5.47)

We are free to choose among the solutions and in the following we will use:

α := α+ = −m2
1 +m2

2 − q2

2m2
1

+

√
√
√
√

(

m2
1 +m2

2 − q2

2m2
1

)2

− m2
2

m2
1

. (5.48)

Also note that:

2p · q = p2 + q2 − (p− q)2 = p2 + q2 ⇒ 2(p− q) · q = p2 − q2 . (5.49)

Thus, Eq. (5.44) becomes:

1∫

0

dx
α

k̂2
=

1∫

0

dx
α

2x(p− q)q+ q2

=
α

2(p− q) · q log
(
q2 + 2(p− q)q

q2

)

=
α

p2 − q2
log

(
p2

q2

)

=
α

α2m2
1 −m2

2

log

(

α2m2
1

m2
2

)

, (5.50)
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and so the divergent part of I finally becomes:

Idiv = 8π log

(
2ω

λ

)

+ 4π
α(m2

1 +m2
2 − q2)

α2m2
1 −m2

2

log

(

α2m2
1

m2
2

)

log

(
2ω

λ

)

= 2π log

(
4ω2

λ2

)[

2+
α(m2

1 +m2
2 − q2)

α2m2
1 −m2

2

log

(

α2m2
1

m2
2

)]

. (5.51)

Inserting the last equation into Eq. (5.33) finally yields the divergent part of the soft
gluon emission cross section:

dσdiv = dσqq̄→γ∗ · CF
αs

2π
log

(
4ω2

λ2

)[

−2− α(m2
1 +m2

2 − q2)

α2m2
1 −m2

2

log

(

α2m2
1

m2
2

)]

. (5.52)

5.3 Aspects of soft bremsstrahlung

As already mentioned above, the soft gluon divergence of the last equation exactly
cancels against a similar divergence arising in virtual (loop) processes at the same
order of αs, cf. Sec. 8.1.3. This cancellation is no mathematical coincidence, but a
physical necessity, as we will lay out in the following: consider an experiment, set
up to measure the total cross section of exclusive bremsstrahlung, like for example
e+e− → µ+µ−γ, where a real photon is emitted and detected. Since the photon
is massless, the results of the current chapter tell us, that the cross section should
actually be infinite (soft divergence). However, measurements always find a finite
cross section for such a process. The reason lies in the experimental setup itself: every
real detector, for e.g. photons, has a lower sensitivity bound below which it will not
detect the photon anymore. In other words, all photons with energy smaller than
the energy resolution ω of the detector pass by unnoticed. All these events look
like non-bremsstrahlung e+e− → µ+µ− processes to the experimenters. Thus, one
actually measures not the total bremsstrahlung cross section, but the cross section
for bremsstrahlung with photon energy Eγ ≥ ω. However, in Sec. 5.1 above we
found, that the divergent (soft) part of the cross section emerges for Eγ → 0 and
so the resolution ω of the detector itself actually regularises the cross section. Thus,
any prediction made by theory has to take into account the regularising resolution
parameter ω.
The situation is rather different, if one considers the total cross section of an in-

clusive process, like e+e− → µ+µ−X, where the particle(s) X is(are) not detected.
While the measured cross sections are of course still finite, in theory one encounters
soft divergences as shown above, for example when X is a real photon. One can
regularise these divergences in any scheme of choice, for example by introducing a
photon mass. However in contrast to the exclusive measurement, no regularising pa-
rameter is provided by the experiment, since the photon is not detected. Therefore,
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5 Infrared divergences and soft radiation

it becomes immediately clear, that a prediction made in any consistent regularisation
scheme cannot depend on a regularising parameter like a (fictitious) photon mass.
The theorems by Kinoshita-Poggio-Quinn [Kin62, KU76, PQ76, Ste76] and Kinoshita-
Lee-Nauenberg [Kin62, LN64] actually prove, that in perturbation theory in QED and
QCD this cancellation of soft divergences in inclusive processes is fulfilled in all orders
of the respective coupling constant.
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6
Nucleon structure

This chapter is devoted to the details of studying the structure of the nucleon. The
standard tool to experimentally access the structure of charged particles is electron
scattering and we will first derive the formalism for elastic and inelastic electron-
nucleon scattering. Since in inelastic scattering the partonic nature of the nucleon is
revealed through Bjorken scaling, we will then study its partonic content and intro-
duce the parton distributions functions (PDFs). Finally we will look into the proper-
ties of the PDFs and the origin of Bjorken scaling violations, which lead to the DGLAP
equations, that describe the evolution of the PDFs with the hard scale. The ideas of
this chapter have been drawn from [PS95, HM84, ESW96, Jaf85], to which we refer for
more details.

6.1 Electron scattering

QED is the quantum theory which describes the electromagnetic interaction among
charged particles and it is the best understood theory of all quantum theories. One
reason for this is that the electromagnetic coupling constant α is rather small in the
energy ranges accessible by experiments, which allows the application of perturbation
theory. For the same reason the scattering of electrons (or in general charged leptons)
is an ideal tool to probe charged objects, since the leptonic part of the interaction is
well under control. In this section we will first develop the formalism for electron-
muon scattering (i.e. scattering off point-like targets) and then generalise the concept
to scattering off protons.
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6 Nucleon structure

p
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Figure 6.1: e−µ− → e−µ− scattering to lowest order in QED.

6.1.1 Elastic scattering on point-like targets

In Fig. 6.1 we show the process under consideration here, namely elastic electron-
muon scattering to first order in QED (i.e. one-photon exchange approximation).
Using the Feynman rules of Appendix B, one finds for the amplitude of this process:

iM = ūs(k
′)(−ieγµ)us(k) ·

−igµν

q2
· ūs′(p′)(−ieγν)us′(p)

⇒ M =
e2

q2
ūs(k

′)γµus(k)ūs′(p
′)γµus′(p)

=
e2

q2
j
µ
e−(k, k

′)jµ
−

µ (p, p′) , (6.1)

where we have introduced the leptonic currents of the electron j
µ
e− and the muon

j
µ−
µ . Squaring the amplitude, averaging over initial and summing over final spins we
obtain:

|M̄|2 = e4

q4
·
(

1

2 ∑
s,t

ūs(k
′)γµut(k)ūt(k)γ

νus(k
′)

)

·
(

1

2 ∑
s′,t′

ūs′(p
′)γµut′(p)ūt′(p)γνus′(p

′)

)

=
e4

q4
· Lµν

e− · L
µ−
µν . (6.2)

88



6.1 Electron scattering

The leptonic tensor L
µν
e− of the electron can be evaluated using the completeness rela-

tions of Appendix A.4.3 and the trace relations of Appendix A.4.2:

L
µν
e− =

1

2 ∑
s,t

ūs(k
′)γµut(k)ūt(k)γ

νus(k
′)

=
1

2
TR
[
(/k ′ +m)γµ(/k +m)γν

]

= 2
[

k′µkν + k′νkµ + gµν(m2 − k′ · k)
]

= 2
[

k′µkν + k′νkµ + gµν(m2 − k′ · k)
]

, (6.3)

where m is the electron mass. Completely analogous one finds for the muon tensor:

L
µ−
µν = 2

[

p′µpν + p′νpµ + gµν(M
2 − p′ · p)

]

, (6.4)

with the muon mass M. Note that the electron and the muon current are conserved,
i.e. qµ j

µ
e− = qµ j

µ
µ− = 0, where q = k− k′ = p′ − p. Thus, one also finds

qµL
µν
e− = qνL

µν
e− = qµL

µν
µ− = qνL

µν
µ− = 0 . (6.5)

We can now contract both leptonic tensors and obtain:

L
µν
e− · L

µ−
µν = 4

[
2
(
p′ · k′

)
(p · k) + 2

(
p′ · k

) (
p · k′

)

− 2
(
p′ · p

)
m2 − 2

(
k′ · k

)
M2 − 4m2M2

]

. (6.6)

Finally we are ready to calculate the cross section for elastic electron-muon scattering.
For 2→ 2 scattering, as in our case, the cross section reads, cf. Appendix A.6:

dσ =
(2π)4 δ(4) (p+ k− p′ − k′)

4
√

(p · k)2 −m2M2
|M̄|2 d3p′

(2π)3 2p′0

d3k′

(2π)3 2E′
. (6.7)

In the laboratory (lab.) frame, where we assume the muon to be at rest, the four-
momenta of the particles become:

k =
(

E,~k
)

, (6.8)

k′ =
(

E′,~k′
)

, (6.9)

q = (ν,~q) =
(

E− E′,~k−~k′
)

, (6.10)

p =
(

M,~0
)

. (6.11)
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6 Nucleon structure

For large beam energies E we can neglect the mass of the electron and thus find

|~k| = E and |~k′| = E′. The cross section in the lab. frame therefore becomes:

dσlab =
e4

(2π)2 4EMq4
L

µν
e− · L

µ−
µν δ(4)

(
p+ k− p′ − k′

)
δ
(

(p′)2
)

Θ
(
p′0
)
d4p′

d3k′

2E′

=
α2

EMq4
L

µν
e− · L

µ−
µν δ

(

(p+ k− k′)2 −M2
) d3k′

2E′
, (6.12)

where we have introduced the electromagnetic coupling constant α = e2

4π . We define
the scattering angle between incoming and outgoing electron as θ, which results in:

q2 =
(
k− k′

)2
= −2k · k′ = −2EE′ + 2EE′ cos θ

= −4EE′ sin2 θ

2
. (6.13)

Note that p · q is not an independent variable:

M2 =
(
p′
)2

= (p+ q)2 = M2 + 2p · q+ q2

⇒ q2 = −2p · q = −2Mν . (6.14)

The last relation is a typical feature of elastic scattering and a similar relation will
play an important role in the inelastic case in Sec. 6.1.3. The energy of the outgoing
electron is fixed by the δ-function in Eq. (6.12):

(p+ k− k′)2 −M2 !
= 0 (6.15)

⇒ 2M(E− E′)− 4EE′ sin2
θ

2
= 0 (6.16)

⇒ E′ =
2ME

2M+ 4E sin2 θ
2

=
E

1+ 2 E
M sin2 θ

2

. (6.17)

Note that the energy of the scattered particle changes since we are considering elastic
scattering in the lab frame. This is due to the recoil of the target with mass M. For
very heavy targets (i.e. M → ∞) initial and final energy of the light scattered particle
become equal, cf. Eq. (6.17). In any case in elastic scattering the final energy is fixed
by the mass of the target, the initial energy and the scattering angle.

With all these considerations the contraction of the leptonic tensors can be rewritten
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6.1 Electron scattering

in terms of the initial and final energy of the electron and the scattering angle:

L
µν
e− · L

µ−
µν = 4

[

2
(
k′ · (p+ k− k′)

)
(p · k) + 2

(
k′ · p

) (
k · (k+ p− p′)

)
− 2

(
k′ · k

)
M2
]

= 4
[(

−q2 + 2E′M
)

EM+
(

q2 + 2EM
)

E′M+ q2M2
]

= 4
[

4M2EE′ −Mq2ν + q2M2
]

= 16M2EE′
[

1+
ν

M
sin2

θ

2
− sin2

θ

2

]

= 16M2EE′
[

cos2
θ

2
− q2

2M2
sin2

θ

2

]

. (6.18)

Inserting the last equation into the cross section formula (6.12) yields:

dσlab =
α28M

q4

[

cos2
θ

2
− q2

2M2
sin2

θ

2

]

δ

(

2M(E− E′)− 4EE′ sin2
θ

2

)

(E′)2dE′dΩ .

(6.19)

The δ-function in the last equation can be used to perform the E′ integration:

δ

(

2M(E− E′)− 4EE′ sin2
θ

2

)

dE′ = δ

(

E′ − E

1+ 2 E
M sin2 θ

2

) ∣
∣
∣
∣
2M+ 4E sin2

θ

2

∣
∣
∣
∣

−1
dE′

= δ

(

E′ − E

1+ 2 E
M sin2 θ

2

)

E′

2ME
dE′ , (6.20)

and so finally one finds for the cross section:

dσlab
dΩ

=
4α2

q4
(E′)3

E

[

cos2
θ

2
− q2

2M2
sin2

θ

2

]

=
α2

4E2 sin4 θ
2

E′

E

[

cos2
θ

2
− q2

2M2
sin2

θ

2

]

. (6.21)

A closer look at Eq. (6.21) reveals the nature of the different contributions. The first
term is just the cross section for Rutherford scattering:

dσlab
dΩ

∣
∣
∣
∣
Ruth.

=
α2

4E2 sin4 θ
2

. (6.22)

It describes the scattering of a light, spinless and point-like charge on a very massive,

spinless and static point-like charge and it shows the characteristic sin−4 θ
2 behavior.

The second term takes into account the recoil of the target, as already mentioned
above. The expression in brackets has two parts and to find their origin we consider
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6 Nucleon structure

the case of scattering on a spinless muon. What changes is, that the muonic current is
now simply given by [HM84]:

j
µ−
µ = (p+ p′)µ . (6.23)

The leptonic tensor of the muon then reads:

L
µ−
µν = (p+ p′)µ(p+ p′)ν , (6.24)

and so the contraction of the two leptonic tensors for a spinless muon becomes (we
again neglect the electron mass):

L
µν
e− · L

µ−
µν = 2

[
k′µkν + k′νkµ + gµν(−k′ · k)

]
(p+ p′)µ(p+ p′)ν

= 2
[

2
(
k′ · (p+ p′)

) (
k · (p+ p′)

)
+ (p+ p′)2(−k · k′)2

]

= 2
[

2
(
k′ · (2p+ k− k′)

) (
k · (2p+ k− k′)

)
+ (2p+ k− k′)2(−k · k′)

]

= 2

[

2

(

2ME′ − q2

2

)(

2ME+
q2

2

)

+ (4M2 + 4Mν + q2)
q2

2

]

2Mν=2M(E−E′)=−q2 = 2
[

8M2EE′ + 2M2q2
]

= 16M2EE′
[

1− sin2
θ

2

]

= 16M2EE′ cos2
θ

2
. (6.25)

The resulting cross section is (Mott scattering):

dσlab
dΩ

∣
∣
∣
∣
Mott

=
α2

4E2 sin4 θ
2

E′

E
cos2

θ

2
. (6.26)

Comparing Eq. (6.26) with Eq. (6.21) we find, that the cos2 θ
2 term must be due to the

interaction of the electron with the charge of the muon, since in the former equation
the muon is treated as spinless. Note that this term vanishes for backward scattering
(i.e. θ = π), which is a consequence of the helicity conservation of the vector interac-
tion among particles at very high energies [HM84]: clearly an electron scattered at an
angle of 180◦ would have to experience a helicity flip and thus the cross section for
this process vanishes. Since the difference between Eqs. (6.26) and (6.21) is the spin of

the muon, the remaining term proportional to sin2 θ
2 has to originate in the interaction

of the electron’s spin with the muon’s magnetic moment (i.e. its spin).
Obviously the structure of the target is encoded in the angular distribution given by

the term in brackets in Eq. (6.21). Thus, by scattering off electrons of targets of interest
and measuring the angular distribution of the outgoing electrons, information about
the targets internal structure can be obtained. Specifically, any deviation from the
form of Eq. (6.21) hints to a non-point-like structure.
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Figure 6.2: e−p→ e−p scattering to lowest order in QED.

6.1.2 Elastic scattering on the nucleon

We are now in a position to investigate elastic electron-proton scattering for which
the leading order process is shown in Fig. 6.2. The structure of the amplitude for this
process is very similar to the corresponding amplitude of electron-muon scattering,
cf. Eq. (6.1). The major difference is that the interaction of the virtual photon with the
proton is no longer a pure vector interaction (γν), but, in our ignorance of the proton’s
structure, we have to assume a more general form:

iM = ūt′(k
′)(−ieγµ)ut(k) ·

−igµν

q2
· ūs′(p′)(−ieΓν)us(p)

⇒ M =
e2

q2
ūt′(k

′)γµut(k)ūs′(p
′)Γµus(p)

=
e2

q2
jµ(k, k′)Jµ(p, p′) , (6.27)

where we have introduced the hadronic current Jµ. Since Γµ transforms like a four-
vector, Lorentz invariance demands that the most general form must be constructed
out of γµ, γ5 and the incoming and outgoing momenta pµ and p′µ. However the

electromagnetic interaction conserves parity and so γ5 cannot be involved. Employing
the Dirac equation, cf. Appendix A.4.3, one finds, that the most general ansatz reads:

Γµ = Aγµ + B(p′ + p)µ + C(p′ − p)µ , (6.28)

where have introduced combinations of the momenta p, p′ for convenience and where
A, B and C are Lorentz scalars. They depend on the Lorentz invariant quantities
p2 = M2

p, p′2 = M2
p and p · p′ = M2

p − 1
2q

2. Thus, A, B and C depend only on

q2. Finally we can exploit the conservation of the hadronic current, which demands
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(remember: q = p′ − p):

qµ Jµ(p, p
′) !
= 0 (6.29)

⇒ūs′(p
′)
(

A/q + B(p2 − (p′)2) + Cq2
)

us′(p) = 0 (6.30)

⇒ūs′(p
′)
(

Cq2
)

us′(p) = 0 (6.31)

⇒C = 0 , (6.32)

where we have exploited p2 = (p′)2 = M2
p and the Dirac equation:

ūs′(p
′)/p
′ = ūs′(p

′)Mp (6.33)

/pus′(p) = Mpus′(p) . (6.34)

Thus, we are left with only two terms:

Γµ = Aγµ + B(p′ + p)µ . (6.35)

The (p′+ p)µ term actually contains a vector and a tensor interaction and it is conven-
tion to decouple these two by applying the Gordon identity, which reads for fermions
with mass m [HM84]:

ū(p′)γµu(p) = ū(p′)
[
(p′ + p)µ

2m
+ i

σµνq
ν

2m

]

u(p) , (6.36)

with the Dirac sigma symbol σµν = i
2

[
γµ,γν

]
. Thus, we can replace (p′ + p)µ in Eq.

(6.35):

Γµ = F1(q
2)γµ + F2(q

2)i
σµνq

ν

2Mp
. (6.37)

The form factors F1 and F2 are functions of the Lorentz invariants, which can be con-
structed out of p and p′ or, equivalently, p and q and there are only two independent
combinations, namely p2 = M2

p and q2. For the case of elastic scattering, which we
are considering here, p · q is not an independent quantity, cf. Eq. (6.14).
We have finally found the form of the hadronic current:

Jµ(p, p
′) = ūs′(p

′)
[

F1(q
2)γµ + F2(q

2)i
σµνq

ν

2Mp

]

us′(p) . (6.38)

Therefore, the squared amplitude, averaged over initial and summed over final spin
states becomes:

|M̄|2 = e4

q4
·
(

1

2 ∑
t,t′

ūt′(k
′)γµut(k)ūt(k)γ

νut′(k
′)

)

·
(

1

2 ∑
s,s′

ūs′(p
′)Γµus(p)ūs(p)Γνus′(p

′)

)

=
e4

q4
· Lµν · Hµν . (6.39)
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6.1 Electron scattering

The leptonic tensor Lµν was already calculated in Eq. (6.3). For the hadronic tensor
Hµν one finds:

Hµν =
1

2 ∑
s′
ūs′(p

′)Γµus′(p)ūs′(p)Γνus′(p
′)

=
1

2
TR
[(

/p
′ + Mp

)
Γµ

(

/p + Mp

)
Γν

]
. (6.40)

Again neglecting the electron mass, the contraction of Lµν and Hµν in the lab. frame
takes a form very similar to Eq. (6.18):

Lµν · Hµν

=16M2
pEE

′
[(

F21 (q
2)− q2

4M2
p
F22 (q

2)

)

cos2
θ

2
− q2

2M2
p

(

F1(q
2) + F2(q

2)
)2

sin2
θ

2

]

.

(6.41)

Thus, the cross section for elastic electron-proton scattering becomes, cf. Eq. (6.21):

dσlab
dΩ

=
α2

4E2 sin4 θ
2

E′

E

×
[(

F21 (q
2)− q2

4M2
p
F22 (q

2)

)

cos2
θ

2
− q2

2M2
p

(

F1(q
2) + F2(q

2)
)2

sin2
θ

2

]

. (6.42)

The last equation is the Rosenbluth formula. For q2 → 0 the photon wavelength be-
comes very large and thus, one expects that the structure of the proton is no longer
really resolved and it starts to look like a point-like particle with charge e and mag-
netic moment µp. This implies that the form factors should behave like:

F1(q
2 = 0) = 1 (6.43)

F2(q
2 = 0) = µp − 1 . (6.44)

Experimentally one finds µp ≈ 2.79 [Group10]. F1 and F2 are also known as Dirac
form factors. It is common to introduce combinations of F1 and F2, which are known
as electric and magnetic (Sachs) form factors:

GE = F1 +
q2

4M2
p
F2 (6.45)

GM = F1 + F2 . (6.46)

Note, that in the limit |~q|2 ≪ M2
p these form factors can be interpreted as the Fourier

transforms of the electric charge and magnetic moment distribution of the proton
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[HM84]. In terms of GE and GM the cross section takes the form:

dσlab
dΩ

=
α2

4E2 sin4 θ
2

E′

E

[

G2
E + τG2

M

1+ τ
cos2

θ

2
− 2τG2

M sin2
θ

2

]

, (6.47)

with τ = −q2
4M2

p
. Thus, by measuring the angular distribution of the scattered electrons

at fixed q2, information about the proton’s electric and magnetic structure can be
obtained. Many experiments performed in this way have indicated, that the electric
form factor takes a dipole form [HM84]:

GE(q
2) =

(

1− q2

0.71 GeV2

)−2
. (6.48)

In addition, experiments which rely on the Rosenbluth formula for data analysis,
including latest high precision measurements [Q+05], have determined a constant
ratio for the electric and magnetic form factor for −q2 ≤ 6 GeV2:

µpGE(q
2)

GM(q2)

∣
∣
∣
∣
∣
Rosenb.

≈ 1 . (6.49)

However, recent experiments, relying on the polarisation transfer technique for mea-
suring this ratio, show a systematic decrease of this ratio with −q2 [P+05], which is
inconsistent with the measurements employing the Rosenbluth analysis. The reso-
lution of this discrepancy seems to be the (apparently) too simple assumption, that
the electron almost exclusively interacts with the proton via one-photon exchange.
Theoretical approaches incorporating two-photon exchange contributions appear to
be able to describe the discrepancy [BMT05, ABC+05, AMT07].
Comparing the result (6.47) with the cross section for elastic scattering on the muon

(6.21) one finds, that if the proton were point-like, GE and GM would have to be
constant. However, Eq. (6.48) shows that this is not the case and so the proton must
have some inner structure. A very useful tool to investigate this structure is inelastic
electron scattering, which we will present in the next section.

6.1.3 Inelastic scattering on the nucleon

With increasing Q2 = −q2 the probability for elastic electron-proton scattering de-
creases significantly, since the elastic form factors behave like dipoles, cf. Eq. (6.48),
and the proton will most likely break up into fragments. Such a process, where the
initial state proton is destroyed and many fragments form the hadronic final state,
is called inelastic scattering and it is depicted in Fig. 6.3. Unlike the case of elastic
scattering, it is much more difficult to find the hadronic current, since the final state
can be comprised of all kinds of particles and not just a single proton state. However,
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p

kk′

q ↓

p′

X

e−

p

e−

Figure 6.3: e−p→ e−X inelastic scattering to lowest order in QED.

if one is only interested in the inclusive reaction it is possible to access this process on
the cross section level. For an n-particle final state the differential cross section reads,
cf. Appendix A.6:

dσ =
(2π)4 δ(4)

(
p+ k− k′ −∑

n
i=1 p

′
i

)

4
√

(p · k)2 −m2M2
p

|M̄|2 d3k′

(2π)3 2E′

n

∏
i=1

(

d3p′i
(2π)3 2(p′i)0

)

. (6.50)

As we want to describe an inclusive cross section, we have to take into account all
possible final states Xn, which we can achieve by summing over all these states:

dσep→eX = ∑
Xn

(2π)4 δ(4)
(
p+ k− k′ −∑

n
i=1 p

′
i

)

4
√

(p · k)2 −m2M2
p

|M̄Xn |
2 d3k′

(2π)3 2E′

n

∏
i=1

(

d3p′i
(2π)3 2(p′i)0

)

.

(6.51)

We may not know the exact form of the squared amplitude |M̄Xn |
2
, but, drawing on

the results for elastic scattering, we know that it can be decomposed into a leptonic
and a hadronic part:

|M̄Xn |
2
=

e4

q4
4πMpL

µν · Xµν , (6.52)

with the leptonic tensor Lµν, cf. Eq. (6.3). The factor 4πMp is just convention. Insert-
ing this ansatz into the cross section formula (6.51), one finds, that the cross section
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completely factorises:

dσep→eX =
1

4
√

(p · k)2 −m2M2
p

e4

q4
4πMpL

µν d3k′

(2π)3 2E′

×∑
Xn

(2π)4 δ(4)
(
p+ q−∑

n
i=1 p

′
i

)

4πMp
Xµν

n

∏
i=1

(

d3p′i
(2π)3 2(p′i)0

)

=
1

4
√

(p · k)2 −m2M2
p

e4

q4
4πMpL

µν d3k′

(2π)3 2E′
·Wµν . (6.53)

Once again we have to invoke general principles to constrain the otherwise unknown
hadronic part Wµν, which depends only on the external momenta p and q: since in
the squared and spin averaged/summed amplitude no γ matrices remain, Lorentz
invariance demands that Wµν must be constructed out of all possible combinations of

the metric tensor gµν, the Levi-Civita tensor ǫαβγµ and the momenta p and q. Since

parity is conserved by the electromagnetic force, no parity violating terms ǫαβγµpαqβ

can appear and we make the following ansatz:

Wµν = Agµν + Bpµpν + Cqµqν + D(pµqν + qµpν) + E(pµqν − qµpν) . (6.54)

Current conservation at the hadronic vertex demands:

qµXµν = qνXµν = 0⇒ qµWµν = qνWµν = 0 , (6.55)

from which follows:

E = 0 , (6.56)

(A+ Cq2 + Dp · q)qν + (Bp · q+ Dq2)pν = 0 , (6.57)

which can only be fulfilled for all pν and qν, if their coefficients vanish:

D = − p · q
q2

B (6.58)

C = − 1

q2
A− p · q

q2
D = − 1

q2
A+

(
p · q
q2

)2

B . (6.59)

Therefore, the hadronic part contains only two unknown functions:

Wµν = A

(

gµν −
qµqν

q2

)

+ B

(

pµpν +

(
p · q
q2

)2

qµqν −
p · q
q2

(pµqν + qµpν)

)

= W1

(

−gµν +
qµqν

q2

)

+W2
1

M2
p

(

pµ −
p · q
q2

qµ

)(

pν −
p · q
q2

qν

)

, (6.60)
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6.1 Electron scattering

where we have introduced the standard inelastic structure functionsW1 andW2. Since
they must be Lorentz scalars, they can only be functions of the invariants, which
can be constructed out of p and q. For a final hadronic state with invariant mass
(p+ q)2 = W2 these invariants are q2, p2 = M2

p and:

p · q =
W2 − q2 −M2

p

2
. (6.61)

Thus, except for the constant p2, there are two independent dynamical variables in-
volved. Instead of W2, however, it will prove to be useful to introduce Bjorken-x:

x =
−q2
2p · q =

Q2

2p · q . (6.62)

Note that in the kinematics of electron scattering q2 is always negative, cf. Eq. (6.13),
and one usually introduces the positive variable Q2 = −q2. In the lab. frame the
Bjorken variable takes a simple form:

x =
Q2

2Mpν
, (6.63)

with ν = E− E′, as above. Comparing Eqs. (6.14) and (6.63), one finds in the limit of
elastic scattering: x = 1. Therefore, Bjorken-x can be understood as a measure for the
inelasticity of the process. It is important to note at this point, that elastic scattering
can be described by only one dynamical variable (e.g. Q2), while inelastic scattering
always involves two independent variables (e.g. Q2 and x).
Now that we have found the general form of the hadronic part Wµν, we can finally

calculate its contraction with the leptonic tensor. For this purpose it is useful to
rewrite the leptonic tensor in terms of q = k− k′ and q′ = k+ k′:

Lµν = q′µq′ν − qµqν + gµνq2 . (6.64)

The term qµqν does not contribute due to current conservation and so in the lab. frame
the contraction reads (again we treat the electrons as massless):

LµνWµν = W1 (−(q′)2 − 3q2) +W2
1

M2
p

{

(p · q′)2 + q2
(

M2
p −

p · q
q2

)}

= W1 4k · k′ +W2
1

M2
p

{

[p · (k+ k′)]2 − [p · (k− k′)]2 − 2(k · k′)M2
p

}

= W1 4k · k′ +W2
1

M2
p

{

4(p · k)(p · k′)− 2(k · k′)M2
p

}

= 4EE′
[

2W1 sin
2 θ

2
+W2

(

1− sin2
θ

2

)]

= 4EE′
[

W2 cos
2 θ

2
+ 2W1 sin

2 θ

2

]

. (6.65)
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Finally, the cross section (6.53) becomes:

dσep→eX

dΩdE′

∣
∣
∣
∣
lab

=
1

4MpE

e4

(2π)3 q4

4πMpE
′2

2E′
Lµν ·Wµν

=
α2

q4
E′

E
Lµν ·Wµν

=
α2

16E2E′2 sin4 θ
2

E′

E
Lµν ·Wµν

=
α2

4E2 sin4 θ
2

[

W2(x,Q
2) cos2

θ

2
+ 2W1(x,Q

2) sin2
θ

2

]

, (6.66)

where we have made the dependence of the structure functions on x and Q2 ex-
plicit. By measuring the angular and the energy distribution of the scattered electrons
one can now determine the inelastic structure functions W1 and W2. Note that the
structure functions have dimension (energy)−1 and it is common to introduce the di-
mensionless combinations F1 = MpW1 and F2 = νW2 instead. In Fig. 6.4 we show

 0
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 10  100

νW
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2 )

Q2 (GeV2)

x=0.175

Figure 6.4: Inelastic structure function F2 = νW2 as a function of Q2 at fixed
x measured in µp → µx. Data are from the European Muon Collaboration
[Collaboration85].

the experimentally obtained F2 at fixed x = 0.175 over a wide range of Q2. The
measurement was done by the European Muon Collaboration in µp → µX reactions
[Collaboration85]. It was an important discovery, that within the error bars the struc-
ture function appears to be constant with Q2. This behavior (dependence on only one
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6.2 The parton model

dimensionless variable, namely x) is called Bjorken scaling and is a hint, that actually
an elastic scattering process is taking place. This points to the composite nature of
the proton, since this is the kind of behavior one would expect for an interaction with
point-like particles inside the proton. In the next section these particles, called partons
by Bjorken, will reveal themselves to be the quarks, the interaction among which is
governed by QCD.

6.2 The parton model

In the last section we determined that inelastic electron-proton scattering strongly
indicates the presence of point-like particles inside the proton. This observation led
to the advent of the parton model, which we will introduce in this section. First we
will make the connection between the inelastic structure functions and the partons
and then derive the parton distribution functions (PDFs) and explore some of their
properties. Since Bjorken scaling is actually violated by the interaction among the
partons, we will investigate the origin of the scaling violations in more detail. Finally
we will introduce the DGLAP evolution equations, which provide means to take into
account the scaling violations in the PDFs.

