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Preface






Introduction

Our current picture of the composition of the universe is dominated by the standard
model of cosmology [Lid09]. It states that the universe is made up out of three differ-
ent components: dark energy, a kind of uniformly distributed energy, that interacts
only through gravity, and the nature of which is still undetermined. Dark matter,
which also only interacts gravitationally, but, in contrast to dark energy, seems to
form clusters. Only the gravitational effects of these (electromagnetically) invisible
clusters actually hinted to the existence of dark matter [Zwi33] and its composition
is basically still unknown. And finally baryonic matter, which interacts through all
four elementary forces, and out of which all the visible objects in the universe, like
galaxies, stars and planets, are built. Remarkably the WMAP experiment found, that
only less than 5% of the energy of the universe is present in form of baryonic matter.
Dark matter accounts for about 22% and dark energy for about 73% [JBD*11]. Thus,
it is fair to say, that for the most part we do not know what the universe is made of.
However, we do know, that the mass of the atoms which form baryonic matter is al-
most totally concentrated in the atomic nuclei, which consist of nucleons (protons and
neutrons). Although being studied for over 80 years now, many features and details
of the nucleon and its inner structure are still not really understood. This thesis is
devoted to the study of the structure of the nucleon through means of the Drell-Yan
process [DY70].

1.1 Motivation

In 1911 Ernest Rutherford, in analysing the results of the famous Geiger-Marsden
experiment, discovered, that atoms are made up of a small and positively charged
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nucleus and a diffuse and negatively charged electron cloud [Rutll]. Furthermore,
when bombarding nitrogen with a-particles (helium nuclei), he found that some of
the reaction products were actually hydrogen nuclei. Based on atomic mass analysis
he decided, that the hydrogen nucleus must be a building block of the nucleus of
all heavier elements and, therefore, named it the proton (Greek: the first). In 1932
his student James Chadwick discovered the neutron as the second particle in atomic
nuclei [Cha32]. While initially thought to be elementary particles, electron-proton
scattering experiments performed by Robert Hofstadter and collaborators in 1956 ac-
tually showed, that the proton has a finite diameter of about 0.8 fm [MH56]. This
proof of the non-point like nature of the proton was the advent of all further nu-
cleon structure studies. In the 1960s deep inelastic electron scattering experiments
on protons hinted to the existence of point like particles inside the proton. This led
Richard Feynman to propose the famous parton model of the nucleon which states,
that protons, neutrons and, in fact, all hadrons are composed of point like partons
[Fey69]. About the same time Murray Gell-Mann, Kazuhiko Nishijima and others
tried to organise the ever growing list of hadrons found in collider experiments. They
developed the quark model [GM64], which allowed to account for the quantum num-
bers of these hadrons by picturing them as a composition of only a few elementary
states, namely the quarks. Although the quarks were initially thought to be not real
particles, but merely invented as kind of a book keeping device, they were later on
identified through their quantum numbers as the charged partons inside the nucleon.
In this simplified picture, the proton, for example, is made up out of two up- and one
down-quark(s), which carry exactly the quantum numbers of the proton. Remark-
ably, one found, again in electron scattering experiments, that the quarks only carry
about 50% of the proton’s momentum [HM84] which hinted to the presence of un-
charged partons inside the proton. The advent of quantum chromodynamics (QCD)
in the 1970s provided an answer as to the origin of these particles. In QCD quarks, in
addition to their other quantum numbers, also carry a color charge. The interaction
among these colored objects is mediated via gauge bosons, called gluons. These glu-
ons themselves carry the color charge, but are electrically neutral. They are believed
to be exactly those particles, that carry the other half of the proton’s momentum.

Having found the elementary particles, out of which the nucleon appears to be con-
structed, one, of course, would like to study these particles further. However, QCD
has a very important property, that complicates matters: confinement. In nature,
color charge carrying objects (quarks and gluons) always appear to be confined inside
hadrons and have been, so far, never found separately. Thus, traditional approaches
to study the properties of elementary particles, like e.g. quark-quark scattering, are
not applicable. Nevertheless, another property of the strong force (as described by
QCD) provides a way out, namely asymptotic freedom, discovered by Gross, Wilczek
and Politzer in 1973 [GW73, Pol73]. The important feature of asymptotic freedom is,
that the strong coupling constant actually decreases with increasing energy or, equiv-
alently, decreasing distance. Thus, by probing strongly interacting objects, like the
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nucleon, at very high energies, the small coupling constant actually allows the ap-
plication of the well known methods of perturbation theory. In this limit there exist
factorisation theorems, that effectively allow to separate the soft (long distance) inter-
actions among the partons from the hard (short distance) interactions of the partons
with the experimental probes. The hard subprocesses can then be evaluated using
standard perturbative QCD (pQCD) calculations, while the soft part, so far, has to be
inferred from experiment. Thus, studies of the nucleon structure have been trying
to determine the various distributions of the partons inside the nucleon, since these
distributions contain information about the soft interactions among the partons.

Until today the prevalent tool to study the parton distributions has been deep in-
elastic electron-nucleon scattering (DIS) [BD65], because of the following advantages:
electron beams are readily available, as are detectors for the outgoing electrons. In ad-
dition the partonic sub process (electron-quark scattering) is theoretically well under
control. Employing Feynman’s parton model one can fix in this way, e.g., the lon-
gitudinal parton distribution functions (PDFs), which encode the longitudinal (along
the nucleon’s direction of motion) momentum distributions of the quarks and gluons.
In the simplest parton model these distributions are functions of the parton momen-
tum fractions x (fraction of the parent hadron’s momentum, that is carried by the
parton) only. However in DIS experiments scaling violations, i.e. dependence of the
PDFs on the energy of the probe, were discovered. Perturbative QCD showed that
the violations originate in the interaction among the partons and proved successful
in describing this phenomenon, which confirmed further QCD as the correct theory
of the strong interaction. Since one can show, that the PDFs obtained in DIS and
through pQCD are universal, one can make predictions for other processes and so
test the validity of all the model assumptions.

One of these processes was first described by (and subsequently named after) Drell
and Yan in 1970 [DY70]. They anticipated, that in hadron-hadron collisions a quark
from one hadron and an antiquark from another hadron could annihilate to form a
lepton pair with large invariant mass M. This DY process is more exclusive than DIS:
since two partons are involved, one can actually probe products of two parton distri-
butions, instead of probing just one in DIS. In addition, the detection of the transverse
momentum of the produced lepton pair provides insights into the transverse distri-
butions of the participating partons. Furthermore, one can directly probe sea-quark
distributions [AMP06], i.e. distributions of virtual quarks generated by the strong in-
teraction, and at next-to-leading order (NLO) also the distribution of gluons. One
encounters, however, also additional problems, when trying to describe DY observ-
ables: the most simple scheme is the parton model description, which is a leading
order (LO) approach (O(a?)). In this scheme one pictures the two hadrons moving
towards each other in the hadron c.m. frame at such high momentum, that all the in-
teractions among the partons are suppressed by relativistic time dilation. Then both
hadrons basically appear as a bunch of partons, all moving in the same direction and
each carrying some momentum fraction x of the hadron’s momentum. However, this
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simple approach does not fully describe the interesting observables: while the shape
of the M spectra of the DY pair can be reproduced, the absolute height can only be
accounted for by including an additional K factor. This implies that NLO corrections
are relevant, since at energies available at current experiments the strong coupling «
is still sizable. Furthermore transverse momentum (pr) spectra are not accessible at
all [GT95], since one assumes from the beginning, that the partons carry no transverse
momentum and so, by four momentum conservation, does the DY pair.

In the literature different paths have been taken in trying to remedy these short-
comings. Since the data show Gaussian pr spectra at not too large pr, one often
simply modifies the LO calculation by folding in a phenomenological Gaussian dis-
tribution for the parton transverse momentum [DMO04], but keeping the parton model
collinear kinematics in the hard subprocess. The width of the distribution then has
to be fitted to data. However, since these distributions are normalised, the absolute
size of the cross sections is still underestimated [DMO04]. The next logical step is to
include hard subprocesses up to NLO (O(«as)). An example for such a process is gluon
bremsstrahlung, where one of the participating quarks radiates a gluon before anni-
hilating with the antiquark. In this scenario the DY pair can recoil against the gluon
and obtain a finite pr. However, such a calculation brings about additional problems:
since in pQCD the quarks are commonly treated as massless, the calculated pr spec-
tra are divergent for pr — 0. In fact, for massless quarks they are divergent in any
fixed order of the strong coupling a;. Note, that these divergences are of the same
nature as those leading to the scaling violations of the PDFs mentioned above. It is
possible to remove these divergences by an all-order resummation, however, since pr
is no longer a hard scale at pr — 0, additional non-perturbative (i.e., experimental)
input is needed in these (and all other pQCD) approaches to describe the region of
very small pr [CSS85, DWS85, FQZ03].

The continued interest in this process has sparked many different experiments in
the past and for the future: in antiproton-proton (pp) collisions at CERN [UA292], Fer-
milab [AT88], PAX [PAX05] and in the future at PANDA (FAIR) [TLP™09], in proton-
proton (pp) collisions at CERN [CCOR79], Fermilab [NuSea03], RHIC [BSSV00, B*08],
J-PARC [PT06, GT07, Kum08], THEP [AT05] and JINR [SSNI09], in proton-nucleus
reactions at Fermilab [I781, ST81, M"91, E77294] and in pion-nucleon collisions at
COMPASS [COMPASS97, COMPASS96]. An overview of the experimental situation
can be found in [Rei07]. PANDA, for example, will allow measurements at hadron
c.m. energies of a few GeV, where non-perturbative effects are expected to become
more important. Together with the shortcomings of the pQCD type approaches dis-
cussed above, this highlights the need to model these effects in a phenomenological
picture, at which this thesis is aiming at.

We will present our model in a two-step process: first an LO calculation, in which
we remedy some of the shortcomings of the standard parton model. In the latter one
always assumes that the partons move collinearly with their parent nucleon and do
not interact during the time the hard process takes place. However, this is an idealisa-
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tion of the situation in real experiments and so we take the following steps to improve
on this: we parametrise the soft interactions among the partons by incorporating phe-
nomenological transverse momentum and quark mass distributions and we take into
account the full kinematics in the hard LO subprocess, i.e., the usual collinear approx-
imation is overcome. We will show, that in this approach we can reproduce the shape
of the pr spectra, but still underestimate the data by a constant K factor. This find-
ing triggered a complete calculation of all hard subprocesses to O(«;) including the
full kinematics, which will be presented next. As mentioned above, such a calculation
would suffer from divergent pr spectra if the quarks were massless. However, we will
show that the phenomenological quark mass distributions now effectively smear out
the divergent behavior. Such mass distributions or spectral functions are a well known
concept in nuclear physics, where they are applied to the strongly coupled system of
nucleons in nuclei, see for example [DMDS90]. Thus, it is worthwhile to test the same
concept in the nucleon, which is a strongly coupled system of quarks and gluons. As
already mentioned above, the PDF scaling violations and the divergent DY pr spectra
at NLO have a common origin: they both stem from collinear (or mass) singularities
in the hard subprocesses. When calculating (pr integrated) M spectra these divergent
O(as) contributions are commonly absorbed into the PDFs. Since we will consider
all these processes explicitly and regulate them with our mass distributions, we will
then introduce a subtraction scheme to prevent double-counting. Finally we will find,
that in our model we can describe data of DY pr and M spectra taken at different
hadronic energies and in different reactions without the need for a K factor, which en-
ables us to make predictions for DY pair production at low hadronic energies, where,
for example, the PANDA experiment will measure.