6.2.1 Bjorken scaling

We will now investigate the consequences for the inelastic structure functions F1 =
MpW2 and F2 = νW1, if we assume the partons to be point-like spin-12 particles. For
this purpose we recall the relevant cross sections. For elastic electron-muon scattering
we found:

dσeµ→eµ

dΩ
=

α2

4E2 sin4 θ
2

E′

E

[

cos2
θ

2
− q2

2M2
sin2

θ

2

]

, (6.67)

and for inelastic electron-proton scattering:

dσep→eX

dΩdE′

∣
∣
∣
∣
lab

=
α2

4E2 sin4 θ
2

[

W2(x,Q
2) cos2

θ

2
+ 2W1(x,Q

2) sin2
θ

2

]

. (6.68)

If the virtual photon actually interacts with only one spin-12 particle (a quark) inside
the proton, the inelastic cross section (6.68) should become the elastic cross section
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(6.67), except for the differing charge of the quark. Note that (cf. Eq. (6.20)):

∫

dE′δ
(

ν− Q2

2m

)

=
∫

dE′δ
(

E− E′ − 2

m
EE′ sin2

θ

2

)

=
∫

dE′δ
(

E− E′(1+
2

m
E sin2

θ

2
)

)

=
E′

E
. (6.69)

And so the demand on the structure functions is (the hat indicates the partonic nature
of the structure functions):

Ŵ2 → δ

(

ν− Q2

2m

)

, (6.70)

2Ŵ1 →
Q2

2m2
δ

(

ν− Q2

2m

)

, (6.71)

where m is the mass of the quark. This implies:

νŴ2 → δ

(

1− Q2

2mν

)

, (6.72)

2mŴ1 →
Q2

2mν
δ

(

1− Q2

2mν

)

, (6.73)

and one explicitly sees, that both structure functions only depend on the dimension-

less variable Q2

2mν . Nonetheless, Eqs. (6.72) and (6.73) cannot be the final answer, since
we cannot tell on which one of the proton’s constituents the scattering took place. If
we, however, assume that the scattering occurs exclusively on one of the partons, we
can obtain the full structure functions (and so the entire cross section) by incoherently
summing up the individual partonic scattering cross sections. This assumption is also
known as the plane wave impulse approximation, especially in nuclear physics. It
relies on the premise, that while the hard scattering process takes place, the partons
do not interact among themselves and can thus be treated as quasi-free.
If the partons are quasi-free we can picture the proton as a bunch of partons moving

along, each of which is carrying a fraction ξ of the proton’s four momentum. Then the
relation between the partonic (indicated by a hat) and the proton’s four momentum
is simply:

p̂ = ξp , (6.74)

from which immediately follows:

m2 = ( p̂)2 = ξ2p2 = ξ2M2
p

⇒ m = ξMp . (6.75)
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This implies that the structure functions become:

νŴ2 → δ

(

1− Q2

2ξMpν

)

= δ

(

1− x

ξ

)

, (6.76)

2mŴ1 →
Q2

2ξMpν
δ

(

1− Q2

2ξMpν

)

=
x

ξ
δ

(

1− x

ξ

)

, (6.77)

and so by virtue of the δ-functions the virtual photon can only interact with a parton

carrying exactly the right momentum fraction x = Q2

2Mpν ! For each type of parton i

one can now define the probability to find such a parton carrying the momentum
fraction ξ by fi(ξ). These probability distributions are known as parton distributions
functions (PDFs) and we will study their general properties in section 6.2.3.
Now we are ready to sum up all the individual partonic contributions. The sum

runs over all parton types i and over all possible momentum fractions ξ weighted by
the probability to actually find a parton with momentum fraction ξ:

F2(x) := νW2 = ∑
i

∫

dξ e2i fi(ξ)νŴ2

= ∑
i

∫

dξ e2i fi(ξ)δ

(

1− x

ξ

)

= ∑
i

e2i x fi(x) , (6.78)

F1(x) := MpW1 = ∑
i

∫

dξ e2i fi(ξ)MpŴ1

= ∑
i

∫

dξ e2i fi(ξ)
Mp

2m

x

ξ
δ

(

1− x

ξ

)

= ∑
i

∫

dξ e2i fi(ξ)
x

2ξ2
δ

(

1− x

ξ

)

=
1

2 ∑
i

e2i fi(x) , (6.79)

where we have taken into account the possible different electric charges eie of the
different parton types and where we have adopted the standard convention for the
structure functions F1 and F2. A very important consequence is the Callan-Gross
relation:

2xF1(x) = F2(x) . (6.80)

Even in total ignorance of the PDFs this relation provides a prediction testable by
experiment and it turns out, that it is well supported by the data. Furthermore it
shows that the partons have to carry spin 1

2 , since for spin-0 particles F1 would vanish,
cf. Eq. (6.26).
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6.2.2 Formal derivation of the parton model

To justify the ad-hoc introduction of the PDFs in the last subsection, we here will
present a more rigorous derivation of the parton model which follows the ideas pre-
sented in [Jaf85]. The basic course of things will be the following: one rewrites the
hadronic tensor Wµν in terms of hadronic currents. The major assumption then is,
that one can replace those with the currents of free quarks. After some current alge-

bra and consequently exploiting the Bjorken limit (Q2, ν→ ∞ , Q
2

ν = const.) one finds
that the hadronic tensor is basically given by a sum of quark matrix elements that can
be identified with the PDFs.
We start out by rewriting the hadronic tensor of Eq. (6.53) in terms of the hadronic

currents:

Wµν =
1

4πMp
∑
X

(2π)4δ(4) (p+ q− pX) 〈p
∣
∣Jµ(0)

∣
∣X〉〈X |Jν(0)| p〉 , (6.81)

with the proton state |p〉, where the sum over X runs over all final states and where we
have chosen the interaction to take place at x = 0 in space-time. The four-dimensional
δ-function can also be represented by a Fourier integral and thus:

Wµν =
1

4πMp
∑
X

∫

d4ξ exp (i(p+ q− pX)ξ) 〈p
∣
∣Jµ(0)

∣
∣X〉〈X |Jν(0)| p〉 . (6.82)

We shift the current Jµ to the space-time point ξ with the help of the momentum
operator P:

〈p
∣
∣exp (ipξ) Jµ(0) exp (−ipxξ)

∣
∣X〉 = 〈p

∣
∣exp (iPξ) Jµ(0) exp (−iPξ)

∣
∣X〉

= 〈p
∣
∣Jµ(ξ)

∣
∣X〉 . (6.83)

Since the final states form a complete set, we can exploit the identity ∑X |X〉〈X| = 1
and find:

Wµν =
1

4πMp

∫

d4ξ exp (iqξ) 〈p
∣
∣Jµ(ξ)Jν(0)

∣
∣ p〉 . (6.84)

Note the following relation:
∫

d4ξ exp (iqξ) 〈p
∣
∣Jν(0)Jµ(ξ)

∣
∣ p〉

=∑
X

∫

d4ξ exp (iqξ) 〈p |Jν(0)|X〉〈X
∣
∣Jµ(ξ)

∣
∣ p〉

=∑
X

∫

d4ξ exp (i(px + q− p)ξ) 〈p |Jν(0)|X〉〈X
∣
∣Jµ(0)

∣
∣ p〉

=∑
X

(2π)4δ(4) (px + q− p) 〈p |Jν(0)|X〉〈X
∣
∣Jµ(0)

∣
∣ p〉 . (6.85)
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We will work in the proton rest frame, where one finds that the δ-function in the last
equation vanishes: in this frame the energy of the virtual photon is positive (q0 =
ν > 0) and the energy of the proton target is just its rest mass (p0 = Mp). Since the
electromagnetic interaction conserves the baryon number B, the final state X must
also have B = 1 like the proton. As the proton is the lightest baryon, the energy
of the final state has to be at least equal to the proton’s rest mass (p0X ≥ Mp). Also

in deep inelastic scattering one finds q2 = ν2 − (~q)2 < 0 and so there is always a
momentum transfer to the target. Then the energy of the final state actually obeys

p0X ≥
√

M2
p + (~q)2 > Mp = p0. Thus, the δ-function in Eq. (6.85) requires q0 =

p0 − p0X < 0, which is obviously not fulfilled in the proton rest frame. Therefore, we
can simply replace the current product in Eq. (6.84) by a commutator, since the term
we have subtracted vanishes:

Wµν =
1

4πMp

∫

d4ξ exp (iqξ) 〈p
∣
∣
[
Jµ(ξ), Jν(0)

]∣
∣ p〉 . (6.86)

The major assumption of QCD now is, that the virtual photon actually interacts with
the quarks and, thus, we can replace hadronic currents by quark currents. In addition
in the parton model one assumes the quarks to be quasi-free:

Jµ(ξ) = eqΨ̄(ξ)γµΨ(ξ) , (6.87)

Jν(0) = eqΨ̄(0)γνΨ(0) , (6.88)

(6.89)

where the photon interacts with the fractional quark charge eq. Using the following
commutator and anticommutator relations we can rewrite the current commutator:

[AB,C] = A [B,C]− [C, A] B

[A, BC] = {A, B}C− B {A,C} . (6.90)

The current commutator then becomes (the sum runs over all quark flavors i):
[
Jµ(ξ), Jν(0)

]
= ∑

i

e2i
[
ψ̄i(ξ)γµψi(ξ), ψ̄i(0)γνψi(0)

]

= ∑
i

e2i
(
ψ̄i(ξ)γµ [ψi(ξ), ψ̄i(0)γνψi(0)]

− [ψ̄i(0)γνψi(0), ψ̄i(ξ)] γµψi(ξ)
)

= ∑
i

e2i
(
ψ̄i(ξ)γµ {ψi(ξ), ψ̄i(0)} γνψi(0)

−ψ̄i(0)γν {ψ̄i(ξ),ψi(0)} γµψi(ξ)
)
, (6.91)

where we have exploited, that:

{ψi(ξ),ψi(0)} = {ψ̄i(ξ), ψ̄i(0)} = 0 . (6.92)
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To evaluate the anticommutators in Eq. (6.91) we note, that the quark fields are given
by [PS95] (we omit the index i for simplicity):

ψ(ξ) =
∫

d3k

(2π)3
√
2k0

∑
s

(

as(~k)us(~k) exp(−ik · ξ) + b†s (~k)vs(~k) exp(ik · ξ)
)

, (6.93)

ψ̄(0) =
∫

d3k′

(2π)3
√

2(k′)0
∑
s′

(

a†s′(
~k′)ūs′(~k

′) + bs′(~k)v̄s′(~k
′)
)

, (6.94)

and all the annihilation and creation operators anticommute, except:

{

as(~k), a
†
s′(
~k′)
}

= (2π)3δ(3)
(

~k−~k′
)

δss′ , (6.95)
{

bs(~k), b
†
s′(
~k′)
}

= (2π)3δ(3)
(

~k−~k′
)

δss′ . (6.96)

Then all that remains of the first anticommutator in Eq. (6.91) is:

{ψ(ξ), ψ̄(0)} =
∫

d3k

(2π)3
√
2k0

∑
s

∫
d3k′

(2π)3
√

2(k′)0
∑
s′

×
({

as(~k), a
†
s′(
~k′)
}

us(~k)ūs′(~k
′) exp(−ik · ξ)

+
{

bs(~k), b
†
s′(
~k′)
}

vs(~k)v̄s′(~k
′) exp(ik · ξ)

)

=
∫

d3k

(2π)32k0 ∑
s

(

us(~k)ūs(~k) exp(−ik · ξ) + vs(~k)v̄s(~k) exp(ik · ξ)
)

=
∫

d3k

(2π)32k0
((/k +m) exp(−ik · ξ) + (/k −m) exp(ik · ξ))

= (i/∂ξ +m)
∫

d3k

(2π)32k0
(exp(−ik · ξ)− exp(ik · ξ)) , (6.97)

where have exploited the completeness relation for the quark spinors, cf. Appendix
A.4.3. In the Bjorken limit the quark masses give only corrections to the massless case,
and an expansion of the last integral around m = 0 yields [BD65, IZ80] (note a sign
error in [Jaf85]):

{ψ(ξ), ψ̄(0)} = /∂ξ

[
1

2π
ǫ(ξ0)δ(ξ2)

]

+O(m) , (6.98)

with ǫ(x) = x
|x| . We note that:

{ψ̄(ξ),ψ(0)} = {ψ(ξ), ψ̄(0)}† = /∂ξ

[
1

2π
ǫ(ξ0)δ(ξ2)

]

, (6.99)
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and so the current commutator of Eq. (6.91) has become:

[
Jµ(ξ), Jν(0)

]
= ∑

i

e2i
[
ψ̄i(ξ)γµγργνψi(0)− ψ̄i(0)γνγργµψi(ξ)

]
∂

ρ
ξ

[
1

2π
ǫ(ξ0)δ(ξ2)

]

.

(6.100)

The product of γ-matrices can be decomposed into a symmetric and an antisymmetric
part:

γµγργν = Sµρνσγσ − iǫµρνσγσγ5 , (6.101)

with the antisymmetric tensor ǫ and

Sµρνσ = gµρgνσ + gµσgνρ − gµνgρσ . (6.102)

Since the leptonic tensor Lµν is symmetric, we only have to retain the symmetric part
and can replace in the current commutator:

γµγργν → Sµρνσγσ , (6.103)

γνγργµ → Sνρµσγσ = Sµρνσγσ . (6.104)

Thus, we so far have found for the hadronic tensor in the Bjorken limit:

lim
Q2→∞

Wµν =
Sµρνσ

8π2Mp

∫

d4ξ exp(iq · ξ)

×∑
i

e2i 〈p |ψ̄i(ξ)γ
σψi(0)− ψ̄i(0)γ

σψi(ξ)| p〉∂ρ
ξ

[

ǫ(ξ0)δ(ξ2)
]

(6.105)

Before we go on, we shortly investigate the space-time region probed in deep inelas-
tic scattering. We will work here in the proton rest frame and we align the negative
z-axis along the momentum of the virtual photon. Then one finds:

q =
(

ν, 0, 0,−
√

ν2 +Q2
)

, (6.106)

which obviously fulfills q2 = −Q2. In the Bjorken limit we have Q2 → ∞ but we keep

x = Q2

2Mpν fixed. In this limit the four momentum of the virtual photon becomes:

q =

(

ν, 0, 0,−ν

√

1+
Q2

ν2

)

=



ν, 0, 0,−ν

√

1+
4M2

px
2

Q2





≃
(

ν, 0, 0,−ν

(

1+
1

2

4M2
px

2

Q2

))

=
(
ν, 0, 0,−ν−Mpx

)
. (6.107)
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In light cone coordinates (cf. Appendix A.2) we find in the Bjorken limit, that only
one component of q becomes infinite:

q− = q0 − q3 → ∞ (6.108)

q+ = q0 + q3 = −Mpx = −Q2

2ν
. (6.109)

The space-time separation ξ of the currents is the conjugate variable of q in the Fourier
transform in Eq. (6.86):

q · ξ =
1

2

(
q+ξ− + q−ξ+

)
, (6.110)

and in the limit q− → ∞, the theory of Fourier transforms shows, that the integrand
is dominated by the region ξ+ ≃ 0 [Jaf85]. As a consequence of q+ = −Mpx one

also finds, that |ξ−| < 2
Mpx

[Jaf85, LS85]. Microcausality requires that the commu-

tator
[
Jµ(ξ), Jν(0)

]
of the two observables vanishes for spacelike distances ξ2 < 0.

Therefore, contributions to the integral in (6.86) can only come from the region which
satisfies ξ2 > 0, since otherwise the space-time points where the two currents act were
separated by a space-like distance. Then one obtains the condition:

ξ2 = ξ+ξ− −~ξ 2
⊥ ≥ 0 , (6.111)

and so ξ+ ≃ 0 forces ~ξ⊥ → 0. Obviously only ξ− stays finite in the Bjorken limit and
the time and space distances probed in deep inelastic scattering become:

|ξ0| = 1

2

∣
∣ξ+ + ξ−

∣
∣ <

1

Mpx
, (6.112)

|ξ3| = 1

2

∣
∣ξ+ − ξ−

∣
∣ <

1

Mpx
, (6.113)

which shows that deep inelastic scattering in the Bjorken limit is a light-cone domi-
nated process (ξ2 → 0). A general misconception is, that it probes short distances and
time scales, which is evidently only true, if x does not become too small.
Now we come back to Eq. (6.105) and we note that we can get rid of the derivative

of the δ-function, if we integrate by parts:

∂
ρ
ξ

(

exp(iq · ξ)∑
i

e2i 〈p |ψ̄i(ξ)γ
σψi(0)− ψ̄i(0)γ

σψi(ξ)| p〉
)

=iqρ

(

exp(iq · ξ)∑
i

e2i 〈p |ψ̄i(ξ)γ
σψi(0)− ψ̄i(0)γ

σψi(ξ)| p〉
)

+O(pρ) , (6.114)
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where the terms with the proton momentum O(pρ) come from the derivative of the
matrix element (the quark fields) and can be neglected in the Bjorken limit. Then after
partial integration the integral reads:

lim
Q2→∞

Wµν = lim
q−→∞

− Sµρνσ

8π2Mp
iqρ
∫

d4ξ exp(iq · ξ)

×∑
i

e2i 〈p |ψ̄i(ξ)γ
σψi(0)− ψ̄i(0)γ

σψi(ξ)| p〉
[

ǫ(ξ0)δ(ξ2)
]

, (6.115)

In light-cone coordinates the integral becomes:

lim
Q2→∞

Wµν = lim
q−→∞

− Sµρνσ

8π2Mp
iqρ
∫

1

2
dξ+dξ−d~ξ⊥ exp

(
i

2
q+ξ− +

i

2
q−ξ+

)

×∑
i

e2i 〈p |ψ̄i(ξ)γ
σψi(0)− ψ̄i(0)γ

σψi(ξ)| p〉

×
[

ǫ

(
1

2
(ξ+ + ξ−)

)

δ(ξ+ξ− − ξ2⊥)
]

. (6.116)

Comparing the coefficient of (−gµν) in Eqs. (6.60) and (6.116), one finds for the struc-
ture function F1 = MpW1:

F1 = lim
q−→∞

− gρσ

8π2
iqρ
∫

1

2
dξ+dξ−d~ξ⊥ exp

(
i

2
q+ξ− +

i

2
q−ξ+

)

×∑
i

e2i 〈p |ψ̄i(ξ)γ
σψi(0)− ψ̄i(0)γ

σψi(ξ)| p〉

×
[

ǫ

(
1

2
(ξ+ + ξ−)

)

δ(ξ+ξ− − ξ2⊥)
]

. (6.117)

We can use the δ-function to perform the ξ⊥ integration:

∫

d~ξ⊥δ(ξ+ξ− − ξ2⊥) =
2π∫

0

dφ

∞∫

0

dξ⊥ξ⊥δ(ξ+ξ− − ξ2⊥) = π . (6.118)

In the Bjorken limit q+ ≪ q− and thus:

γσq
σ =

1

2
γ+q− , (6.119)

where the light-cone matrices are γ± = γ0 ± γ3. The structure function has become:

F1 = lim
q−→∞

− 1

8π
iq−

∫
1

2
dξ+dξ− exp

(
i

2
q+ξ− +

i

2
q−ξ+

)

×∑
i

e2i 〈p
∣
∣ψ̄i(ξ)γ

+ψi(0)− ψ̄i(0)γ
+ψi(ξ)

∣
∣ p〉

×
[
Θ
(
ξ+
)

Θ
(
ξ−
)
−Θ

(
−ξ+

)
Θ
(
−ξ−

)]
, (6.120)
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where the Θ-functions guarantee that ξ2⊥ = ξ+ξ− > 0. We can perform the ξ+

integration, if we integrate by parts:

∂ξ+

(

exp

(
i

2
q+ξ− +

i

2
q−ξ+

)

∑
i

e2i 〈p
∣
∣ψ̄i(ξ)γ

+ψi(0)− ψ̄i(0)γ
+ψi(ξ)

∣
∣ p〉
)

=
i

2
q−
(

exp

(
i

2
q+ξ− +

i

2
q−ξ+

)

∑
i

e2i 〈p
∣
∣ψ̄i(ξ)γ

+ψi(0)− ψ̄i(0)γ
+ψi(ξ)

∣
∣ p〉
)

+O(p−) ,

(6.121)

and so F1 reads (note a second sign error in [Jaf85]):

F1 = lim
q−→∞

1

8π

∫

dξ+dξ− exp

(
i

2
q+ξ− +

i

2
q−ξ+

)

×∑
i

e2i 〈p
∣
∣ψ̄i(ξ)γ

+ψi(0)− ψ̄i(0)γ
+ψi(ξ)

∣
∣ p〉δ(ξ+)

= lim
q−→∞

1

8π

∫

dξ− exp

(
i

2
q+ξ−

)

∑
i

e2i 〈p
∣
∣ψ̄i(ξ)γ

+ψi(0)− ψ̄i(0)γ
+ψi(ξ)

∣
∣ p〉 ,

(6.122)

with ξ+ = ξ⊥ = 0. In the matrix element we find the following combination of
γ-matrices:

ψ̄γ+ψ = ψ†γ0
(

γ0 + γ3
)

ψ = ψ†
(

1+ γ0γ3
)

ψ , (6.123)

which is related to the operators defined by:

P± =
1

4
γ∓γ±

=
1

4

(

γ0 ∓ γ3
) (

γ0 ± γ3
)

=
1

4

(

1∓ γ3γ0 ± γ0γ3 −
(

γ3
)2
)

=
1

4

(

2± 2γ0γ3
)

=
1

2

(

1± γ0γ3
)

, (6.124)

where we have used the definition of the γ-matrices {γµ,γν} = 2gµν. The properties
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of the operators P± are easily found:

P+ + P− = 1 , (6.125)

(
P±
)2

=
1

4




1± 2γ0γ3 + γ0γ3γ0

︸ ︷︷ ︸

−γ3

γ3






=
1

2

(

1± γ0γ3
)

= P± , (6.126)

P±P∓ =
1

4

(

1± γ0γ3 ∓ γ0γ3 − γ0γ3γ0γ3
)

= 0 . (6.127)

The properties of P± are exactly those of projection operators and so we can define
"+"- and "−"-components of the quark fields as:

ψ± = P±ψ . (6.128)

Then Eq. (6.123) becomes:

ψ̄γ+ψ = 2ψ†P+ψ = 2ψ†(P+)2ψ = 2ψ†
+ψ+ , (6.129)

since (P+)† = P+. The structure function simplifies to:

F1 = lim
q−→∞

1

4π

∫

dξ− exp

(
i

2
q+ξ−

)

∑
i

e2i 〈p
∣
∣
∣ψ†

i+(ξ)ψi+(0)− ψ†
i+(0)ψi+(ξ)

∣
∣
∣ p〉 .

(6.130)

Before we go on, we note that only connected matrix elements contribute to the
hadronic tensor Wµν and, thus, to the structure function F1. This implies that we
only have to consider the normal ordered product of the quark fields ψ̄ and ψ. How-
ever, under the normal ordering operator all the annihilation and creation operators
in Eqs. (6.93) and (6.94) anticommute and one finds:

〈

p
∣
∣
∣ψ†

i (0)ψi(ξ)
∣
∣
∣ p
〉∣
∣
∣
conn.

=
〈

p
∣
∣
∣: ψ†

i (0)ψi(ξ) :
∣
∣
∣ p
〉

= −
〈

p
∣
∣
∣ψi(ξ)ψ

†
i (0)

∣
∣
∣ p
〉∣
∣
∣
conn.

. (6.131)

Therefore, we can switch the second term in the matrix element of Eq. (6.130) and
recover:

F1 = lim
q−→∞

1

4π

∫

dξ− exp

(
i

2
q+ξ−

)

∑
i

e2i 〈p
∣
∣
∣ψ†

i+(ξ)ψi+(0) + ψi+(ξ)ψ
†
i+(0)

∣
∣
∣ p〉 .

(6.132)
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One can now take away the ξ dependence from the quark fields, if one inserts a
complete set of states |n〉 (again P is the momentum operator):

〈

p
∣
∣
∣ψi+(ξ)ψi+(0) + ψi+(ξ)ψ

†
i+(0)

∣
∣
∣ p
〉

= ∑
n

(〈

p
∣
∣
∣ψ†

i+(ξ)
∣
∣
∣ n
〉

〈n |ψi+(0)| p〉+ 〈p |ψi+(ξ)| n〉
〈

n
∣
∣
∣ψ†

i+(0)
∣
∣
∣ p
〉)

= ∑
n

(〈

p
∣
∣
∣exp (iPξ)ψ†

i+(0) exp (−iPξ)
∣
∣
∣ n
〉

〈n |ψi+(0)| p〉

+ 〈p |exp (iPξ)ψi+(0) exp (−iPξ)| n〉
〈

n
∣
∣
∣ψ†

i+(0)
∣
∣
∣ p
〉)

= ∑
n

(〈

p
∣
∣
∣exp (ip · ξ)ψ†

i+(0) exp (−ipn · ξ)
∣
∣
∣ n
〉

〈n |ψi+(0)| p〉

+ 〈p |exp (ip · ξ)ψi+(0) exp (−ipn · ξ)| n〉
〈

n
∣
∣
∣ψ†

i+(0)
∣
∣
∣ p
〉)

= ∑
n

exp

(
i

2
(p+ − p+n ) · ξ−

)(

|〈n |ψi+(0)| p〉|2 +
∣
∣
∣

〈

n
∣
∣
∣ψ†

i+(0)
∣
∣
∣ p
〉∣
∣
∣

2
)

, (6.133)

where we have used ξ+ = ξ⊥ = 0. The ξ−-integration is now easy to perform:

∫

dξ− exp

(
i

2
(q+ + p+ − p+n )

)

= 2 · 2π · δ
(
q+ + p+ − p+n

)

= 4π · δ
(
p+ − xp+ − p+n

)
, (6.134)

where we exploited, that in the proton rest frame p+ = Mp and so q+ = −Mpx =
−xp+. Finally the structure function F1 has become:

F1 = ∑
i

e2i ∑
n

δ
(
p+ − xp+ − p+n

)
(

|〈n |ψi+(0)| p〉|2 +
∣
∣
∣

〈

n
∣
∣
∣ψ†

i+(0)
∣
∣
∣ p
〉∣
∣
∣

2
)

= ∑
i

e2i ( fi(x) + f ī(x)) , (6.135)

where we finally have found the parton distributions functions:

fi(x) = ∑
n

δ
(
p+ − xp+ − p+n

)
|〈n |ψi+(0)| p〉|2 , (6.136)

f ī(x) = ∑
n

δ
(
p+ − xp+ − p+n

)
∣
∣
∣

〈

n
∣
∣
∣ψ†

i+(0)
∣
∣
∣ p
〉∣
∣
∣

2
, (6.137)

which are only functions of x. fi(x) can be understood as the probability to remove
from the proton a quark of flavor i with momentum fraction x and leave behind a
state with momentum p+n = (1− x)p+ [Jaf85].
At this point it is useful to remember the basic assumptions that entered into this

result: first the parton model assumption, namely that the virtual photon interacts
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with only one quasi-free quark or antiquark inside the proton and thus the hadronic
currents can be replaced by free quark currents. And second the Bjorken limit, the
rigorous exploitation of which led to the final form of the structure function F1. Thus,
Eq. (6.135) finally justifies the ad-hoc introduction of the PDFs in Eqs. (6.78) and (6.79).

6.2.3 General properties of parton distribution functions

In the last section we have derived the PDFs of the proton and in this section we will
explore some of their properties. The proton belongs to what is usually defined as
matter (as opposed to antimatter) and in the simplest ansatz, it can be pictured as
being composed of three constituent quarks (two up-quarks and one down-quark),
which exactly make up the quantum numbers of the proton: the up-quarks carry
spin 1

2 , isospin z-component 1
2 and electric charge 2

3e and the down-quarks carry spin
1
2 , isospin z-component − 1

2 and electric charge − 2
3e [Group10]. Thus, in the lowest

possible state sit two up-quarks with opposite spin and one unpaired down-quark,
which exactly form a state with spin 1

2 , isospin z-component 1
2 and electric charge

+e, the proton. Beside these valence quarks the proton contains antimatter particles,
namely the antiquarks given by the distribution in Eq. (6.137). They originate in the
interaction of the valence quarks, which is governed by QCD: the gluons exchanged by
the valence quarks can decay into quark-antiquark pairs, which are called sea quarks.
Thus, the virtual photon, which probes the proton in deep inelastic scattering, does
not only see the valence quarks, but it can also scatter on a sea quark. Therefore, the
up-quark and down-quark distributions inside the proton can be written as:

u(x) = uv(x) + us(x) (6.138)

ū(x) = ūs(x) , (6.139)

d(x) = dv(x) + ds(x) (6.140)

d̄(x) = d̄s(x) , (6.141)

where the indices v and s stand for valence and sea, respectively. Since the proton does
not carry any of the quantum numbers of the heavier quarks (strangeness, charm,
. . . ), these quark flavors can only exist as sea quarks and so e.g. the strange-quark
distributions read:

s(x) = ss(x) (6.142)

s̄(x) = s̄s(x) . (6.143)

Since the charm, top and bottom quark flavors are already much heavier than the
proton itself, their distributions are heavily suppressed and we will neglect them
from now on.
The quantum numbers of the proton can now be expressed in sum rules, which con-

strain the different distributions. For charge e, isospin z-component 1
2 and strangeness
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0 one finds [HM84]:

1∫

0

dx (u(x)− ū(x)) = 2 , (6.144)

1∫

0

dx
(
d(x)− d̄(x)

)
= 1 , (6.145)

1∫

0

dx (s(x)− s̄(x)) = 0 . (6.146)

The total momentum of the proton must be carried by its constituents and therefore
the momentum sum rule reads:

1∫

0

dxx
(
u(x) + ū(x) + d(x) + d̄(x) + s(x) + s̄(x)

)
= 1− xg , (6.147)

where xg is the momentum fraction carried by the gluons inside the proton:

1∫

0

dxg(x) = xg . (6.148)

The gluon distribution g(x) is not directly accessible in deep inelastic scattering, since
the gluons carry no electric charge.
The neutron is the isospin partner of the proton and if one assumes isospin sym-

metry (which is a reasonable assumption, since, for example, the masses of proton
and neutron are almost equal) the quark distributions of the neutron are fixed by the
proton distributions:

up(x) = dn(x) , (6.149)

dp(x) = un(x) , (6.150)

sp(x) = sn(x) , (6.151)

and analogously for the antiquarks. For the antiproton one finds simply by charge
conjugation:

up(x) = ū p̄(x) , (6.152)

dp(x) = d̄ p̄(x) , (6.153)

sp(x) = s̄ p̄(x) , (6.154)
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and vice versa for the antiquarks. We will exploit the relations (6.149- 6.154) when
we consider DY processes in proton-nucleus (proton-neutron) or antiproton-proton
reactions.

Note that the PDFs obviously carry information especially about the soft interac-
tions of the quarks and gluons inside the proton, neutron, . . . . Their non-perturbative
nature makes them so far inaccessible to calculational approaches. Thus, in practice
they are fitted to the available experimental data from e.g. deep inelastic scattering
and DY processes, taking into account basic principles as the sum rules shown above.
An overview of properties and applications of PDFs can be found e.g. in [ESW96].

6.2.4 Scaling violations and the DGLAP equations

The discovery of Bjorken scaling, i.e. the dependence of the deep inelastic structure
functions F1 and F2 on only one universal variable x, was an important step towards
the parton model of the nucleon. However, there is experimental evidence, that
Bjorken scaling is actually weakly broken and the structure functions do also depend
on Q2. The quantitative explanation of these scaling violations is one of the successes
of QCD which incorporates the parton model in its high-energy limit (asymptotic
freedom), but goes beyond it for large, but finite Q2.

Analysing the data for F2 over a wide range of Q2 and for different values of x
one finds (in contrast to Bjorken scaling as implied by Fig. 6.4 above) the situation
depicted in Fig. 6.5. For very small and for large x there seems to be a logarithmic

 0.1

 1

 0.1  1  10  100

F
2(

x,
Q

2 )

Q2 (GeV2)

x=0.015

x=0.35

x=0.65

Figure 6.5: Inelastic structure function F2 = νW2 as a function of Q2 for different x
measured in νFe→ νX. Data are from the CDHSW Collaboration [B+91].
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←
q

←
q

Figure 6.6: Virtual photon-quark interaction with gluon bremsstrahlung.

dependence of F2 on Q2 and only in the intermediate x-range Bjorken scaling seems
to hold. The origin of these scaling violations can be traced back to two types of
sources: bremsstrahlung type diagrams as depicted in Fig. 6.6 and virtual-photon
gluon interactions as depicted in Fig. 6.7.

In the case of gluon bremsstrahlung the virtual photon can interact with a quark
that has already lost some of its momentum fraction p1 = xP by the emission of
gluon bremsstrahlung and only retains p2 = zxP, where P is the proton momentum
and 0 < z < 1. For massless quarks these processes suffer from the same type of
collinear (or mass) singularities as discussed in Chapter 5. One finds that the cross
section for the process γ∗q→ qg can be written as [HM84]:

σγ∗q→qg =

...∫

η2

dp2T
dσγ∗q→qg

dp2T

≃
...∫

η2

dp2T
1

p2T

αs

2π
P̂qq(z)

≃ αs

2π
P̂qq(z) log

(
Q2

η2

)

, (6.155)

where again Q2 = −q2 and where a cut-off η2 was introduced to regularise the other-
wise divergent transverse momentum integral. The function P̂qq(z) is called a splitting
function and it gives the probability, that a quark, that originally carried a momentum
fraction x, after emitting a gluon retains a momentum fraction z · x.
In addition to the processes of Fig. 6.6 there exist virtual (loop) corrections to order

αs to the γ∗q → q process, which also have to be taken into account. Summing up all
these contributions one finds that the splitting function Pqq to lowest order becomes
[ESW96]:

Pqq(z) =
4

3

[
1+ z2

(1− z)+
+

3

2
δ (1− z)

]

, (6.156)
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←
q

←
q

Figure 6.7: Virtual photon-gluon interaction with quark pair-production.

where 4
3 is a color factor and the +-prescription is given by:

1∫

0

dx
f (x)

(1− x)+
=

1∫

0

dx
f (x)− f (1)

1− x
, (6.157)

for a smooth function f (x) on the interval [0, 1]. In this picture the structure function
F2 of Eq. (6.78) is modified to [ESW96]:

F2(x,Q
2) = x∑

i

e2i

1∫

x

dy
1

y
fi(y)

[

δ

(

1− x

y

)

+
αs

2π
Pqq

(
x

y

)

log

(
Q2

η2

)

+ Cq

(
x

y

)]

,

(6.158)

where the second term takes into account the quarks which carry momentum fraction
x (as seen by the virtual photon), but actually come from parent quarks that carried
momentum fraction y > x. Cq is a finite function that takes into account possible
non-divergent contributions to F2.