1.2 Outline

This thesis is structured in the following way: in Part II we will present selected
mathematical tools, that were employed in the calculations of our model. Since we
will have to calculate loop diagrams, we will begin in Chapter 2 with an introduction
to regularisation methods of loop integrals in quantum field theories and then focus
in detail on the method of dimensional regularisation. Furthermore a detailed walk
through the evaluation of a typical loop integral (the three-point function) will be
given in Chapter 3.

The details of the physical background for our model are presented in Part III. First
in Chapter 4 a few selected topics of renormalisation will be discussed and a calcula-
tion of the QCD field strength renormalisation for massive quarks presented, which
we will need in our model later on. Since infrared divergences play an important role
in this work, in Chapter 5 we will present a typical example. In addition we will cal-
culate the cross section for DY with soft gluon bremsstrahlung, which we will put to
use at a later stage to show that our model is actually free of soft gluon divergences.
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In Chapter 6 a detailed introduction to the studies of the structure of an unpolarised
nucleon in elastic and inelastic lepton scattering will be given. Afterwards we will
introduce the parton model and describe Bjorken scaling, and then formally derive
the PDFs for DIS. The general properties of the PDFs will be discussed and a moti-
vation for the scaling violations and the resulting DGLAP equations, that govern the
evolution of the PDFs with the hard scale, will be given.

Part IV contains all the main details about our phenomenological model for DY
pair production. First we will present a detailed introduction to the DY process at
LO in Chapter 7 and then calculate the general subprocess cross section. Since we
want to study the influence of distributions of intrinsic parton transverse momentum
and quark mass on DY spectra, we will then give the details of the kinematics for
the different cases of the collinear parton model, the model with intrinsic transverse
momentum and the model with massive quarks. Furthermore, the distributions we
have chosen will be presented, followed by the results of the different LO approaches
of the chapter. We will find, that none of the LO models can account for the a priori
undetermined K factor, since they all still underestimate the data. We will, therefore,
in Chapter 8 extend our model to include all relevant processes to O(as): first we will
present the virtual processes that modify the electromagnetic quark-photon vertex
and then cover in detail the issues related to the soft gluon divergences, gauge in-
variance and current conservation for our case of quarks with unequal masses. After
that, the real processes at O(«;), gluon bremsstrahlung and gluon Compton scatter-
ing, will be introduced and their cross sections and kinematics explored. Finally we
will study the influence of our distributions on the DY pr spectra and describe in
detail the treatment of collinear (or mass) singularities in pQCD and in our model. In
the latter part we will motivate a subtraction scheme, devised in our model to prevent
double-counting of divergent contributions of the NLO processes, which in pQCD are
already absorbed into the PDFs.

The results of our full model will be presented in Part V. First we will fix the
phenomenological parameters of our model at data taken in proton-proton reactions
at high energies in Chapter 9 and will find, that a good description of DY pr spectra
is possible in our model without an additional K factor. Using the fixed parameters
we will then in Chapter 10 compare the results of our model with data from other
experiments, performed at several different energies and in proton-nucleus as well as
in antiproton-proton reactions. Again we will show, that we are able to reproduce
well these data in our full model. Having confirmed our choice of parameters, we
will finally present our predictions for low energy DY pair production in the PANDA
kinematics.

We will close with a summary of our findings and a conclusion in Chapter 11. In the
Appendix our conventions and notation, reference formulas and information about
the used computer routines are collected.
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Mathematical tools






Loops and regularisation

In quantum field theoretical calculations beyond tree level one has to cope with the
complications that arise through loops. Naive loop calculations usually are not well
defined due to the divergent nature of loops. However in quantum field theories, like
for example QED and QCD, an efficient tool, namely renormalisation, can be used to
systematically remove the divergences and thus provide well defined results. Before
renormalisation can be applied the divergent expressions need to be regularised, thus
making the divergences manifest. This chapter is meant as an introduction to the con-
cept of regularisation. More details and a deeper analysis can be found for example
in [Mut98, PS95], on which this chapter is based.

2.1 The quark selfenergy

A typical loop example is the first order QCD quark selfenergy, depicted in Fig. 2.1.
We will keep the quark massless in this chapter for simplicity. Note that this will lead
to problems later on, namely mass singularities. However the following arguments
concerning the regularisation procedures are untouched by these problems and we
will take care of them later on.

According to the Feynman rules of QCD, see Appendix B, the selfenergy in Feyn-
man gauge reads:

A o iy
—ix(p) = CF/W (ig7") (plf’”k#?le (ig7") kzlfyive ' (2.1)
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k
- - -
p p-k p

Figure 2.1: The first order QCD quark selfenergy diagram.

The color factor Cr can be calculated with the algebra of the SU(3) color symmetry
group, see Appendix B.2. Contracting the Lorentz indices we can rewrite the selfen-

ergy:

: &%  "(p-KB~
%(p) = —ig’C / F .
R T (S NS e
Already at this point it is obvious that X is not well defined, since in the region of

very large k the integrand appears to behave like k% A more thorough analysis, cf.
Sec. 2.3, reveals that in the high momentum region of the integral one finds

S(p) ~ /d‘%% — oo, 2.3)

(2.2)

and so the integral is logarithmically divergent as we integrate to higher and higher
momenta. The divergence appears at the upper limit (c0) of the integral and is thus
called ultraviolet (UV) divergence. Our immediate goal is now to devise a scheme in
such a form that this divergence is regularised. This can actually be done by finding
a convergent prescription in which as a certain limit we recover our original integral
of Eq. (2.2).

2.2 Regularisation schemes

There are several different procedures known by which regularisation can be per-
formed. Some of them have a rather intuitive motivation, but break some general
physical principles, for example gauge invariance or Lorentz invariance. While other
procedures retain these principles, they have different complications. In any case
renormalisation has to be performed such that one recovers a theory which again
obeys all these principles. To simplify this matter it is very useful to choose from
the start a regularisation procedure which preserves as many of the general physi-
cal principles as possible. We will present here a selected overview of regularisation
procedures, outlining their features and problems, and we treat one of the most im-
portant ones, namely dimensional regularisation, in detail in Section 2.3. A more
detailed presentation of this topic can be found in [Lei75, Mut98].
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2.2 Regularisation schemes

2.2.1 Momentum cut-off

One of the simplest possibilities to make the divergent integral finite is to introduce

S[2
an upper limit A for the three momentum integration, such that ’k’ < A?. Then the

divergence is controlled by the (arbitrary) parameter A. However in this scheme the
selfenergy is not invariant under shifts of four momenta under the integral: trans-
lational invariance is broken. In addition gauge invariance is broken [JR76], which
make this method unsuitable for regularising gauge theories.

2.2.2 Pauli-Villars regularisation

Another regularisation method dates back to Pauli and Villars [PV49]. The idea is to
subtract from the propagator, in our case for example of the photon, another propa-
gator of a fictitious particle with a very large mass M:

LN S 1 _ —M?
K2+ie k2+ie k2—M2+ie [k +ie] [K2 — M2 +ie]

(2.4)

which implies that in the limit of M — oo our original divergent integral is recovered.
The regularised integral now reads

o d*k Y (p = K) ru(=M?)
Zev() = ~i8°Cr | ot T R T A T M

(2.5)

For small k? and large M? the integrand in Eq. (2.5) is basically unchanged. On the
other hand for very large k? > M? the integrand behaves like k= and so the integral
is convergent. This is exactly what we want: The behavior of our original integral in
Eq. (2.2) is recovered in the small momentum region and Xpy is finite.

This method of regularisation preserves translational and Lorentz invariance. It was
also found that this method respects gauge invariance in QED and QCD (actually in
all massless Yang-Mills theories), but fails in massive Yang-Mills theories: the selfen-
ergy of the W-boson cannot be regularised in a gauge invariant way by this method
[Mut98, tH71].

2.2.3 Lattice regularisation

A totally different approach to regularisation is the lattice method. The idea is to
discretise space-time with a fixed distance d between lattice points. This implies that
short-range correlations are suppressed in this scheme. Since short distances corre-
spond to large momenta one effectively provides a cut-off, basically of O (d~1), in the
momentum integration. However problems are imminent: Lorentz invariance is not
preserved and translational invariance is broken, since arbitrary translations will end

13



2 Loops and regularisation

up outside the grid. However one can formulate the theory such that gauge invariance
is manifestly preserved. While the aforementioned problems make this procedure not
really satisfying for regularising a gauge theory, it allows for a non-perturbative cal-
culation of gauge theories, especially QCD [Cre83].

2.2.4 Analytic regularisation

A precursor to Section 2.3 is the analytic continuation method [Lei75]. The idea is
to change the exponent of the propagator such, that the integral converges. For this
purpose one introduces a complex parameter « with #(a) > 1 and rewrites the prop-
agator:

1 1
e (Rtie) 20
Then the integrand of
. d*k "y -k
Sac(p) = —ig?C / K 27
welP) =G | G k2 el [+ el =7

behaves like k2(14%) for large k? and thus the result is finite (remember that for & = 1
the integral is logarithmically divergent). This result is now continued analytically
to &« = 1 and the original divergence shows up as a pole at « = 1. Unfortunately
the method is not gauge invariant [Mut98], however the idea of analytic continuation
is also crucial for the concept of dimensional regularisation, to which we devote the
entire next section.

2.3 Dimensional regularisation

The method of dimensional regularisation, first formulated by 't Hooft and Veltman in
the early 1970s [tH71, tHV72], is one of the most important regularisation procedures
for gauge theories today. The basic idea behind it is the following: certain types of
integrals are divergent when calculated in a certain number of dimensions, while they
converge for other numbers. In this section we will apply this concept on the quark
selfenergy in Eq. (2.2) and work out the necessary mathematical ingredients along the
way.

2.3.1 Example

Here is a simple example: Let 2 > 0 and consider the integral

I = / dx 2.8)
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2.3 Dimensional regularisation

Then using spherical coordinates we find

I = / 40 Jim de -
=47 lim lo K — 00 (2.9)
o K—oo g ll ! ’

and so in three dimensions the integral is not well defined. However in two dimension
the integral poses no problem:

_ T (2.10)

In fact the integral will converge as long as the dimension d < 3. In dimensional
regularisation one can exploit this fact: one first calculates the integral without fixing
the number of dimensions d and only requiring that d is chosen such that the integral
converges. Then one continues analytically d to the number of dimensions d’ of the
divergent integral. The divergence then shows up as poles in d —d’. Using our
example for the quark selfenergy of Eq. (2.2) we will present this procedure in detail
in the next sections.

2.3.2 Extension to d dimensions

As we have seen in Eq. (2.3) our quark selfenergy X(p) is not well defined in d = 4
dimensions. However looking back at our example in Section 2.3.1 we anticipate that
2(p) is well defined if only d is small enough. To verify this we have to rewrite ¥(p)
for a general number of space-time dimensions d. At first we will restrict ourselves to
integer numbers for 4.

Changing the number of dimensions has several consequences. First of all momenta
now have d — 1 instead of three space components. To evaluate the contractions of
the Dirac y-matrices in d dimensions we need a metric tensor for d dimensions and
especially its contraction identity

§Mew =4d. (2.11)
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2 Loops and regularisation

Since we have the anticommutation relation for the Dirac matrices

{7y, 9"} =28", (2.12)

the contraction identities for the Dirac matrices are modified, see Appendix A.4.2.
The Dirac algebra is however otherwise unchanged. The trace relations for the Dirac
matrices, see Appendix A.4.2, are in general modified in d dimensions. However in
the end we are always only interested in results for d — 4 and we can also stick to the
trace relations in four dimensions [Mut98]:

Tr [y¥9"] = 4g"" . (2.13)
For the integral measure we choose

d?k
(2m)d

(2.14)

Note that this is a convention and instead of (277)¢ we could have also chosen (277)4,
since again in the end we are only interested in the limit d — 4.

Of great importance is also the fact, that the coupling constant g is generally not
dimensionless for an arbitrary number of space time dimensions d. One can deduce
the dimension of g by observing, that the QCD action S has to be a dimensionless
quantity:

dim|[S] = dim [ / ddxﬁ] —0, (2.15)

where L is the QCD Lagrangian and dim[A] is the mass dimension of the expression
A. In natural units, see Appendix A.1, the mass dimension of lengths is —1 and so

dim[d?x] = —d = dim[£] =4 . (2.16)
The classical QCD Lagrangian reads [Mut98]:

Ny

_ 1

L£=Y (D —my)¥* - ZFf"FaHU (2.17)
k=1

where the sum runs over all quark flavors k and my are the quark masses. D¥ is the
covariant derivative,

D! = ot —igt"Al, (2.18)
and F!' the QCD field strength tensor:
F}Y =o' Al — 0V A + gfanc AL AL . (2.19)
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2.3 Dimensional regularisation

Here Al is the gluon field, f,;. are the structure constants of SU(3) and t* its genera-
tors, see also Appendix A.5. Now we immediately find for the mass dimension of the
quark fields ¥*:

dim[¥*m ¥¥]) = d = dim[¥}] = dzi : (2.20)
Since
. ) 0
dim[0¥] = dim {—} =1, (2.21)
dxy
we find
. ]/ll/ . v . y d - 2
Therefore
dim[T* DY = dim[FF g AL PK]) = d = dim[g] = # , (2.23)

and so g is only dimensionless for d = 4. However we can relate ¢ to a dimensionless
coupling constant g if we introduce an arbitrary mass scale p:

4—d

§:=80-H?2 . (2.24)

The arbitrary mass scale u can of course have no observable physical consequences.
Thus, after undergoing a suitable renormalisation procedure, the observable quanti-
ties are independent of y, cf. Sec. 4.1.

With our conventions given above the quark selfenergy of Eq. (2.2) becomes in d
dimensions

Iy d% M (p-KBn
Z(p) = —182CF/ 2m) [(p — k)2 + ie] [k2y+ i€|

. k. 2—d)(p—K
=8 | G R+ Al .

where in the last step we have used the contraction identity

Y Yern = 2—d)va - (2.26)

Note that the denominator of Eq. (2.25) is quite unpleasant: there are terms of order
k2, k* and k*. One would like to have a denominator which is quadratic in k, since the
integrals of such forms are well known. We will demonstrate in the next section how
to accomplish this for the general case of integrals with propagator denominators.
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2 Loops and regularisation

2.3.3 Feynman parameters

The idea of Feynman parameters is to rewrite products of propagator denominators
into sums, since by shifting the integration variable it is then easy to acquire a de-
nominator quadratic in the shifted variable. The concept is however rather general
and can also be applied in different contexts.

Consider a general expression of the form +z. Then we claim

1 (1-x—-y)
1B O/dxo/dy [xA+yB]2 . (2.27)

The proof goes as follows: we exploit the 4 function and obtain

—x—y) |
/dx/ x1A+yB]y :O/dx [xA+(11—x)B]2

= (2.28)

Note that one can easily extend this concept with A and B raised to integer powers
by repeatedly differentiating Eq. (2.27) by A and/or B. However one can find an even
more general identity with an arbitrary number 7 of factors in the denominator, each
raised to some complex power. The claim reads

1 1 1
1 51—y x
AT AT r / dxy / dxs .. / g, L= 1x ( ! %) (2.29)
1 . 5 .« . Z 1 0 0 0 :1x1Al] i=1"1
and we require
R(a;) >0. (2.30)

I'(x) is the Gamma function, which has many different representations, one of which
is

/dzz -exp(—z), (2.31)
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2.3 Dimensional regularisation

for x # —n with n € Nj. Note that I' interpolates the factorial function, since one
finds

xeN=T(x)=(x—1)!. (2.32)

Note also that I" has poles at all integers n < 0, which will be of relevance later on.
At this point it is worthwhile to introduce a related function, namely the Beta func-
tion, which can be written as

B(x,y) = /dz 71—z L, (2.33)

where we require that f8(x) > 0 and R(y) > 0. Beta and Gamma function are con-
nected via

I'(x)I'(y)
e (2.34)

Now we have all the tools we need to prove Eq. (2.29). First we consider the case of
two factors in the denominator (n = 2):

B(x,y) =

1 1 0(1 1 0(2 1
0(1—x1—
Iz = 061 —|—[Xz /dxl/dXQ ( al x2)
0 0 x1A1 + x0A» ](MJHXZ)

1
061 -I-Déz /dx1 le 1 (1- xl)a2_1 (2.35)
O

(11 A7 + (1= x1) Ay F%2)

Note that the prefactor in Eq. (2.35) immediately reminds us of Eq. (2.34) and the
powers in the numerator remind us of Eq. (2.33), which gives us a hint what to do:
rewrite Eq. (2.35) into the representation of the Beta function Eq. (2.33), so that the
integral basically cancels the prefactor. We substitute

X1A1
= 2.36
Y X1A1 + (1 — xl)AZ ( )
(1—x1)A;
TN A (1) A2 (2:37)
and so for the integral measure we find
dy Aq . aA(A—A) A1Ap (2.38)

dr xAT+(1-x)A2 A+ (1—x1)A)  [x1A; + (1 — x1)Ag)?
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2 Loops and regularisation

Then
1
L= I'(w +as) /dy [x141+ (1 — x1)Ap)° y (1 —y)e!
I'(a1)T (a2) / A1Az A‘i‘l_lBi‘z’l (X141 + (1 —x7)Ag)?
1 T(ag+an) ;
— “1 062 0(1*1 1%} 1
AalBaz F(“l)r(“z) O/dyy (1 ]/)
1 [(aq +az)
B
AB® T(aq)T (a2) (a1, 22)
1
=, (2.39)
AY'BY?

and so Eq. (2.29) holds for n = 2. The proof for general n now goes by induction: if
Eq. (2.29) holds for a certain n, then for n 4+ 1 we find

1 1
AT A AT AT T r("‘ 5 0 (XL xiAi](Z?zl A
(2.40)

Now we can make use of our result for I, and combine the two factors in the denom-
inator of Eq. (2.40):

C 1
n+1 -— n - "
[y xiA] B Aiﬁf
1 no

It 1“: +“n+1 nﬁqfl yE= 805 (1 =y — x41)
— T dxn_|_1 dy ():n ot )

(Z Oﬁn—l—l O l 1 xl ) + xn+1An+1] i=1 & T&p1

n+ “n+1 1 zl“i_l) 5(1—vy—
1 7’1+1 A A i=1 %i
z 1 y xz) + Xp+1 n+1]
Now we insert C,, 1 into Eq. (2.40):
Lyiq = !
S A AT A
T(Yiig ) 1 1 o1 :

:ﬁ/dxl.../dxnllxi’ ) 1—Z;xi

- 0 0 = =

n 1 Yy -—1)
Zf / alﬂ List 67 U§(1 —y — xp41)
dx / dy 2t .42
“T(Ta “n+1 i y Ty (242)

1 1 y x,)A +xn+1An+1](Z’ L
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2.3 Dimensional regularisation

Substituting
y-x; = dx; = % (2.43)
fori =1...n, we recover
n 1 1 1 1 n o o 1 n g,
Iy = (El]—)/dy/dael.../dﬁnin (ﬁ> sl1-y 4
5 Ty 7 " Yoo \Y i-1Y
1 _
d xﬁfﬁl DyEL 051 — y — x,41)
X Xn+1 . (2’7“ )
0 [Zizl RiA; +xy11A +1] =
(31 1 1 1 0.
Lo ) [ay [an.. [au s (1=
T2 T(ai) " " = i-1Y
1 x(“nJrl 1)5(1 —y— xn+1) .,
0 [21:1 XA, +xn+1An+1] =1 TS - o
It
(2.44)
Now we note that
/ / / 01— ?—1%)5(1_}/—%“)
/dy/da?n/dxnﬂ
0 0 0 4
1 1 1 0.
:/dy/d-’?n/danrlé(y_ 21—1 xl) "y 5(1 _y_xn—l—l)
0 0 0 Y
1 1 ;
— / df, / dx, 41 6 (1 pr1 — 2321-) (2.45)
0 0 i=1
Finally we can again replace everywhere £; with x; and thus
(5 ) 1 1 T x™ ( —yr x1>
1
Tns1 = Hq Loy [ [ dn T (2.46)
F n+1 (21:1 ‘xl)
0 0 [2 o xlA}

This concludes our proof of Eq. (2.29)
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2 Loops and regularisation

After this short detour, we are now ready to rewrite the quark selfenergy in Eq. (2.25)
into a more pleasant form. Using Eq. (2.28) we combine the propagators:

1
o d'k 2-d)(p—K)
Hp = CFO/ “ ) @y X ((p =02 +ie) + (1 - x) (K +ie)]”
1
o dk 2—-d)(p —K)
— _ig’Cr O/ d [ i vkt xp? i (2.47)

Now one can complete the square in the denominator,

d'k 2-d)(p— k)
(@) [(k = xp)? — x2p? + xp? + ie]’ (248)

1
X(p) = —igZCp/dx
0
and shift the momentum integration
k—1=k—xp=dk—d¥. (2.49)
Then

a1 2-d)(p—1—xp)
2m) (12 4+ x(1 — x)p2 + ie]?