The second kind of process that can modify F2 is gluon pair production. There a
gluon carrying momentum fraction xP splits into a quark-antiquark pair and so the
virtual photon actually interacts with a quark carrying momentum fraction zxP with
0 < z < 1. In analogy to the gluon bremsstrahlung case above one finds for the cross
section of this process [HM84]:

σγ∗g→qq̄ ≃
αs

2π
Pqg(z) log

(
Q2

η2

)

, (6.159)

where the splitting function Pqg(z) gives the probability, that a quark carrying mo-
mentum fraction z · x came originally from a gluon carrying momentum fraction x:

Pqg(z) =
1

2

(

z2 + (1− z)2
)

, (6.160)
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where 1
2 is a color factor. Thus, the structure function F2 becomes:

F2(x,Q
2) = x∑

i

e2i

1∫

x

dy
1

y

{

fi(y)

[

δ

(

1− x

y

)

+
αs

2π
Pqq

(
x

y

)

log

(
Q2

η2

)

+ Cq

(
x

y

)]

+ g(y)

[
αs

2π
Pqg

(
x

y

)

log

(
Q2

η2

)

+ Cg

(
x

y

)]}

, (6.161)

where g is the bare gluon PDF and Cg takes into account finite contributions from the
gluon pair-production processes.
Note that we have found the log(Q2) behavior of the structure function that we

saw in the deep inelastic scattering data in Fig. 6.5. However, Eq. (6.161) cannot stand
as it is, since it depends on the (arbitrary) regulator η2. On the other hand it also
depends on the bare parton distributions fi(x) and g(x) and since we cannot switch
off the strong interaction when measuring e.g. F2, fi(x) and g(x) are not measurable
quantities. One can exploit this fact and define a renormalised quark distribution
function in the following way [ESW96]:

fi(x, µ
2) = fi(x) +

αs

2π

1∫

x

dy
1

y

{

fi(y)

[

Pqq

(
x

y

)

log

(
µ2

η2

)

+ Ĉq

(
x

y

)]

+ g(y)

[

Pqg

(
x

y

)

log

(
µ2

η2

)

+ Ĉg

(
x

y

)]}

, (6.162)

where we have introduced the factorisation scale µ2. Note that the functions Ĉq and

Ĉg do not have to be identical to the finite contributions Cq and Cg above. This arbi-
trariness in defining finite contributions into the PDFs is called factorisation scheme
dependence and in principle one can choose any scheme one prefers. However, once
chosen, the same scheme has to be applied in all further calculations involving these
scheme dependent PDFs. In terms of the renormalised fi(x, µ

2) the structure function
is independent of the regulator η2, but now depends on the factorisation scale µ2:

F2(x,Q
2) = x∑

i

e2i

1∫

x

dy
1

y

{

fi(y, µ
2)

[

δ

(

1− x

y

)

+
αs

2π
Pqq

(
x

y

)

log

(
Q2

µ2

)

+
αs

2π
CS
q

(
x

y

)]

+g(y, µ2)

[
αs

2π
Pqg

(
x

y

)

log

(
Q2

µ2

)

+
αs

2π
CS
g

(
x

y

)]}

(6.163)
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where the superscript S on the finite contributions indicates the scheme dependence.
A particularly simple scheme is the DIS scheme, where one defines all finite contribu-
tions into the renormalised PDFs. Since the choice of the renormalisation scale µ2 is
arbitrary, one usually takes µ2 = Q2 for simplicity and, thus, finds in the DIS scheme:

FDIS
2 (x,Q2) = x∑

i

e2i f
DIS
i (x,Q2) , (6.164)

and so we can obtain the renormalised distribution functions fDIS
i (x,Q2) by measur-

ing F2 as a function of x and Q2.
Obviously F2 cannot depend on the arbitrary factorisation scale µ2 and therefore

the derivative of Eq. (6.163) with respect to µ2 (or better log(µ2)) must vanish:

∂

∂ log(µ2)
fi(x, µ

2) =
αs

2π

1∫

x

dy
1

y

[

fi(y, µ
2)Pqq

(
x

y

)

+ g(y, µ2)Pqg

(
x

y

)]

. (6.165)

The last equation is called the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
equation [Dok77, GL72, Lip75, AP77] and it describes the evolution of the quark dis-
tributions with the factorisation scale µ2. Using (6.164) this translates to a prediction
for the measurable Q2 dependence of the structure function. The DGLAP equation is
a basic ingredient of all PDF analyses and one of the basic equations of perturbative
QCD. In our example the splitting functions were calculated only to order αs, however
in principle one can calculate the evolution to any desired order of the strong cou-
pling. Note that also a similar equation for the evolution of the gluon distributions
exist, which, however, will play no further role in this work.
In this subsection we have described the origin of the scaling violations and the

DGLAP evolution equations for the PDFs. We will draw on our findings later on
in Sec. 8.6, where we describe how to avoid double-counting of the NLO processes
we explicitly consider (vertex corrections, gluon bremsstrahlung and gluon Compton
scattering).
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7
The Drell-Yan process at leading order

In this chapter we will study the production of DY pairs at leading order (LO, α0
s = 1!)

in the strong coupling. We will start out with the standard parton model description
of the DY process and point out its virtues and shortfalls. Afterwards we will in-
troduce our extended model for this process and we will begin by calculating the
partonic DY cross section for the general case of massive quarks. Our aim is to extend
the parton model approach by parametrising the soft parton interactions through dis-
tributions for parton transverse momentum and quark masses. Therefore, we will
investigate the kinematics of this process in detail and find, that special care is neces-
sary, as to prevent unphysical kinematical solutions to spoil the result. After having
fixed the correct kinematics, we will introduce our distributions for the initial trans-
verse momenta and masses of the participating quarks and finally present the results
of our extended LO approach.
Note that certain results of this chapter have been published in [ELM10].

7.1 Introduction - the Drell-Yan process in the parton

model

The Drell-Yan process [DY70], depicted in Fig. 7.1, describes the production of lepton
pairs with large invariant masses q2 in collisions of two hadrons (usually nucleons).
The idea is, that a quark from hadron 1 and an antiquark from hadron 2 annihilate
and produce a virtual photon, that finally decays into a lepton pair. In experiments
this pair is then measured in the detector, while the hadron remnants usually remain
undetected. In the parton model the cross section for this particular process takes
on a very simple form: it is given by the cross section of the partonic subprocess
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7 The Drell-Yan process at leading order

qq̄ → γ∗ → l+l−, which is given by QED, times the probabilities to actually find the
two annihilating quarks inside the colliding hadrons. However, these probabilities
are basically just the PDFs, that we found in Sec. 6.2 in deep inelastic scattering. So
the hadronic cross section for this process reads (the hat denotes partonic quantities)
[PS95, HM84]:

dσ = ∑
i

1∫

0

dx1dx2 q2i fi(x1, q
2) f ī(x2, q

2) · dσ̂(x1, x2, q
2) , (7.1)

where the qi are the fractions of the quark charges. Since we do not know what kind
of quarks formed the virtual photon, we have to sum over all flavors and antiflavors
and integrate over all possible momentum fractions xi of the quarks to obtain the full
cross section. It is noteworthy, that, in contrast to deep inelastic scattering, one here
probes correlations of valence- and sea-quark PDFs, which provides further input to
constrain these distributions. The factorisation of the cross section into a hard part
(subprocess) and a soft part (PDFs) is proven for the DY process for quarks moving
collinearly with their parent nucleons, at least for leading twist (expansion in 1

M ) in
[CSS88].

P1 P2

l−

p1

X1 X2

p2

q

l+

Figure 7.1: DY production in a nucleon-nucleon collision: a quark and an antiquark
annihilate into a virtual photon, that eventually decays into a lepton pair; X1 and X2

denote the nucleon remnants. See main text for details.

Already at this point, one shortfall of the parton model approach becomes evident:
we found in the derivation of Eqs. (6.136) and (6.137), that in the Bjorken limit the
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quarks do not carry any transverse momentum (perpendicular to the momentum of
the parent nucleon). Thus, in the parton model picture also the virtual photon (and so
the DY pair) has vanishing transverse momentum by virtue of four momentum con-
servation. All DY pairs in the parton model approach are produced with transverse
momentum pT = 0, however, experimental evidence shows clearly, that DY pairs have
a broad pT-distribution. These distributions cannot be described in such a simple ap-
proach. Furthermore, one finds, that in the parton model one can describe the shape
of measured DY pair invariant mass spectra, but that one always underestimates the
cross section by a factor K. This K-factor depends on the kinematics (e.g. hadronic
center-of-mass energy) of the conducted experiment and it is (in QCD) so far not a
calculable quantity. We will illustrate the K-factor problem in Sec. 7.6. These two
shortcomings where the main motivation to introduce the extended model which we
will present in this work.

7.2 Observables, conventions and notation

In this section we present the relevant DY observables, conventions and notation used
throughout the remainder of this work, unless where explicitly stated otherwise. It
will turn out to be useful to write four-momenta using light-cone coordinates, cf.
Appendix A. Leptons are treated as massless. We will exclusively study reactions
involving nucleons and antiprotons, both carrying mass mN. We define the target
nucleon to carry the four momentum P1 and the beam nucleon to carry the four
momentum P2 (cf. Fig. 7.1). In the hadron center-of-mass (c.m.) frame we choose the
z-axis as the beam line and the beam (target) nucleon moves in the positive (negative)
direction. Therefore, the nucleon four-momenta read:

P1 =

(√
S

2
, 0, 0,−

√

S

4
−m2

N

)

, (7.2)

P2 =

(√
S

2
, 0, 0,+

√

S

4
−m2

N

)

, (7.3)

which implies for the large momentum components of the nucleons:

P−1 = P+
2 =

√
S

2
+

√

S

4
−m2

N

mN→0−−−→
√
S , (7.4)

with the hadronic c.m. energy
√
S. Note that in high energy experiments

√
S ≫ mN

and so the nucleon mass is usually neglected. However, we want to study our model

also at comparatively low c.m. energies (e.g.
√
S ∼ 5.5 GeV at PANDA [TLP+09]).

Therefore, in the present work we include the nucleon mass since its influence should
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7 The Drell-Yan process at leading order

become significant at these energies. We denote the four momentum of the parton in
nucleon 1 (2) as p1 (p2). The on-shell condition in light-cone coordinates then reads:

m2
i = p2i = p+i p−i − (~pi⊥)

2 . (7.5)

The observables accessible in experiment are the invariant mass q2 = M2 of the DY
pair, its transverse momentum (with respect to the beam line) pT and its momentum
along the beam line qz. However, instead of qz often the Feynman variable xF is
used. Since there are different definitions of xF around, we here will first clarify the
situation in this work. For the virtual photon in Fig. 7.1 the maximal qz is derived by
requiring the invariant mass of the undetected remnants to vanish and the photon to
move collinearly to the nucleons:

(P1 + P2 − q)2 = X2 !
= 0 (7.6)

⇒ S+ q2 − 2
√
S
√

q2 + (qz)2max = 0 (7.7)

⇒ S− q2

2
√
S

= (qz)max . (7.8)

In the literature and in the data presented by many experimental groups the Feynman
variable [Group10] is defined as:

xF =
2qz√
S
≃ qz

(qz)max

⇒ (qz)max ≃
√
S

2
. (7.9)

Note that this approximation for xF is obviously only good for q2 ≪ S. Since we
perform studies in the small S region, our definition of the Feynman variable x′F is :

x′F =
qz

(qz)max
= qz ·

2
√
S

S− q2
, (7.10)

without any approximations. Depending on the experiment which we study we will
use xF or x′F according to Eq. (7.9) and Eq. (7.10).

7.3 Partonic subprocess cross section at leading order

In this section we will first calculate the partonic cross section for the production of a
virtual photon and then show that it is closely related to lepton pair production. The
connection between the two cross sections will be helpful later on in the calculation
of next-to-leading-order corrections in Chapter 8, since it considerably simplifies the
phase space integrals. Although we introduce different masses for the annihilating
quarks, we finally will show, that current conservation is not violated when actually
considering the production of DY pairs.
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←
p1

→
p2

q ↑

γ∗

q̄ q

Figure 7.2: Quark-antiquark annihilation into a virtual photon.

7.3.1 Cross section for virtual photon production

Using the Feynman rules of Appendix B one finds for the amplitude of the process
qq̄→ γ∗ depicted in Fig. 7.2:

iM = v̄s′(p2) (ieγ
µ) us(p1) · ǫ∗µ(q) (7.11)

⇒ |M|2 = e2v̄s′(p2)γ
µus(p1)ūs(p1)γ

νvs′(p2) · ǫ∗µ(q)ǫν(q) , (7.12)

where we have omitted the fractional quark charges, since we will take them into
account explicitly in the hadronic cross section later on. Averaging over initial spins
and summing over the polarisations of the photon, one obtains:

|M̄|2 = e2

4

(
−gµν

)
TR
[(

/p2 −m2

)
γµ
(

/p1 +m1

)
γν
]
, (7.13)

where we have assigned masses according to p21 = m2
1, p

2
2 = m2

2 to the quarks. Note,
that the replacement ∑pol. ǫ∗µ(q)ǫν(q) → −gµν is actually only valid for real photons.
However, in our calculations for DY pair production all we have to know is how
to properly replace this factor, as we will see in Sec. 7.3.2. Therefore, we can keep
this otherwise improper treatment of the photon polarisation sum without further
consequences. The cross section for this process then becomes, cf. Appendix A:

dσ̂qq̄→γ∗

=
1

3

(2π)4δ(4) (p1 + p2 − q)

4
√

(p1 · p2)2 −m2
1m

2
2

e2

4

(
−gµν

)
TR
[(

/p2 −m2

)
γµ
(

/p1 +m1

)
γν
] d3q

(2π)32Eq
,

(7.14)

where 1
3 is the color factor, cf. Appendix B.2.
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→
p′2

←
p′1

q ↑

Hµ

l− l+

ν

Figure 7.3: Virtual photon decay into a lepton pair.

7.3.2 Connection of virtual photon and DY pair production

Consider the process shown in Fig. 7.3: a virtual photon is emitted in a general type
of scattering process and decays into a lepton pair. We denote the unknown part of
this amplitude by Hµ and find:

iM = Hµ
−igµν

q2
ūs′(p

′
1) (−ieγν) vs(p

′
2) (7.15)

⇒ |M|2 = HµH
†
ν
e2

q4
ūs′(p

′
1)γ

µvs(p
′
2)v̄s(p

′
2)γ

νus(p
′
1) . (7.16)

Averaging over initial and summing over final spins, the squared amplitude becomes
(remember that we treat the leptons as massless):

|M|2 = Wµν
e2

q4
TR
[
/p′1γµ /p′2γν

]

= Wµν
4e2

q4
[
(p′1)

µ(p′2)
ν + (p′1)

ν(p′2)
µ − gµνp

′
1 · p′2

]

= WµνL
µν , (7.17)

where we have collected the spin-averaged unknown part in Wµν. The cross section
for the entire process then can be factorised in the following way (we omit the phase
space integrals of the unknown part Wµν, since they are of no consequence to the
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following argumentation):

dσ ∼Wµν(pi, q)δ
(4)

(

∑
i

pi − p′1 − p′2

)

· Lµν(p′1, p
′
2, q)

d3p′1
(2π)32E′1

d3p′2
(2π)32E′2

= Wµν(pi, q)δ
(4)

(

∑
i

pi − q

)

d4q

(2π)3

× δ(4)
(
q− p′1 − p′2

)
Lµν(p′1, p

′
2, q)

d3p′1
(2π)32E′1

d3p′2
2E′2

︸ ︷︷ ︸

Jµν(q)

= Wµν(pi, q)δ
(4)

(

∑
i

pi − q

)

d4q

(2π)3
δ
(

q2 −M2
)

dM2 · Jµν(q) , (7.18)

where the sum runs over all incoming and outgoing momenta of the unknown part.
The function Jµν can also be constructed out of the most general Lorentz form involv-
ing the metric tensor and the momentum q:

Jµν = f1g
µν + f2

qµqν

q2
. (7.19)

The electromagnetic current is conserved at the lepton-photon vertex, since one finds:

qµL
µν ∼

[
(p′1)µ + (p′2)µ

] [
(p′1)

µ(p′2)
ν + (p′1)

ν(p′2)
µ − gµνp

′
1 · p′2

]

=
[
(p′1 · p′2)(p′2)ν + (p′1 · p′2)(p′1)ν −

(
(p′1)

ν + (p′2)
ν
)
(p′1 · p′2)

]

= 0 . (7.20)

This implies:

qµ J
µν = qν J

µν = 0 (7.21)

⇒ Jµν = f1

(

gµν − qµqν

q2

)

. (7.22)
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The coefficient function f1 is now easily found:

gµν J
µν = 3 f1 (7.23)

⇒ f1 =
1

3
gµν J

µν

=
1

3

∫
d3p′1

(2π)32E′1

d3p′2
2E′2

δ(4)
(
q− p′1 − p′2

)
gµνL

µν

=
4e2

3(2π)3q4

∫
d3p′1
2E′1

δ
(

(p′2)
2
)

Θ
(
E′2
)
d4p′2 δ(4)

(
q− p′1 − p′2

) [
−2p′1 · p′2

]

=
e2

3 · 4π3q4

∫
d3p′1
E′1

δ
(

(q− p′1)
2
)

Θ
(
Eq − E′1

) [

−q2
]

=
−α

3π2q2

∞∫

0

∣
∣~p′1
∣
∣Θ
(
Eq −

∣
∣~p′1
∣
∣
)
d
∣
∣~p′1
∣
∣

∫

dΩ δ
(

q2 − 2
∣
∣~p′1
∣
∣ (Eq − |~q| cos θ)

)

=
−α

3π2q2
2π

π∫

−π

sin θdθ
q2

4(Eq − |~q| cos θ)2

=
−2α

3π

1∫

−1
d cos θ

1

4(Eq − |~q| cos θ)2

=
−2α

3π

1

|~q|

[
1

4(Eq − |~q| cos θ)

]1

−1

=
−2α

3π

1

|~q|

[
1

4(Eq − |~q|)
− 1

4(Eq + |~q|)

]

=
−2α

3π

1

2q2

=
−α

3πq2
, (7.24)

where we have introduced the electromagnetic fine-structure constant α = e2

4π ≃ 1
137 .

Inserting Eqs. (7.19) and (7.24) into Eq. (7.18) one recovers:

dσ ∼Wµν(pi, q)δ
(4)

(

∑
i

pi − q

)

d4q

(2π)3
δ
(

q2 −M2
)

dM2 α

3πq2

(

−gµν +
qµqν

q2

)

= Wµν(pi, q)δ
(4)

(

∑
i

pi − q

)

d3q

(2π)32Eq
· α

3πq2

(

−gµν +
qµqν

q2

)

dq2 , (7.25)

with E2
q = q2 + (~q)2. Thus, the cross section for lepton pair production can always

be found by calculating the cross section for virtual photon production and then
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replacing:

−gµν → α

3πq2

(

−gµν +
qµqν

q2

)

dq2 . (7.26)

After this detour, we can finally calculate the partonic cross section for DY pair pro-
duction by performing the replacement (7.26) in Eq. (7.14):

dσ̂qq̄→l+l− =
1

3

(2π)4δ(4) (p1 + p2 − q)

4
√

(p1 · p2)2 −m2
1m

2
2

e2

4
TR
[(

/p2 −m2

)
γµ
(

/p1 +m1

)
γν
]

· α

3πq2

(

−gµν +
qµqν

q2

)

dq2
d3q

(2π)32Eq

=
4πα2

9q4
2q4 − q2

(
m2

1 − 6m1m2 +m2
2

)
− (m2

1 −m2
2)

2

4
√

(p1 · p2)2 −m2
1m

2
2

× δ(4) (p1 + p2 − q)dq2
d3q

2Eq
. (7.27)

Note, that if we put in the last equation all quark masses to zero and integrate over
the phase space, we recover the textbook cross section [PS95], as it should be:

σ̂qq̄→l+l−
∣
∣
∣
m1=m2=0

=
∫

4πα2

9q4
2q4

4
q2

2

δ(4) (p1 + p2 − q)dq2δ
(

q2 −M2
)

d4q

=
4πα2

9M2
. (7.28)

7.3.3 Current conservation

By assigning different masses m1 and m2 to the annihilating quark and antiquark in
Fig. 7.2, current conservation is violated at the quark-photon vertex. One can easily
see this by contracting the quark current with the photon momentum qµ:

v̄(p2,m2) γµ u(p1,m1) · qµ

= v̄(p2,m2) /q u(p1,m1)

= v̄(p2,m2) (/p1 + /p2) u(p1,m1)

= v̄(p2,m2) (m1 −m2) u(p1,m1) 6= 0 . (7.29)

However, for DY pair production as depicted in Fig. 7.3 this is not an issue since the
current is conserved at the lepton-photon vertex. To realise this one has to look at the
gauge dependent part of the photon propagator. The propagator has the following
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7 The Drell-Yan process at leading order

Lorentz structure, cf. Appendix B:

Gµν(q) ∼
(

gµν − (1− ξ)
qµqν

q2

)

, (7.30)

with gauge parameter ξ. Now we insert the gauge dependent part of Eq. (7.30) be-
tween the quark and lepton currents and exploit the Dirac equation, cf. Appendix
A:

v̄(p2,m2) γµ u(p1,m1) ·
(
qµqν

)
· ū(k1,m) γν v(k2,m)

= v̄(p2,m2) /q u(p1,m1) · ū(k1,m) /q v(k2,m)

= v̄(p2,m2) (/p1 + /p2) u(p1,m1) · ū(k1,m) (/k1 + /k2) v(k2,m)

= v̄(p2,m2) (m1 −m2) u(p1,m1) · ū(k1,m) (m−m) v(k2,m)

= 0 , (7.31)

and so the amplitude is current conserving as long as the produced leptons have equal
masses (0 in our case).

7.4 Kinematics

In this section we will work out the kinematics of the LO DY process in different
schemes. We begin by comparing the standard textbook parton model with a naive
approach which uses the light-cone component definition of the parton momentum
fractions. It will turn out that in the latter case unphysical solutions appear that must
be removed to be consistent with the standard parton model. We will then apply the
lessons learned from this comparison when we derive the kinematics for the case of
quarks carrying initial transverse momentum and mass.

7.4.1 Standard collinear parton model

In the following we want to derive the standard textbook result for the differential
LO DY cross section and, therefore, we treat the interacting partons as collinear with
their parent nucleons and we here keep the nucleons and partons massless. The
hadronic LO DY differential cross section in the standard parton model is given in
Eq. (7.1). There x1 and x2 are the momentum fractions carried by the annihilating
partons inside the colliding nucleons and in the standard parton model, cf. Eq. (6.74),
they are connected to the nucleon momenta via:

p1 = x1P1 , (7.32)

p2 = x2P2 . (7.33)

Note that it becomes immediately clear from Eqs. (7.32) and (7.33) that the incoming
partons move collinearly with the nucleons. According to Eq. (7.28) no transverse
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momentum can be generated for the virtual photon (and thus for the DY pair) in the
LO process:

~p1⊥ = ~p2⊥ = 0 (7.34)

⇒ δ(4)(p1 + p2 − q) = δ((p1 + p2)
0 − q0) δ(2)(~q⊥)

× δ((p1 + p2)
z − qz) . (7.35)

The maximal information about the DY pair that can be gained from Eq. (7.1) is
double differential and a common choice of variables is the squared invariant mass
M2 and Feynman’s xF (cf. Sec. 7.2) of the virtual photon:

dσ̂

dM2 dxF
=
∫

d4q
4πα2

9q2
δ(M2 − q2) δ(4)(p1 + p2 − q) δ

(

xF −
qz

(qz)max

)

=
4πα2

9M2
δ
(

M2 − (p1 + p2)
2
)

δ

(

xF −
(p1 + p2)z
(qz)max

)

. (7.36)

The two δ-functions connect x1 and x2 with the chosen observables:

M2 = 2p1p2 = x1x2S , (7.37)

xF = +

√
S (x2 − x1)

2(qz)max
, (7.38)

with (qz)max =
√
S
2 , cf. Eqs. (7.8) and (7.9). Solving for x1 and x2 yields:

x1± =
−(qz)max xF ±

√

((qz)max xF)
2 + M2

√
S

=
−(qz)max xF ± Ecoll√

S
, (7.39)

x2± =
(qz)max xF ±

√

((qz)max xF)
2 + M2

√
S

=
(qz)max xF ± Ecoll√

S
, (7.40)

with the energy of the collinear DY-pair:

Ecoll =

√

M2 + ((qz)max xF)
2 . (7.41)

However the solutions corresponding to the lower (negative) sign in Eqs. (7.39,7.40)
are always negative. Only the upper solutions are in the integration range of Eq. (7.1)
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and are physically meaningful. For the negative solutions the parton energies would
be negative on account of Eqs. (7.32) and (7.33). The hadronic cross section then reads:

dσ

dM2 dxF
=

1∫

0

dx1

1∫

0

dx2 ∑
i

q2i fi(x1,M
2) f ī(x2,M

2)

× 4πα2

9M2
δ
(

M2 − (p1 + p2)
2
)

δ

(

xF −
(p1 + p2)z
(qz)max

)

=

1∫

0

dx1

1∫

0

dx2 ∑
i

q2i fi(x1,M
2) f ī(x2,M

2)

× 4πα2

9M2

(qz)max

S
√

(qz)2maxx
2
F + M2

δ(x1 − x1+) δ(x2 − x2+)

= ∑
i

q2i fi(x1+ ,M
2) f ī(x2+ ,M

2)
4πα2

9M2

(qz)max

SEcoll
. (7.42)

The last equation is the standard parton model formula for the hadronic LO DY cross
section.

7.4.2 Naive collinear parton model

In this section we work out the complete collinear kinematics using the definition of
the parton momentum fraction as the ratio of light-cone components of the parton
and the nucleon, cf. Eqs. (6.136) and Eqs. (6.137). We show that there exist other
solutions for the parton momentum fractions xi which are neglected in the standard
parton model right from the start. These other solutions will turn out to be unphysical
and are derived at this point only to provide insight into difficulties arising from a
transverse-momentum dependent calculation as discussed in Secs. 7.4.3 and 7.4.4.

The partons inside the nucleons carry some fraction of their parent hadron’s longi-
tudinal momentum. Labeling the parton momentum inside nucleon i with pi we can
define these fractions as ratios of plus or minus components of the partons and the
corresponding components of the nucleon momenta. In the DY scaling limit (S → ∞

and M2/S finite) P−1 = P+
2 =

√
S become the large components while all other com-

ponents vanish (again we keep the partons and nucleons massless in this section for
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simplicity). We define the following momentum fractions:

x1 =
p−1
P−1

=
p−1√
S
, (7.43)

x̃1 =
p+1√
S
, (7.44)

x2 =
p+2
P+
2

=
p+2√
S
, (7.45)

x̃2 =
p−2√
S
. (7.46)

Note that Eqs. (7.43) and (7.45) are the standard definitions for the light-cone momen-
tum fractions, cf. Sec. 6.2.2. The tilde quantities in Eqs. (7.44) and (7.46) are introduced
for later convenience. The kinematical constraints for these fractions are the onshell
conditions:

p21 = p+1 p−1 = 0⇒ x1x̃1 = 0 , (7.47)

p22 = p+2 p−2 = 0⇒ x2x̃2 = 0 , (7.48)

together with the invariant mass condition:

M2 = (p1 + p2)
2 = 2p1p2 = p+1 p−2 + p−1 p+2

= (x̃1x̃2 + x1x2) S , (7.49)

and the relation for Feynman xF:

xF =
(p1 + p2)z
(qz)max

=
1

2(qz)max

(
p+1 − p−1 + p+2 − p−2

)

=

√
S

2(qz)max
(x̃1 − x1 + x2 − x̃2) . (7.50)

We will show now that the constraints in Eqs. (7.47-7.50) can be fulfilled by two dif-
ferent sets of momentum fractions xi, x̃i. Equation (7.47) implies x̃1 = 0 or x1 = 0. In
the first case one finds:

x̃1 = 0 (7.51)

Eq. (7.49) ⇒ M2

S
= x1x2 (7.52)

⇒ x1 6= 0 6= x2 (7.53)
Eq. (7.48) ⇒ x̃2 = 0 (7.54)

Eq. (7.50) ⇒ xF = (x2 − x1)

√
S

2(qz)max
. (7.55)
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This is just the standard parton model solution, Eqs. (7.37) and (7.38), as described in
Sec. 7.4.1. However there exists another solution, namely for x1 = 0:

x1 = 0 (7.56)

Eq. (7.49) ⇒ M2

S
= x̃1x̃2 (7.57)

⇒ x̃1 6= 0 6= x̃2 (7.58)
Eq. (7.48) ⇒ x2 = 0 (7.59)

Eq. (7.50) ⇒ xF = (x̃1 − x̃2)

√
S

2(qz)max
. (7.60)

Kinematically this second solution represents the (strange) case where each parton
moves into the opposite direction of its respective parent nucleon (this solution corre-
sponds to the lower (negative) sign solutions in Eqs. (7.39, 7.40)). One can see this in
the following example, where we choose xF = 0:

x̃1 = x̃2 =
M√
S

(7.61)

⇒ pz1 =
1

2

(
p+1 − p−1

)
=

1

2

√
Sx̃1 =

M

2
, (7.62)

and analogously one finds:

pz2 = −
M

2
. (7.63)

Since nucleon 1 (2) moves into negative (positive) z-direction, cf. Eqs. (7.2) and (7.3),
the partons here move exactly opposite. The parton momentum fractions xi (not x̃i!)
entering the PDFs, however, are those of partons that move into the same direction as
their parent nucleon. The second solution is thus physically not meaningful and it is
discarded right away in the standard parton model approach.
The essential difference between the standard and the naive parton model is the fol-

lowing: In the (collinear) standard parton model all components of pi are fixed at once
by pi = xiPi. This automatically implies x̃i = 0. Such a procedure is without problems
if one sticks to the collinear dynamics. In Sec. 7.4.3 below, however, we include initial
transverse momenta of the partons, i.e. we have to deviate from pi = xiPi. The natural
choice would be to define xi via one nucleon momentum component (the large one).
This is exactly what we have done here for the collinear case. However, in the naive
parton model xi and x̃i, i.e. p

+
i and p−i , are introduced as independent variables which

are then constrained by the kinematical and onshell conditions (7.47)-(7.50). Therefore
one falls into a trap by picking up the additional unphysical solutions for x̃i 6= 0. The
same happens for the more complicated case including initial transverse momenta in
Secs. 7.4.3 and 7.4.4.
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Including in addition initial transverse momenta for the partons one has to model
the distributions of these momenta. However there is a constraint the chosen model
has to obey: in the Bjorken limit one should come back to the standard parton model
and not to the naive one since only the former emerges from QCD. In the following
we will point out how to modify the naive parton model such that one ends up with
the standard parton model. This procedure will then be generalised to the case where
initial transverse momenta of the partons are included in Sec. 7.4.3. In the naive
parton model the hadronic cross section reads:

dσnaive
dM2 dxF

=

1∫

0

dx1

1∫

0

dx2 ∑
i

q2i fi(x1,M
2) f ī(x2,M

2)

× 4πα2

9M2
δ
(

M2 − (p1 + p2)
2
)

δ

(

xF −
(p1 + p2)z
(qz)max

)

=

1∫

0

dx1

1∫

0

dx2 ∑
i

q2i fi(x1,M
2) f ī(x2,M

2)

× 4πα2

9M2

2(qz)maxx1x2
(
δ(x1 − x1+) δ(x2 − x2+) + δ(x1) δ(x2)

)

S3/2 |(x1x2 − x̃1x̃2)(x1 + x2 + x̃1 + x̃2)|
.

(7.64)

The unphysical second solution for the momentum fractions in the last expression is
represented by:

δ(x1) δ(x2) x1 fi(x1,M
2) x2 f ī(x2,M

2) . (7.65)

Its contribution does not vanish since one obtains for large enough M2 [GRV98]:

lim
x→0

(

x f (x,M2)
)

> 0 . (7.66)

We now introduce a notation which we will keep throughout the rest of this work.
Whenever we explicitly disregard unphysical solutions of the type of Eqs. (7.56)-(7.60)
under an integral we denote this integral by −

∫
. Then for the naive model one finds:

dσnaive
dM2 dxF

=

1∫

0

dx1

1∫

0

dx2
4πα2

9M2 ∑
i

q2i fi(x1,M
2) f ī(x2,M

2)

× 2(qz)maxx1x2
(
δ(x1 − x1+) δ(x2 − x2+) + δ(x1) δ(x2)

)

S3/2 |(x1x2 − x̃1x̃2)(x1 + x2 + x̃1 + x̃2)|
,

(7.67)
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whereas the correct model gives:

dσ

dM2 dxF
= −

1∫

0

dx1 −
1∫

0

dx2
4πα2

9M2 ∑
i

q2i fi(x1,M
2) f ī(x2,M

2)

× 2(qz)maxx1x2
(
δ(x1 − x1+) δ(x2 − x2+) + δ(x1) δ(x2)

)

S3/2 |(x1x2 − x̃1x̃2)(x1 + x2 + x̃1 + x̃2)|

=

1∫

0

dx1

1∫

0

dx2
4πα2

9M2 ∑
i

q2i fi(x1,M
2) f ī(x2,M

2)

× 2(qz)max(x1x2)δ(x1 − x1+) δ(x2 − x2+)

S3/2(x1x2)(x1 + x2)

= ∑
i

q2i fi(x1+ ,M
2) f ī(x2+ ,M

2)
4πα2

9M2

2(qz)max

S3/2(x1+ + x2+)

= ∑
i

q2i fi(x1+ ,M
2) f ī(x2+ ,M

2)
4πα2

9M2

(qz)max

SEcoll
. (7.68)

Note that in the last expression we have recovered the standard parton model result
Eq. (7.42).
The main reason to present this naive approach in detail will become clear in the

next section where we lift the simplification of a collinear movement of the partons
with the nucleons.

7.4.3 Intrinsic transverse momentum

As already mentioned above, no DY pair transverse momentum (pT) is generated in
the simple collinear parton model approach. Nevertheless, measurements indicate
a Gaussian form of the pT spectra at not too large pT. This has been studied in
approaches including initial quark transverse momentum distributions, e.g. [DM04,
A+06]. In the current work we also present an approach incorporating primordial
quark transverse momentum to address this issue. However, we have to consider, that
unphysical solutions for the momentum fractions xi can appear, cf. Sec. 7.4.2, which
have to be removed properly. In earlier studies [LLM05, LGLM06, LLM07, Lin06] this
important constraint was not considered and, thus, wrong results obtained. Note that
the correct solutions can always be identified by putting all transverse momenta and
masses to zero and then by checking if the well known parton model solutions for the
xi as given in Eqs. (7.39) and (7.40) are recovered.
In our transverse momentum dependent approach the LO DY differential cross
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section reads:

dσLO = −
1∫

0

dx1 −
1∫

0

dx2

∫

d~p1⊥

∫

d~p2⊥

×∑
i

q2i f̃i(x1,~p1⊥ , q
2) f̃ ī(x2,~p2⊥ , q

2)dσ̂(x1,~p1⊥ , x2,~p2⊥ , q
2) . (7.69)

The functions f̃i(x,~p⊥, q2) are now extensions of the standard longitudinal PDFs, since
they also describe the distribution of quark transverse momentum. We will show
our ansatz for these functions in Sec. 7.5.1. Note that we take into account the full
kinematics in the partonic cross section, i.e. dσ̂LO = dσ̂LO(x1,~p1⊥ , x2,~p2⊥ , q

2), however,
the quark masses are neglected as in the last section. In this approach the transverse
momentum (pT = |~q⊥|) of the DY pair is accessible, since the annihilating quark
and antiquark can have finite initial transverse momenta. Then the partonic triple-
differential cross section reads:

dσ̂

dM2 dxFdp
2
T

=
∫

d4q
4πα2

9q2
δ
(

M2 − q2
)

δ(4)(p1 + p2 − q) δ

(

xF −
qz

(qz)max

)

δ
(

p2T − (~q⊥)
2
)

=
4πα2

9M2
δ
(

M2 − (p1 + p2)
2
)

δ

(

xF −
(p1 + p2)z
(qz)max

)

δ
(

p2T − (~p1⊥ + ~p2⊥)
2
)

. (7.70)

Inserting Eq. (7.70) in Eq. (7.69) yields a multiple integral for the triple-differential
hadronic cross section:

dσ

dM2 dxFdp
2
T

=−
1∫

0

dx1 −
1∫

0

dx2

∫

d~p1⊥

∫

d~p2⊥F(x1,~p1⊥ , x2,~p2⊥ ,M
2)

× δ
(

M2 − (p1 + p2)
2
)

δ

(

xF −
(p1 + p2)z
(qz)max

)

δ
(

p2T − (~p1⊥ + ~p2⊥)
2
)

.