1
Y(p) = —ingp/dx
0

; d
2—d)((1- -
:—igZCF/dx dld( ) (A=x)p .lz. (2.50)
" (27)4 [12 4 x(1 — x)p? + €]
2.3.4 Wick rotation
We now have to tackle the momentum integral in
; d
2—d)((1- -
" (2m) (12 — A+ i€]
with A = —x(1 — x)p?.
Before we start calculating we note that
/ dd ~0. (2.52)
— A +ie]?
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2.3 Dimensional regularisation

This follows directly from symmetry considerations: the numerator is antisymmetric
in the momentum component /¥ while the denominator is symmetric. Thus the inte-
gral over dI* vanishes. The same argumentation can immediately be generalised to
all integrals of the type of Eq. (2.52) with an odd power of | in the numerator:

2n+1 [Hi
/ dd H —0 (2.53)
- A+ ze]

with n € Ny and k € N. Then one also finds

V
/ ddl —Oforpu#v (2.54)
- A+ ze]

and so only for p = v the last integral does not vanish. Thus, since there are no
Dirac matrices involved, Lorentz covariance of the integral requires that it must be
proportional to the metric tensor gh":

dd S ddz% : 2.55
/ - A+ ze] / - A+ ze] (259

f(1?) is readily found by contracting both sides of Eq. (2.55) with g,,:

8wlﬂlv = f(l Z)Syvgizv
2
= f(I?) = Zd (2.56)

and so

],[ v 112 ]A]/
/ dd w _ / ddl &£ (2.57)
— A+ ze] — A+ ze]

Similar identities to Eq. (2.57) hold for other combinations with even numbers of
components of | in the numerator [PS95].

Now back to the quark selfenergy: Eq. (2.52) tells us, that we can drop the term
! = q,I" in Eq. (2.51). So there remains

& (2-d)(1-x)p)
e —Atif

1
(p) = —ig?Cr / dx (2.58)
0

Note that the last integral is defined in d-dimensional Minkowski space. One could
now carry out the [° integration via a contour integral in the complex I° plane. It is
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2 Loops and regularisation

thus useful to study the pole structure of the integrand in Eq. (2.58). For A > 0 we
find:

P-A+ie=(1"2-(12-A+ie=0
=10=4/(124+A—ie
=+ (T)2+A3Fj—€
24/ (D)?+A

~+\/()2+ATFie . (2.59)

The integrand has poles in the upper left and in the lower right quadrant of the com-

plex [” plane, see Fig. 2.2. Since for large |I°| the integrand behaves like |°| %, we can
close the integration contour either in the upper or lower half plane, while the infinite
half-circle does not contribute to the integral in either case. Thus the I° integration
is determined by the poles inside the integration contour and we could now apply
the residue theorem. Then only a (d — 1)-dimensional integral over the spatial com-
ponents in Euclidean space would remain. However there is a more elegant method,
namely the Wick rotation.

A 319

Figure 2.2: Position of the poles in the complex [” plane. The dashed line indicates the
contour of the integration. By rotating this contour 90 degrees counter clockwise the
dashed line does not cross a pole and so the result of the integration is unchanged.

We note that by rotating the path of the [° integration in the complex plane by 90
degrees counter clockwise, the contour does not cross any pole:

P —i1, (2.60)
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2.3 Dimensional regularisation

where E stands for Euclidean. The residue theorem now states that the value of the
integration is unchanged by this procedure. We find

di’ —i-dil, (2.61)
2= (192 - ()2 = —(I"?2 = (I)> =12 (2.62)
and the integral of Eq. (2.58) becomes

1
. i-de (2—d) (1-x)p)
Z(P):_ngCF/dx/ (271)5 (12 — A+ ie]?

0
1
_ 2 (2—d)((1-x)p) dIg
— ¢Cr 0/ dx oo / Tyt (2.63)

Now we have to solve a d-dimensional integral in Euclidean space and we note that
the integrand only depends on the absolute value of /g, which makes the use of
spherical coordinates a good choice.

2.3.5 d-dimensional spherical coordinates

To calculate the second integral in Eq. (2.63), we here consider the general solution for
integrals of the type:

dy . (x2)1
_ /Lx)k , (2.64)
[x2 + A — i€]
with n 4+ d < 2k. We introduce d-dimensional spherical coordinates and note that
for A > 0, ie. p* < 0, the integrand has no poles and we can drop the ie term.
Therefore we will keep p space-like in the following calculations and later on continue
analytically the result to time-like p, keeping in mind that A has a tiny negative
imaginary part.

It is instructive to study the construction of spherical coordinates in the common
two and three dimensions and then to expand the scheme to d dimensions. In all
dimensions we understand the absolute value of the coordinate vector to be defined
asr = |X|.

In two dimensions spherical (polar) coordinates are defined via

x1 = rsin(67) ,
xy = rcos(07) (2.65)
with 0 < 6; < 27t. For three dimensions one finds:
X1 = rsin(@l) Sil’l(@z) ,
xy = rcos(01)sin(6,) ,
x3 =rcos(6), (2.66)
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2 Loops and regularisation

with 0 < 67 < 27 and 0 < 6, < . We now continue along this path and define

x1 = rsin(0) sin(6y) ...sin(6;_1) ,
Xy = rcos(01)sin(6y)...sin(6;_1) ,

Xg—1 = rcos(0z_2)sin(65_1) ,
xg =rcos(04_1), (2.67)

with0 < 0 < 2mrand 0 < 6; < wfori = 2...(d —1). To transform the integral
measure in Eq. (2.64),

d—1
d?x = |Dy|-dr- T d6;, (2.68)
i=1
we calculate the determinant of the Jacobian
9x1 9%y
Jar or
d(xq X4) 3% e 3%
D; = det L = det ! ! 2.69
=9 3,01, 0) - ; 269
0xq x4
9051 901
For D; we claim:
e
Dy = (-1 ] sin'1(6)) - (2.70)
i=1

The proof is not difficult and goes by induction. For d = 2 one finds

9x1  9xp
Dy =det| &
90, 90,

sin(f1)  cos(61)
- e (rcos(@l) —rsin(()l))
_— 2.71)

which confirms Eq. (2.70) for d = 2. If the claim holds for d — 1 (d > 3), we find for d:

9x; Mg 9y
Jar T or or
9x1 a1
20, e 00,
D; = det : : : , (2.72)

dx; 9x4_1 0

d0; o 77 9652
8x1 Bxd,l Bxd

;1 7 051 9051
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2.3 Dimensional regularisation

where the zeros in the last column are a consequence of x; being a function of r and
8,1 only. A Laplace expansion along the last column yields:

9x; %41
d0 d0
ax 1 1
Dy =(-1)*". a—d -det | :
r E)xl axd_l
9051 9051
9x; %41
or ar
9 dxq 0X4_1
X 9%
+(—1)2d C 2T et | M 9
90,1 : :
dx1 9x4_1
90> 90>
According to Eq. (2.67) one finds fori =1...(d —1):
dx; _ cos(f4-1) _ rcos(f;-1)9x;
00,_1 sin(6;_1) sin(6;_1) or ’
and so
9x; X1
gﬁ agdfl 96, 96,
0 ce 0 . .
ol ™ | _reosti) | ;
e it il el VA
sin(0;_1) 0x1 9%4_1
axl axdfl 89,1,2 89d 2
90,1 90,1 dx; 9x4_1
or or
9x1
aar
X1
_ i—2 Tcos(64-1) 96,
=(-1)""7. ————= - det
sin(6;-1) :
ax1
901>

9x4_1
0

axdr_l
d6;

X4
905>

(2.73)

(2.74)

. (.75

where in the last step we have exploited that determinants change their sign under ex-
change of two neighboring lines. Note that the d-dimensional coordinates x;...x;_1
are related to the (d — 1)-dimensional coordinates %7 ...%;_1 via x; = sin(6;_1) - %},
cf. Eq. (2.67). Since multiplication of one line of a matrix with a factor a changes also
the determinant by a factor a2 we find

9x1
Jar
911
0
det|

8x1
905>

0x4_1
J
9%y 4

8.91 = sin?1(6,;_1) - det

X4 1
90>

= sin’ 1(64_1) - Dy_1

904>

(2.76)
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Therefore,
Dy = (—1)d+1-%-(—1)d 2. rcos(64-1) sin? 2(6;_1) (2.77)
+ (=1)* % gint- Y(64-1)| - Daa
9041

=(=1)2 - sin®2(8 1) - | ~rcos?(04-1) — rsin*(641)| - Dy

— —r-sin?2(0;_1) - Dg_1

i—2
= —r-sin? 2(0;_1) - (—1)4 2972 I sin'~1(6;)

d—1
=(-1)" A T sin(6)) - (2.78)

This concludes our proof of Eq. (2.70).

Since |r| = r, sin’(f;) = 1 and 0 < sin(;) < 1fori = 2...(d — 1), the integral
measure of Eq. (2.68) becomes:

-1 d-1
d?x = " 1T sin"2(6;) - dr [T d6; = '~ 1drdQy . (2.79)
j= i=1
Thus, we can rewrite Eq. (2.64):
n+d 1
_ / dxx)? / 4o, / - (2.80)
x2 + A] [r2 + Al

As mentioned above the integrand in Eq. (2.80) is independent of all angles and we can
evaluate the integration over the surface d(); separately. Now, instead of integrating
over all (4 — 1) angles, we will apply a more elegant method [PS95], which uses the
well known result for the Gaussian integral:

/ dxexp(—x?) = V7. (2.81)
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2.3 Dimensional regularisation

Then

-/ de%FG) , (2.82)

where in the last step the definition of the Gamma function was exploited, cf. Eq. (2.31).
Now one finds for the surface integral:

5= / dQy = (2.83)

2/
r(s)

which is nothing but the surface area of the d-dimensional unit sphere. We note the
special and well known cases:

d=2=S,=2m, (2.84)
d=3= S3=4n, (2.85)

where the following properties of the Gamma function were employed:

1
r (—) =, (2.86)
I'(x+1)=x-T(x). (2.87)

Eq. (2.80) now becomes:

(2.88)
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2 Loops and regularisation

Note that the Beta function can be written as (R(x) > 0, R(y) > 0)

[e0]

tx—l

0

which hints at how to rewrite Eq. (2.88):

r(s) A [ +1]
2V gy 1 (7 (@W
— F(%) Al k)o/2 (A) [§+1}k
NN d d
BTGNS 2y
ntd _nid
_ ;\/(E%))dA<Wk>r( 2 >rr(g{ ) . (2.90)

Eq. (2.90) is a general result for the type of momentum integrals that occur in loop
calculations. We remember that in general A has a tiny negative imaginary part.

Finally we are in a position to proceed with the evaluation of the quark selfenergy

30



2.3 Dimensional regularisation

in Eq. (2.63):
5(p) = £Cr O/1 dax 2= dz 2<7(Tl)d— 0p) (r@); N <31>1f(§)2 -)
;
o uctican. (59
= §°Cr (2(;;;% (4 B d) O/ldx(l —2) (=x(1-x)p?) )
- e e (48 jdxxm 1 o
e B () e (52
= $°C (2(;;32]” r (4 = ) () <1:%;>_r1)<%) , 2o

where again the definition of the Beta function, Eq. (2.33), was used.

2.3.6 Laurent expansion around d = 4 dimensions

Eq. (2.91) is the expression for the quark selfenergy in d space-time dimensions. How-
ever we are interested in the case d = 4 and now have to carefully extract the behavior
of X(p) around this value of d (remember that our aim is to make the divergence
of the selfenergy at d = 4 manifest). For this purpose it is common and useful to
introduce a new variable,

e=——, (2.92)

since we expect the divergence to show up as poles in €. Also considering Eq. (2.24)
one has to replace the coupling constant ¢ and finds:

Z(p) =8t (u2)€CF—Z;)_<22_)£T(€)(—P2)<6) : F(lr—(3€ )_1"(226)_ 2
2\ € . . .
—gicely (Tl ) TSR e
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2 Loops and regularisation

We are interested in the limit € — 0 and thus have to expand Z(p) in € to O(e%) =
O(1). The expansion of the Gamma function near € = 0 reads [PS95]:

I(e) = % —y+0(e), (2.94)

where 7y is the Euler-Mascheroni constant. Note that all other expressions in Eq. (2.93)
are convergent for € — 0. Since I'(e) diverges like %, it is thus sufficient to expand
these expressions to O(e). With T'(x + 1) = xI'(x) we recover

I'(1—€)=—€l(—€) =—¢ (—é -7+ O(e)) =1+ e+ O0(e?) (2.95)
and so
(2e =2)I(1—€e)I'(2—¢) _ (2e -2)T(1—€)(1—€e)I'(1—¢)
I'(3—2e¢) (2—2¢)(1—2e)I'(1—2¢)

_ (=D)(A-e)(A+re+0(e?))
(1 —-2€)(1+27e+0O(e?))
(—1)(1 —€)(1 +27e + O(€?))
(14 2ve —2e+ O(e2))
(=1)(1 —€)(1+2ve + O(e?)) (1 — 2ve + 2 + O(€?))
(—=1)(1 —€e)(1+2e+0(e?))
(—1)(1+ e+ 0O(e?)) (2.96)

In addition we find:

2\ € 2 2
(4_”52 ) = exp (eln 47Tl42 ) =1+e€ln 47W2 +0(€?) . (2.97)

Collecting the pieces, Eq. (2.93) becomes:

2
(p) = gch# (1 +eln 4”;‘2 ) (% - 7> (—1)(1+€)+0(e). (298

Now we drop all terms that vanish for € — 0 and obtain the final result for the
regularised one loop quark selfenergy:

2

1 47t

For space-like p the logarithm in Eq. (2.99) is unambiguous, however at p> > 0 our
logarithm has a branch cut, cf. Appendix A.3. We remember that A = —x(1 — x)p?
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2.3 Dimensional regularisation

has a tiny negative imaginary part and since 0 < x < 1, so does —p?. Thus for
time-like p one has to replace in the logarithm —p? — —p? — ie’.

Note that the selfenergy has become a function of the arbitrary mass scale y, which
we introduced to keep the coupling constant dimensionless. Any physical observable
calculated from X(p) must be independent of u, which has to be achieved through
renormalisation, cf. Sec. 4.1.
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One-loop integrals

This chapter is devoted to the methods of calculating one-loop integrals in quantum
tield theoretical contexts. We will illustrate these methods with the help of a common
example, which will prove to be useful in Sec. 8.1. There we will have to calculate
certain loop corrections for DY pair production. These calculations are straightfor-
ward, but lengthy, and therefore we already give their derivation in this chapter. The
mathematics presented here are based on the excellent paper by 't Hooft and Veltman
[tHV79], to which we refer for more details.

3.1 The three-point function

A typical example for a one-loop process is the three-point function with three parti-
cles in the loop. Fig. 3.1 shows such a process with scalar particles. While in standard
calculations the particles are fermions and bosons, the additional complications in-
troduced, for example by the Dirac algebra, do not interfere with the methods of
calculation presented here. Therefore the result we will obtain, will be generally use-
ful.

Note that for our purposes we restrict ourselves to the case where the masses of the
internal and external particles are identical:

p
p

my,
my,

(3.1)

NN =N
I
NN —DN

and to the particle with momentum k we assign a mass m3. Then the amplitude of
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3 One-loop integrals

P1

Figure 3.1: Loop process with three scalar particles in the loop.

the process in Fig. 3.1 is proportional to the loop integral

1 1 1

1= [d% - - . (@2
(p1—k)2—m?+ie (p2+k)?—m3+ie k*—mi+ie 52)

3.1.1 Feynman parametrisation

Now we can make use of the results of Chapter 2. First we introduce Feynman pa-
rameters to combine the propagators:

1
= /dxdydzd(x+y+z—1)/ddk
0

2

X
[x (1 — k)2 = m2 +ie) +y ((pa+ k)2 —m3 +ie) + z (k2 — m3 +ie)]

1
2
— /dxdydzé(x+y+z _1) /ddkF . (3.3)
0

The next step is to rewrite K so we can shift the variable of the momentum integral:

K= —2xpy -k +2yps-k+ (x +y+2)(k* + ie) — zm3
= [k+ (—xp1 +yp2)|* — (—xp1 + yp2)* — zm3 + ie
=% (x2m% —2xyp1 - p2 + yzm%) — zm% +ie

12

— [mdx(x+y) + mdy(x +y) — xyq® + (1= x —y)md — e
=1 —A, (3.4)
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3.1 The three-point function

where we have used the onshell relations (3.1), x +y +z = 1 and 4> = (p1 + p2)>.

Since dk = d%I, the momentum integral is now solved by first Wick rotating the
zeroth component of [ and then integrating in d-dimensional spherical coordinates:

1
[
o L
100 _ /ddlE 1
(2 +A]°

- 1
— _i/de-/d\lE| g | s
[[1E| + 4]
d
Eq. (2.83) _ —iﬁ . /d |lE| |lE|d_1 s

d 3
T (z) [|ZE\2+A]
d d _d
Eqs. (2.88-290) _ _; VT A3 T (2> r (3 2) (3.5)
r (4) I'(3) ' '
2
The last result is convergent for d = 4 and so one finds
ir? 1
h=——u.—. .
2 A (3.6)
We define
1
—znz = / dxdydzé(x +y+z—1)A"!

0

1 _
/ / mlxx+y)+mzy(x+y)—xyq +(1—x—y)mj —ie
0 0

(3.7)

The structure of the integrand is simplified by the following substitution, which re-
moves the term proportional to y in the denominator:

a=x-+y, (3.8)
b=x-y, (3.9)
= dxdy = %dadb , (3.10)
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3 One-loop integrals

which implies

x="1 er b (3.11)
a—>b
y= 5 (3.12)
2 b2
xy =2 —. (3.13)
Then Eq. (3.7) becomes
1 a -1
_ 2 _ 12
I; = %/da/db {m%a#—km%aa 5 b_a 1 b 7>+ (1 —a)m3 — ie . (3.14)
0 —a
Once more we substitute
b’:b;”@bzzy—a (3.15)
= db = 2dV’, (3.16)
and obtain
1 a r 2 a2 o2 -1
I = /da/db’ m3ab’ +m3(a—b')a — L Z%a a 7+ (1 —u)m%—ie}
0 0 -

1
i ~1
— /da/db’ a*ms + b"2g* + ab’ (m3 — m3 — g*) + a(—m3) + m3 — ie}
/ I

0
1 b _1
_ / dx / dy [lnx® + koy? + kaxy + kax +ks| (3.17)
0 0
Note that all coefficients in Eq. (3.17) are real numbers, with the exception of ks:
ki = m3, (3.18)
ky = g%, (3.19)
ks =mt—m5—q*> = m? =k +ky+ks, (3.20)
ky = —m3, (3.21)
ks = m% — ie . (3.22)

The idea how to solve Eq. (3.17) is the following: substitute for y such, that the de-
nominator becomes linear in x. Then by interchanging the order of integrations, one
can easily integrate over x. The remaining integral is not analytically solvable but
connected to the Dilogarithm or Spence function, the properties of which are well
known, see Sec. 3.1.2.
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3.1 The three-point function

3.1.2 Spence function (Dilogarithm)

As shown in [tHV79] all integrals to one-loop order can be written in terms of Spence
functions, which we shortly introduce in this section. Note that if the particles in the
loop are massless these Spence functions usually reduce to logarithms and constants.

The Spence function or Dilogarithm for complex argument x is defined by [Lew81]:

Sp(x) = — /dz@
0
1
_ / gin@—xt) - xt) (3.23)
0

Note that there exist deviating definitions for the Spence function, see for example
[AS64]. In this work we will stick to the definition in Eq. (3.23). In our definition of
the complex logarithm, cf. Appendix A.3, it has a branch cut along the negative real
axis and so the Spence function has a branch cut along the positive real axis for x > 1.
Important properties are:

Sp(x) = =Sp(1 —x) + %2 —In(x)In(1—x), (3.24)
Sp(x) = —Sp G) — %2 — %lnz(—x) , (3.25)
which imply
Sp(0) =0, (3.26)
2
Sp(1) = & - (3.27)

The Spence function can be approximated by truncating the following series expan-
sion:

Sp(x) = Y By [_hzf:l’;z]m , (3.28)

where B,, are the Bernoulli numbers, with

1 1
Bo=1,Bi=—5 By=r,.... (3.29)
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3 One-loop integrals

3.1.3 Integral transformations

As already pointed out in Sec. 3.1.1, we now have to transform the integral in Eq.
(3.17). Substituting

Y =y—ax (3.30)
= dy' =dy, (3.31)

one finds

-1
Ig—/dx / dy klx + ko (v + 2y ax + a’x )+k3x(y’+1xx)+k4x—|—k5]

1 1—4x x

-1

/ / (k1 + koo 4 kaa)x% + koy'? 4 (ko + k3)xy’ 4 kax + k5}

0 —X
(3.32)

Now we can choose « such that the coefficient of x? vanishes:
ki + kzlxz + kaa L 0
k K2k
Sap = oo 2 - L (3.33)

2k, 42k

Note that a4 are real numbers, since the argument of the square root in Eq. (3.33) is
positive. The proof goes as follows:

k2 B kq
4k2 ko
_(mi-mi—g?)? mj
4q4 qz
(0= R gt — 2 4 2 — 4
4g4
m2 — m2)2 + a2(q? — 2m2 — 2m2
_ ( 1 5) ‘745;11 1 5) . (3.34)

To find the minimum of the numerator we differentiate by 4> and note that
q° = (p1+p2)* = (m1+ma)*:

d(4g*A
B00) _ (2 20—
= 2(q* — m} — m3)
> 4dmymy
>0. (3.35)
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3.1 The three-point function