(7.71)

The δ-functions in Eq. (7.71) must be worked out in a way that allows to discern
physical and unphysical solutions for the momentum fractions xi in order to perform
the −

∫
-integrations. For this aim it is useful to rewrite the parton momenta in terms of

different variables:

q = p1 + p2 , (7.72)

k =
1

2
(p2 − p1) . (7.73)
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Inverting the last two equations, we can use the on-shell conditions for the partons to
get:

0 = p21 =

(
1

2
q− k

)2

=
1

4
q2 − k · q+ k2 , (7.74)

0 = p22 =

(
1

2
q+ k

)2

=
1

4
q2 + k · q+ k2 . (7.75)

Adding and subtracting Eqs. (7.74) and (7.75) yields:

k2 = −1

4
M2 , (7.76)

k · q = 0 . (7.77)

Solving Eq. (7.76) for k+ yields:

k+ =
~k2⊥ − 1

4M
2

k−
. (7.78)

Inserting this result into Eq. (7.77) gives an equation quadratic in k−:

0 = k+q− + k−q+ − 2~k⊥ ·~q⊥

=
~k2⊥ − 1

4M
2

k−
q− + k−q+ − 2~k⊥ ·~q⊥ (7.79)

⇒ 0 =
(
k−
)2

q+ − 2~k⊥ ·~q⊥k− +

(

~k2⊥ −
1

4
M2

)

q− . (7.80)

The solutions are:

(k−)± =
~k⊥ ·~q⊥

q+
±

√
√
√
√

(
~k⊥ ·~q⊥

q+

)2

+
q−

q+

(
1

4
M2 −~k2⊥

)

. (7.81)

Inserting (7.81) into (7.79) gives the solutions for k+:

(k+)∓ =
q+

q−






~k⊥ ·~q⊥
q+

∓

√
√
√
√

(
~k⊥ ·~q⊥

q+

)2

+
q−

q+

(
1

4
M2 −~k2⊥

)




 . (7.82)

Rewriting now Eqs. (7.39) and (7.40) in terms of q and k and taking into account the
finite nucleon mass we obtain the solutions for the parton momentum fractions:

(x1)± =
p−1
P−1

=
1

P−1

(
1

2
q− − (k−)±

)

, (7.83)

(x2)∓ =
p+2
P+
2

=
1

P−1

(
1

2
q+ + (k+)∓

)

. (7.84)
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Since there are two solutions for k− and k+, respectively, we also get two solutions for
x1, x2. To determine which set of x1, x2 and thus k+, k− has to be chosen we take the
limit of zero parton transverse momentum. In this way one can make the connection
to the collinear case (then q2 → q+q− = M2):

(k−)± → ±
√

q−

q+
1

4
M2 = ±q−

2
, (7.85)

(k+)∓ → ∓
√

q+

q−
1

4
M2 = ∓q+

2
. (7.86)

Inserting expressions (7.85) and (7.86) into (7.83) and (7.84) yields two solutions for
the momentum fractions, just as in the collinear case in Sec. 7.4.2:

(x1)± →
1

P−1

{

0

q−
(7.87)

and

(x2)∓ →
1

P−1

{

0

q+
. (7.88)

The lower solutions correspond to the standard parton model Eqs. (7.39), (7.40), while
the upper solutions then correspond to the unphysical case x1 = x2 = 0 and x̃1 6= 0 6=
x̃2, see Eqs. (7.56)-(7.60).
This is the crucial point: to receive physically meaningful results from Eq. (7.71)

one has to discard these upper solutions just as one does in the collinear case in
Sec. 7.4.2. This requires that the integrals in Eq. (7.71) are evaluated in the correct
order, otherwise one cannot disentangle the two different solutions for x1 and x2.
We will now present a calculation which respects this requirement and we begin
by introducing several integrals over δ-functions in Eq. (7.71). In this way we will

transform the integration variables to the above chosen q and~k⊥:

dσ

dM2 dxFdp
2
T

=−
1∫

0

dx1 −
1∫

0

dx2

∫

d~p1⊥

∫

d~p2⊥

∫

d~q⊥
∫

d~k⊥
∫

dq+
∫

dq−F(x1,~p1⊥ , x2,~p2⊥ ,M
2)

× δ(q+ − (p+1 + p+2 )) δ(q− − (p−1 + p−2 ))

× δ(2)(~q⊥ −
(
~p1⊥ + ~p2⊥

)
) δ(2)(~k⊥ −

1

2

(
~p1⊥ − ~p2⊥

)
)

× δ
(

M2 − (p1 + p2)
2
)

δ

(

xF −
(p1 + p2)z
(qz)max

)

δ
(

p2T − (~p1⊥ + ~p2⊥)
2
)

. (7.89)
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Now we find:

∫

d~p1⊥

∫

d~p2⊥δ(2)
(
~q⊥ −

(
~p1⊥ + ~p2⊥

))
δ(2)

(

~k⊥ −
1

2

(
~p2⊥ − ~p1⊥

)
)

= 1 . (7.90)

Then we calculate the following integral:

−
1∫

0

dx1 −
1∫

0

dx2 δ
(
q+ − (p+1 + p+2 )

)
δ
(
q− − (p−1 + p−2 )

)
. (7.91)

According to Eqs. (7.81)-(7.84) the δ-functions in the last expression have two possible
solutions for each p−1 and p+2 . However as explained above we now have to explicitly
remove the unphysical solutions (x1)+ and (x2)− , which are the ones corresponding
to the upper sign in Eqs. (7.81) and (7.82):

−
1∫

0

dx1 −
1∫

0

dx2 δ(q+ − (p+1 + p+2 )) δ(q− − (p−1 + p−2 ))

=−
1∫

0

dx1 −
1∫

0

dx2 δ




q+ −

(
1
2~q⊥ −~k⊥

)2

x1P
−
1

− x2P
−
1






× δ




q− − x1P

−
1 −

(
1
2~q⊥ +~k⊥

)2

x2P
−
1






=

1∫

0

dx1

1∫

0

dx2 δ




q+ −

(
1
2~q⊥ −~k⊥

)2

(x1)−P−1
− (x2)+P

−
1






× δ




q− − (x1)−P−1 −

(
1
2~q⊥ +~k⊥

)2

(x2)+P
−
1






=

∣
∣
∣
∣
∣
(P−1 )2 − (12~q⊥ −~k⊥)2(12~q⊥ +~k⊥)2

(x1)
2
−(x2)

2
+(P

−
1 )2

∣
∣
∣
∣
∣

−1
. (7.92)

Using dq+dq− = 2dq0dqz we can evaluate some of the remaining integrals of Eq.
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(7.89) with the help of the δ-functions:
∫

dq+dq−d~q⊥δ
(

M2 − q2
)

δ

(

xF −
qz

(qz)max

)

δ
(

p2T − (~q⊥)
2
)

= 2
∫

dq0d~q⊥dqz δ
(

M2 + (~q⊥)
2 + q2z − q20

)

δ

(

xF −
qz

(qz)max

)

δ
(

p2T − (~q⊥)
2
)

=
π (qz)max

E
, (7.93)

with E =
√

M2 + p2T + x2F(qz)
2
max . Collecting the pieces, what remains of Eq. (7.89) is

dσ

dM2 dxFdp
2
T

=

|~k⊥|max∫

d~k⊥
π (qz)max

E

∣
∣
∣
∣
∣
(P−1 )2 − (~̂p1⊥)

2(~̂p2⊥)
2

(x1)
2
−(x2)

2
+(P

−
1 )2

∣
∣
∣
∣
∣

−1
F((x1)−, ~̂p1⊥ , (x2)+, ~̂p2⊥ ,M

2) .

(7.94)

(x1)−, ~̂p1⊥ , (x2)+ and ~̂p2⊥ are now fixed:

(x1)− =
1

P−1





q−

2
−
~k⊥ ·~q⊥

q+
+

√
√
√
√

(
~k⊥ ·~q⊥

q+

)2

+
q−

q+

(
1

4
M2 −~k2⊥

)




 , (7.95)

(x2)+ =
1

P−1





q+

2
+
~k⊥ ·~q⊥

q−
+

√
√
√
√

(
~k⊥ ·~q⊥

q−

)2

+
q+

q−

(
1

4
M2 −~k2⊥

)




 , (7.96)

~̂p1⊥ =
1

2
~q⊥ −~k⊥ , (7.97)

~̂p2⊥ =
1

2
~q⊥ +~k⊥ , (7.98)

with:

q+ = E+ xF(qz)max , (7.99)

q− = E− xF(qz)max , (7.100)

|~q⊥| = pT , (7.101)

~k⊥ ·~q⊥ = |~k⊥|pT cos(φ⊥) . (7.102)

|~k⊥|max is fixed by the condition that (x1)− and (x2)+ must be real numbers:

(~k⊥)
2
<

(M2 + p2T)
M2

4

M2 + p2T(1− cos2(φ⊥))
= (~k⊥)

2
max . (7.103)
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We have convinced ourselves that this condition also guarantees that 0 < (x1)− < 1
and 0 < (x2)+ < 1. Finally we arrive at the following expression:

dσ

dM2 dxFdp
2
T

=

2π∫

0

dφ⊥

(~k⊥)2max∫

0

1

2
d(~k⊥)
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×
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∣
∣
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2
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+(P

−
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∣
∣
∣
∣
∣

−1
F((x1)−, ~̂p1⊥ , (x2)+, ~̂p2⊥ ,M

2) , (7.104)

where the function F is given by:

F((x1)−, ~̂p1⊥ , (x2)+, ~̂p2⊥ ,M
2) = ∑

i

q2i f̃i

(

(x1)−, ~̂p1⊥ ,M
2
)

f̃ ī

(

(x2)+, ~̂p2⊥ ,M
2
) 4πα2

9M2
,

(7.105)

with our transverse momentum dependent parton distributions f̃i.

7.4.4 Quark masses

In Sec. 7.4.3 we extended the standard collinear PDFs towards quark distributions
which also include quark transverse momentum. However, we kept the masses of the
quarks fixed at zero. Since in light cone coordinates the onshell condition reads m2 =
p2 = p+p− − (~p⊥)2, this is equivalent to varying only two of the three, in principle
independent quark momentum components p+, p− and p⊥. A fully unintegrated
parton distribution should depend on all three of these components. Therefore, we
once more extend the parton distributions of Sec. 7.4.3:

f̃i(x,~p⊥, q
2)→ f̂i(x,~p⊥,m

2, q2) (7.106)

We will present our ansatz for f̂ in Sec. 7.5.2. The differential hadronic cross section
now becomes

dσLO =−
1∫

0

dx1 −
1∫

0

dx2

∫

d~p1⊥

∫

d~p2⊥

∫

dm2
1

∫

dm2
2

×∑
i

q2i f̂i(x1,~p1⊥ ,m
2
1, q

2) f̂ ī(x2,~p2⊥ ,m
2
2, q

2)

× dσ̂(x1,~p1⊥ , x2,~p2⊥ ,m
2
1,m

2
2, q

2) . (7.107)

The partonic cross section is given by Eq. (7.27).
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Now we have to perform the same procedure as described above to remove the
unphysical solutions for the longitudinal momentum fractions xi. In complete anal-
ogy we find (the details of this calculation can be found in Sec. 8.3.2, since it is just a
special case of the kinematics of gluon bremsstrahlung):

dσLO
dM2 dxFdp

2
T

=

2π∫
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where the function FLO is given by:
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. (7.109)

The momentum fractions read:
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 , (7.111)
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with:

~̂p1⊥ =
1

2
~q⊥ −~k⊥ , (7.112)

~̂p2⊥ =
1

2
~q⊥ +~k⊥ , (7.113)

E =
√

M2 + p2T + x2F(qz)
2
max (7.114)

q+ = E+ xF(qz)max , (7.115)

q− = E− xF(qz)max , (7.116)

|~q⊥| = pT , (7.117)

~k⊥ ·~q⊥ = |~k⊥|pT cos(φ⊥) , (7.118)

(~k⊥)
2
max =

(M2 + p2T)
M2

4

M2 + p2T(1− cos2(φ⊥))
, (7.119)

(m1)
2
max = 2~k⊥ ·~q⊥ + q+q− −

√

4q+q−
(

~k⊥ +
1

2
~q⊥

)2

, (7.120)

(m2)
2
max = −2~k⊥ ·~q⊥ +m2

1 + q+q−

−
√

4q+q−m2
1 + 4q+q−

(

~k⊥ −
1

2
~q⊥

)2

. (7.121)

In Sec. 7.6 we show the results of this calculation as well as of the approaches in
Secs. 7.4.1 and 7.4.3.

7.5 Distributions

The Bjorken limit, in which the standard parton model is well defined and derived
from LO pQCD, is an idealisation of real experiments. There the partons inside the nu-
cleons will always interact before the collision and these interactions will generate mo-
mentum components, which are neglected in the (purely collinear) standard parton
model, namely momentum components perpendicular to the beam line, ~p1⊥ ,~p2⊥ , as
well as the small light-cone components p+1 , p

−
2 . The latter translate to non-vanishing

quark masses.

Note that the factorisation into hard (subprocess) and soft (PDFs) physics is proven
in the transverse case at least for partons with low transverse momentum in [JMY04].
For the case of mass distributions for the quarks we assume this factorisation.
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7.5.1 Transverse momentum distributions

In Sec. 7.4.3 we introduced transverse momentum dependent parton distribution
functions f̃i. They are functions of the light-cone momentum fraction xi, the transverse
momentum ~pi⊥ and the hard scale of the subprocess q2. However, the general form of
these functions is unknown. Known rather well are the longitudinal PDFs. Since data
of DY pair production are compatible with a Gaussian form of the pT spectrum up to
a certain pT [Web03, NuSea03], we assume factorisation of the longitudinal and the
transverse part of f̃i and make the following common ansatz [Wan00, RPN02, DM04]:

f̃i(x,~p⊥, q
2) = fi(x, q

2) · f⊥(~p⊥) . (7.122)

Here fi are the usual longitudinal PDFs and for f⊥ we choose a Gaussian form:

f⊥(~p⊥) =
1

4πD2
exp

(

− (~p⊥)2

4D2

)

. (7.123)

The width parameter D is connected to the average squared transverse momentum:

〈(~p⊥)2〉 =
∫

d~p⊥(~p⊥)
2 f⊥(~p⊥), = 4D2 (7.124)

and D has to be fitted to the available data.

7.5.2 Mass distributions

In Sec. 7.4.4 we extended our model by also distributing quark masses. This approach
was motivated by studies of quark correlations and quark spectral functions, see for
example [FLM03, FL07]. Note that in such a mass distribution approach one effec-
tively parametrises higher twist effects, i.e. effects which are suppressed by inverse
powers of the hard scale M. These higher twist contributions should become par-
ticularly important in the description of DY pair production in the region of small
energies (and thus small M), which is one aim of our studies.

For the fully unintegrated parton distributions f̂i we make the following ansatz:

f̂i(x,~p⊥,m
2, q2) = fi(x, q

2) · f⊥(~p⊥) · A(p) . (7.125)

Again fi are standard PDFs and f⊥ are the transverse momentum distributions of
Sec. 7.5.1. Since the distribution of longitudinal parton momenta is determined by
the argument of the PDFs x ∼ p+, we now allow for a distribution of the remaining
degree of freedom, i.e. the small component p−, by writing:

A(p)dp− =
1

N

Γ̂(m2)
(

p− − p2T
p+

)2
+ Γ̂2(m2)

dp− , (7.126)
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with m2 = p2. Rewriting in terms of m2 yields:

A(p)dm2 =
1

N

Γ̂(m2)p+

m4 + (p+)2Γ̂2(m2)
dm2 . (7.127)

We choose a non-constant width such that the quark can never become heavier than
its parent nucleon:

Γ̂(m2) =
m2

N −m2

m2
N

Γ , (7.128)

for 0 < m2 < m2
N and Γ̂(m2) = 0 otherwise, where Γ is a free parameter. The factor 1

N
normalises the spectral function such that

∞∫

0

dm2A(p) =

m2
N∫

0

dm2A(p) = 1 . (7.129)
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Figure 7.4: Spectral function A plotted for different values of the width Γ. Everywhere
p+ = 0.5 GeV.

In Fig. 7.4 we plot A(p) as a function of m2 for fixed p+ = 0.5 GeV for different
values of the width Γ. Note that for not too small Γ the region near m2 = 0 is heavily
suppressed as compared to, for example, Γ = 0.01 GeV.
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7.6 Results of the leading order approach

In this section we present and compare our results for the different LO approaches
of Secs. 7.4.1, 7.4.3 and 7.4.4. The data are from the NuSea Collaboration (E866)
[Web03, NuSea03] and from FNAL-E439 [S+81]. For the collinear PDFs we used the
leading order MSTW2008LO68cl parametrisation [MSTW09].

7.6.1 E866 - pT spectra

Experiment E866 measured continuum dimuon production in pp collisions at S ≈
1500 GeV2. The triple-differential cross section as given by the E866 collaboration is:

E
dσ

d3p
≡ 2E

π
√
S

dσ

dxFdp
2
T

, (7.130)

where an average over the azimuthal angle has been taken and where E is the energy
of the DY pair, cf. Eq. (7.132). The data are given in several bins of M, xF and pT
and for every datapoint the average values 〈M〉, 〈xF〉 and 〈pT〉 are given. Since our
schemes provide Eqs. (7.104) and (7.108) we calculate the quantity of Eq. (7.130) for
every datapoint using these averaged values and then perform a simple average in
each M2 bin:

2E

π
√
S

dσ

dxFdp
2
T

→ 2E

π
√
S

∫

M2-bin

dσ

dM2dxFdp
2
T

dM2

≈ 2E

π
√
S

∆M2 dσ

dM2dxFdp
2
T

(〈M〉 , 〈xF〉 , 〈pT〉) , (7.131)

where the energy of the DY pair is:

E =

√

〈M〉2 + 〈pT〉2 + 〈xF〉2 〈(qz)max〉2 . (7.132)

∆M2 = M2
max −M2

min, where Mmax (Mmin) is the upper (lower) limit of the bin.
We plot the results for the two different approaches of Secs. 7.4.3 and 7.4.4 in Fig. 7.5.

The different dashed lines represent the massless and the mass distribution approach
for different values of Γ and they all agree within ≈ 20%. Note, however, that with
increasing Γ the calculated cross section is slightly enhanced. Everywhere a value of
D = 0.5 GeV for the transverse momentum dispersion was chosen. With this choice
of the parameter D the shape of the spectra is described rather well. However, in
both approaches the absolute size of the cross section is underestimated: we have to
multiply the result of the mass distribution approach for Γ = 0.5 GeV by K = 2 to fit
the data (solid line).
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Figure 7.5: pT spectrum obtained at LO from the massless and the mass distribution
approach with different values of Γ. Everywhere D = 0.5 GeV. The solid line is the
mass distribution approach for Γ = 0.5 GeV multiplied by a factor K = 2. Data are
from E866 binned with 4.2 GeV < M < 5.2 GeV, −0.05 < xF < 0.15. Only statistical
errors are shown.

Our value for the average intrinsic transverse momentum 〈(~p⊥)2〉 = 4D2 = 1 GeV2

is in agreement with other LO approaches; for example in [DM04] a simplified model
utilizing the collinear subprocess cross section together with Gaussian transverse mo-
mentum distributions for the (massless) quarks was developed. There a value of

〈(~p⊥)2〉 ≈ 0.95 GeV2 was found for the energy range of E866. In addition in [DM04]
a factor K = 1.6 was determined, which is considerably lower than the factor K = 2,
which we found above. One should note, however, two things: first, in [DM04] the
comparison of model and data was performed in invariant mass bins with M > 7
GeV in contrast to our calculation for M < 5.2 GeV. Second, the results in [DM04] for
K = 1.6 change from slightly overshooting the data in higher mass bins (M > 10 GeV)
to undershooting in lower mass bins (M > 7 GeV), cf. Fig. 4 in [DM04]. Extrapolating
this behavior down to our values for M warrants a somewhat larger K factor for the
model in [DM04], which would bring their value of K closer to ours. Thus, it is fair to
say, that both their and our LO approaches are in reasonable agreement.
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7.6.2 E439 - M spectrum

Experiment E439 measured dimuon production in proton-tungsten collisions at S ≈
750 GeV2. The double differential cross section

dσ

dMdx′F
(7.133)

has been given at a fixed x′F = 0.1.

As before we begin with Eqs. (7.104) and (7.108) and calculate the quantity Eq.
(7.133) by integrating over p2T and performing a simple transformation from xF to x′F:

dσ

dMdx′F
=

(pT)
2
max∫

0

dp2T
dσ

dMdx′Fdp
2
T

=

(pT)
2
max∫

0

dp2T 2M

(

1− M2

S

)

× dσ

dM2dxFdp
2
T

(

M, xF = x′F

(

1− M2

S

))

. (7.134)

Since the experiment was done on tungsten we calculate the cross section for proton-
proton and proton-neutron and average accordingly (74 protons and 110 neutrons).
We compare the results in Fig. 7.6. Everywhere D = 0.5 GeV except for the simple
parton model, which has no transverse momentum distribution. The lowest curve
represents the indistinguishable results of the standard parton model (Sec. 7.4.1) and
of the (massless) initial transverse momentum approach (Sec. 7.4.3). The result of
the mass distribution approach (Sec. 7.4.4) for Γ = 0.5 GeV (long dashed) is some-
what larger but still underestimates the data: The solid line is the result of this mass
distribution approach multiplied by a factor K = 1.2 and it fits the data very well.
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Figure 7.6: M spectrum obtained from the standard parton model, initial transverse
momentum approach (massless) and mass distribution approach (D = 0.5 GeV for the
latter two). The solid line is the result of the mass distribution approach multiplied by
a factor K = 1.2. Data are from E439 with x′F = 0.1. Only statistical errors are shown.

The K factor obtained in standard parton model calculations for the E439 regime is
given as K = 1.6± 0.3 [S+81, GPS86], which agrees well with the factor K = 1.6 found
in the (massless) LO approach in [DM04]. The smaller factor K = 1.2, which we have
obtained can therefore be attributed to the inclusion of the quark mass distributions
and the full kinematics in the hard subprocess in our model. Note, that at E439 (S =
750 GeV2) our massive approach leads to a larger enhancement of the cross section
than for example at E866 (S = 1500 GeV2), cf. Figs. 7.5 and 7.6. This is not totally
unexpected, as at lower hadronic energies the calculated cross section should become
more sensitive to the details of the soft physics encoded in our various distributions.

7.7 Conclusion for the LO calculation

In this chapter we have presented and compared three different approaches to DY pair
production at LO in the partonic subprocess. The standard parton model approach
describes invariant mass spectra only up to a K factor and it cannot describe trans-
verse momentum (pT) spectra. The latter issue was addressed in the initial transverse
momentum approach. We found that with a suitable choice of an initial transverse
momentum distribution the DY pT spectra can be described very well, however, still
only up to a K factor, in agreement with other LO approaches, see e.g. [DM04]. The
mass distribution approach can improve the picture somewhat, but the enhancement
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of the calculated cross sections is too small to describe the data. Still an a priori unde-
termined multiplicative factor K is needed to reproduce the measured cross sections.
This finding triggered the NLO calculations, which will be presented in Chapter 8.
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8
Next-to-leading order corrections to the

Drell-Yan process

Building on the LO (O(α0
s )) calculations of Chapter 7 we will present in this chapter all

relevant DY pair production processes to O(αs) (NLO): loop corrections to the quark-
photon vertex, gluon bremsstrahlung and gluon Compton scattering. As already
mentioned in the introduction, the latter two processes produce divergent pT spectra,
if evaluated in the standard massless parton model approach. We will show, that we
can soften the divergences of these NLO processes at low pT by introducing initial
parton transverse momentum kT and quark mass distributions, just as we did for
the LO case, cf. Sec. 7.5. Since the collinear divergences that produce the divergent
pT spectra are commonly absorbed into the PDFs, we will introduce a subtraction
scheme to avoid double-counting of the NLO processes, that we explicitly consider.
In the results in Part V we will then see, that in this approach we can describe pT and
M spectra without the need for an additional K factor.

8.1 Vertex correction

In this section we will treat the processes that modify the electromagnetic quark-
photon vertex. They are depicted in Figs. 8.1 and 8.2. The vertex correction diagram
(Fig. 8.1, right) alone does contribute only at order α2

s to the cross section. However,
due to identical initial and final states it interferes with the LO process (Fig. 8.1, left)
and the interference is of order αs. The same is true for the wave function renormali-
sation processes of Fig. 8.2.
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8 Next-to-leading order corrections to the Drell-Yan process

We will begin by calculating the modified vertex function Γµ, regulating the ultra-
violet loop divergences in dimensional regularisation and the infrared divergences by
introducing a finite (and fictitious) gluon mass λ. Inserting Γµ into the interference
cross section, we will then obtain the relevant form factors of the quark-photon ver-
tex. Since we assign different masses to the incoming quarks, we again have to make
sure that current conservation is fulfilled and we will find, that this indeed the case.
However, one unwanted effect of the different quark masses will become apparent,
namely, that the electric charge at the quark-photon vertex is renormalised. Fortu-
nately we will finally find, that this renormalisation does not affect our model. Note,
that the quark-gluon vertex is unchanged, since by our construction the quark mass
does not change at this vertex, cf. Sec. 8.1.5.

←
p1,m1

→
p2,m2

q ↑

γ∗

q̄ q

←
p1,m1

←
k ,m1

←
(p1 − k)

←
(k− q),m2

q ↑

→
p2,m2

γ∗

q̄ q

Figure 8.1: Leading order and vertex correction processes to DY production. Note
that only the interference of the two processes contributes at NLO.

←
p1,m1

q ↑
→
p2,m2

→
p2,m2

γ∗

q̄ q

←
p1,m1

→
p2,m2

q ↑
←
p1,m1

γ∗

q̄ q

Figure 8.2: Wave function renormalisation processes for DY production at NLO.
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8.1 Vertex correction

8.1.1 Vertex function

We already found the amplitude for the LO process qq̄ → γ∗ (Fig. 8.1 left) in Eq.
(7.12):

iMLO = v̄s′(p2) (ieγ
µ) us(p1) · ǫ∗µ(q) . (8.1)

We now have to calculate the amplitude including all the order αs corrections induced
by the loop diagrams in Figs. 8.1 right and 8.2. The two wave function renormalisation
processes are taken into account by assigning a factor

√
Z2 for each of the external

quark legs, cf. Secs. 4.3 and 4.4. The vertex correction process modifies the bare
quark-photon vertex:

γµ → Γµ = γµ + δΓµ , (8.2)

where δΓµ is of order αs. Now one can expand the amplitude in powers of the strong
coupling:

iM =
√

Z2(p2)v̄s′(p2) (ieΓ
µ)
√

Z2(p1)us(p1) · ǫ∗µ(q)

=

(

1+
1

2
δZ2(p2) +O(α2

s )

)

v̄s′(p2)

× [ie(γµ + δΓµ)]

×
(

1+
1

2
δZ2(p1) +O(α2

s )

)

us(p1) · ǫ∗µ(q)

= v̄s′(p2) (ieγ
µ) us(p1) · ǫ∗µ(q)

+ v̄s′(p2)

[

ie(
1

2
δZ2(p2)γ

µ +
1

2
δZ2(p1)γ

µ + δΓµ)

]

us(p1) · ǫ∗µ(q) +O(α2
s )

= iMLO + iMVC +O(α2
s ) , (8.3)

where MVC ∼ αs. We already found the field strength corrections for the massive
quark case in Eq. (4.90):

δZ2(pi) =
αs

4π
CF

[

−4− 1

ǫ′
+ γ− ln

(

4πµ2

m2
i

)

− 2 ln

(

λ2

m2
i

)]

. (8.4)

Here λ is the fictitious gluon mass, which regulates the IR divergence and CF is the
color factor, cf. Appendix B. Left to do is the calculation of the correction δΓµ. Using
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8 Next-to-leading order corrections to the Drell-Yan process

the Feynman rules of Appendix B one finds for the loop in Fig. 8.1 right:

v̄s′(p2)δΓµus(p1)

= CFv̄s′(p2)
∫

ddk

(2π)d
(igγα)

i(/k − /q +m2)

(k− q)2 −m2
2 + iǫ

γµ i(/k +m1)

k2 −m2
1 + iǫ

(igγβ)us(p1)

× −igαβ

(p1 − k)2 − λ2 + iǫ

= −ig2CF

∫
ddk

(2π)d
v̄s′(p2)γ

α(/k − /q +m2)γ
µ(/k +m1)γαus(p1)

[
k2 −m2

1 + iǫ
] [

(k− q)2 −m2
2 + iǫ

]
[(p1 − k)2 − λ2 + iǫ]

, (8.5)

with λ and CF as described above.

Feynman parameters

Following the results of Sec. 2.3 we introduce Feynman parameters to combine the
propagator denominators:

1
[
k2 −m2

1 + iǫ
] [

(k− q)2 −m2
2 + iǫ

]
[(p1 − k)2 − λ2 + iǫ]

=

1∫

0

dxdydz
2δ (x+ y+ z− 1)

[
xk2 − xm2

1 + y(k− q)2 − ym2
2 + z(p1 − k)2 − zλ2 + iǫ

]3
. (8.6)

The denominator of the integrand can now be rewritten by completing the square in
k (remember x+ y+ z = 1!):

xk2 − xm2
1 + y(k− q)2 − ym2

2 + z(p1 − k)2 − zλ2 + iǫ

=(x+ y+ z)k2 + k(−2yq− 2zp1)− xm2
1 + yq2 − ym2

2 + zp21 − zλ2 + (x+ y+ z)iǫ

=l2 − ∆ , (8.7)

with l = k− yq− zp1 and:

∆ = (yq+ zp1)
2 + xm2

1 − yq2 + ym2
2 − zp21 + zλ2 − iǫ

= −xyq2 +m2
1(1− z)2 + (m2

2 −m2
1)y(1− z) + zλ2 − iǫ , (8.8)

where we have used q = p1 + p2, p
2
1 = m2

1 and p22 = m2
2. Shifting the momentum

integration the correction then becomes:

v̄s′(p2)δΓµus(p1) = −ig2CF

1∫

0

dxdydzδ(x+ y+ z− 1)
∫

ddl

(2π)d

× v̄s′(p2)γ
α(/k − /q +m2)γ

µ(/k +m1)γαus(p1)

[l2 − ∆ + iǫ]
3

, (8.9)

with k = l + yq+ zp1.
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8.1 Vertex correction

Dirac algebra

Before we go on and simplify the Dirac structure of the numerator, we note, that from
general principles one can decompose the complete αs correction into three parts:

1

2
δZ2(p2)γ

µ +
1

2
δZ2(p1)γ

µ + δΓµ = A · γµ + B · (p1 − p2)
µ + C · (p1 + p2)

µ , (8.10)

where A, B and C are functions of q2, m1 and m2. However, in DY pair-production the
term (p1 + p2)

µ = qµ does not contribute, since at the quark-lepton vertex the current
is conserved, cf. Sec. 7.3.3. Therefore, we will neglect this term in the calculation of
δΓµ.
Using the contraction identities for d = 4− 2ǫ′ dimensions, cf. Appendix A, and

under symmetry considerations of the momentum integration, cf. Sec. 2.3.4, one finds:

v̄s′(p2)γ
α(/k − /q +m2)γ

µ(/k +m1)γαus(p1)

→vs′(p2)

{

γµ

[
(2− 2ǫ′)2

d
l2 − 2q2(1− x)(1− y)

+ m2
1

(

2z2 + 2yz

(

1− m2
2

m2
1

)

+ 2z

(

m2

m1
+

m2
2

m2
1

)

− 2
m2

m1

)]

+
(
p

µ
1 − p

µ
2

)
(2yz(m2 −m1) + 2m1z(1− z))

}
us(p1) , (8.11)

where we have kept the terms involving ǫ′ only in the divergent part ∼ l2.