The derivative is always positive and thus the numerator of A has its minimum at the
minimum of g°:
44 A 2 (m] —m3)* + (my + ma)*((m1 + my)* — 2mf — 2m3)
= (my +m2)?(my — m2)? + (my +m2)*(—1) (my — my)?
=0
=A>0. (3.36)
a+ € R is proven and from now on we choose &« = a. Eq. (3.32) then becomes:

(1-a)x -

I = / dx / &y |kay + kaws + k3) xy’ + kax + ks
~————
—04 X hl
1 IX+ _1
- / dx / Ay’ [x(ks+my) +hoy? +ks| . (3.37)
—04 X

We have achieved our goal and the denominator of the integrand has become linear
in x. The next step is to change the order of integrations, so we can integrate over x
tirst. Since a4 is real, one can easily rewrite the integral:

—04X

/ 1/a+dy—/dx1/a+dy—/dx/ / (3.38)

—04 X

Note that if a were complex, one would have to check the integrand for singularities
inside the triangle (0, (1 — a4 )x, —a;x) in the complex i’ plane, since they would
spoil the transformation in Eq. (3.38). The order of integration can now be changed
by realising that for a > 0:

/1dx 7dy = /dx/dy@(ax —y)O(y)O(x)O(1 — x)
0 0

_ /dx/dy@(x— hewe(xe( - x)
_ /dx/dy@(x - %)@(y)@(l —x)
= [ax [ayoix—Demen-yer-x)

a 1
_ / dy / dx . (3.39)
o
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3 One-loop integrals

A similar equation holds for a < 0. Then Eq. (3.38) becomes

(1—ay)x —ayx 1-ay 1 —a+ 1

/ / dy/' —/dx / dy’ = / dy’ / dx — / dy’ / dx . (3.40)
0 v 0 Y
1-ay —04

Finally the x integration can be performed:

1—06+ 1
-1
I; = / dy’ / dx [x(k4 +hy') + kzyl2 + k5}

0 v
1

5
+

—a+ 1

-1
~ [ ay [ dx [xlke Iy + oy 4 ks

0 v
T

/ Koty \ 2 (kg + hy') + kay? + ks

B 7+ dy/ k4 + h1y' + kay” + ks
5Tk +h1y Y (ks + y') + kay? + ks

10(+

— / d /k4_|_h1y In k4-|—h1y +k2y +k5>

—a4
1— [

— y / ”
[ o it (T Gt ) ey 4 s )
‘.

1 ¥ / 17
+ / dy Kat Iy In (_0‘Jr (ks +my') +koy” + ks ) . (3.41)

The arguments of the logarithms in the last equation are quadratic in y'. If we can
factorise them, we will obtain logarithms with arguments linear in 1. Then the inte-
grand will already bear a great resemblance to the definition of the Spence function
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3.1 The three-point function

in Eq. (3.23). However before we proceed with the factorisation, we add 0 in the form:

1*0(4,_
_ / 1 2
0= / W iy ™ (ot + s

ey
1*0(4,_ 1
' In (koyg +k
+ 0/ dy k4+h1y/ 1’1( 2y0+ 5)
—ay ,
— ' In (koyg + k 42
O/dyk4+h1y’n<2y0+ ) (3.42)
where vy is the root of the prefactor:
k
Yo = —h—‘i : (3.43)

The reason for this will become clear immediately:
—u

1
I = / +cly’ L in (ks + Iy’ + oy + ks ) —In (ka3 + ks ) |

k4 —+ hlyl
s
1—0(+ 1 _ /
_ / y / ” . 2
0/ W i |17 ( b ) a4 k5> In (kay3 + k5)1

—u
+ /

/; Y / 2 . 2
+ O/ W ey [m (—m (ks +h1y') + koy? + ks ) —In (kzyo +k5) . (3.44)

We have achieved a convenient form for I3: the residue at the pole ¥’ = y( vanishes
and so later on we can choose the most convenient integration contour to solve the
integrals. Since all three integrals in I3 are essentially of the same type except for the
integration boundaries, we substitute to get three very similar integrals:

L.y=y +ar=dy =dy,

Vi=Yo+ay =Yoo=y — &y, (3.45)
/
2. y= Y =dy = (1—ay)dy,
1—0(4.
=== -y, (3.46)
5 - Y P
Y= = dy = —aydy,
_ Yo _
Y3 = = Yo = —0iY3, (3.47)
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3 One-loop integrals

for the first, second and third integral of I3, respectively. Eq. (3.44) becomes:

1
I = 0/ dyk4 +hy —hay

[ln <k4 +hi(y —ay) Fko(y —a)®+ k5>

—In (kz(yl —ay)?+ k5)]

1
_0/ A [ (ylha b (1 =) Ry~ 0 k)

ket hiy (1 —ay
—In (kzyg(l —a )+ k5>}
I _ 2,2
+0/dyk4 "y, [ln (y(k4 hiyay) + koy“a? + k5>

“In <k2y3¢x 2 +k5>] . (3.48)

Using the defining equation for «a,
ki + koo’ +kay =0 (3.49)
and
Moy =202 ko +kaoy = —kg + koo’ (3.50)

one can rewrite the logarithms and so I3 reads:

I = hl/dy— [in (kay? + kay + Ky + ks + ks ) —In (kay + kays + 1 + ks +ks)|
/dy (kl—l—kz—l—kg)y +k4y+k5>
— I (k1 + ko + k3)y3 + kaya + ks |

o / dy— In (kuy? + kay + ks ) = In (kad + kays +ks) | - (3.51)
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3.1 The three-point function

We have rewritten I3 in terms of three integrals,

I = hll Ji=Ta+]s) (3.52)

which are of exactly the same type:

1
_ 1 2 2
S = /dxx —— [ln (ax + bx + c> —In (axo + bxy + c)] . (3.53)
0
Now all left to do is to solve Eq. (3.53).

3.1.4 Reduction to Spence functions

In this section we will show that the integral in Eq. (3.53) can be entirely rewritten
in terms of Spence functions, which were introduced in Sec. 3.1.2. To do this we
have to factorise the arguments of the logarithms. Since the factorisation involves
manipulation of the complex logarithm, which has a branch cut along the negative
real axis, it is worthwhile to realise the following relations:

In(ab) = In(a) +1In(b) , if sgn(J(a)) # sgn(3(D)) , (3.54)
In (%) = In(a) — In(b) , if sgn(S(a)) = sgn(S(b)) . (3.55)

The proof goes as follows: let a = |a| exp(i¢,) with 0 < ¢, < 7t and let b = |b| exp(i¢p)
with —7r < ¢, < 0. Then obviously:

S(a) = |a| -sin(¢,) >0, (3.56)
S(b) = |b] - sin(gy) <0, (357)
S(ab) = |al - |b| - sin(¢a + ¢p) - (3.58)

Since —711 < ¢ + ¢ < 7, one finds that In(a), In(b) and In(ab) are all on the same
branch and the branch cut is never crossed. Therefore no additional terms of +277i ap-
pear in Eq. (3.54). The proof for In (#) is analogous with b — b~! = |b| "L exp(—i¢y).

Note that y1,y2,y3, k1, k2, k3, ks € R and ks € C. Therefore we also have xg,a,b € R
and the only complex number in S is c. Then one finds:

ax® +bx +c 20 (3.59)

b b2 ¢
= X4+ = —Zﬂ: @—E (3.60)

S~ S——

€ER eC
= $(xy) = - (x0) (3.61)
= In(ax* +bx +c) =Infa(x —x.)(x —x_)] =In(a) +In(x — x4 ) +In(x —x_) .

(3.62)
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3 One-loop integrals

Eq. (3.53) now becomes:

1
/ X — % In(x —x4) —In(xg—x4) +In(x —x_) —In(xg —x_)] . (3.63)
0
Once again we have to solve two similar integrals and thus we define:
1
5= [ dx L fin(x—x) —In(xo — x1)] . (3.64)
0 X — X0

To rewrite S; in terms of Spence functions we substitute x’ = x — x3:
1—X1
Sy = / dr—— 1 [In(x") —In(xp — x1)] . (3.65)
x'+x1 — X0
%

Note that the residue at the pole x’ = xy — x1 vanishes and that S(—x1) = $(1 — x7)
and so along the triangle (0, —x1,1 — x1) the logarithms do not cross a branch cut.
Therefore one can change the integration contour:

17361
Sy = 0/ dx'F———— Fap— [In(x") — In(xg — x7)]

—X1

- / dx’m [In(x') — In(xo — x1)] . (3.66)
0

The integration boundaries in the definition of the Spence function (3.23) are 0 and
1 and thus we substitute z = (1 — x1)~'x’ in the first integral in Eq. (3.66) and z =
(—x1)"'«’ in the second:

1—x
/dz — z+1x1 - [In(z(1 - x1)) — In(xp — x1)]
1 —
a /dZ—X1Z +3;11 — X0 fin(=12) ~In(xo = )]
1
/ n((1—x1)z+x1 = x0)) [In(2(1 = x1)) — In(xo — x1)]
0
- / dz% (In(—x12 + 11 — %0)) [In(=x12) — In(xp — x1)] - (3.67)
0
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3.1 The three-point function

Since
iln(x —x9) =0 (3.68)
aZ 1 0) — .
and

sgn (S(x1(1—2))) =sgn (T(x7)) = sgn (I(x1 —x0)) , (3.69)

we can add 0 without having any logarithm crossing a branch cut:

5, = 0/1 de (m ((1 —m)zt ‘XO)) [In(z(1 — x1)) — In(xg — x1)]
1

X1 — Xo

-/ dzaa—z (m (_xlz Lk x”)) In(=x12) — In(xo — x1)] - (3.70)

X1 — X0
0

Integrating by parts yields:

52:1n<1_x0)[ln(1—x1) In(xp — x1)] /dz In ( 1)z 1>
X1 —Xo X1 —Xo

—In <x1 _x ) [In(—x1) —In(xp — x1)] +/dz In (x;flio —i—l)
=In (xll_—?o) [In(1—x1) —In(xp — x1)] + Sp (;Cll__xlo>
—In (xl_—xoxo) [In(—x1) —In(xg — x1)] — Sp (Xl x_l xo) . (3.71)
With
S(1—x1) =S(—x1) = S(xo — x1) (3.72)

we can combine the logarithms, since again no branch cut is crossed:

1-— 1— -1
52:1n< xO)ln( x1)+sp(x1 )
X1 — Xo X0 — X1 X1 — X0

_1n< X0 )m( —1 )—Sp( . ) (3.73)
X1 — X0 Xo — X1 X1 — X0
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3 One-loop integrals

Finally the Spence functions can be rewritten with the help of Eq. (3.24):

— — _ 2
Szzln(l x0)1n<1 ’”)—sp(1—x1 1)+”—
X1 — X0 X0 — X1 X1 — X 6

—Sp(xo_l) : (3.74)

Then S of Egs. (3.53,3.63) reads:

. X0 _ xo—l X0 _ xo—l
S_Sp<x0—x+> Sp(xo_x+>+5p(x0_x> Sp(xo—x>. 679

The last equation is the solution for each of the three integrals Ji, J», J3 in Eq. (3.52)

and, thus, the integral I in Eq. (3.2) is solved:

2 1
2kooy + k3

I=-—in i~ T2+ T3] - (3.76)

The auxiliary functions are:

_ Vi 1/1—1) < Y > (yl—l)
=S —-S +Sp|— | -Sp| ——- ), 3.77
h P (yl—a+) P (yl—a+ P Y1—a- P Y1 —a— ( )

with

2koa + ks’
ks Kk

ai:—z—kzj: 4—k%—E+l€. (379)

=S —-S +S —Sp|(——+), 3.80
2 p<y2—b+> p<}/2—b+ Py -1 N (3.50)

with

yi=as (3.78)

ks 1
92 = 2oy +hk3l—ay (3.81)
k4 k2 k4 ie
by = — + 4 . (3.82
RS \/4(k1+k2+k3)2+k1+k2+k3+k1+kz+k3 (3.82)
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3.2 Expansion for small mass m3

_ Y3 ]/3_1) < Y3 ) <y3—1)
=Sp| —"— ) -Sp| =——|+Sp| —"— | -5 , 3.83
& p(y3—0+> p(]/3—c+ P Y3 —C— P Yz —cC— ( )

with

k, 1

_ il 84
Ys 2k20¢+ + k3 [\ ’ (3 8 )
oo g KK e (3.85)
T2k N Tk '
Finally we have everywhere
Kk
LI . I (3.86)

3.2 Expansion for small mass m;

In Sec. 8.1 we will calculate the QCD one-loop correction to the electromagnetic vertex
for DY pair production. There we will identify the exchange particle with momentum
k in Fig. 3.1 with a gluon to which we assign a (fictitious) gluon mass A to regularise
infrared divergences. However in the end we will only be interested in the real part of
terms that do not vanish for A — 0, i.e. only in constants and in divergent terms in 1.
The expansion is lengthy, and therefore we present it already at this point.

We will treat the three integrals J1, |5, J3 separately for simplicity. For J; one finds:

a = k2 , (387)
b=k, (3.88)
c=ky+ky+ks, (3.89)
k
Y1 = —h—‘i +ay, (3.90)
ks Kook
:>ﬂi——2—k2:t @—E—{—le

<1~ ny +ie. (3.91)

Then

_ ) u) (L)_ (u)}
w0 = fsp ([ 20 ) e () vee () e (0
5 {Sp (—k4+h106+> —$p (—k4+h1(0‘+ —1)>

—k4 — h1i€ —k4 — hlie

—kq + ot > _g ( —kyg + h1(06_|_ — 1) )}
—k4—|—h1(0€+—067)—|—h11'€ —k4—|—]’l1(ﬂé+ —067)4—]’111'6 '
(3.92)

+Sp(
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3 One-loop integrals

In the limit —k4 = m3 — 0 this reads (note that we can drop the ie terms, since the
real part is not sensitive to the branch cuts):

() = [sp (M5) s (M=) g (L) sp ()]

1.5 ky 1ok
+§ln (—hl(oc+—1)> 2ln (hlmr)} . (3.93)

For ], the variables read:

a=ki+ky+ks, (3.94)

b=k, (3.95)

c=ks, (3.96)
ke 1

= = .97

Y2 n1—a, (3.97)

— by = — k4 ki i k4 4 1€
= 2(k1 —|—k2—|—k3) 4(k1 +k2+k3)2 ki +ky+ks ki+ky+ks

/ k
e 3.98
ki +ky + k3 e ( )

and in the limit k4 — 0 we note that

Yo — by — by (3.99)
- Zzbi -0, (3.100)
yo—1— —1. (3.101)
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3.2 Expansion for small mass m3

The real part of |, can then be written as:

R(J2) =R :Sp (yz y_2b+> —Sp (yy;__bi) +Sp (ﬁ) 5P <yyzz——_bl—)]
[0 (1) s (7))

- o )
Egs. (325327) _gp [ 7T | lan(b_) LT %1n2(b+)}

_ 6
:%_%Z-I-%lnz( Mﬁ)ﬁm( ﬁ)
_R %2+%1n2( Wﬁﬁ)‘%%*%lr‘z( Mﬁ)
+(;+h‘<k1+ki+ks)>1

a1 ky 2 ks
i (ernes) 7 (ewis) ) oo

For J3 the variables read:

a=ki, (3.103)
b=k, (3.104)
c=ks, (3.105)
ks 1
Y3 = h—lm / (3.106)
k3 ]
= Ccy = —E + 4 ka |, i€

T (PT

k20 o 4 | % + i€’ (3.107)
1

and in the limit k; — 0 we note that

Y3 —C+ — Cx (3.108)

-~ B o, (3.109)
Y3 —Cx

ys—1— —1. (3.110)

This is completely analogous to J, and so we can read off the result for J3 of Eq.
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3 One-loop integrals

(3.102):

2
R(J5) =R {_%+ +In (Z‘) +1In 2(2‘1*)] . (3.111)

Then the real part of I3, Eq. (3.52), becomes:

R(h1- ) =R(J1— J2+]5)
e () - ()
1 (e =) -2 ()
i (riern) " (hrere)
e i)+ ()]
=l (5 50) o (=)

1 2 1 k4 ()
—i—Eln (ay —1) Eln (zx+)+ln(hl)ln<

0(+—1

in (kl +I’Z+k3> ~ (hl(kl Tg%—’%)) i’ (%ﬂ
=l () o ()

+%1n2(a+—1)—%ln (1) +1n (Zj)ln ((Xfil)

Fin () e ()

i (1 fn (K ) (iRt Rs ) (3.112)
k1 hl kq

We will need this result in Sec. 8.1 and Appendix C.1 to calculate the one loop vertex
correction to DY pair production.
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Remarks on renormalisation

In this chapter we will touch briefly on the basics and a few selected topics of renor-
malisation, which are relevant for the model presented in this thesis. These remarks
are by no means complete and only serve the purpose to provide some very intro-
ductory insights. A much more detailed introduction to renormalisation is given for
example in [PS95, Mut98, Col84], which provide the basis for this chapter.

4.1 Basics of renormalisation

In Part II we have studied regularisation procedures for the UV divergent loop pro-
cesses, which one encounters in quantum field theoretical calculations, for example in
QED and in QCD. However, regularisation is just a mathematical tool, which enables
us to handle the infinite contributions arising from the loops. The physically impor-
tant procedure is called renormalisation. Renormalisation schemes provide means
to systematically and consistently remove the UV divergences from the calculated
physical quantities, such that only predictions of finite observables remain. We will
illustrate this procedure in the following on the example of QED.

4.1.1 Example: renormalisation in QED

The Lagrangian of QED reads:

1 = . 3
£ = = (Eu)o(F"™)o +¥o (id — mo) ¥o — eg¥oy, FoAf (1)

where (FM)y = 9# A} — 9" Al. Note the index 0 on the fields ¥ and A and on the
electron mass m and charge e, which we will explain in a minute. Suppose one would
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4 Remarks on renormalisation

like to measure one of these quantities, for example the charge. The Lagrangian in
Eq. (4.1) tells us, that obviously the charge ej is associated with the electron-photon
vertex. Thus, a simple (but too naive) idea to measure the charge ¢y is a scattering
experiment (e.g. e”e™ — e~e™), where the exchanged photon interacts with the elec-
tron (or positron), see the left diagram in Fig. 4.1. However, we cannot switch off the
interactions among the particles while we perform the measurement, and so what one
actually measures is the coherent sum of all the processes in Fig. 4.1. Thus, the bare

€Q

Figure 4.1: The bare electromagnetic vertex and its loop corrections.

charge ¢j is not an observable quantity, since it somehow hides behind all the higher-
order corrections. The same holds for the other quantities in the Lagrangian, which
is why they all carry the index 0 to mark them as bare (unmeasurable) quantities. In
fact, instead of measuring ey, one measures

o (1 +EAL(GP) + et Ar(q?) + .. ) . 4.2)

When trying to calculate the loop corrections, which give rise to the coefficient func-
tions A;(g%), one encounters the UV divergences mentioned above. So not only is
e.g. the bare charge not directly measurable, but it also receives infinite corrections
from higher-order processes. While at first glance the situation looks awkward, there
is actually an elegant way to resolve it: neither the bare quantities nor the infinite
loop corrections are actually physical observables. Thus, there is nothing wrong with
absorbing both into new renormalised quantities. The renormalised charge then reads:

er = e (1 + e A1(7%) +ejAx(g?) + .. ) : (4.3)
Note, that while the bare charge is a (non-measurable) constant, the renormalised

charge e, is a function of the hard scale g2 at which the experiment probes the charge.
This property has very important consequences and gives rise to the renormalisation
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4.1 Basics of renormalisation

group equation, cf. Sec. 4.1.2. The virtue of renormalisation is now the following: if
one calculates the amplitude M of any specific process (e.g. e e™ — e~ e™) to a cer-
tain loop-order in terms of the bare quantities eg, myp,... and neglects the processes
that modify the external legs (field strength), one encounters the infinities associated
with the UV divergences. However, a special class of theories, called renormalisable
theories, has a distinct feature: if one performs the same calculation of M in terms of
the renormalised quantities e,, m;, ... all the UV divergences exactly cancel and only
finite quantities remain, since the field strength renormalisation factors are automat-
ically taken into account. QED and QCD are important examples for renormalisable
theories and the proof of renormalisation actually paved the way for their success in
describing the electromagnetic and the strong interaction.

A systematic approach to remove the divergences is the introduction of counter-
terms in the Lagrangian. The idea is to split the Lagrangian into two parts: one
unperturbed part, which only depends on the renormalised quantities and fields, and
a counterterm part, which contains all the infinities. In the QED case the Lagrangian
then becomes [PS95]:

1 - . _
;C = — Z(FHV)T(FFV)T- + ‘Ifr (la - mr) Tr - er‘Fr,)/’/l‘FrA’];l
1 - . -
- 153(Pyv)r(PW)r + ¥ (1523 - 5m) Y, — erfslTr')’yTrAy . (4-4)

Note, that we have just rewritten the original Lagrangian in Eq. (4.1). The renormali-
sation parameters J1, d», 3 and J,, are connected to the bare quantities and fields as,
for example, one finds ¥, (8,, + m,) ¥, = Fomp¥o. Obviously the splitting into un-
perturbed part (e.g. m,) and counterterms (e.g. J;;) is not unique and in fact arbitrary
and, therefore, one has to choose a certain renormalisation scheme to fix the renormal-
isation parameters. A common choice for QED is to choose the physical (pole) mass
m and the physical charge e (at > = 0!) of the electron for the renormalised values
m, and e,. In this case the first line of Eq. (4.4) is just the standard QED Lagrangian
with bare quantities and fields replaced by their renormalised versions. The second
line containing the counterterms gives rise to additional Feynman rules, which auto-
matically take care of the cancellation of all the UV divergences in the theory. This
kind of calculational scheme is called renormalised perturbation theory and it can be
understood as a useful bookkeeping device when dealing with the UV divergences.
Remember, however, that the Lagrangian in Eq. (4.4) was just a rewrite of the original
Lagrangian in Eq. (4.1). Therefore, it is evident that renormalised perturbation theory
must be completely equivalent to bare perturbation theory, which is based on Eq. (4.1),
i.e. to calculating the relevant processes with the bare quantities, taking into account
all the propagator, vertex and external leg corrections. The latter, though, can become
very tedious in multi-loop calculations, which is why for these cases renormalised
perturbation theory is advantageous.