Dimensional regularisation

The result (8.11) leaves us with a UV divergent and a UV finite momentum integral.
Drawing on our findings in Sec. 2.3 we recover:

(2− 2ǫ′)2

d

∫
ddl

(2π)d
2l2

[l2 − ∆]
3
= 2

(2− 2ǫ′)2

d

i

(4π)2
d

2

Γ(ǫ′)
2

(
4πµ2

∆

)ǫ′

=
i

(4π)2
2(1− ǫ′)2Γ(ǫ′)

(
4πµ2

∆

)ǫ′

= 2

[
1

ǫ′
− γ− 2+ log

(
4πµ2

∆

)]

+O(ǫ′) . (8.12)

The second integral converges for d = 4:

∫
ddl

(2π)d
2

[l2 − ∆]
3

ǫ′→0
=

−i
(4π)2

1

∆
. (8.13)

159



8 Next-to-leading order corrections to the Drell-Yan process

Inserting Eqs. (8.11-8.13) into Eq. (8.9), we find for the vertex correction:

δΓµ =
αs

4π
CF

1∫

0

dxdydzδ(x+ y+ z− 1)

{

γµ2

[
1

ǫ′
− γ− 2+ log

(
4πµ2

∆

)]

− γµ

∆

[

−2q2(1− x)(1− y)

+m2
1

(

2z2 + 2yz

(

1− m2
2

m2
1

)

+ 2z

(

m2

m1
+

m2
2

m2
1

)

− 2
m2

m1

)]

− p
µ
1 − p

µ
2

∆
(2yz(m2 −m1) + 2m1z(1− z))

}

=
αs

4π
CF

[

1

ǫ′
− γ− 2+ log

(

4πµ2

m2
1

)]

+
αs

4π
CF

1∫

0

dxdydzδ(x+ y+ z− 1)

{

γµ2 log

(

m2
1

∆

)

− γµ

∆

[

−2q2(1− x)(1− y)

+m2
1

(

2z2 + 2yz

(

1− m2
2

m2
1

)

+ 2z

(

m2

m1
+

m2
2

m2
1

)

− 2
m2

m1

)]

− p
µ
1 − p

µ
2

∆
(2yz(m2 −m1) + 2m1z(1− z))

}

. (8.14)
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8.1 Vertex correction

Adding the corrections of the wave function renormalisation processes, Eq. (8.4),
one obtains:

1

2
δZ2(p1)γ

µ +
1

2
δZ2(p2)γ

µ + δΓµ

=
1

2

αs

4π
CFγµ

[

−4− 1

ǫ′
+ γ− log

(

4πµ2

m2
1

)

− 2 log

(

λ2

m2
1

)]

+
1

2

αs

4π
CFγµ

[

−4− 1

ǫ′
+ γ− log

(

4πµ2

m2
2

)

− 2 log

(

λ2

m2
2

)]

+
αs

4π
CFγµ

[

1

ǫ′
− γ− 2+ log

(

4πµ2

m2
1

)]

+
αs

4π
CF

1∫

0

dxdydzδ(x+ y+ z− 1)

{

γµ2 log

(

m2
1

∆

)

− γµ

∆

[

−2q2(1− x)(1− y)

+m2
1

(

2z2 + 2yz

(

1− m2
2

m2
1

)

+ 2z

(

m2

m1
+

m2
2

m2
1

)

− 2
m2

m1

)]

− p
µ
1 − p

µ
2

∆
(2yz(m2 −m1) + 2m1z(1− z))

}

=
αs

4π
CFγµ

[

−6− 1

2
log

(

m2
1

m2
2

)

− log

(

λ2

m2
1

)

− log

(

λ2

m2
2

)]

+
αs

4π
CF

1∫

0

dxdydzδ(x+ y+ z− 1)

{

γµ2 log

(

m2
1

∆

)

− γµ

∆

[

−2q2(1− x)(1− y)

+m2
1

(

2z2 + 2yz

(

1− m2
2

m2
1

)

+ 2z

(

m2

m1
+

m2
2

m2
1

)

− 2
m2

m1

)]

− p
µ
1 − p

µ
2

∆
(2yz(m2 −m1) + 2m1z(1− z))

}

. (8.15)

161



8 Next-to-leading order corrections to the Drell-Yan process

The calculation of the remaining integrals in the last equation is lengthy and we
show the details in Appendix C. We have finally found the functions A and B of Eq.
(8.10). We will only need the real parts of A and B, see Eq. (8.33) below:

Re(A) =
αs

4π
CF · Re

(

−3+ log(1− v2)− 1

2

(

log(1− α2) + log(1− (α + φ)2)
)

− α

2

(

log
α + 1

α− 1
+ log

α + φ + 1

α + φ− 1

)

− φ

2
log

α + φ + 1

α + φ− 1
+ I1

)

,

(8.16)

with:

I1 =− 1+
φ

2
log

1− v2

1− v2 − 2φ
− 4v2 + 3φ + τ + φ2

2

2α + φ

(

log
α− 1

α + 1
+ log

α + φ− 1

α + φ + 1

)

+ 2(1+ v2 + φ) · I3 − 2 log (κ) +
3

2
log

(

m2
1

m2
2

)

, (8.17)

I3 =
1

2r

[

log(κ) log
1+ r− φ

2

1− r− φ
2

+ log
v2 − 1

2r
log

r+ 1− φ
2

r− 1− φ
2

− 1

2
log2(r+ 1− φ

2
) +

1

2
log2(r− 1− φ

2
)

+ Li2

(

r+ 1− φ
2

2r

)

− Li2

(

r− 1− φ
2

2r

)

+ log2

(√

1− v2

1− v2 − 2φ

)

+ log

(√

1− v2

1− v2 − 2φ

)

log(κ)

]

, (8.18)

Re(B) =

αs

4π

1

m1
· Re

[
τ
4 (1− α) + v2−1

2

2α + φ

(

log
α− 1

α + 1
+ log

α + φ− 1

α + φ + 1

)

− τ

4
log

α + φ + 1

α + φ− 1

]

.

(8.19)

The auxiliary functions are given by:

v =

√

1− 4m2
1

q2
, (8.20)

τ =(1− v2) ·
(

1− m2

m1

)

, (8.21)
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φ =
1

2
·
(

1− m2
2

m2
1

)

· (1− v2) , (8.22)

α =− φ

2
+

√

φ + v2 +
φ2

4
, (8.23)

r =

√

φ + v2 +
φ2

4
, (8.24)

κ =
λ2

m2
1

. (8.25)

Li2 is the Dilogarithm of Sec. 3.1.2.

Form factors

The Gordon identity [PS95] for the case of different masses m1 and m2 reads:

v̄(p2,m2)γ
µu(p1,m1) = v̄(p2,m2)

(
(p1 − p2)

µ

m1 +m2
+

iσµνqν

m1 +m2

)

u(p1,m1) , (8.26)

and so we find:

M = MLO + MVC

= ev̄s′(p2)

[

γµ +
1

2
δZ2(p2)γ

µ +
1

2
δZ2(p1)γ

µ + δΓµ

]

us(p1) · ǫ∗µ(q)

= ev̄s′(p2) [γ
µ(1+ A) + B(p1 − p2)

µ] us(p1) · ǫ∗µ(q)

= ev̄s′(p2)

[

γµ · (1+ A+ (m1 +m2)B) +
iσµνqν

m1 +m2
· (−(m1 +m2)B)

]

us(p1) · ǫ∗µ(q) .
(8.27)

We can now identify the well known form factors F1 and F2 [PS95]:

F1 = 1+ A+ (m1 +m2)B , (8.28)

F2 = −(m1 +m2)B . (8.29)

We have checked and confirmed that in the limit of equal masses m2 → m1 the
well known formula for F1(q

2,m2) [Mut98, BGG73] is recovered. We note that also for
unequal masses the UV divergences of the loops, displayed in Figs. 8.1, 8.2, cancel,
cf. Eq. (8.15). This is by virtue of the Ward-Takahashi identities, which are fulfilled
at the quark-gluon vertices, since there by construction the mass of the quark does
not change. However, for m1 6= m2 one finds that current conservation is violated
at the quark-photon vertex (the full amplitude conserves the current, see Sec. 7.3.3).
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8 Next-to-leading order corrections to the Drell-Yan process

The gauge dependence of the quark-photon vertex results in a finite renormalisation
of the charge, which cannot be canceled by gauge invariant counter terms. Therefore
one finds:

lim
q2→0

F1(q
2,m2

1,m
2
2) 6= 1 . (8.30)

On the other hand, q2 = M2 sets the hard scale in DY pair production and thus our
model should only be applied at reasonably large q2. A sensible lower limit would
be q2 > 1 GeV2. Thus, we probe F1 far away from q2 = 0 and we will show in Sec.
8.1.6 that for these physically interesting q2 the influence of the renormalised charge
is negligible.

8.1.2 Cross section

The squared, averaged and summed amplitude of Eq. (8.27) can be written as:

|M̄|2 = |M̄LO|2 + MLOM
∗
VC + M∗LOMVC +O(α2

s )

= |M̄LO|2 + 2Re
(
MLOM

∗
VC

)
+O(α2

s )

=
e2

4

(
−gµν

) {
TR
[
(/p2 −m2)γ

µ(/p1 +m1)γ
ν
]

+ 2Re(A)TR
[
(/p2 −m2)γ

µ(/p1 +m1)γ
ν
]

+2Re(B)TR
[
(/p2 −m2)γ

µ(/p1 +m1)(p1 − p2)
ν
]}

(8.31)

The first term in the curly brackets is just the matrix element of the LO process. The
other terms contain all the order αs interferences of the processes in Figs. 8.1 and 8.2.
Using our results of Sec. 7.3.2 we can express the order αs interference cross section
for the process qq̄→ l+l− as:

dσ̂VC =
4πα2

9q4
TVC

4
√

(p1 · p2)2 −m2
1m

2
2

δ(4) (p1 + p2 − q)
d3q

2Eq
, (8.32)

where we have used the LO cross section (7.27) and where:

TVC =

(

−gµν +
qµqν

q2

)
(
2Re(A) · Tr

[
(/p2 −m2)γ

µ(/p1 +m1)γ
ν
]

+ 2Re(B) · Tr
[
(/p2 −m2)γ

µ(/p1 +m1)
]
· (p1 − p2)

ν
)
. (8.33)

Note that dσ̂VC depends on the gluon mass λ of Eq. (8.25) and so does the cross
section for gluon bremsstrahlung, as we will see in Sec. 8.3.1. Only the sum of the
two cross sections is a physically meaningful quantity, as we will show in the next
subsection.
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8.1 Vertex correction

8.1.3 Soft gluon divergence

To obtain Eqs. (8.16-8.25) we have assigned to the gluon a mass λ which serves as
an IR regulator in the loop integral. This is exactly the same mass we introduced in
Sec. 5.2 to regulate the divergence of the bremsstrahlung processes in the soft gluon
region. We will now show, that in the sum of the processes this fictitious gluon mass
will exactly cancel.
From Eqs. (8.16- 8.25) we find, that only the real part of A depends on the mass λ.

Therefore, we collect all λ-dependent parts of A:

Re(Aλ)

=
αs

4π
CF log

(

λ2

m2
1

)

Re

[

−2+ 1+ v2 + φ

r

(

log
1+ r− φ

2

1− r− φ
2

+ log

(√

1− v2

1− v2 − 2φ

))]

.

(8.34)

Now we note, that the real part of A simply multiplies the cross section of the LO
process, cf. Eqs. (7.27, 8.32, 8.33) and so the λ-dependent part of the cross section
reads:

dσ̂λ
VC = 2Re(Aλ) · dσ̂LO . (8.35)

Rewriting the terms in Eq. (8.34) piece by piece one obtains:

1+ v2 + φ =
2

q2

(

q2 −m2
1 −m2

2

)

, (8.36)

r =

√
(
q2 −m2

1 −m2
2

)2 − 4m2
1m

2
2

q2
, (8.37)

1+ r− φ
2

1− r− φ
2

=
q2 −m2

1 +m2
2 +

√
(
q2 −m2

1 −m2
2

)2 − 4m2
1m

2
2

q2 +m2
1 −m2

2 −
√
(
q2 −m2

1 −m2
2

)2 − 4m2
1m

2
2

=
q2 −m2

1 −m2
2 +

√
(
q2 −m2

1 −m2
2

)2 − 4m2
1m

2
2

2m2
1

= α+ , (8.38)
√

1− v2

1− v2 − 2φ
=

√

m2
1

m2
2

=
m1

m2
, (8.39)

where we found α+ already in Eq. (5.48). Thus, we recover:

Re(Aλ) =
αs

4π
CF log

(

λ2

m2
1

)

Re



−2+ 2
(
q2 −m2

1 −m2
2

)

√
(
q2 −m2

1 −m2
2

)2 − 4m2
1m

2
2

log

(

α+
m1

m2

)


 .

(8.40)
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8 Next-to-leading order corrections to the Drell-Yan process

Since Aλ is a real number, the λ-dependent part of the cross section becomes:

dσ̂λ
VC

=dσ̂LO
αs

2π
CF log

(

λ2

m2
1

)

−2+ 2
(
q2 −m2

1 −m2
2

)

√
(
q2 −m2

1 −m2
2

)2 − 4m2
1m

2
2

log

(

α+
m1

m2

)


 . (8.41)

In Sec. 5.2.2 we found for the bremsstrahlung cross section in the soft gluon region:

dσ̂λ
B = dσ̂LO

αs

2π
CF log

(
4ω2

λ2

)[

−2− α+(m2
1 +m2

2 − q2)

α2
+m

2
1 −m2

2

log

(

α2
+m

2
1

m2
2

)]

. (8.42)

We note the following relation:

α+

α2
+m

2
1 −m2

2

=2
2m2

1α+

α2
+4m

4
1 − 4m2

1m
2
2

=
q2 −m2

1 −m2
2 +

√
(
q2 −m2

1 −m2
2

)2 − 4m2
1m

2
2

(q2 −m2
1 −m2

2)
2 − 4m2

1m
2
2 + (q2 −m2

1 −m2
2)
√
(
q2 −m2

1 −m2
2

)2 − 4m2
1m

2
2

=
1

√
(
q2 −m2

1 −m2
2

)2 − 4m2
1m

2
2

(8.43)

Thus, the bremsstrahlung cross section reads:

dσ̂λ
B = dσ̂LO

αs

2π
CF log

(
4ω2

λ2

)


−2+ 2
q2 −m2

1 −m2
2

√
(
q2 −m2

1 −m2
2

)2 − 4m2
1m

2
2

log

(
α+m1

m2

)


 ,

(8.44)

and so the sum of the two cross sections is independent of the gluon mass λ:

dσ̂λ
VC + dσ̂λ

B

=
αs

2π
CF log

(

4ω2

m2
1

)

−2+ 2
q2 −m2

1 −m2
2

√
(
q2 −m2

1 −m2
2

)2 − 4m2
1m

2
2

log

(
α+m1

m2

)


 . (8.45)

This is an explicit analytic verification of the theorems by Kinoshita-Poggio-Quinn
[Kin62, KU76, PQ76, Ste76] and Kinoshita-Lee-Nauenberg [Kin62, LN64] for our model.
Based on this analysis we will also introduce the same gluon mass λ in our cal-

culation of the full bremsstrahlung contribution (not just the soft gluon part) in Sec.
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8.1 Vertex correction

8.3 and we will show in our results in Part V, that the two divergences also actually
cancel numerically, as they should. Note that this implies, that only the sum of the
bremsstrahlung and vertex correction processes is a physically meaningful quantity
and, thus, we will only plot the sum of the two in our results.

8.1.4 Kinematics

Since the vertex correction processes share initial and final states with the LO process,
the hadronic cross section of the vertex correction is calculated exactly as described
for the LO mass distribution case in Sec. 7.4.4.

8.1.5 Current conservation

As shown in Figs. 8.1 and 8.2 we always keep the quark masses fixed at any quark-
gluon vertex. This ensures that all our calculations are also current conserving in the
strong sector. The proof goes as follows: in Eq. (8.3) we already found the amplitude
for the vertex correction processes. It reads:

iMVC = iev̄s′(p2)

[
1

2
δZ2(p2)γ

µ +
1

2
δZ2(p1)γ

µ + δΓµ

]

us(p1) · ǫ∗µ(q) . (8.46)

To prove current conservation we now have to calculate the gluon gauge dependent
parts of δΓµ and δZ2, which we denote by the index g. We begin with δΓ

µ
g . We

denote the gluon momentum with k, insert only the gauge dependent part of the
gluon propagator (kαkβ), cf. Appendix B, and exploit the Dirac equation, cf. Appendix
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8 Next-to-leading order corrections to the Drell-Yan process

A:

iev̄s′(p2) δΓ
µ
g us(p1)

=
∫

d4k v̄s′(p2) (igγαt
a)
i(−/p2 − /k +m2)

(p2 + k)2 −m2
2

ieγµ i(/p1 − /k +m1)

(p1 − k)2 −m2
1

(igγβt
a) us(p1)

× ikαkβ

k2
1

k2

= − e4παs(t
ata)

∫

d4k v̄s′(p2) /k
−/p2 − /k +m2

(p2 + k)2 −m2
2

γµ /p1 − /k +m1

(p1 − k)2 −m2
1

/k us(p1) ·
1

k4

= − e4παs(t
ata)

∫

d4k v̄s′(p2)
(
(−/p2 −m2)− (−/p2 − /k −m2)

)

× −/p2 − /k +m2

(p2 + k)2 −m2
2

γµ /p1 − /k +m1

(p1 − k)2 −m2
1

/kus(p1) ·
1

k4

= − e4παs(t
ata)

∫

d4k v̄s′(p2) (−1) γµ /p1 − /k +m1

(p1 − k)2 −m2
1

×
(
(−/p1 + /k +m1)− (−/p1 +m1)

)
us(p1) ·

1

k4

= − e4παs(t
ata)

∫

d4k v̄s′(p2) (−1) γµ(−1) us(p1) ·
1

k4

= − e4παs(t
ata)

∫

d4k v̄s′(p2)
γµ

k4
us(p1) . (8.47)

The renormalisation factor δZ
g
2 (p) is connected to the QCD quark selfenergy, cf. Eq.

(4.90):

δZ
g
2 (p) =

∂Σg(p)

∂/p

∣
∣
∣
∣

/p=m

. (8.48)

The gauge dependent part of the quark selfenergy is given by:

−iΣg(p) =
∫

d4k(igγαt
a)
i(/p1 − /k +m1)

(p1 − k)2 −m2
1

(igγβt
a) · ik

αkβ

k2
1

k2

⇒ Σg(p) = i4παs(t
ata)

∫

d4k /k
/p1 − /k +m1

(p1 − k)2 −m2
1

/k · 1
k4

. (8.49)
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8.1 Vertex correction

Now we find for the renormalisation factor:

δZ
g
2 (p) = i4παs(t

ata)
∫

d4k /k · ∂

∂/p

(

/p − /k +m

(p− k)2 −m2

)∣
∣
∣
∣
/p=m

· /k · 1
k4

= i4παs(t
ata)

∫

d4k /k ·
(

1

/p2 − /p/k − /k/p + /k2 −m2

+
(/p − /k +m)(−2/p + 2/k)

(

/p2 − /p/k − /k/p + /k2 −m2
)2






∣
∣
∣
∣
∣
∣
∣

/p=m

· /k · 1
k4

= i4παs(t
ata)

∫

d4k






1

−2m/k + /k2
+

(−/k + 2m)(−2m+ 2/k)
(

−2m/k + /k2
)2




 · 1

k2

= i4παs(t
ata)

∫

d4k

(

−2m/k + k2 + (−/k + 2m)(−2m+ 2/k)

k2 (4m2 − 4m/k + k2)
2

)

· 1
k2

= i4παs(t
ata)

∫

d4k · −1
k4

. (8.50)

Thus, the gauge dependent part of the amplitude becomes:

iev̄s′(p2)

[
1

2
δZ

g
2 (p1) +

1

2
δZ

g
2 (p2) + δΓ

µ
g

]

us(p1)

= iev̄s′(p2)

[

γµ

(

i4παs(t
ata)

∫

d4k · −1
k4

)

+ i4παs(t
ata)

∫

d4k
γµ

k4

]

us(p1)

= 0 , (8.51)

and so the amplitude in Eq. (8.46) indeed conserves the current.

8.1.6 Renormalised charge

As already mentioned in Sec. 8.1.1, we unintentionally renormalised the charge at
the quark-photon vertex by assigning different masses m1 and m2 to the annihilating
quark and antiquark, which violates current conservation, and, thus, gauge invari-
ance, at the quark-photon vertex, see Sec. 7.3.3. Thus, we obtain:

lim
q2→0

F1(q
2,m2

1,m
2
2) 6= 1 , (8.52)

which we illustrate in Fig. 8.3. There we plot the real part of the correction δF1 to F1
to order αs for small

√

q2. The correction is defined by:

F1 = 1+
αs

4π
δF1 . (8.53)
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8 Next-to-leading order corrections to the Drell-Yan process

As one can see, δF1 approaches zero for the case of equal quark masses m1 = m2 = 0.1
GeV, as it should according to the Ward-Takahashi identities. However, for different
quark masses (in our example: m1 = 0.1 GeV, m2 = 0.5 GeV) this is clearly not the
case.

-4

-3

-2

-1

 0

 1

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1

R
e[

δ 
F

1]

q [GeV]

m1=m2=0.1 GeV
m1=0.1 GeV, m2=0.5 GeV

Figure 8.3: Correction to F1 at order αs for equal quark masses (solid) and different
quark masses (dashed). See main text for details.

This behavior could potentially spoil our calculations. One should note, however,
that we always stay far away from q2 = 0, since q2 = M2 sets the hard scale for
our calculations. Therefore, reasonable physical values of q2 are larger than 1 GeV.
To study the influence of different quark masses in the physically interesting range
of q2 we devise the following scheme: to calculate the hadronic cross section we
weight the partonic subprocess cross sections by quark mass distributions (spectral
functions), see Sec. 7.5.2. Thus also the form factor F1(q

2,m2
1,m

2
2) is weighted by these

distributions in our calculation. Therefore, it is worthwhile to compare the weighted
form factors for different masses, F1(q

2,m2
1,m

2
2), and for equal masses, F1(q

2,m2,m2),
for physically interesting q2. Because of Eq. (8.53) it suffices to compare only the
corrections δF1 an so we define:

δF̂1(q
2) =

m2
N∫

0

dm2A(p) δF1(q
2,m2,m2) , (8.54)

with the spectral function A(p) defined in Eq. (7.127). Nowwe know that δF1(q
2,m2,m2)
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shows the correct low q2 behavior:

lim
q2→0

δF1(q
2,m2,m2) = 0 , (8.55)

and we know that the spectral function is normalised to 1, see Eq. (7.129). Therefore,
also the weighted correction shows the right behavior for q2 → 0:

lim
q2→0

δF̂1(q
2) =

m2
N∫

0

dm2A(p) · lim
q2→0

δF1(q
2,m2,m2) = 1 · 0 = 0 . (8.56)

Next we define the weighted correction for different masses:

δF̃1(q
2) =

m2
N∫

0

dm2
1

m2
N∫

0

dm2
1A(p1) A(p2) δF1(q

2,m2
1,m

2
2) . (8.57)

In Fig. 8.4 we compare the real parts of δF̂1(q
2) and δF̃1(q

2) for
√

q2 = 1 .. 20 GeV.
As one can see they agree very well over the entire range. Thus we conclude that the
wrong behavior of δF1(q

2,m2
1,m

2
2) near q

2 = 0 ultimately does not affect our calcula-
tions.

8.2 General kinematics of partonic NLO cross sections

In this section we shortly present the kinematic scheme, in which the remaining NLO
calculations of this chapter are performed. Fig. 8.5 is a reference for our notation.
For the initial particles we choose four-momenta p1 and p2 and masses m1 and m2.
For the final state we always choose q as the four momentum of the virtual photon,

i.e., the DY pair, and M =
√

q2 as its mass. We define the four momentum of the
remaining final state particle as r and its mass as mr (both 0 at LO). The differential
partonic cross section then takes the following general form (the differential dM2 is a
remnant of the phase space integral of the lepton pair, cf. Sec. 7.3.2):

dσ̂ = F(p1, p2, q, r) · δ(4)(p1 + p2 − q− r)dM2 d
3q

Eq

d3r

2Er
, (8.58)

where F contains squared matrix elements, the flux factor and constants and Eq (Er)
are the energies of the particles with momenta q (r). The Mandelstam variables read:

s = (p1 + p2)
2 , (8.59)

t = (p2 − q)2 , (8.60)

u = (p1 − q)2 . (8.61)
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Figure 8.4: Comparison of the real parts of the weighted corrections to F1 at order αs

for equal quark masses (solid) and different quark masses (dashed). For the spectral
functions a width Γ = 0.2 GeV and a large quark momentum component p+ = q

2 was
chosen, cf. Eqs. (7.126-7.128). The gluon mass was set to λ = 0.05 GeV, cf. Eq. (8.25).
Both curves agree well over the entire range.

p1,m1 ↑ ↑ p2,m2

q ↑ r,mr ↑

γ∗

Figure 8.5: General kinematics of hard NLO subprocesses of DY production.
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8.2 General kinematics of partonic NLO cross sections

In DY measurements the common observables are the invariant mass M, the absolute
transverse momentum pT and the longitudinal momentum qz of the lepton pair. Thus
we can integrate Eq. (8.58) over the phase space of r:

dσ̂ = F(s, t,M2,m2
1,m

2
2,m

2
r ) · δ((p1 + p2 − q)2 −m2

r )dM
2 d

3q

Eq

= F(s, t,M2,m2
1,m

2
2,m

2
r ) · δ((p1 + p2 − q)2 −m2

r )dM
2 |~q|2d|~q|dφd cos θ

Eq
. (8.62)

We note the following relations:

dEq

d|~q| =
|~q|
Eq

, (8.63)

t = (p2 − q)2 = m2
2 + M2 − 2

(
E2Eq − |~p2||~q| cos θ

)

⇒ dt

d cos θ
= 2|~p2||~q| . (8.64)

In the partonic center-of-mass frame one finds |~p1| = |~p2| = pcm, with the center-of-
mass momentum of the incoming states [Group10]:

pcm =

√

(s− (m1 +m2)2)(s− (m1 −m2)2)

2
√
s

. (8.65)

Then the partonic cross section can be written as:

dσ̂

dM2dt
= F(s, t,M2,m2

1,m
2
2,m

2
r ) · δ(s+ M2 − 2

√
sEq −m2

r )
2π

2pcm
dEq

= F(s, t,M2,m2
1,m

2
2,m

2
r )

2π

2
√
s2pcm

=
π

2
√
spcm

· F(s, t,M2,m2
1,m

2
2,m

2
r ) . (8.66)

Now comparing Eqs. (8.58) and (8.66) one finds (cf. [HS78]):

Eqdσ̂

dM2d3q
=

2
√
spcm
π

· dσ̂

dM2dt
· δ
(

(p1 + p2 − q)2 −m2
r

)

. (8.67)

Rewriting the photon momentum in terms of pT and xF and integrating over the angle
in the ~pT-plane finally yields:

dσ̂

dM2dp2TdxF
=
2
√
spcm(qz)max

Eq
· dσ̂

dM2dt
· δ
(

(p1 + p2 − q)2 −m2
r

)

. (8.68)

Thus, for the NLO subprocesses in the following sections with two particles (virtual

photon + quark/gluon) in the final state we actually only have to calculate dσ̂
dM2dt

and
can then use the relation (8.68) to obtain the partonic cross sections relevant for our
model.
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8 Next-to-leading order corrections to the Drell-Yan process

8.3 Gluon bremsstrahlung

DY pair production with gluon bremsstrahlung is depicted in Fig. 8.6. Here either
the quark or the antiquark emits a real gluon before annihilating. Note that these
processes share the initial state with the LO and vertex correction processes of Sec.
8.1. Note also, that we keep the quark masses at the quark-gluon vertices fixed, since
otherwise current conservation would be violated. It poses no problem, that the quark
mass changes at the quark-photon vertex, as we showed in detail in Sec. 7.3.3.

→
p1,m1

↑ (p1 − q),m2

→
q

→
p2,m2

→
k

µ

α

→
p1,m1

↑ (p1 − k),m1

→
k

→
p2,m2

→
q

α

µ

Figure 8.6: Gluon bremsstrahlung processes for DY production at NLO.

8.3.1 Cross section

We already found the cross section for the process qq̄→ γ∗g in Eqs. (5.21) and (5.22).
Using the results of Sec. 7.3.2 we can immediately derive the partonic cross section
for the process qq̄→ l+l−g , which we consider here:

dσ̂B =
(2π)4δ(4)(p1 + p2 − k− q)

4
√

(p1 · p2)2 −m2
1m

2
2

∣
∣M
∣
∣
2
dM2 d3q

(2π)32Eq

d3k

(2π)32Ek
, (8.69)

where the spin averaged and squared amplitude reads:

∣
∣M
∣
∣
2
=

4

9

e2g2

4

α

3πM2
Tr
[
(/p2 −m2)S

αµ(/p1 +m1)S
ν
α

]
·
(

gµν −
qµqν

q2

)

, (8.70)

with

Sαβ = γα /p1 − /q +m2

(p1 − q)2 −m2
2

γβ + γβ /q − /p2 +m1

(p2 − q)2 −m2
1

γα . (8.71)

Here 4
9 is the color factor (cf. Appendix B.2) and in the following we use:

TB =

(

gµν −
qµqν

q2

)

· Tr
[
(/p2 −m2)S

αµ(/p1 +m1)S
ν
α

]
. (8.72)
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8.3 Gluon bremsstrahlung

For completeness we give our result for TB in Appendix C.2.1.
We assign the same fictitious mass λ to the gluon as for the vertex correction process

in Sec. 8.1. This ensures the cancellation of the soft gluon divergences, as we have
already shown in Sec. 8.1.3. Integrating over the phase space of the gluon the partonic
cross section becomes:

dσ̂B =
4

9

α2αs

3πM2

TB

4
√

(p1 · p2)2 −m2
1m

2
2

· δ
(

(p1 + p2 − q)2 − λ2
)

dM2d
3q

2Eq

=
4

9

α2αs

3πM2

TB
4
√
spcm

· δ
(

s+ M2 − 2
√
sEq − λ2

)

dM2 |~q|2d|~q|2dφd cos θ

2Eq

=
4

9

α2αs

3πM2

TB
4
√
spcm

π

2
√
s2pcm

Θ(Eg)dM
2dt , (8.73)

with the energy of the gluon Eg. Thus the relevant partonic cross section reads (Eg ≥
λ):

dσ̂B
dM2dt

=
4

9

α2αs

48M2
· TB
sp2cm

·Θ(Eg) . (8.74)

The calculation of the hadronic cross section basically follows along the same lines
as for the LO case in Sec. 7.4. Once again one has to remove unphysical solutions
for the momentum fractions xi, however, the calculation of the phase space is more
subtle, as we will show in the next subsection.

8.3.2 Kinematics

The hadronic cross section for gluon bremsstrahlung can be written as, cf. Eqs. (8.68)
and (7.107):

dσB
dM2dp2TdxF

=−
1∫

0

dx1 −
1∫

0

dx2

∫

d~p1⊥

∫

d~p2⊥

∫

dm2
1

∫

dm2
2

×∑
i

q2i f̂i(x1,~p1⊥ ,m
2
1, q

2) f̂ ī(x2,~p2⊥ ,m
2
2, q

2) · 2
√
spcm(qz)max

Eq

× dσ̂B
dM2dt

δ
(

(p1 + p2 − q)2 − λ2
)

. (8.75)

Again, the f̃i are our unintegrated parton distributions, see Sec. 7.5.2, the partonic

cross section dσ̂B
dM2dt

is given in Eq. (8.74) and λ is the fictitious gluon mass, introduced
to regulate the soft divergence. Now we collect everything except δ- and Θ-functions
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in F and rewrite the cross section as:

dσB
dM2 dxFdp

2
T

=−
1∫

0

dx1 −
1∫

0

dx2

∫

d~p1⊥

∫

d~p2⊥

∫

dm2
1

∫

dm2
2

× F(x1,~p1⊥ ,m
2
1, x2,~p2⊥ ,m

2
2,M

2) δ
(

(p1 + p2 − q)2 − λ2
)

Θ(Eg) .

(8.76)

The δ-functions in Eq. (8.76) must be worked out in a way that allows to discern
physical and unphysical solutions for the momentum fractions xi in order to perform
the −

∫
-integrations. For this aim it is useful to rewrite the parton momenta in terms of

different variables:

q̂ = p1 + p2 , (8.77)

k =
1

2
(p2 − p1) . (8.78)

Inverting the last two equations, we can use the on-shell conditions for the partons
and find:

m2
1 = p21 =

(
1

2
q̂− k

)2

=
1

4
q̂2 − k · q̂+ k2 , (8.79)

m2
2 = p22 =

(
1

2
q̂+ k

)2

=
1

4
q̂2 + k · q̂+ k2 . (8.80)

Adding and subtracting Eqs. (8.79) and (8.80) yields:

k2 = −1

4
q̂2 +

m2
1 +m2

2

2
, (8.81)

k · q = m2
2 −m2

1

2
. (8.82)

Solving Eq. (8.81) for k+ gives:

k+ =
~k2⊥ − 1

4 q̂
2 +

m2
1+m2

2
2

k−
. (8.83)

Inserting this result into Eq. (8.82) gives an equation quadratic in k−:

m2
2 −m2

1 = k+q̂− + k−q̂+ − 2~k⊥ ·
−−→
(q̂⊥)

=
~k2⊥ − 1

4 q̂
2 +

m2
1+m2

2
2

k−
q̂− + k−q̂+ − 2~k⊥ ·

−−→
(q̂⊥) (8.84)
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⇒ 0 =
(
k−
)2

q̂+ + k−(−2~k⊥ ·
−−→
(q̂⊥)−m2

2 +m2
1)

+

(

~k2⊥ −
1

4
q̂2 +

m2
1 +m2

2

2

)

q̂− . (8.85)

The solutions are:

(k−)± =
~k⊥ ·
−−→
(q̂⊥)
q̂+

+
m2

2 −m2
1

2q̂+

±

√
√
√
√

(
~k⊥ ·
−−→
(q̂⊥)
q̂+

+
m2

2 −m2
1

2q̂+

)2

+
q̂−

q̂+

(

1

4
q̂2 −~k2⊥ −

m2
1 +m2

2

2

)

. (8.86)

Inserting (8.86) into (8.84) gives the solutions for k+:

(k+)∓ =
q̂+

q̂−

(
~k⊥ ·
−−→
(q̂⊥)
q̂+

+
m2

2 −m2
1

2q̂+

∓

√
√
√
√

(
~k⊥ ·
−−→
(q̂⊥)
q̂+

+
m2

2 −m2
1

2q̂+

)2

+
q̂−

q̂+

(

1

4
q̂2 −~k2⊥ −

m2
1 +m2

2

2

)



 . (8.87)

Rewriting the parton momentum fractions xi in terms of q̂ and k we obtain the solu-
tions (P+

2 = P−1 ):

(x1)± =
1

P−1

(
1

2
q̂− − (k−)±

)

(8.88)

and

(x2)∓ =
1

P−1

(
1

2
q̂+ + (k+)∓

)

. (8.89)

Since there are two solutions for k− and k+, respectively, we also get two solutions for
x1, x2. To determine which set of x1, x2 and thus k+, k− has to be chosen we take the
limit of zero parton transverse momentum and vanishing masses:

(k−)± → ±
√

q̂−

q̂+
1

4
q̂2 = ± q̂−

2
(8.90)

(k+)∓ → ∓
√

q̂+

q̂−
1

4
q̂2 = ∓ q̂+

2
(8.91)
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8 Next-to-leading order corrections to the Drell-Yan process

Inserting expressions (8.90) and (8.91) into (8.88) and (8.89) yields two solutions for
the momentum fractions:

(x1)± →
1

P−1

{

0

q̂−
(8.92)

and

(x2)∓ →
1

P−1

{

0

q̂+
. (8.93)

The upper solutions correspond to the unphysical case x1 = x2 = 0. Thus, we only
want to keep the lower solutions when evaluating the phase space integrals. This
requires the integrals in Eq. (8.76) to be evaluated in the correct order, otherwise one
cannot disentangle the two different solutions for x1 and x2.

We begin by introducing several integrals over δ-functions in Eq. (8.76). In this way

we will transform the integration variables to the above chosen q̂ and~k⊥:

dσB
dM2 dxFdp

2
T

=−
1∫

0

dx1 −
1∫

0

dx2

∫

d~p1⊥

∫

d~p2⊥

∫

d
−−→
(q̂⊥)

∫

d~k⊥
∫

dm2
1

∫

dm2
2

∫

dq̂+
∫

dq̂−F(x1,~p1⊥ ,m
2
1, x2,~p2⊥ ,m

2
2,M

2)

× δ
(
q̂+ − (p+1 + p+2 )

)
δ
(
q̂− − (p−1 + p−2 )

)

× δ(2)
(−−→
(q̂⊥)−

(
~p1⊥ + ~p2⊥

))

δ(2)
(

~k⊥ −
1

2

(
~p1⊥ − ~p2⊥

)
)

× δ
(

(p1 + p2 − q)2 − λ2
)

Θ
(
Eg

)
. (8.94)

First we perform the initial transverse momentum integrals:

∫

d~p1⊥

∫

d~p2⊥δ(2)
(−−→
(q̂⊥)−

(
~p1⊥ + ~p2⊥

))

δ(2)
(

~k⊥ −
1

2

(
~p2⊥ − ~p1⊥

)
)

= 1 . (8.95)

Now we have to calculate the integrals over the momentum fractions:

−
1∫

0

dx1 −
1∫

0

dx2 δ
(
q̂+ − (p+1 + p+2 )

)
δ
(
q̂− − (p−1 + p−2 )

)
. (8.96)

According to Eqs. (8.86)-(8.89) the δ-functions in the last expression have two possible
solutions for each p−1 and p+2 . However, as explained above, we now have to explicitly
remove the unphysical solutions (x1)+ and (x2)− , which are the ones corresponding
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8.3 Gluon bremsstrahlung

to the upper sign in Eqs. (8.86) and (8.87):

−
1∫

0

dx1 −
1∫

0

dx2 δ(q̂+ − (p+1 + p+2 )) δ(q̂− − (p−1 + p−2 ))

=−
1∫

0

dx1 −
1∫

0

dx2 δ




q̂+ −

(
1
2

−−→
(q̂⊥)−~k⊥

)2
+m2

1

x1P
−
1

− x2P
−
1






× δ




q̂− − x1P

−
1 −

(
1
2

−−→
(q̂⊥) +~k⊥

)2
+m2

2

x2P
−
1






=

1∫

0

dx1

1∫

0

dx2 δ




q̂+ −

(
1
2

−−→
(q̂⊥)−~k⊥

)2
+m2

1

(x1)−P−1
− (x2)+P

−
1






× δ




q̂− − (x1)−P−1 −

(
1
2

−−→
(q̂⊥) +~k⊥

)2
+m2

2

(x2)+P
−
1






=

∣
∣
∣
∣
∣
∣
∣
∣

(
P−1
)2 −

[(
1
2

−−→
(q̂⊥)−~k⊥

)2
+m2

1

] [(
1
2

−−→
(q̂⊥) +~k⊥

)2
+m2

2

]

(x1)
2
−(x2)

2
+

(
P−1
)2

∣
∣
∣
∣
∣
∣
∣
∣

−1

×Θ (1− (x1)−) Θ ((x1)−) Θ (1− (x2)+) Θ ((x2)+) . (8.97)

Using dq̂+dq̂− = 2dq̂0dq̂z we can evaluate one of the remaining integrals of Eq. (8.94)
with the help of the δ–function:

2
∫

dq̂0 δ
(

(p1 + p2 − q)2 − λ2
)

= 2
∫

dq̂0 δ
(

(q̂− q)2 − λ2
)

=
1

Eg
, (8.98)
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8 Next-to-leading order corrections to the Drell-Yan process

with Eg =

√
(−→
(q̂)−~q

)2
+ λ2. Collecting the pieces, what remains of Eq. (8.94) is:

dσB
dM2 dxFdp

2
T

=

(qz)max∫

(qz)min

dq̂z

∣
∣
∣
−−→
(q̂⊥)

∣
∣
∣
max∫

0

d
−−→
(q̂⊥)

|~k⊥|max∫

0

d~k⊥

(m2
1)max∫

0

dm2
1

(m2
2)max∫

0

dm2
2

× F((x1)−, ~̂p1⊥ ,m
2
1, (x2)+, ~̂p2⊥ ,m

2
2,M

2)Θ
(
Eg

) 1

Eg

×

∣
∣
∣
∣
∣
∣
∣
∣

(
P−1
)2 −

[(
1
2

−−→
(q̂⊥)−~k⊥

)2
+m2

1

] [(
1
2

−−→
(q̂⊥) +~k⊥

)2
+m2

2

]

(x1)
2
−(x2)

2
+

(
P−1
)2

∣
∣
∣
∣
∣
∣
∣
∣

−1

×Θ (1− (x1)−) Θ ((x1)−) Θ (1− (x2)+) Θ ((x2)+) . (8.99)

Now (x1)−, ~̂p1⊥ , (x2)+ and ~̂p2⊥ are fixed:

(x1)− =
1

P−1

(

q̂−

2
−
~k⊥ ·
−−→
(q̂⊥)
q̂+

− m2
2 −m2

1

2q̂+

+

√
√
√
√

(
~k⊥ ·
−−→
(q̂⊥)
q̂+

+
m2

2 −m2
1

2q̂+

)2

+
q̂−

q̂+

(

1

4
q̂2 −~k2⊥ −

m2
1 +m2

2

2

)



 , (8.100)

(x2)+ =
1

P−1

(

q̂+

2
+
~k⊥ ·
−−→
(q̂⊥)
q̂−

+
m2

2 −m2
1

2q̂−

+

√
√
√
√

(
~k⊥ ·
−−→
(q̂⊥)
q̂−

+
m2

2 −m2
1

2q̂−

)2

+
q̂+

q̂−

(

1

4
q̂2 −~k2⊥ −

m2
1 +m2

2

2

)



 , (8.101)

~̂p1⊥ =
1

2

−−→
(q̂⊥)−~k⊥ , (8.102)

~̂p2⊥ =
1

2

−−→
(q̂⊥) +~k⊥ , (8.103)

~k⊥ ·
−−→
(q̂⊥) = k⊥q̂⊥ cos φk⊥ , (8.104)
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with

q̂+ = Eq + Eg + q̂z , (8.105)

q̂− = Eq + Eg − q̂z , (8.106)

Eq =
√

M2 + p2T + q2z , (8.107)

Eg =

√−−→
(q̂⊥)2 + q̂2z − 2

−−→
(q̂⊥) ·~q⊥ − 2q̂z · qz + p2T + q2z + λ2 , (8.108)

−−→
(q̂⊥) ·~q⊥ = q̂⊥pT cos φq̂⊥ , (8.109)

qz = xF(qz)max . (8.110)

The integration limits can now be found from general considerations. (m2
2)max is fixed

by the condition that (x1)− and (x2)+ must be real numbers:

(m2
2)max = −2~k⊥ ·

−−→
(q̂⊥) +m2

1 + q̂+q̂− −
√

4q̂+q−m2
1 + 4q̂+q̂−

(
1

2

−−→
(q̂⊥)−~k⊥

)2

.

(8.111)

From (m2
2)max

!
> 0 we find:

(m2
1)max = 2~k⊥ ·

−−→
(q̂⊥) + q̂+q̂− − 2

√

q̂+q̂−
(
1

2

−−→
(q̂⊥) +~k⊥

)2

, (8.112)

and from (m2
1)max

!
> 0 follows:

|~k⊥|2max =
q̂+q̂−

(
q̂+q̂− − q̂2⊥

)

4
(
q̂+q̂− − q̂2⊥ cos2(φk⊥)

) . (8.113)

The energy of the incoming partons must be less than the energy of the hadronic

system, q̂0 <
√
S, and so:

|−−→(q̂⊥)|max = pT cos φq̂ +

√

p2T
(
cos2 φq̂ − 1

)
− (qz − q̂z)

2 +
(√

S− Eq

)2
− λ2 . (8.114)

Finally, q̂⊥ is a real number, thus:

(q̂z)
max
min = qz ±

√

p2T
(
cos2 φq̂⊥ − 1

)
+
(√

S− Eq

)2
− λ2 . (8.115)
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8 Next-to-leading order corrections to the Drell-Yan process

A special case: kinematics of LO DY with massive quarks

The kinematics of the LO cross section is just a special case of the bremsstrahlung
kinematics. Namely at LO the four momentum of the incoming partons is equal to
the four momentum of the virtual photon: q̂ = q. From Eq. (7.108) we note for the
partonic cross section:

dσ̂LO
dM2dxFdp

2
T

∼ δ
(

M2 − (p1 + p2)
2
)

δ
(

p2T − (~p1⊥ + ~p2⊥)
2
)

δ

(

xF −
(p1)z + (p2)z

(qz)max

)

.

(8.116)

Now employing Eqs. (8.77-8.93) and Eqs. (8.95- 8.97) and everywhere replacing q̂ by q
we find for the LO hadronic cross section:

dσLO
dM2dxFdp

2
T

=
∫

2dq0

∫

dqz

∫

d~q⊥
∫

d~k⊥
∫

dm2
1

∫

dm2
2

× FLO((x1)−, ~̂p1⊥ ,m
2
1, (x2)+, ~̂p2⊥ ,m

2
2,M

2)

×

∣
∣
∣
∣
∣
∣
∣
∣

(
P−1
)2 −

[(
1
2~q⊥ −~k⊥

)2
+m2

1

] [(
1
2~q⊥ +~k⊥

)2
+m2

2

]

(x1)
2
−(x2)

2
+

(
P−1
)2

∣
∣
∣
∣
∣
∣
∣
∣

−1

×Θ (1− (x1)−) Θ ((x1)−) Θ (1− (x2)+) Θ ((x2)+)

× δ
(

M2 − q2
)

δ
(

p2T − (~q⊥)
2
)

δ

(

xF −
qz

(qz)max

)

. (8.117)

With help of the three remaining δ-functions we can now easily perform the four
integrations over the components of q:

dσLO
dM2 dxFdp

2
T

=

2π∫

0

dφ⊥

(~k⊥)2max∫

0

1

2
d(~k⊥)

2

(m1)
2
max∫

0

dm2
1

(m2)
2
max∫

0

dm2
2

π (qz)max

Eq

×

∣
∣
∣
∣
∣
∣
∣
∣

(
P−1
)2 −

[(
1
2~q⊥ −~k⊥

)2
+m2

1

] [(
1
2~q⊥ +~k⊥

)2
+m2

2

]

(x1)
2
−(x2)

2
+

(
P−1
)2

∣
∣
∣
∣
∣
∣
∣
∣

−1

× FLO((x1)−, ~̂p1⊥ ,m
2
1, (x2)+, ~̂p2⊥ ,m

2
2,M

2)

×Θ (1− (x1)−) Θ ((x1)−) Θ (1− (x2)+) Θ ((x2)+) . (8.118)

The integration limits are now recovered from Eqs. (8.111-8.113), again by replacing q̂
with q.
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8.4 Gluon Compton scattering

8.4 Gluon Compton scattering

Gluon Compton scattering differs from all the other processes we consider, since here
a gluon and a quark/antiquark fuse before or after emitting the virtual photon, see
Fig. 8.7. In the case of gluon Compton scattering we keep the quark mass fixed at
every vertex for the following reasons: In principle the final state quark is supposed
to be "free" and thus one would assign to it a mass m1 = 0. To preserve current con-
servation the quark mass at the gluon vertex must not change and thus the exchange
quark in the right diagram in Fig. 8.7 would have to be also massless. This, however,
immediately generates a collinear divergence, cf. Secs. 5.1 and 6.2.4. Therefore, we
assign a mass m1 to the entire quark line.

←
(p1 + p2),m1

←
q

←
k ,m1

←
p1,m1

←
p2

αµ

←
p2

←
p1,m1

↓ (p1 − q),m1

←
q

←
k ,m1

µ

α

Figure 8.7: Gluon Compton scattering processes for DY production at NLO.

8.4.1 Cross section

We choose for the initial quark/antiquark to have four momentum p1 and for the
gluon to have four momentum p2, thus m2 = 0 since the gluon is real. For the outgo-
ing quark/antiquark we then have mr = m1. Using the Feynman rules of Appendix B
one finds for the amplitude of the process qg→ qγ∗:

iM =ū(k,m1) (ieγ
µ)

i
(

/p1 + /p2 +m1

)

(p1 + p2)
2 −m2

1

(igγαta) u(p1,m1) · ǫ∗µ(q)ǫα(p2)

+ū(k,m1) (ieγ
α)

i
(

/p1 − /q +m1

)

(p1 − q)2 −m2
1

(igγµta) u(p1,m1) · ǫ∗µ(q)ǫα(p2) . (8.119)

The squared matrix element, averaged and summed over spin, polarisations and color
then reads:

|M̄|2 = 1

6

e2g2

4
TC , (8.120)

where 1
6 is the color factor and TC is given by:

TC =

(

gµν −
qµqν

q2

)

· Tr
[
(/p1 + /p2 − /q +m1)S

µα(/p1 +m1)S
ν

α

]
(8.121)
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8 Next-to-leading order corrections to the Drell-Yan process

with:

Sαβ = γα /p1 + /p2 +m1

(p1 + p2)2 −m2
1

γβ + γβ /p1 − /q +m1

(p1 − q)2 −m2
1

γα . (8.122)

For completeness we give our result for TC in Appendix C.2.2. The partonic cross
section for the process qg → l+l−q can then easily be found by using the results of
Sec. 7.3.2:

dσ̂C =
(2π)4δ(4)(p1 + p2 − k− q)

4(p1 · p2)
α

3πM2

∣
∣M
∣
∣
2
dM2 d3q

(2π)32Eq

d3k

(2π)32Ek
. (8.123)

Inserting the squared matrix element and integrating over the phase space of the
emitted quark the partonic cross section becomes:

dσ̂C =
1

6

α2αs

3πM2

TC
4(p1 · p2)

· δ
(

(p1 + p2 − q)2 −m2
1

)

dM2d
3q

2Eq

=
1

6

α2αs

3πM2

TC
2(s−m2

1)
· δ
(

s+ M2 − 2
√
sEq −m2

1

)

dM2 |~q|2d|~q|2dφd cos θ

2Eq

=
1

6

α2αs

3πM2

TC
2(s−m1)2

π

2(s−m1)2
Θ(Er)dM

2dt , (8.124)

with the energy of the emitted quark Er. The relevant partonic cross section then
reads (Er ≥ mr):

dσ̂C
dM2dt

=
1

6

α2αs

12M2(s−m2
1)

2
· TC ·Θ(Er) , (8.125)

The calculation of the hadronic cross section is similar to the case of gluon brems-
strahlung. However, the inherent asymmetry of the initial state (massive quark hits
massless gluon) requires additional care and we present the details in the next sub-
section.

8.4.2 Kinematics

At this point we want to stress the kinematical differences between bremsstrahlung
and Compton scattering. For bremsstrahlung we have a quark from nucleon 1 anni-
hilating with an antiquark from nucleon 2 or vice versa. However, we treat quarks
and antiquarks on equal footing and distribute their masses with the same spectral
function, cf. Sec. 7.5.2. Thus we can easily take care of both cases by simply sum-
ming over all quark- and antiquark-flavors in Eq. (8.75). Gluon Compton scattering is
different since we keep the gluons massless and the simplification from above does
not apply anymore. However, we can calculate one of the two cases, for example
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quark/antiquark from nucleon 1 annihilates with gluon from nucleon 2, and then
simply find the other case by symmetry considerations: nucleon 1 and 2 are defined
by their direction of motion along the z-axis. Thus by changing z to −z and so xF to
−xF we find that the second case corresponds to the first case with xF → −xF. The
hadronic cross section therefore reads, compare with Eq. (8.75):

dσC
dM2dp2TdxF

=−
1∫

0

dx1 −
1∫

0

dx2

∫

d~p1⊥

∫

d~p2⊥

∫

dm2
1

×∑
i

q2i ( f̂i)1(x1,~p1⊥ ,m
2
1, q

2)g̃2(x2,~p2⊥ , q
2) · 2

√
spcm(qz)max

Eq

× dσ̂C
dM2dt

δ
(

(p1 + p2 − q)2
)

+−
1∫

0

dx1 −
1∫

0

dx2

∫

d~p1⊥

∫

d~p2⊥

∫

dm2
1

×∑
i

q2i ( f̂i)2(x1,~p1⊥ ,m
2
1, q

2)g̃1(x2,~p2⊥ , q
2) · 2

√
spcm(qz)max

Eq

× dσ̂C
dM2dt

δ
(

(p1 + p2 − q)2
)
∣
∣
∣
∣
xF→−xF

=
(dσC)12

dM2dp2TdxF
+

(dσC)21
dM2dp2TdxF

∣
∣
∣
∣
∣
xF→−xF

. (8.126)

The indices 1 and 2 for the parton distributions denote the parent nucleons (p,n,p). g̃
is the transverse momentum dependent gluon distribution function and we choose it
in analogy with the transverse momentum dependent quark distribution function of
Eq. (7.125):

g̃(x,~p⊥, q
2) = g(xi, q

2) · f⊥(~pi⊥) , (8.127)

with f⊥ defined in Eq. (7.123) and with the usual gluon PDF g. Now can we proceed
similarly to Sec. 8.3.2:

(dσC)12
dM2dp2TdxF

=−
1∫

0

dx1 −
1∫

0

dx2

∫

d~p1⊥

∫

d~p2⊥

∫

d
−−→
(q̂⊥)

∫

d~k⊥
∫

dm2
1

∫

dq̂+
∫

dq̂−

× F(x1,~p1⊥ ,m
2
1, x2,~p2⊥ ,M

2)

× δ
(
q̂+ − (p+1 + p+2 )

)
δ
(
q̂− − (p−1 + p−2 )

)

× δ(2)
(−−→
(q̂⊥)−

(
~p1⊥ + ~p2⊥

))

δ(2)
(

~k⊥ −
1

2

(
~p1⊥ − ~p2⊥

)
)

× δ
(

(p1 + p2 − q)2 −m2
1

)

. (8.128)
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Now we can make use of Eqs. (8.95) and (8.97) and:

∫

dm2
1 δ
(

(p1 + p2 − q)2 −m2
1

)

= 1 . (8.129)

We find:

(dσC)12
dM2dp2TdxF

=

(qz)max∫

(qz)min

dq̂z

∣
∣
∣
−−→
(q̂⊥)

∣
∣
∣
max∫

0

d
−−→
(q̂⊥)

(q̂0)max∫

(q̂0)min

2dq̂0

|~k⊥|max∫

0

d~k⊥ F(x1,~p1⊥ ,m
2
1, x2,~p2⊥ ,M

2)

×

∣
∣
∣
∣
∣
∣
∣
∣

(
P−1
)2 −

[(
1
2

−−→
(q̂⊥)−~k⊥

)2
+m2

1

] [(
1
2

−−→
(q̂⊥) +~k⊥

)2
]

(x1)
2
−(x2)

2
+

(
P−1
)2

∣
∣
∣
∣
∣
∣
∣
∣

−1

×Θ (1− (x1)−) Θ ((x1)−) Θ (1− (x2)+) Θ ((x2)+) . (8.130)

Finally (x1)−, ~̂p1⊥ , (x2)+ and ~̂p2⊥ are fixed:

(x1)− =
1

P−1

(

q̂−

2
−
~k⊥ ·
−−→
(q̂⊥)
q̂+

+
m2

1

2q̂+

+

√
√
√
√

(
~k⊥ ·
−−→
(q̂⊥)
q̂+

− m2
1

2q̂+

)2

+
q̂−

q̂+

(

1

4
q̂2 −~k2⊥ −

m2
1

2

)



 , (8.131)

(x2)+ =
1

P−1

(

q̂+

2
+
~k⊥ ·
−−→
(q̂⊥)
q̂−

− m2
1

2q̂−

+

√
√
√
√

(
~k⊥ ·
−−→
(q̂⊥)
q̂−

− m2
1

2q̂−

)2

+
q̂+

q̂−

(

1

4
q̂2 −~k2⊥ −

m2
1

2

)



 , (8.132)

~̂p1⊥ =
1

2

−−→
(q̂⊥)−~k⊥ , (8.133)

~̂p2⊥ =
1

2

−−→
(q̂⊥) +~k⊥ , (8.134)

~k⊥ ·
−−→
(q̂⊥) = k⊥q̂⊥ cos φk⊥ , (8.135)

m2
1 =

(
q̂0 − Eq

)2 −
(−−→
(q̂⊥)−~q⊥

)2
− (qz − q̂z)

2 (8.136)
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with

q̂+ = q̂0 + q̂z , (8.137)

q̂− = q̂0 − q̂z , (8.138)

Eq =
√

M2 + p2T + q2z , (8.139)
−−→
(q̂⊥) ·~q⊥ = q̂⊥pT cos φq̂⊥ , (8.140)

qz = xF(qz)max . (8.141)

The integration limits can be found from general considerations. |~k⊥|max is fixed by
the condition that (x1)− and (x2)+ must be real numbers:

|~k⊥|max = −

∣
∣
∣
−−→
(q̂⊥)

∣
∣
∣ cos φk⊥m

2
1

2(q̂+q̂− − q̂2⊥ cos2 φk⊥)

+

√
√
√
√
√





∣
∣
∣
−−→
(q̂⊥)

∣
∣
∣ cos φk⊥m

2
1

2(q̂+q̂− − q̂2⊥ cos2 φk⊥





2

+




−m4

1
4 − 1

4 q̂
+q̂−(q̂+q̂− − q̂2⊥) + q̂+q̂−m2

1
2

q̂2⊥ cos2 φk⊥ − q̂+q̂−



 .

(8.142)

From 0 < m2
1 < m2

N one gets:

(q̂0)min = Eq +

√−−→
(q̂⊥)2 + q̂2z − 2

−−→
(q̂⊥) ·~q⊥ − 2q̂z · qz + p2T + q2z , (8.143)

(q̂0)max = Eq +

√−−→
(q̂⊥)2 + q̂2z − 2

−−→
(q̂⊥) ·~q⊥ − 2q̂z · qz + p2T + q2z +m2

N . (8.144)

Since the energy of the incoming partons cannot be larger than the hadronic energy,

we have q̂0 <
√
S, thus:

∣
∣
∣
−−→
(q̂⊥)

∣
∣
∣
max

= pT cos φq̂⊥ +

√

p2T
(
cos2 φq̂⊥ − 1

)
− (qz − q̂z)

2 −m2
N +

(√
S− Eq

)2
.

(8.145)

Finally, q̂⊥ is a real number, which requires:

(q̂z)
max
min = qz ±

√

p2T
(
cos2 φq̂⊥ − 1

)
+
(√

S− Eq

)2
−m2

N . (8.146)

8.5 Influence of quark mass distributions on DY pT

spectra

As already mentioned several times above, massless pQCD calculations of DY pair
production at NLO produce divergent pT spectra [G+95]. The origin of these IR
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8 Next-to-leading order corrections to the Drell-Yan process

divergences are twofold: first there is soft gluon emission (bremsstrahlung). This
type of soft divergence, however, is not problematic, since it exactly cancels against a
divergence in the virtual processes (vertex correction), cf. Sec. 8.1.3. Second there is
emission (bremsstrahlung) or capture (Compton scattering) of a gluon by a massless
participant quark (also called mass or collinear singularity): the u-channel exchange
quarks in Figs. 8.6 and 8.7 can become onshell at pT = 0 and thus for m1 = m2 = 0
the propagators in Eqs. (8.71) and (8.122) produce a non-integrable (in p2T) singularity
at pT = 0. To address this problem was one reason for introducing mass distributions
for the participating quarks. This procedure aims at smearing out the divergence and
so making the pT spectra integrable.
We will illustrate this procedure on the example of the gluon Compton scattering

process. In Fig. 8.8 we compare pT spectra produced by gluon Compton scattering in
two different schemes: one calculation with massless quarks and a calculation which
includes quark mass distributions. In both cases the quark’s initial transverse momen-
tum was set to zero. It is seen that now indeed transverse momentum of the dileptons
is generated. One can also see clearly that the rise for pT → 0 of the calculation with
mass distributions is slower than for the calculation with massless quarks. This is
a consequence of the effective cut-off, which is introduced by distributing the quark
masses. We find that the divergence in pT is softened enough to make the pT spectra
integrable. Note, that the magnitude is still significantly underestimated, cf. also Sec.
8.7.

 0.1

 1

 10

 0  0.5  1  1.5  2  2.5  3

E
dσ

/d
3 p 

[p
b/

G
eV

2 ]

pT [GeV]

massless
Γ=0.2 GeV

Figure 8.8: pT spectrum of gluon Compton scattering obtained from massless and
mass distribution approach with initially collinear quarks. The PDFs are the
MSTW2008LO68cl set. Data are from E866 binned with 4.2 GeV < M < 5.2 GeV,
−0.05 < xF < 0.15. Only statistical errors are shown.
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8.6 Collinear (mass) singularities and parton

distribution functions

As we have just shown, we have regularised the collinear singularities of the NLO
processes by introducing quark mass distributions. However, for the calculation of
our cross sections we would like to use PDFs as supplied in the literature. But exactly
those collinear singularities, that we have just regularised, are commonly absorbed
into the definition of the standard PDFs. Thus, to avoid double-counting, in this
section we present a subtraction scheme, that leaves us with a consistent cross section
to the order of the hard processes we are considering.
To set the stage we first review briefly the introduction of the renormalised PDFs

into pQCD. For the DY process this concerns the calculation of M spectra, because the
spectra differential in pT are not accessible by pQCD. Since we are interested in the
description of fully differential DY spectra by our model, we have to modify the way
towards the standard renormalised PDFs. This is outlined in a second subsection.

8.6.1 Collinear singularities in pQCD

If Bjorken-scaling were not violated the PDFs found in deep inelastic scattering were
functions of the momentum fraction x only. However, as we have discussed in Sec.
6.2.4, the interactions among the quarks and gluons induce scaling violations via pro-
cesses like gluon bremsstrahlung and gluon quark-antiquark production. We found
that the contributions of these processes to the longitudinal PDFs suffer from collinear
(or mass) singularities, i.e. they are singular because the quarks are treated as mass-
less. The divergences appear at the boundaries of the transverse momentum integrals
(which is why they are called collinear divergences). Thus, we found that one can
regulate these divergences by introducing a regulating cut-off η2 in the transverse
momentum integral. In this scheme one commonly defines renormalised longitu-
dinal quark PDFs by absorbing the collinear singularities and the (non-measurable,
scaling) bare quark and gluon PDFs, f 0i (x) and g0(x), into one function [ESW96]:

fi(x, µ
2) = f 0i (x) +

αs

2π

1∫

x

dy
1

y

{

f 0i (y)

[

Pqq

(
x

y

)

log

(
µ2

η2

)

+ CS
q

(
x

y

)]

+ g0(y)

[

Pqg

(
x

y

)

log

(
µ2

η2

)

+ CS
g

(
x

y

)]}

, (8.147)

with the hard scale µ2. The coefficient functions of the divergent logarithms are the
splitting functions Pqq and Pqg, which were given in Eqs. (6.156) and (6.160). The func-

tions CS
q and CS

g contain possible finite contributions of the scaling violating processes
and the superscript S reminds us of the fact, that these finite contributions depend on
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8 Next-to-leading order corrections to the Drell-Yan process

the chosen renormalisation scheme, since only the divergent contributions actually
have to be absorbed into the renormalised PDFs.
Remarkably one finds the same splitting functions when calculating order αs correc-

tions to DY pair production [ESW96]: Pqq collects all the contributions from the pro-
cesses with qq̄ in the initial state, i.e. the vertex correction and gluon bremsstrahlung
processes of Figs. 8.1, 8.2 and 8.6. Pqg contains the contributions from the gluon
Compton scattering processes in Fig. 8.7. Then the partonic cross section for DY pair
production to order αs integrated over the transverse momentum of the DY pair can
be written schematically as [ESW96]:

dσ̂

dM2
=

4πα2

9M4
e2i z
[

δ (1− z) +
αs

2π

(
Fqq̄(z) +Fqg(z)

)]

, (8.148)

for a quark of flavor i and with:

z =
M2

ŝ
=

M2

x1x2S
=

τ

x1x2
, (8.149)

where
√
ŝ (
√
S) is the partonic (hadronic) c.m. energy and x1, x2 the momentum frac-

tions of the quarks. The δ-function in (8.148) gives just the leading-order contribution
and the functions Fqq̄ and Fqg give the contributions with initial states consisting
of quark-antiquark (vertex correction and gluon bremsstrahlung) and quark-gluon
(gluon Compton scattering), respectively:

Fqq̄(z) = 2Pqq(z) log

(
M2

η2

)

+ ĈS
q (z) , (8.150)

Fqg(z) = Pqg(z) log

(
M2

η2

)

+ ĈS
g(z) , (8.151)

where again the cut-off η2 was introduced to regulate the transverse momentum in-
tegration and where the functions ĈS

q and ĈS
g are again renormalisation scheme de-

pendent, finite contributions. In principle one could obtain the hadronic cross section
by folding the partonic cross section (8.148) with the bare parton distributions and
summing over all quark flavors:

dσ

dM2
=

4πα2

9M4 ∑
i

e2i

1∫

0

dx1dx2
τ

x1x2
Θ (x1x2 − τ)

×
{(

f 0i (x1) f
0
ī
(x2) + ( f 0i ↔ f 0

ī
)
) [

δ (1− z) +
αs

2π
Fqq̄(z)

]

+
(

g0(x1)
(

f 0i (x2) + f 0
ī
(x2)

)

+ (g0 ↔ f 0i , f
0
ī
)
) αs

2π
Fqg(z)

}

.

(8.152)
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This cross section cannot be evaluated straightforwardly, since neither the bare parton
distributions are available, nor are Fqq̄ and Fqg well defined, since they depend on the

arbitrary cut-off η2. However, we note the following relation for a general function P:

1∫

0

dx1dx2
τ

x1x2
Θ (x1x2 − τ) f 0i (x1) f

0
ī
(x2)P

(
τ

x1x2

)

= τ

1∫

τ

dx1
x1

f 0i (x1)

1∫

τ
x1

dx2
x2

P

(
τ

x1x2

)

f 0
ī
(x2)

= τ

1∫

τ

dx1
x1

f 0i (x1)

1∫

τ

dx2δ

(

x2 −
τ

x1

) 1∫

x2

dy

y
P

(
x2
y

)

f 0
ī
(y)

= τ

1∫

0

dx1dx2dzδ (1− z) δ (x1x2z− τ) f 0i (x1)

1∫

x2

dy

y
P

(
x2
y

)

f 0
ī
(y) . (8.153)

In addition one finds for the product of two renormalised PDFs of the type of Eq.
(8.147):

fi(x1,M
2) f ī(x2,M

2) = f 0i (x1) f
0
ī
(x2)

+ f 0i (x1)
αs

2π

1∫

x2

dy
1

y

{

f 0
ī
(y)

[

Pqq

(
x2
y

)

log

(
M2

η2

)

+ CS
q

(
x2
y

)]

+ g0(y)

[

Pqg

(
x2
y

)

log

(
M2

η2

)

+ CS
g

(
x2
y

)]}

+ f 0
ī
(x2)

αs

2π

1∫

x1

dy
1

y

{

f 0i (y)

[

Pqq

(
x1
y

)

log

(
M2

η2

)

+ CS
q

(
x1
y

)]

+ g0(y)

[

Pqg

(
x1
y

)

log

(
M2

η2

)

+ CS
g

(
x1
y

)]}

+O
(

α2
s

)

. (8.154)

Comparing the last two equations, one finds, that one can express the hadronic cross
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section (8.152) in terms of the renormalised PDFs (8.147). One obtains [ESW96]:

dσ

dM2
=

4πα2

9M4
τ ∑

i

e2i

1∫

0

dx1dx2dzδ (x1x2z− τ)

×
{(

fi(x1,M
2) f ī(x2,M

2) + ( fi ↔ f ī)
) [

δ (1− z) +
αs

2π
C̃S
q (z)

]

+
[

g(x1,M
2)
(

fi(x2,M
2) + f ī(x2,M

2)
)

+ (g↔ fi, f ī)]
αs

2π
C̃S
g(z)

}

, (8.155)

which is correct to O(αs). The collinear divergences and the bare PDFs have been
absorbed into the renormalised PDFs. Again there remain finite contributions C̃S

q , C̃
S
g ,

which can be calculated once the renormalisation scheme S has been fixed.

8.6.2 Collinear singularities in our model

In Sec. 6.2.4 we found, that the introduction of the renormalised PDFs gives rise to the
famous DGLAP evolution equations which describe successfully the scaling violations
[ESW96]. Clearly for our model we want to inherit this fundamental QCD property.
Also from a pragmatic point of view we want to use the standard (renormalised) PDFs
from the literature. On the other hand, in the pQCD approach to the DY process
the reshuffling of the collinear singularities into the renormalised PDFs was only
possible for the pT integrated M spectrum. In our model we also want to describe
the DY spectra differential in pT. Therefore, we cannot follow the steps outlined in
the previous subsection. However, we have an explicit regularisation of the collinear
singularities. This allows to make contact between the bare and the renormalised
PDFs by a kind of backward engineering, which we will describe next.

Since we explicitly take into account all O(αs) processes, cf. Secs. 8.1-8.4, we now
have to make sure that all the O(αs) contributions to the cross section, that were
absorbed into the renormalised PDFs are subtracted. Otherwise we would double-
count the O(αs) contributions. Schematically the hadronic cross section for DY pair
production to next-to-leading order in αs can be written as:

dσ =
∫

∑
i

e2i




 dσ̂LO

︸ ︷︷ ︸

O(α0s )=O(1)

f 0i · f 0ī + dσ̂VC+B
︸ ︷︷ ︸

O(αs)

f 0i · f 0ī + dσ̂C
︸︷︷︸

O(αs)

g0 · ( f 0i + f 0
ī
)




 , (8.156)

with the bare PDFs f 0i , g
0. We note that fi · f ī = f 0i f

0
ī
+ O(αs) and g · ( fi + f ī) =

g0 · ( f 0i + f 0
ī
) +O(αs), and so to O(αs) nothing changes if we replace the bare PDFs
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multiplying the NLO partonic cross sections:

dσ =
∫

∑
i

e2i




 dσ̂LO

︸ ︷︷ ︸

O(α0s )=O(1)

f 0i · f 0ī + dσ̂VC+B
︸ ︷︷ ︸

O(αs)

fi · f ī + dσ̂C
︸︷︷︸

O(αs)

g · ( fi + f ī)




+O(α2

s ) .

(8.157)

However, if we were to do the same thing with the LO term, we would get additional
O(αs) contributions, cf. Eq. (8.154). How do we subtract these contributions? After
all, we cannot calculate the integrals in Eq. (8.154), since we do not know η or the bare
PDFs.

In our model we set out to calculate exactly those transverse momentum spectra
that were integrated in the derivation of the renormalised PDFs in the pQCD case
above. To accomplish this, we have introduced quark mass distributions to handle
the collinear divergences that enter the quark PDF in Eq. (8.147). The important
difference between the pQCD approach and our model is, therefore, the following: in
pQCD the regulating cut-off η2 is completely arbitrary and physical results can only
be obtained by absorbing this arbitrariness into the renormalised PDFs. All the finite
and scheme-dependent contributions can be calculated analytically. In our model we
know the regulator η in (8.147), it is nothing but our quark mass m (or better m2).
However, we do not know the finite contributions CS

q,g in our model. To estimate
them, we introduce two new parameters κq and κg, so that the functions Fqq̄ and Fqg

become:

Fm
qq̄(z) = 2Pqq(z) log

(

M2

κ2qm
2

)

, (8.158)

Fm
qg(z) = Pqg(z) log

(

M2

κ2gm
2

)

. (8.159)

Since we expect that the finite contributions do not signifcantly change the log struc-
ture, we can assume that κq and κg are on the order of 1. Below we will vary κq, κg in
a reasonable range and study the impact on the results of our calculation (cf. Secs. 9.1
and 10.6).
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Now we can rewrite the renormalised PDFs in Eq. (8.154):

fi(x1,M
2) f ī(x2,M

2) = f 0i (x1) f
0
ī
(x2)

+ f 0i (x1)
αs

2π

1∫

x2

dy
1

y

{

f 0
ī
(y)

[

Pqq

(
x2
y

)

log

(

M2

κ2qm
2

)]

+ g0(y)

[

Pqg

(
x2
y

)

log

(

M2

κ2gm
2

)]}

+ f 0
ī
(x2)

αs

2π

1∫

x1

dy
1

y

{

f 0i (y)

[

Pqq

(
x1
y

)

log

(

M2

κ2qm
2

)]

+ g0(y)

[

Pqg

(
x1
y

)

log

(

M2

κ2gm
2

)]}

+O
(

α2
s

)

. (8.160)

Solving for the product of the bare PDFs gives:

f 0i (x1) f
0
ī
(x2) = fi(x1,M

2) f ī(x2,M
2)

− f 0i (x1)
αs

2π

1∫

x2

dy
1

y

{

f 0
ī
(y)

[

Pqq

(
x2
y

)

log

(

M2

κ2qm
2

)]

+ g0(y)

[

Pqg

(
x2
y

)

log

(

M2

κ2gm
2

)]}

− f 0
ī
(x2)

αs

2π

1∫

x1

dy
1

y

{

f 0i (y)

[

Pqq

(
x1
y

)

log

(

M2

κ2qm
2

)]

+ g0(y)

[

Pqg

(
x1
y

)

log

(

M2

κ2gm
2

)]}

+O
(

α2
s

)

. (8.161)

On the right hand side we can replace all the bare PDFs by their renormalised version,
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since all additional corrections introduced by this procedure are O(α2
s ):

f 0i (x1) f
0
ī
(x2) = fi(x1,M

2) f ī(x2,M
2)

− fi(x1,M
2)

αs

2π

1∫

x2

dy
1

y

{

f ī(y,M
2)

[

Pqq

(
x2
y

)

log

(

M2

κ2qm
2

)]

+ g(y,M2)

[

Pqg

(
x2
y

)

log

(

M2

κ2gm
2

)]}

− f ī(x2,M
2)

αs

2π

1∫

x1

dy
1

y

{

fi(y,M
2)

[

Pqq

(
x1
y

)

log

(

M2

κ2qm
2

)]

+ g(y,M2)

[

Pqg

(
x1
y

)

log

(

M2

κ2gm
2

)]}

+O
(

α2
s

)

. (8.162)

We define:

f subi (x,M2) =
αs

2π

1∫

x

dy
1

y
fi(y,M

2)Pqq

(
x

y

)

log

(

M2

κ2qm
2

)

,

gsub(x,M2) =
αs

2π

1∫

x

dy
1

y
g(y,M2)Pqg

(
x

y

)

log

(

M2

κ2gm
2

)

, (8.163)

and so we find:

f 0i (x1) f
0
ī
(x2) = fi(x1,M

2) f ī(x2,M
2)

− fi(x1,M
2) f sub

ī
(x2,M

2)− fi(x1,M
2)gsub(x2,M

2)

− f ī(x2,M
2) f subi (x1,M

2)− f ī(x2,M
2)gsub(x1,M

2)

+O
(

α2
s

)

. (8.164)

In this scheme the hadronic cross section (8.157) becomes:

dσ =
∫

∑
i

e2i [dσ̂LO fi · f ī

− dσ̂LO

(

fi · f subī
+ f subi · f ī

)

+ dσ̂VC+B fi · f ī
−dσ̂LO

(

fi · gsub + f ī · gsub
)

+ dσ̂C g · ( fi + f ī)
]

+O(α2
s ) . (8.165)
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8 Next-to-leading order corrections to the Drell-Yan process

From now on, we label the different contributions to the cross section as sketched in
the following:

dσLO =
∫

∑
i

e2i dσ̂LO fi · f ī , (8.166)

dσqq̄ =
∫

∑
i

e2i

[

dσ̂VC+B fi · f ī − dσ̂LO

(

fi · f subī
+ f subi · f ī

)]

, (8.167)

dσqg =
∫

∑
i

e2i

[

dσ̂C g · ( fi + f ī)− dσ̂LO

(

fi · gsub + f ī · gsub
)]

. (8.168)

In Eqs. (8.167) and (8.168) we subtract now precisely those O(αs) contributions which
were absorbed before into the renormalised PDFs. Thus, by this procedure we have
produced in our model a consistent cross section to O(αs). Indeed, we have checked
explicitly that the collinear divergences which appear in dσVC+B, if the quark masses
are sent to zero, cancel the corresponding divergence of f subi as given in Eq. (8.163).

The same is true for dσC and gsub. Thus the expressions (8.167) and (8.168) remain
finite for vanishing quark masses.
For the calculation of our results in Part V we will use Eqs. (8.166)-(8.168). The

quantities which enter are, on the one hand, the standard PDFs which we can take
from the literature, and, on the other hand, the parameters κq and κg which appear
in Eq. (8.163). We recall that these parameters introduced in Eqs. (8.158) and (8.159)
correspond to finite, i.e. infrared safe, contributions which appear, e.g., as ĈS

q,g in Eqs.
(8.150) and (8.151). We will vary the parameters κq and κg around natural values (i.e.
around 1), to estimate these finite contributions.

8.7 Influence of initial transverse momentum

distributions on DY pT spectra

Even in the mass distribution approach at NLO we find that the pT data are heav-
ily underestimated, cf. Fig. 8.8. Therefore, we have also introduced parton initial
transverse momentum distributions for the NLO processes, just as we did at LO in
Sec. 7.4.3. Taking into account these distributions we obtain a good description of
measured cross sections without K factors, as we will show in Part V.
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9
Drell-Yan in high energy proton-proton

collisions - fixing parameters

In this chapter we present results of our full model. We will begin by fixing our
model parameters on data from the E866 experiment [Web03, NuSea03]. We chose
this experiment for two reasons: it measured the DY cross sections in pp collisions,
instead of p-nucleus collisions, so there are no nuclear effects which have to be taken
care of by experiment or theory. Second, the experiment measured at rather high
energies (S = 1500 GeV2), where one assumes parton model like approaches to work
reasonably well.

Before we go on, we want to stress, that the calculation in our full model reproduces
measured DY pT spectra without the need for a K factor, see for example Fig. 9.4.
This is in contrast to the LO calculation of Sec. 7.6. In order to better understand the
parameter dependence of our model, we explore the parameter space in the following.
The details of how we obtain the presented cross sections were given in Sec. 7.6.1. First
we show several plots, in which we vary only one parameter and keep the others fixed.

9.1 E866 - pT spectrum

In Fig. 9.1 we plot the results of our full NLO model for different D. As one can see for
D around 0.45 GeV, which corresponds to an average squared initial quark transverse
momentum 〈k2T〉 = (0.9)2 GeV2, the data are reproduced quite well. Obviously, D
determines the shape of the pT spectra.
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Figure 9.1: pT spectrum obtained from our full model with different values of D.
Everywhere Γ = 0.2 GeV, λ = 5 MeV, κq = 1 and κg = 2. The PDFs are the
MSTW2008LO68cl set. Data are from E866 binned with 4.2 GeV < M < 5.2 GeV,
−0.05 < xF < 0.15. Only statistical errors are shown.
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Figure 9.2: pT spectrum obtained from our full model with different values of Γ.
Everywhere D = 0.45 GeV, λ = 5 MeV, κq = 1 and κg = 2. The PDFs are the
MSTW2008LO68cl set. Note that the curves for Γ ≥ 0.2 GeV are on top of each other.
The Γ = 0.01 GeV curve is slightly higher than the others. Data are from E866 binned
with 4.2 GeV < M < 5.2 GeV, −0.05 < xF < 0.15. Only statistical errors are shown.
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9.1 E866 - pT spectrum

In Fig. 9.2 we show results for different Γ. The results for several values of Γ all
agree very well with each other and at the same time reproduce the data quite well.
Thus at E866 energies our model appears to be rather insensitive to changes of Γ over
a wide range.
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Figure 9.3: pT spectrum obtained from our full model with different values of λ.
Everywhere D = 0.45 GeV, Γ = 0.2 GeV, κq = 1 and κg = 2. The PDFs are the
MSTW2008LO68cl set. Note that the curves for λ ≤ 5 MeV are on top of each other.
Data are from E866 binned with 4.2 GeV < M < 5.2 GeV, −0.05 < xF < 0.15. Only
statistical errors are shown.

Remember that the gluon mass λ was introduced to regulate divergences that occur
when the gluons become very soft. In the limit of λ → 0 these divergences of the
bremsstrahlung and the vertex correction processes should exactly cancel. Therefore,
it is sensible to choose λ as small as numerically feasible. Results for different choices
of the gluon mass λ are shown in Fig. 9.3. While the results for λ = 100, 250 MeV are
still visibly larger than the results for 5 and 0.5 MeV, the latter two agree very well
with each other. Thus the calculated cross section appears to converge in the λ → 0
limit. Therefore, we chose λ = 5 MeV for the calculation of all the following results.

We show an example of the influence of different parton distribution functions in
Fig. 9.4. The results with the MSTW2008LO68cl [MSTW09] and GJR08lo [GJDR08]
sets agree quite well with each other, with only small deviations. This is an illus-
tration of the uncertainties induced by the different integrated (i.e. standard) parton
distributions.
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Figure 9.4: pT spectrum obtained from our full model with different PDF sets. Every-
where D = 0.45 GeV, Γ = 0.2 GeV, λ = 5 MeV, κq = 1 and κg = 2. Data are from E866
binned with 4.2 GeV < M < 5.2 GeV, −0.05 < xF < 0.15. Only statistical errors are
shown.
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Figure 9.5: pT spectrum obtained from our full model with different values of the
subtraction parameter κq. Everywhere D = 0.45 GeV, Γ = 0.2 GeV, λ = 5 MeV and
κg = 2. The PDFs are the MSTW2008LO68cl set. Data are from E866 binned with 4.2
GeV < M < 5.2 GeV, −0.05 < xF < 0.15. Only statistical errors are shown.
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Figure 9.6: pT spectrum obtained from our full model with different values of the
subtraction parameter κg. Everywhere D = 0.45 GeV, Γ = 0.2 GeV, λ = 5 MeV and
κq = 1. The PDFs are the MSTW2008LO68cl set. Data are from E866 binned with 4.2
GeV < M < 5.2 GeV, −0.05 < xF < 0.15. Only statistical errors are shown.
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Figure 9.7: pT spectrum obtained from our model decomposed into the different con-
tributions as described at the end of Sec. 8.6. Note that we plot the negative quark-
gluon contribution. Everywhere D = 0.45 GeV, Γ = 0.2 GeV, λ = 5 MeV, κq = 1 and
κg = 2. The PDFs are the MSTW2008LO68cl set. Data are from E866 binned with 4.2
GeV < M < 5.2 GeV, −0.05 < xF < 0.15. Only statistical errors are shown.
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9 Drell-Yan in high energy proton-proton collisions - fixing parameters

To determine the subtraction parameters κq and κg we explore the dependence of
the cross section on these two parameters in Figs. 9.5 and 9.6. In the range of natural
choices (κq, κg = 1

2 . . . 2) we find, that with κq = 1 and κg = 2 the data are described
rather well. Although Fig. 9.5 would indicate a better fit for smaller κq, we stick to
κq = 1, since for this value the slope of the M spectra fits also very well, as we will
show for example in Sec. 10.2.
In Fig. 9.7 the cross sections of the different contributions to the full result are plot-

ted individually. The definition of the LO, quark-antiquark (qq̄) and quark-gluon (qg)
contributions is given at the end of Sec. 8.6. Note that the sum of the LO contribution
and the qq̄ corrections make up most of the cross section. The contribution of the qg
correction is relatively small and negative for not too large pT.
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Figure 9.8: pT spectrum comparison of PYTHIA results with our full model. For the
PYTHIA calculations version 6.225 with CTEQ5L PDFs were used. The PYTHIA result
is plotted for two different values of the average initial k2T and multiplied by a factor
K = 2. Our model was calculated with D = 0.45 GeV, Γ = 0.2 GeV, λ = 5 MeV,
κq = 1, κg = 2 and MSTW2008LO68cl PDF set. Data are from E866 binned with 4.2
GeV < M < 5.2 GeV, −0.05 < xF < 0.15. Only statistical errors are shown.

Fig. 9.8 shows a comparison of the results of our model with the results of a PYTHIA
event generator calculation. For this specific plot PYTHIA version 6.225 [S+01] with
CTEQ5L PDFs [Collaboration00] was used and the PYTHIA results were scaled up
by a factor K = 2. The comparison with the experimental data suggests a good fit
of the shape of the spectrum for a value of 〈k2T〉 = (0.8 GeV)2 in PYTHIA (internal
parameter PARP(91) = 0.8). For our value of D we get 〈k2T〉 = (2D)2 = (0.9 GeV)2.
Although the PYTHIA parameter is obviously intended to have the same meaning
as our definition for the average initial transverse momentum, the complex internal
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9.1 E866 - pT spectrum

treatment of the interaction in the PYTHIA code leads to some numerical mismatch
with our implementation.
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Figure 9.9: pT spectrum obtained from our full model. Everywhere D = 0.45 GeV,
Γ = 0.2 GeV, λ = 5 MeV, κq = 1 and κg = 2. The PDFs are the MSTW2008LO68cl set.
Data are from E866 binned with 7.2 GeV < M < 8.7 GeV, −0.05 < xF < 0.15. Only
statistical errors are shown.

For comparison we show our results for a different M bin in Fig. 9.9. With the
parameters determined above our full model reproduces the measured spectrum very
well. In contrast to the LO approach of chapter 7 we do not need a K factor anymore
to describe the absolute height of the spectrum. At the same time the width D of
the intrinsic (non-perturbative) kT distributions changes only little (D = 0.5 GeV vs.
D = 0.45 GeV) when passing from the LO to the NLO calculation. Note, however, that
Fig. 9.7 indicates, that at least the results for the qq̄ corrections deviate from a Gaussian
behavior at pT ≥ 3 GeV. Thus the contributions of some of the hard NLO processes
are only significant in the high (perturbative) pT region. Therefore, to describe the
low pT regime at NLO one still requires almost the same non-perturbative input for
the intrinsic parton kT, i.e., only little transverse momentum is generated dynamically
and the width parameter D does not change considerably.
Note one more important point: in principle the divergence of the NLO processes

near pT = 0 can also be cured by choosing a finite and fixed quark mass. To illustrate
this, we show in Fig. 9.10 the results from our full model, but calculated for a set of
fixed quark masses. To be able to compare this result with our full model with broad
mass distributions we estimate the average quark mass obtained there in the following
scheme: our quark mass distribution A(p) in Eq. (7.127) depends not only on m, but
also on the large quark momentum component p+, which itself depends on the quark
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9 Drell-Yan in high energy proton-proton collisions - fixing parameters

transverse momenta, which are integrated over. However, in the E866 regime xF ≈ 0
and one can get a rough estimate by assuming simple collinear kinematics (i.e. putting
all transverse momenta to zero). Then one finds simply p+ = M (cf. Eqs. (7.39-7.40)),
which gives an upper limit for p+. For the M-bin under consideration here we choose
a representative value of M = 4.5 GeV and so for a width Γ = 0.2 GeV one finds for
the average squared quark mass:

〈m2〉 =
m2

N∫

0

dm2m2A(p) ≈ 0.32 GeV2 , (9.1)

which corresponds to an average m =
√

〈m2〉 ≈ 0.57 GeV. For fixed quark mass values
around this number we again find good agreement of our calculation with the data.

A fixed quark mass scheme certainly has its virtues: none of the problems concern-
ing the renormalised quark-photon vertex arise, since for fixed equal quark masses
the Ward-Takahashi identities are at work, and the calculations are simplified, since
fewer integrals have to be evaluated. Note, however, that it is much more natural
to assume a broad mass distribution, since the nucleon is composed of strongly in-
teracting partons. As we have already shown above and will also show in the next
chapter, we can describe the experimental data quantitatively well assuming broad
quark mass distributions.
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Figure 9.10: pT spectrum obtained from our full model for different fixed quark
masses m. Everywhere D = 0.45 GeV, λ = 5 MeV, κq = 1 and κg = 2. The PDFs
are the MSTW2008LO68cl set. Data are from E866 binned with 4.2 GeV < M < 5.2
GeV, −0.05 < xF < 0.15. Only statistical errors are shown.
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9.2 E866 - M spectrum

9.2 E866 - M spectrum

In this section we present our results for the measured M spectrum from E866, which
are basically the pT spectra integrated over pT. The double-differential cross section
is given by the E866 collaboration as:

M3 dσ

dMdxF
. (9.2)

Again the data are given in several bins of M and xF and for every datapoint the
average values 〈M〉 and 〈xF〉 are provided. For the different contributions in our
model we calculate the quantity of Eq. (9.2) by integrating over p2T for every datapoint
using these averaged values:

M3 dσ

dMdxF
→ 〈M〉3

(pT)
2
max∫

0

dp2T
dσ

dMdxFdp
2
T

= 〈M〉3
(pT)

2
max∫

0

dp2T 2 〈M〉 dσ

dM2dxFdp
2
T

(〈M〉 , 〈xF〉) . (9.3)

The maximal possible pT is determined by the kinematics:

P1 + P2 = q+ X (9.4)

⇒ (P1 + P2 − q)2 = X2 = M2
R (9.5)

⇒ S+ M2 −M2
R = 2 (P1 + P2) q

= 2
√
SE

= 2
√
S
√

M2 + (pT)2max + x2F(qz)
2
max (9.6)

⇒ E2 = M2 + (pT)
2
max + x2F(qz)

2
max (9.7)

=
(S+ M2 −M2

R)
2

4S
(9.8)

⇒ (pT)
2
max =

(S+ M2 −M2
R)

2

4S
−M2 − x2F(qz)

2
max . (9.9)

M2
R is the minimal invariant mass of the undetected remnants. For pp and pn colli-

sions we choose a value of MR = 2mN and for pp a value of MR = 1.1 GeV, which can

be interpreted as two times a diquark mass. Note that at c.m. energies of
√
S ≈ 15.3

GeV (E537),
√
S ≈ 27.4 GeV (E288, E439) and

√
S ≈ 38.8 GeV (E605, E772, E866) we

are not really sensitive to these values if they stay at or below a few GeV.
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9 Drell-Yan in high energy proton-proton collisions - fixing parameters

In Fig. 9.11 we compare our result for the double differential cross section to the
data from E866. The slope and absolute height of the curve agree with the data quite
well. However, since here the experimental error bars are rather large, we will make
comparisons to M spectra from other experiments in Secs. 10.2 and 10.4 to test our
model further.
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Figure 9.11: M spectrum obtained from our full model. Everywhere D = 0.45 GeV,
Γ = 0.2 GeV, λ = 5 MeV, κq = 1 and κg = 2. The PDFs are the MSTW2008LO68cl set.
Data are from E866 binned with −0.05 < xF < 0.05. Only statistical errors shown.
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10
Results and predictions for DY pT and

M spectra in proton and antiproton
induced reactions

In the last chapter we explored in detail the dependence of our full model on the
phenomenological parameters Γ (the width of the quark mass distributions), D (the
width of the initial parton transverse momentum distributions) and κq, κg (the PDF
subtraction parameters). Based on this analysis we fixed these parameters and in
this chapter apply our full model to data taken in proton-nucleus and antiproton-
proton reactions. We find that with our one set of parameters the different pT and M
spectra are reproduced well without any K factor. Based on these findings we finally
present the predictions of our full model for fully differential DY pair production in
the kinematics of the future PANDA experiment.

10.1 E772 (pd)

Experiment E772 [E77294] measured dimuon production in pd collisions at S ≈ 1500
GeV2. For the calculation of the triple differential cross section we again use Eq. (7.131)
and for the average values of M and xF we use the center of the M and xF bins. Since
the experiment was done on deuterium we have calculated pp and pn cross sections
and then averaged.
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10 Results and predictions for DY pT and M spectra in proton and antiproton induced reactions
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Figure 10.1: pT spectrum obtained from our full model with different PDF sets. Ev-
erywhere D = 0.45 GeV, Γ = 0.2 GeV, λ = 5 MeV, κq = 1 and κg = 2. Data are from
E772 binned with 5 GeV < M < 6 GeV, 0.1 < xF < 0.3. Only statistical errors are
shown.

 0.01

 0.1

 1

 0  0.5  1  1.5  2  2.5  3

E
dσ

/d
3 p 

[p
b/

G
eV

2 ]

pT [GeV]

MSTW2008lo68cl
GJR08lo

Figure 10.2: pT spectrum obtained from our full model with different PDF sets. Ev-
erywhere D = 0.45 GeV, Γ = 0.2 GeV, λ = 5 MeV, κq = 1 and κg = 2. Data are from
E772 binned with 7 GeV < M < 8 GeV, 0.1 < xF < 0.3. Only statistical errors are
shown.

In Figs. 10.1 and 10.2 we compare the results of our full model with different PDF
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10.2 E605 (pCu)

sets to triple differential data from E772 in different M bins. Agreement is again quite
good, however, the shape of the spectrum seems to favor a slightly smaller value for
D, which would enhance the spectrum near pT = 0. Nevertheless, we have chosen
D = 0.45 GeV, since this value allows us to describe the data from several different
experiments with only minor deviations.

10.2 E605 (pCu)

Experiment E605 [M+91] measured dimuon production in pCu collisions at S ≈ 1500
GeV2. For the calculation of the triple differential cross section we again use Eq. (7.131)
and for the average value of M we use the center of the M bin. For the pT spectrum
E605 gives xF = 0.1. For the double differential cross section we use Eq. (9.2). Since
the experiment was done on copper we have calculated pp and pn cross sections and
then averaged (29 protons and 34 neutrons).
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Figure 10.3: pT spectrum obtained from our full model with different PDF sets. Ev-
erywhere D = 0.45 GeV, Γ = 0.2 GeV, λ = 5 MeV, κq = 1 and κg = 2. Data are from
E605 binned with 7 GeV < M < 8 GeV, xF = 0.1. Only statistical errors are shown.

In Fig. 10.3 we compare the results of our full model with different PDF sets to triple
differential data from E605. Here the shape of the spectrum confirms our chosen value
for D and the overall agreement is good.
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Figure 10.4: M spectrum obtained from our full model. Everywhere D = 0.45 GeV,
Γ = 0.2 GeV, λ = 5 MeV, κq = 1 and κg = 2. Data are from E605 with xF = 0.125.
Only statistical errors shown.

In Fig. 10.4 we plot our result with different PDF sets for the double differential
cross section together with the data from E605. Again agreement is quite good over
the entire range of M.

10.3 E288 (pNucleus)

Experiment E288 [I+81] measured dimuon production in pA collisions at S ≈ 750
GeV2. For the calculation of the triple differential cross section we again use Eq.
(7.131) and for the average value of M we use the center of the M bin. For the pT
spectrum E288 gives for the rapidity y = 0.03 and we thus chose xF = 0 for our
calculation. The experiment was done on different nuclei and only data averaged
over the results from these nuclei have been presented. Therefore, we have calculated
pp cross sections only.

In Fig. 10.5 we compare the results of our full model with different PDF sets to the
triple differential data from E288. Again the agreement with the data is good and
confirms our choice of parameters.
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10.4 E439 (pW)
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Figure 10.5: pT spectrum obtained from our full model with different PDF sets. Ev-
erywhere D = 0.45 GeV, Γ = 0.2 GeV, λ = 5 MeV, κq = 1 and κg = 2. Data are from
E288 binned with 7 GeV < M < 8 GeV, y = 0.03, we have chosen xF = 0 in our
calculation. Only statistical errors are shown.
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Figure 10.6: M spectrum obtained from our full model with different PDF sets. Ev-
erywhere D = 0.45 GeV, Γ = 0.2 GeV, λ = 5 MeV, κq = 1 and κg = 2. Data are from
E439 with x′F = 0.1. Only statistical errors are shown.
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10 Results and predictions for DY pT and M spectra in proton and antiproton induced reactions

The details of experiment E439 and how we calculate the cross section are given in
Sec. 7.6.2. In Fig. 10.6 we compare our results for the double differential cross section
with the data from E439. For both PDF sets the absolute height and slope agrees with
the data well.

10.5 E537 (pW)

Experiment E537 [A+88] measured dimuon production in pW collisions at S ≈ 236
GeV2 in an invariant mass range of 4 < M < 9 GeV. The obtained cross sections are
double differential in two of the observables M, xF and p2T. To calculate the cross
sections differential in p2T with our model we use

dσ

dxFdp
2
T

→
∫

M2-bin

dσ

dM2dxFdp
2
T

dM2

≈∑
i

∆M2
i

dσ

dM2dxFdp
2
T

(〈Mi〉 , 〈xF〉 , 〈pT〉) . (10.1)

The sum runs over several mass bins, which we choose as M = 4..5, 5..6, 6..7, 7..8, 8..9
GeV and in each bin we take the central value for 〈Mi〉. Since the experiment was
done on tungsten we have calculated pp and pn cross sections and then averaged (74
protons and 110 neutrons).

We compare the calculated pT spectrum with the data in Fig. 10.7. Our full model
is on the lower side of the error bars of the data. However, one should note that the
experimental error bars are rather large and thus the possibility to confirm or rule out
our model is limited.

To calculate the M spectra we use

dσ

dMdxF
=

(pT)
2
max∫

0

dp2T
dσ

dMdxFdp
2
T

=

(pT)
2
max∫

0

dp2T 2M
dσ

dM2dxFdp
2
T

(M, xF) , (10.2)

with (pT)
2
max given in Eq. (9.9). We compare our calculated M spectrum with the data

in Fig. 10.8. Agreement is better than for the pT spectrum, however, the experimental
error bars are again large compared to proton data.
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Figure 10.7: pT spectrum obtained from our full model. Everywhere D = 0.45 GeV,
Γ = 0.2 GeV, λ = 5 MeV, κq = 1 and κg = 2. The PDFs are the MSTW2008LO68cl
set. Data are from E537 with 4 GeV < M < 9 GeV, 0 < xF < 0.1. We have chosen
xF = 0.05 in our calculation. Only statistical errors are shown.
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Figure 10.8: M spectrum obtained from our full model. Everywhere D = 0.45 GeV,
Γ = 0.2 GeV, λ = 5 MeV, κq = 1 and κg = 2. The PDFs are the MSTW2008LO68cl set.
Data are from E537 with 0 < xF < 0.1. We have chosen xF = 0.05 in our calculation.
Only statistical errors are shown.

215



10 Results and predictions for DY pT and M spectra in proton and antiproton induced reactions

10.6 Prediction for PANDA (pp)

Based on the parameters which we have fixed on the available data above, we here
present our predictions for DY pair production at S = 30 GeV2 in pp collisions, where,
for example, PANDA [TLP+09] will measure.

For the calculation of the triple differential cross section we use a modified version
of Eq. (7.131):

2
√
SE

π(S−M2)

dσ

dx′Fdp
2
T

→ 2
√
SE

π(S−M2)

∫

M2-bin

dσ

dM2dx′Fdp
2
T

dM2

≈ 2
√
SE

π(S− 〈M〉2)
· ∆M2 dσ

dM2dx′Fdp
2
T

(
〈M〉 , x′F, pT

)
, (10.3)

where

E =
√

〈M〉2 + p2T + (x′F)
2 〈(q′z)max〉2 (10.4)

and ∆M2 = M2
max −M2

min with Mmax (Mmin) the upper (lower) limit of the bin. For
the average value of M we use the center of the M bin and we choose everywhere
x′F = 0. In Figs. 10.9-10.10 we show our predictions for different values of Γ in
different M bins. Note that while at E866 energies we could not discriminate between
different Γ over a wide range (cf. Fig. 9.2), the results here become more sensitive to
this parameter. This is not totally unexpected, since at lower hadronic (S) and partonic
(M2) scales the model should become more sensitive to the soft physics introduced
through the various distributions for mass and transverse momentum.

216



10.6 Prediction for PANDA (pp)

 0.01

 0.1

 1

 0  0.5  1  1.5  2  2.5

E
dσ

/d
3 p 

[n
b/

G
eV

2 ]

pT [GeV]

Γ=0.5 GeV
Γ=0.2 GeV
Γ=0.1 GeV

Figure 10.9: pT spectrum obtained from our full model for different values of Γ. Ev-
erywhere D = 0.45 GeV, λ = 5 MeV, κq = 1 and κg = 2. The PDFs are the
MSTW2008LO68cl set. x′F = 0 and 1.5 GeV < M < 2.5 GeV.
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Figure 10.10: pT spectrum obtained from our full model for different values of Γ.
Everywhere D = 0.45 GeV, λ = 5 MeV, κq = 1 and κg = 2. The PDFs are the
MSTW2008LO68cl set. x′F = 0 and 2.5 GeV < M < 3.5 GeV.
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Figure 10.11: pT spectrum obtained from our full model for different PDF sets. Ev-
erywhere D = 0.45 GeV, Γ = 0.2 GeV, λ = 5 MeV, κq = 1, κg = 2. x′F = 0 and 1.5 GeV
< M < 2.5 GeV.
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Figure 10.12: pT spectrum obtained from our full model for different values of λ.
Everywhere D = 0.45 GeV, Γ = 0.2 GeV, κq = 1 and κg = 2. The PDFs are the
MSTW2008LO68cl set. x′F = 0 and 1.5 GeV < M < 2.5 GeV. Note that both curves are
basically on top of each other.

In Fig. 10.11 we compare results for different PDFs and the uncertainty induced
by the choice of different PDFs is comparable to the uncertainties we found for high
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10.6 Prediction for PANDA (pp)

energies (e.g. at E772). To make sure that at such low hadronic energies the fictitious
gluon mass is still small enough, we studied our model at different values of λ, see
Fig. 10.12. The results coincide, indicating that our standard choice of λ = 5 MeV is
still applicable at these energies.
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Figure 10.13: pT spectrum obtained from our full model with different values of the
subtraction parameter κq. Everywhere D = 0.45 GeV, Γ = 0.2 GeV, λ = 5 MeV and
κg = 2. The PDFs are the MSTW2008LO68cl set. x′F = 0 and 1.5 GeV < M < 2.5 GeV.

To check the dependence of our results on the choice of the subtraction parameters
κq and κg (see Sec. 8.6 for details) at the low hadronic energies of the PANDA kine-
matics, we again vary one of the two parameters and keep the other one fixed and
show our results in Figs. 10.13 and 10.14. The results for different κq deviate by about
15%, which is comparable to the deviation at E866 energies. However the results are
practically insensitive to variations in κg.
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Figure 10.14: pT spectrum obtained from our full model with different values of the
subtraction parameter κg. Everywhere D = 0.45 GeV, Γ = 0.2 GeV, λ = 5 MeV and
κq = 1. The PDFs are the MSTW2008LO68cl set. x′F = 0 and 1.5 GeV < M < 2.5 GeV.
Note that the curves are practically on top of each other.
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Figure 10.15: pT spectrum obtained from our full model and from PYTHIA (see main
text for details) for different values of the average initial kT. The PYTHIA results
shown are for K = 1. Our predictions were calculated with Γ = 0.2 GeV, λ = 5 MeV,
κq = 1, κg = 2 and the MSTW2008LO68cl PDF set. x′F = 0 and 1.5 GeV < M < 2.5
GeV.

Finally we compare in Fig. 10.15 our predictions with a PYTHIA calculation (PYTHIA
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version 6.225, CTEQ5L PDFs), each for different values of the average initial kT. As
explained above, PYTHIA calculations for E866 conditions seem to prefer a somewhat
smaller width for the initial kT distribution, 〈k2T〉 = (0.8 GeV)2 instead of (0.9 GeV)2.
Since various calculations ([Gal01],[GM09]) hint to some monotonic dependence of

the initial kT with the underlying
√
S, we would expect that at PANDA energies, a

somewhat smaller 〈k2T〉 should be used. Therefore, in Fig. 10.15, we also show calcu-
lations with 〈k2T〉 = (0.6 GeV)2 for PYTHIA and 〈k2T〉 = (0.7 GeV)2 (D = 0.35 GeV) for
our model. For PYTHIA, already with 〈k2T〉 = (0.6 GeV)2, the difference in the func-
tional behavior is rather large compared to the PYTHIA calculations with the higher
parameter values. This may be taken as some hint for the theoretical uncertainties.
On the other hand, the intrinsic kT in PYTHIA is some effective parameter. It is not
clear, whether this parameter should follow the same energy dependence in pp and
in pp̄ collisions, since multiple effects are encoded. Note, that the PYTHIA results
shown in Fig. 10.15 were not multiplied by a K factor, i.e. K = 1.
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11
Summary and conclusion

In this thesis we have studied fully differential DY pair production in proton and
antiproton induced reactions. For this purpose we have developed a model which
incorporates phenomenological distributions for the intrinsic transverse momentum
of partons and for the masses of the quarks, as well as standard longitudinal PDFs.
First, we have presented certain mathematical tools which are of importance for

this work. Afterwards, the relevant physical background for our model has been pre-
sented, especially with a focus on studies of the nucleon structure. Following that,
we have introduced the DY process and presented our LO model for the description
of the DY observables. Taking into account parton transverse momentum and quark
mass distributions we have shown, that our LO model cannot satisfactorily reproduce
the absolute strength of the measured DY pT and M spectra, i.e. a K factor is needed,
just as in the standard parton model for the DY process. Therefore, we have subse-
quently extended our model by additionally taking into account all NLO processes
of O(αs). We have found, that with our quark mass distributions we can effectively
overcome the problems of the standardO(αs) pQCD calculation with massless quarks.
Finally we have presented our results and shown, that a K factor free description of
measured DY spectra is possible in our full model. Based on these results we have
presented predictions for DY pair production at low hadronic energies, relevant for
the future PANDA experiment.

11.1 Summary

After our introduction in Part I we have devoted Part II to the main mathematical
tools, which are relevant for this work. In Chapter 2 we have explored the necessity
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11 Summary and conclusion

of regularisation methods in quantum field theories, taking the QCD quark selfenergy
as an example. Several different methods of regularisation have been presented and
their advantages and disadvantages discussed. Since the procedure of dimensional
regularisation today is a common tool in gauge theories and in this work, we have
presented this method in more mathematical detail, again on the example of the quark
selfenergy. Since for our full model we need to calculate certain loop corrections, we
have presented in Chapter 3 an explicit and detailed calculation of the type of loop
integrals we encounter in this work, namely the three-point function.

Part III comprises the underlying physics for our model. Since at NLO we have to
include quark field strength renormalisation factors when calculating amplitudes, we
have presented in Chapter 4 first a short introduction to this topic. In the presented
renormalisation framework we have then calculated the field strength renormalisation
for the massive quark case, of which we make use later on in our model. The gluon
bremsstrahlung and gluon Compton scattering processes we consider in our model
suffer from infrared divergences, and so we have devoted Chapter 5 to the description
of these divergences. One particular case is the divergence associated with the emis-
sion of soft gluons in bremsstrahlung. We have introduced a fictitious gluon mass to
regulate the divergence and calculated the cross section of this process, which enables
us to proof later on analytically, that this divergence actually cancels against a similar
divergence in the loop corrections and, thus, the final result does not depend on the
gluon mass. Since this work uses the DY process as a probe to study the structure of
the nucleon, we have covered the latter topic in detail in Chapter 6. We have explored
the standard tools to investigate the nucleon structure which are elastic and deep in-
elastic electron scattering. In the second part of this chapter we have discussed the
parton model, which is the basis of most current nucleon structure studies. Especially
the topics of Bjorken scaling and the collinear (or mass) singularities in DIS have been
covered. The latter are the origin of the scaling violations of the PDFs and we have
shown, how they can be systematically treated and absorbed into the PDFs through
the important DGLAP equations of pQCD.

The DY process and its description by our model have been laid out in Part IV. In
Chapter 7 we first have introduced the DY process and described the main shortfalls of
the standard LO parton model description: since all the partons are assumed to move
collinearly with the nucleon, pT spectra are not accessible in such a simple approach.
In addition the overall strength of the pT and M spectra is underestimated by an a pri-
ori undetermined, but constant K factor. To remedy this situation, we have introduced
parton intrinsic transverse momentum (width D) and quark mass distributions (width
Γ) to parametrise the soft interactions among the partons which are neglected from
the start in the standard parton model. Furthermore, we have calculated the LO hard
subprocess taking into account the full kinematics in contrast to the collinear approx-
imation assumed in the standard parton model. In evaluating the kinematics we have
found that special care has to be taken, as to not include unphysical solutions for the
longitudinal momentum fractions of the partons in the phase space integrals. We have
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found, that the shape of the pT spectra can be described well in such an approach,
however, the absolute size of the cross section still cannot be accounted for without a
multiplicative K factor. As a consequence, we have presented an extension to our LO
model which includes all subprocesses to O(αs) in Chapter 8. First, we have described
the loop corrections to the electromagnetic quark-photon vertex: the calculation of the
vertex form factors in the dimensional regularisation scheme has been given in full
detail along with the relevant interference cross section of the loop corrections with
the LO process. Since the loops also suffer from a soft gluon divergence, we again
have given the gluon a finite mass to regulate the behavior of the cross section. Then
we have shown explicitly, that the soft gluon divergent part of the cross section exactly
cancels against the divergent part of the soft gluon bremsstrahlung mentioned above,
and the resulting cross section is free of soft gluon problems and does not depend on
the fictitious gluon mass. The introduction of quark mass distributions has warranted
a close examination of current conservation and gauge invariance in our model, since
invariably we have introduced quarks with different masses. However, since we have
constructed our model such, that the quark masses only change at the quark-photon
vertex, we have found, that the amplitudes we have calculated actually conserve the
current in the electromagnetic as well as in the strong interaction sector. Furthermore,
the introduction of different quark masses has another consequence: the electromag-
netic charge is unintentionally renormalised. Fortunately, we have been able to show,
that in the kinematic regions of DY pair production we are interested in, this charge
renormalisation does not influence our results. Next we have presented the com-
mon subprocess kinematics of gluon bremsstrahlung and gluon Compton scattering
in detail. Then we have shown the derivation of the partonic cross section for gluon
bremsstrahlung and in special detail the evaluation of the phase space integrals of
the hadronic cross section, where again unphysical solutions for parton momentum
fractions have to be removed, just as in the LO case above. Gluon Compton scattering
has been covered next and we have presented the partonic cross section and stressed
the kinematical differences of the quark-gluon process in comparison to all the other
contributing processes with quark-antiquark in the initial state. Since for massless
quarks the O(αs) processes suffer from the same kind of collinear/mass singularities
as the DIS processes mentioned above, we then have demonstrated the regulating be-
havior of our quark mass distributions on the example of the pT spectrum of gluon
Compton scattering. We have found that we have effectively regulated the collinear
singularities with our quark mass, however, as we had already shown above, exactly
those singularities have already entered into the standard longitudinal PDFs. As our
model relies on these PDFs, as given by the literature, we then have devised and ex-
plained in detail a subtraction scheme, that prevents double-counting of the O(αs)
processes which we consider explicitly. We have introduced two subtraction parame-
ters κq and κg for the subtraction of the quark and gluon PDF, respectively. In this way,
we have acquired a model which is consistent to O(αs), in which we have regulated
the collinear singularities by means of our quark mass distributions and which can
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use the standard PDFs provided in the literature. As the pT generated dynamically by
the NLO processes cannot account for the measured pT spectra, we have found that
one still needs to include phenomenological intrinsic parton transverse momentum
distributions to reproduce the measured hadronic cross sections.

In Part V we have presented the results of our full model including all contributions
to O(αs). First we have fixed our phenomenological parameters on data obtained in
proton-proton collisions at high energies (Fermilab E866, S = 1500 GeV2). The results
show that with our choice for the width of the initial parton transverse momentum
distribution, D ≈ 0.45 GeV (〈k2T〉 ≈ (0.9)2 GeV2), the shape of the pT spectra is re-
produced very well. We note, however, that this width might be S dependent, which
introduces additional uncertainties. At E866 energies we have found, that over a wide
range the results depend only weakly on the width Γ of the mass distribution. We
have been able to fix the subtraction parameters κq and κg and found that they are
of natural magnitude (O(1)). Thus, within natural ranges for our parameters a K
factor free description of DY pT and invariant mass spectra is indeed possible in our
full model. In Chapter 10 we have then applied our full model to data from sev-
eral different other experiments, which measured DY spectra in proton-nucleus and
antiproton-proton reactions. It has turned out, that a consistent description of all
these data with our one set of fixed parameters is possible without any K factor. The
general agreement of our results with the data from different experiments indicates
that we effectively have parametrised the soft initial state interactions in the nucleon
by fixing our parameters on the available data. Using this framework we have made
predictions for DY pair production at the low hadronic energy regime, where the fu-
ture experiment PANDA is aiming at. We have found that our predictions become
more sensitive to the mass distribution width Γ, which we could not reliably fix at
higher energies. In addition we found some sensitivity on the subtraction parameter
κq, which is comparable to the finding at high energies (E866). Nevertheless, in this
thesis we have found that our model provides a narrow band of estimates for the fully
differential DY pair production cross section at low energies.

11.2 Outlook

Possible improvements to our model include testing the influence of different kinds
of quark mass distributions on the hadronic cross sections, and judging the possibil-
ity of using NLO PDFs by devising a modified subtraction scheme for the collinear
divergences. In addition predictions for the exclusive process of DY pair production
with an associated jet might prove interesting, since so far there is no data available
for this reaction. Once PANDA data become available, they might be used to fur-
ther constrain the parameters of our model. Since several DY experiments aim at
measuring spin-dependent observables, a possible extension of our model towards
the description of DY pair production with polarised beams and targets might prove
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useful.
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A
Conventions and notation

A.1 Units

This work is presented in natural units:

h̄ = c = 1 . (A.1)

For conversion between units we use [Group10]:

h̄c = 0.197327 GeV fm . (A.2)

A.2 Light-cone coordinates

We employ the following convention for general four-vectors a and b:

a+ = a0 + a3 , (A.3)

a− = a0 − a3 , (A.4)

~a⊥ =
(

a1, a2
)

, (A.5)

⇒ a2 = a+a− − (~a⊥)
2 , (A.6)

⇒ a · b = 1

2

(

a+b− + a−b+ − 2~a⊥ ·~b⊥
)

. (A.7)
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The 4-dimensional Minkowski volume element then reads:

d4a = da0d~a⊥da
3

=
∂
(
a0, a3

)

∂ (a+, a−)
da+da−d~a⊥

=
1

2
da+da−d~a⊥ . (A.8)

A.3 Complex logarithm

Let z ∈ C. We define the complex logarithm as the inverse function of the complex
exponential function:

ln (exp(z)) = z , (A.9)

where ln(x) has a branch cut along the negative real axis and where ℑ [ln |x|] = 0.

A.4 Metric, Dirac algebra and completeness relations

A.4.1 Metric tensor

In four dimensions we use the following metric tensor:

g
(4)
µν =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1







, (A.10)

and in general for d dimensions we use:

gµν =







1, µ = ν = 0

−1, d ≥ µ = ν ≥ 1

0, µ 6= ν

. (A.11)

A.4.2 Dirac algebra

Here we present the relevant Dirac algebra for this work, for the general case of d
dimensions [Mut98, PS95]. The Dirac matrices obey the following anticommutation
relation:

{γµ,γν} = 2gµν , (A.12)

with the d-dimensional metric tensor, which obeys the following contraction identity:

gµνgµν = d . (A.13)
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Contraction identities

The contraction identities for the Dirac matrices follow immediately from the last two
equations:

γµγµ = d , (A.14)

γµγαγµ = (2− d) γα , (A.15)

γµγαγβγµ = 4gαβ + (d− 4) γαγβ , (A.16)

γµγαγβγργµ = −2γργβγα + (4− d) γαγβγρ . (A.17)

Trace relations

In general the trace relations are modified in d dimensions, but we are always only
interested in results for d → 4. Therefore we can stick to the trace relations in four
dimensions [Mut98]. Important traces over products of Dirac matrices are:

Tr (1) = 4 , (A.18)

Tr (γµγν) = 4gµν , (A.19)

Tr
(

γµγνγαγβ
)

= 4
(

gµνgαβ − gµαgνβ + gµβgνα
)

, (A.20)

and all traces of an odd number of Dirac matrices vanish.

A.4.3 Dirac spinors and polarisation vectors

Dirac equation

The Dirac spinors for fermions and antifermions obey the Dirac equation:

(/p −m) us(p) = ūs(p) (/p −m) = 0 (A.21)

(/p +m) vs(p) = v̄s(p) (/p +m) = 0 . (A.22)

Gauge bosons

Gauge bosons (e.g. photons and gluons) are polarised in the transverse plane. Thus,
for a gauge boson with polarisation vector ǫµ = (0,~ǫ) and four momentum p =

(
p0,~p

)

the polarisation condition reads:

~ǫ · ~p = 0 . (A.23)
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Completeness relations

When summing over their different spin states, one obtains the completeness relations
for the fermions and antifermions:

∑
s

us(p)ūs(p) = /p +m , (A.24)

∑
s

vs(p)v̄s(p) = /p −m . (A.25)

Analogously, when summing over the polarisations of the photon, one can make the
following replacement (considering the Ward identity [PS95]):

∑
pol.

ǫ∗µǫν → −gµν . (A.26)

A.5 SU(3) color algebra

The SU(3) color matrices ta form a representation r of a Lie Algebra and they obey the
following commutator relation [PS95]:

[

ta, tb
]

= i f abctc , (A.27)

where f abc are totally antisymmetric structure constants. In the fundamental repre-
sentation one finds for the contraction of two color matrices (NC = 3 colors):

tata = C2 · 1 =
N2
C − 1

2NC
· 1 =

4

3
· 1 , (A.28)

where 1 is the identity in the SU(3) color space with:

Tr (1) = NC = 3 . (A.29)

A.6 Cross sections

The differential cross section for 2→ n particle scattering is given by [Group10]:

dσ =
(2π)4δ(4) (p1 + p2 −∑

n
i=1 ki)

4
√

(p1 · p2)2 −m2
1m

2
2

|M|2
n

∏
i=1

d3ki
(2π)32Ei

, (A.30)

where p1, p2 and m1,m2 are the momenta and masses of the incoming particles, ki and

Ei are the momenta and energies of the outgoing particles and |M|2 is the transition
matrix element.
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B
Feynman rules and color factors

B.1 Feynman rules

In this appendix we present the Feynman rules, that were employed throughout this
work. Using these rules one can obtain transition amplitudes iM and selfenergies
−iΣ. Note that time runs from right to left.

External particles

Assign factors for external particles according to the following rules:

• initial fermion (particle)

←−p ,m
= us(p) (B.1)

• final fermion (particle)

←−p ,m
= ūs(p) (B.2)
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B Feynman rules and color factors

• initial antifermion (antiparticle)

←−p ,m
= v̄s(p) (B.3)

• final antifermion (antiparticle)

←−p ,m
= vs(p) (B.4)

• initial photon

←−pµ
= ǫµ(p) (B.5)

• final photon

←−p µ
= ǫ∗µ(p) (B.6)

• initial gluon

←−pµ
= ǫµ(p) (B.7)

• final gluon

←−p µ
= ǫ∗µ(p) (B.8)
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Vertices

Assign factors for vertices according to the following rules:

• fermion-photon vertex (fermion electric charge Q · e)

µ
= iQeγµ

(B.9)

• quark-gluon vertex

µ, a
= igtaγµ

(B.10)

Propagators and loops

For every closed loop assign an integral over the undetermined loop momentum via
∫

d4k
(2π)4

. Assign factors for propagators according to the following rules:

• free fermion propagator

←−p ,m
=

i (/p +m)

p2 −m2 + iǫ (B.11)

• free photon propagator

←−pµ ν
=

i

p2 + iǫ

(

−gµν − (1− ξ)
pµpν

p2

)

(B.12)
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• free gluon propagator

←−pµ ν
=

i

p2 + iǫ

(

−gµν − (1− ξ)
pµpν

p2

)

(B.13)

Unless explicitly stated otherwise, we work in Feynman gauge (ξ = 1).

B.2 Color factors

In this work we exclusively present matrix elements averaged (summed) over initial
(final) color states of the participating particles. The resulting color factors for the
different partonic processes contributing to DY pair production are presented here.

Leading order Drell-Yan process

For both incoming quarks assign a factor of 1
NC

and sum over the internal color indices,

which just gives the trace of the identity in color space. Therefore, the color factor
reads:

CLO
F =

1

N2
C

Tr (1)

=
1

N2
C

NC =
1

3
. (B.14)

Vertex loop corrections

For both incoming quarks assign a factor of 1
NC

. We only consider the interference

amplitude between LO process and the vertex correction processes and so in the
matrix element we only have two quark-gluon vertices. These are both connected to
the same internal gluon line and so for each vertex we assign a color matrix ta, cf.
Eq. (B.10), and then sum over the internal color indices, which gives a trace over the
contraction of both matrices:

CVC
F =

1

N2
C

Tr (tata)

=
1

N2
C

N2
C − 1

2NC
Tr (1)

=
1

N2
C

N2
C − 1

2NC
NC

=
4

9
, (B.15)
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where we have used the results of Appendix A.5.

Gluon bremsstrahlung

For both incoming quarks assign a factor of 1
NC

. For the quark-gluon vertex assign a

color matrix ta, cf. Eq. (B.10), and then square the amplitude and sum over the internal
color indices, which gives a trace over the contraction of the two color matrices just as
for the vertex correction above:

CB
F =

1

N2
C

Tr (tata)

=
1

N2
C

N2
C − 1

2NC
Tr (1)

=
1

N2
C

N2
C − 1

2NC
NC

=
4

9
. (B.16)

The identical color factors of the vertex correction and bremsstrahlung processes are
another consequence of the Kinoshita-Poggio-Quinn [Kin62, KU76, PQ76, Ste76] and
Kinoshita-Lee-Nauenberg [Kin62, LN64] theorems, since otherwise the soft gluon di-
vergences of these processes would not cancel out.

Gluon Compton scattering

For the incoming quark assign a factor of 1
NC

and for the incoming gluon assign a

factor of 1
N2
C−1

to average over the 8 possible non-singlet color states of the gluon.

For the quark-gluon vertex assign a color matrix ta, cf. Eq. (B.10), and then square
the amplitude and sum over the internal color indices, which gives a trace over the
contraction of the two color matrices just as above:

CB
F =

1

NC

1

N2
C − 1

Tr (tata)

=
1

NC

1

N2
C − 1

N2
C − 1

2NC
Tr (1)

=
1

NC

1

2NC
NC

=
1

6
. (B.17)
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C.1 Vertex function integrals

During the evaluation of the vertex function in Sec. 8.1.1 we encountered a lengthy
integral over Feynman parameters and there we only gave the result. In this Appendix
we will outline the evaluation of this integral. The object of interest reads, cf. Eq.
(8.15):

I =

1∫

0

dxdydzδ(x+ y+ z− 1)

×
{

γµ2 log

(

m2
1

∆

)

− γµ

∆

[

−2q2(1− x)(1− y)

+m2
1

(

2z2 + 2yz

(

1− m2
2

m2
1

)

+ 2z

(

m2

m1
+

m2
2

m2
1

)

− 2
m2

m1

)]

− p
µ
1 − p

µ
2

∆
(2yz(m2 −m1) + 2m1z(1− z))

}

. (C.1)

First we transform the integration variables:

a = x+ y = 1− z , (C.2)

b = x− y , (C.3)
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⇒
1∫

0

dxdydzδ(x+ y+ z− 1) =

1∫

0

dx

1−x∫

0

dy =
1

2

1∫

0

da

a∫

−a
db . (C.4)

In terms of these new variables the function ∆ becomes:

∆ = −xyq2 +m2
1(1− z)2 + (m2

2 −m2
1)y(1− z) + zλ2 − iǫ

=
q2

4

[

b2 + a2
(

−v2 − φ
)

+ abφ + (1− a) κ
(

1− v2
)

− iǫ
]

, (C.5)

with the help functions:

v =

√

1− 4m2
1

q2
, (C.6)

φ =
1

2
·
(

1− m2
2

m2
1

)

· (1− v2) , (C.7)

κ =
λ2

m2
1

− iǫ . (C.8)

Note that we have absorbed the iǫ term into κ since we will only need it for the
evaluation of the IR divergent part of the integrals. Now we split up the integral I
and evaluate the parts individually. First we define:

I1 =

1∫

0

dxdydzδ(x+ y+ z− 1)2 log

(

m2
1

∆

)

=

1∫

0

da

a∫

−a
db

[

log

(

4m2
1

q2

)

− log
(

b2 + a2
(

−v2 − φ
)

+ abφ + (1− a) κ
(

1− v2
))
]

.

(C.9)

Note that we introduced the gluon mass λ to regulate possible IR divergences. How-
ever, I1 is finite in the soft gluon limit and so we can put λ and, thus, κ to zero:

I1 =

1∫

0

da

a∫

−a
db

[

log

(

4m2
1

q2

)

− log
(

b2 + a2
(

−v2 − φ
)

+ abφ
)
]

= log

(

4m2
1

q2

)

−
1∫

0

da

a∫

−a
db log

(

b2 + a2
(

−v2 − φ
)

+ abφ
)

= log

(

4m2
1

q2

)

− I2 . (C.10)

244



C.1 Vertex function integrals

To solve the integral I2 one can make use of the methods we presented in detail
in Sec. 3.1.3: we substitute b′ = b − αa and choose α such, that the a2 term in the
logarithm vanishes. Then, after changing the order of the integrations, the integral
over a becomes trivial:

I2 =







1−α∫

0

db′
1∫

b′
1−α

da−
−(1−α)
∫

0

db′
1∫

−b′
1−α

da







log
(

b′2 + ab′(2α + φ
)

, (C.11)

with:

α =− φ

2
+

√

φ + v2 +
φ2

4
. (C.12)

The remaining integrals in I2 are standard and after some algebra one finds:

I2 =− 3+
1

2
log
(

α2 − 1
)

+
α

2
log

(
α + 1

α− 1

)

+
1

2
log
(

(α + φ)2 − 1
)

+
α + φ

2
log

(
α + φ + 1

α + φ− 1

)

. (C.13)

The next integral to solve is:

I3 =

1∫

0

dxdydzδ(x+ y+ z− 1)

× 1

∆

[

−2q2(1− x)(1− y)

+m2
1

(

2z2 + 2yz

(

1− m2
2

m2
1

)

+ 2z

(

m2

m1
+

m2
2

m2
1

)

− 2
m2

m1

)]

. (C.14)

Rewriting in the new variables a and b yields:

I3 =

1∫

0

da

a∫

−a
db

b2 + abφ + a2(−v2 − φ)− bφ + a(4v2 + 3φ + τ)− 2(1+ v2)− 2φ

b2 + a2 (−v2 − φ) + abφ + (1− a) κ (1− v2)
,

(C.15)

with:

τ =(1− v2) ·
(

1− m2

m1

)

. (C.16)
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One can get rid of the b2 and ab terms in the numerator by adding zero:

I3 = 1+

1∫

0

da

a∫

−a
db
−bφ + a(4v2 + 3φ + τ)− 2(1+ v2)− 2φ + (1− a) κ

(
1− v2

)

b2 + a2 (−v2 − φ) + abφ− (1− a) κ (1− v2)

(C.17)

We note the following relation:

d

db
log
(

b2 + a2
(

−v2 − φ
)

+ abφ + (1− a) κ
(

1− v2
))

=
2b+ aφ

b2 + a2 (−v2 − φ) + abφ + (1− a) κ (1− v2)
, (C.18)

and so I3 can be written as:

I3 = 1+

1∫

0

da

a∫

−a
db

(

−φ

2

)
d

db
log
(

b2 + a2
(

−v2 − φ
)

+ abφ + (1− a) κ
(

1− v2
))

+

1∫

0

da

a∫

−a
db

a(4v2 + 3φ + τ + φ2

2 )− 2(1+ v2)− 2φ− (1− a) κ
(
1− v2

)

b2 + a2 (−v2 − φ) + abφ + (1− a) κ (1− v2)

= 1+ I4 + I5 . (C.19)

The first integral is again convergent for κ → 0 and the integration is then straightfor-
ward:

I4 =

1∫

0

da

a∫

−a
db

(

−φ

2

)
d

db
log
(

b2 + a2
(

−v2 − φ
)

+ abφ
)

= −φ

2
log

(
1− v2

1− v2 − 2φ

)

. (C.20)

In the case of I5 we note that we can drop the κ term in the numerator, since the
integral over the denominator is at most divergent like log(κ) and in the end we are
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only interested in terms that do not vanish for κ → 0. Then I5 becomes:

I5 =

1∫

0

da

a∫

−a
db

a(4v2 + 3φ + τ + φ2

2 )− 2(1+ v2)− 2φ

b2 + a2 (−v2 − φ) + abφ + (1− a) κ (1− v2)

=

1∫

0

da

a∫

−a
db

a(4v2 + 3φ + τ + φ2

2 )

b2 + a2 (−v2 − φ) + abφ + (1− a) κ (1− v2)

+

1∫

0

da

a∫

−a
db

−2(1+ v2)− 2φ

b2 + a2 (−v2 − φ) + abφ + (1− a) κ (1− v2)

=(4v2 + 3φ + τ +
φ2

2
) · I6 + (−2(1+ v2)− 2φ) · I7 . (C.21)

Again I6 is convergent for κ → 0 and with the same substitution b′ = b− αa as above
one finds:

I6 =

1∫

0

da

a∫

−a
db

a

b2 + a2 (−v2 − φ) + abφ

=

1∫

0

da

a(1−α)
∫

−a(1−α)

db′
a

b′2 + ab′(2α + φ)

=
1

(2α + φ)

1∫

0

da

a(1−α)
∫

−a(1+α)

db′
[
1

b′
− 1

b′ + a(2α + φ)

]

=
1

(2α + φ)

[

log

(
α− 1

α + 1

)

+ log

(
α− 1+ φ

α + 1+ φ

)]

. (C.22)

The integral I7 is the only one, that is actually divergent for κ → 0. With the substitu-

tion b′ = b+a
2 it becomes:

I7 =

1∫

0

da

a∫

−a
db

1

b2 + a2 (−v2 − φ) + abφ + (1− a) κ (1− v2)

= 2

1∫

0

da

a∫

0

db′
1

4b′2 + a2 (1− v2 − 2φ) + ab′(2φ− 4) + (1− a) κ (1− v2)
. (C.23)

Fortunately we already solved this integral in Sec. 3.1 and extracted its behavior for
κ → 0 in Sec. 3.2, so there is nothing more to do at this point.
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Finally only one integral in Eq. (C.1) remains to be calculated:

I8 =

1∫

0

dxdydzδ(x+ y+ z− 1)
1

∆
(2yz(m2 −m1) + 2m1z(1− z)) . (C.24)

This integral is also IR convergent and so we can again neglect the gluon mass and
express it in terms of the variables a and b as:

I8 =
−1
m1

1∫

0

da

a∫

−a
db

a2
(
1− v2 − τ

2

)
+ a

(
−1+ v2 + τ

2

)
− b τ

2 + ab τ
2

b2 + a2 (−v2 − φ) + abφ

=
−1
m1

[(

1− v2 − τ

2

)

· I9 +
(

−1+ v2 +
τ

2

)

· I6 −
τ

2
· I10 +

τ

2
· I11

]

, (C.25)

where we already solved the integral I6 in Eq. (C.22). The remaining three integrals
are again easily solved by the usual substitution b′ = b− αa:

I9 =

1∫

0

da

a∫

−a
db

a2

b2 + a2 (−v2 − φ) + abφ

=

1∫

0

da

a(1−α)
∫

−a(1+α)

db′
a2

b′2 + ab′(2α + φ)

=
1

2α + φ

1∫

0

da

a(1−α)
∫

−a(1+α)

db′
(

a

b′
− a

b′ + a(2α + φ)

)

=
1

2

1

2α + φ

[

log

(
α− 1

α + 1

)

+ log

(
α− 1+ φ

α + 1+ φ

)]

. (C.26)

I10 =

1∫

0

da

a∫

−a
db

b

b2 + a2 (−v2 − φ) + abφ

=

1∫

0

da

a(1−α)
∫

−a(1+α)

db′
b′ + αa

b′2 + ab′(2α + φ)

=

1∫

0

da

a(1−α)
∫

−a(1+α)

db′
(

1

b′ + a(2α + φ)
+

αa

b′2 + ab′(2α + φ)

)

= log

(
α + 1+ φ

α− 1+ φ

)

+
α

2α + φ

[

log

(
α− 1

α + 1

)

+ log

(
α− 1+ φ

α + 1+ φ

)]

, (C.27)
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where we have used the result for I6.

I11 =

1∫

0

da

a∫

−a
db

ab

b2 + a2 (−v2 − φ) + abφ

=

1∫

0

da

a(1−α)
∫

−a(1+α)

db′
a(b′ + αa)

b′2 + ab′(2α + φ)

=

1∫

0

da

a(1−α)
∫

−a(1+α)

db′
(

a

b′ + a(2α + φ)
+

αa2

b′2 + ab′(2α + φ)

)

=
1

2
log

(
α + 1+ φ

α− 1+ φ

)

+
α

2(2α + φ)

[

log

(
α− 1

α + 1

)

+ log

(
α− 1+ φ

α + 1+ φ

)]

, (C.28)

where we have used the results for I6 and I9.
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C.2 Dirac traces

In Secs. 8.3.1 and 8.4.1 we encountered two lengthy expressions involving traces over
Dirac matrices. We evaluated those expressions with the help of the FeynCalc package
[Fey] for Wolfram Mathematica [Wol08].

C.2.1 Gluon bremsstrahlung

For gluon bremsstrahlung the Dirac trace in Eq. (8.72) becomes:

TB =

(

gµν −
qµqν

q2

)

· Tr
[
(/p2 −m2)S

αµ(/p1 +m1)S
ν
α

]

=− 16+
4

M2

(

u
(
2M2

(
t−m2

1

)
− 2m4

1 +m2
1

(
3m2

2 − t
)
+ t
(
t−m2

2

))

(
m2

1 − t
)2

+
2m2

1

(
−2M4 + 2M2m1(m1 − 3m2) + (m1 −m2)(m1 +m2)

(
m2

1 − s
))

(
m2

1 − t
)2

+
M4 + 2M2

(
m2

2 − s
)
− 2m4

1 +m2
1m

2
2 + 2m4

2 − 4m2
2s+ s2

t−m2
1

+
M4
(
−5m2

1 − 2m1m2 − 4m2
2 + 4s+ t

)

(
m2

1 − t
) (

m2
2 − u

)

+
2M2

(
−6m3

1m2 + 2m2
1m

2
2 − 6m1m

3
2 + 8m1m2s+m4

2 −m2
2s− st+ t2

)

(
m2

1 − t
) (

m2
2 − u

)

+
m4

1

(
−3m2

2 + 2s+ 3t
)
−m2

1s
(
−4m2

2 + s+ 4t
)
− 2m1m2s

2 + 2m6
2

(
m2

1 − t
) (

m2
2 − u

)

+
−2m4

2s− 2m4
2t+m2

2t
2 + s2t− t3

(
m2

1 − t
) (

m2
2 − u

)

+
2m2

2

(
−2M4 + 2M2m2(m2 − 3m1)− (m1 −m2)(m1 +m2)

(
m2

2 − s− t
))

(
m2

2 − u
)2

+
u2

m2
1 − t

− 3m2
1 − 3m2

2 + 4s+ t

)

. (C.29)
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C.2.2 Gluon Compton scattering

For gluon Compton scattering the Dirac trace in Eq. (8.121) becomes:

TC =

(

gµν −
qµqν

q2

)

· Tr
[
(/p1 + /p2 − /q +m1)S

µα(/p1 +m1)S
ν

α

]

=
8

(
m2

1 − s
)2 (

m2
1 − u

)2

(

−2M4
(

m2
1 − s

) (

m2
1 − u

)

+2M2
(

m4
1(s+ u)− 4m2

1su+ su(s+ u)
)

+ 6m8
1 −m4

1

(

3s2 + 14su+ 3u2
)

+m2
1(s+ u)

(

s2 + 6su+ u2
)

− su
(

s2 + u2
))

.

(C.30)
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D
Numerics

D.1 Parton distribution functions

To calculate the cross sections for this work, we utilised several different sets of parton
distribution functions. These were made available through the Les Houches Accord
PDF Interface (LHAPDF) library, version 5.8.4 [WBG05].

D.2 Numerical integration

For the numerical evaluation of the multi-dimensional cross section integrals a C++
code was developed. The numerical integration routines were provided by the CUBA
library, version 1.6 [Hah05]. Specifically we used the CUHRE and VEGAS routines
with the desired accuracy set to 1%. Depending on the data set computational time
was between a few minutes for transverse momentum spectra and a few hours for
invariant mass spectra.

D.3 Special functions

Numerical routines for the evaluation of certain special mathematical functions (e.g.
complex dilogarithm) were provided by the GNU Scientific Library (GSL), version
1.14 [GDT+10], available from http://www.gnu.org/s/gsl/.
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