Note, that in the chosen case of m, = m and e, = e the renormalisation parameters
can also be expressed in terms of field strength and charge renormalisation in the
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4 Remarks on renormalisation

following way:
H=7—1, (4.5)

which implies
Yo =\/Z,%,, (4.6)

where Z, is called the field strength renormalisation of the electron field. We will
explore the significance of this quantity in more detail in Sec. 4.3. Similarly with

03=2723—1, 4.7)
h=71—-1, (4.8)
Om = Z2m0 —m (4.9)
one finds
Al = \/Z3A), (4.10)
€0Z2\/ Z3 = €Z1 . (411)

Here Zj3 is the field strength renormalisation of the photon field. In QED the charge
renormalisation Z; is actually not an independent quantity, since the Ward-Takahashi
identities show, that Z; = Z, [PS95].

4.1.2 Renormalisation group equation

In Sec. 4.1.1 we discussed, that to fix the renormalised charge, and, in fact, all renor-
malisation parameters, one has to choose a certain renormalisation scheme. This
includes fixing the hard scale g2, which we found e.g. in Eq. (4.3), at a certain value
12, which is called the renormalisation scale. Once again the choice of this scale is
completely arbitrary and, thus, any observables calculated in the renormalised per-
turbation theory must not depend on it. This basically acknowledges, that the renor-
malised perturbation theory must give the same answers as the bare perturbation
theory, which, just like nature, does not know anything about a renormalisation scale.
Thus, the derivative with respect to y of any amplitude M calculated in the renor-
malised scheme must vanish. For the case of QED we found Z; = Z5, so M can only
depend on three independent renormalisation parameters (e.g. ¢, Z; and Z3) and one
tinds:

9, b, 379 37y D
an " Manae T op oz T ou azs

M(E,Zl,Z3) =0.
(4.12)

d
“Md—luM(e, er Z3) = KU
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4.2 The massive quark selfenergy

This equation shows, that any infinitesimal change of the scale y — u + du is exactly
compensated by infinitesimal changes of the renormalisation parameters. The coef-
ficient of the derivative with respect to e is an important mathematical object, called
the B-function (of QED):

Ble) = yS—; . (4.13)

It describes the change of the renormalised charge (coupling) with the scale y at which
the charge is probed. This scale-dependence of the electric coupling constant is called
the running of the coupling. Note, that in contrast the bare coupling e is really a
constant. The B-function of QED to one-loop order reads [PS95].
&3
ple) =+ - (4.14)

Note the sign of B(e), which is positive. This indicates that the charge increases with
increasing scale (or energy) u. In this picture e reaches its minimum value at u = 0,

where it is measured to be e(y = 0) ~ 4/ % (in natural units). However, one has to

be careful when extrapolating to very large energies, since as soon as e becomes O(1)
the concept of perturbation theory breaks down and the derivation of B(e) becomes
invalid.

In QCD the situation is completely different. The p-function of the strong renor-
malised coupling constant g reads [PS95]

_ 2np\ g
B(g) = — (1 - T) T (4.15)

where n f is the number of quark flavors. For n = 6, as in the standard model of par-
ticle physics, the sign of B(g) is negative! This implies, that with increasing energy
the coupling strength decreases and eventually perturbation theory becomes applica-
ble. This very important physical phenomenon is called asymptotic freedom and it was
discovered by Wilczek, Gross and Politzer [GW73, Pol73]. Unfortunately, asymptotic
freedom also implies that at small (soft) energy scales the strong coupling becomes
really strong, i.e. O(1) and, thus, perturbative methods alone are no longer applica-
ble. This is why the soft interactions among the quarks and gluons in the nucleon
are so hard to access theoretically. Therefore, non-perturbative phenomenological ap-
proaches to this problem might help to improve the theoretical situation. This thesis
is exactly aiming at producing such an approach.

4.2 The massive quark selfenergy

In Chapter 2 we calculated the massless quark selfenergy to one-loop order in QCD,
cf. Fig. 2.1. We want to repeat this calculation here for massive quarks and for gluons
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4 Remarks on renormalisation

with a (fictitious) finite mass. This calculation will serve as input for Sec. 4.4, where we
will determine the field strength renormalisation constant for the massive quark case.
This constant will then enter into our model in Sec. 8.1. To regularise anticipated
infrared divergences, a finite gluon mass is assumed. It is clear that any physical
observable must not depend on this fictitious mass and in Sec. 8.1.3 we will show
why this is indeed not the case.

Introducing a quark mass m and a gluon mass A the quark selfenergy to one-loop
order reads:

y d’k 7 (p—Kk+m)y
(p) = _Zgch/ Q) [(p— K2 — 2 + ic] [R2 e ie] -

Again we can draw on our results of Sec. 2.3. Introducing a Feynman parameter the
selfenergy becomes:

(4.16)

1

d m(y—
E(p) = ig'Cr / % O/dx [(1—x)((p— k,;/z Esz f—j_ei;ij—,):(kz —A2+ie))*
(4.17)
Shifting the momentum integration,
l=k—(1-x)p, (4.18)
one finds:
1
(p) = —ig?Cr / (zd%)d O/dxw (;Z’__AI(;’]Z) T (4.19)
with
Ax)=—x(1—-x)p*+ (1 —x)m?> +xA? —ie . (4.20)

The Dirac structure in the numerator can be simplified by noting, that the term pro-
portional to / vanishes due to symmetry considerations, and by contracting the vy
matrices:

d’I 1
27)4 (12 — A(x)]?

1
X(p) = —igZCp/dx((Z—d)ny+dm)/( (4.21)
0

The momentum integral is solved by a Wick rotation and an integration over d-
dimensional spherical coordinates, cf. Eq. (2.90):

1

£(p) = —igh- (2)°Cr [ dx (2~ d)xp + dm)
0

ir(z—g)Az—i @2
it (). e
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4.3 Field strength renormalisation

where we have replaced the coupling constant g by a dimensionless coupling gp and a
mass scale y, cf. Sec. 2.3.2. With ¢/ = % and expanding around €’ = 0 the selfenergy
now reads:

1

>(p) = (4g7§)2Cp/dx((26’—2)xp+(4—2€’)m) E—wln (4&5?)] . (423)
0

Finally, dropping all terms that vanish for €' — 0, one obtains:

B(p) = e [y ~2m (o eam (G = (1) )
1
+/dx2(xp2m)ln(A(x))] . (4.24)
0

The evaluation of the last integral in Eq. (4.24) is straightforward, however for our
purposes we postpone this calculation to Sec. 4.4.

4.3 Field strength renormalisation

In this section we introduce the concept of field strength renormalisation. To motivate
this concept, we recall that the propagator of a scalar particle in a free field theory has
the following form in momentum space [PS95]:

i

D(p,my) = — — [ d*x explipx) OITp(x)p(0)[0),  (429)

p? — m3 + ie

which is the Fourier transform of the time-ordered two-point function. The analytic
structure of D(p,mg) can be read off immediately:

- i
D(p,mg) = (po—\/ﬁsz%“Lie) (Po+\/ﬁsz%—i€> .

The free propagator has two isolated poles in the complex py plane and thus it de-
scribes the propagation of a pure one-particle state with mass mg, which is the (bare)
mass from the associated Lagrangian. Note that while for spin-1 fields the propagator
has additionally a Dirac structure, it still retains the analytic properties of the scalar
propagator concerning the pole structure.

(4.26)
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4 Remarks on renormalisation

- = - +«—@<~+

Figure 4.2: The full propagator as a sum of the free propagator and an infinite series
of selfenergy insertions.

4.3.1 The full spin-] propagator

In an interacting field theory the picture changes: due to self-interactions the prop-
agator acquires a more complicated analytic structure, which we will explore in the
following. In Fig. 4.2 we illustrate the concept of the full propagator for an interact-
ing theory with spin-% particles: by ordering diagrams by the number of selfenergy
insertions X, one finds, that the full propagator is represented by an infinite series of
diagrams.

In formulas, the full (interacting) propagator D can thus be written as [PS95]:

i(p +mo) i(p+mo) . . i(p +my)
D = —iy S\ o)
1(p) pz—m%+ie+ p2—m%+ie[ ()] p? — m} + ie
=z —mo+l€ p> —mf+ie |
Exploiting the known limit of the geometric series, Eq. (4.27) becomes:
i(p +mo Z(p)- (p+mo)|
Di(p) = 2(V 2 )- Z Zﬂz -
p? — mg +ie p? — mg +ie
i
— , (4.28)
p—mo—2(p)

where we have dropped the ie term in the last step. Note how the analytic structure
of the propagator has changed from the free case: the pole mass m( has been shifted
to a value m, where m is the solution of

[p —mo—2(p)],_,, =0 (4.29)
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4.3 Field strength renormalisation

Close to the pole p = m one can expand Eq. (4.29) and finds [PS95]:

%

[p—mo—E(p)] =0+ (p—m) [1 -S| om0

p=m
Ignoring all terms of O((p — m)?) and higher, the full propagator becomes:

N IZ(p) -
= [1 . 7',,_,”]

iz
T

_iZo(p +m)
T

(4.31)

The last result is very similar to the first term in Eq. (4.27): close to the pole the full
propagator looks like the propagator of a free particle with mass m, weighted by the
factor

Zy =

—1
ox(p) '
1_ , 4.32
5 FJ (432)

This factor is known as the field strength renormalisation factor and it is common to
name it Z5.

4.3.2 Spectral decomposition of the full propagator

We will now explore the physical meaning of Z;, as well as of the higher order contri-
butions in Eq. (4.30) (for simplicity we will use a scalar field theory for that purpose).
To do this, one has to investigate the time ordered two point function for the interact-
ing theory, which is, just as in the free case, the Fourier transform of the momentum
space propagator:
d*p .
| Gy @ (=ip(x =) Dilp) = (VITp(x)g(y) V), (4.3
where |V) is the vacuum (ground state) of the interacting theory. To simplify matters,
we will investigate the structure of the free propagator first and then generalise the
result for an interacting theory.
A very simple case of a free (non-interacting) field is the free Klein-Gordon field.
The excitations of this field are scalars (spin-0 particles) and in the following we briefly
summarise important properties [PS95]. The Lagrangian reads:

L= 3 (0u) (2"9) + g7 (4.34)
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4 Remarks on renormalisation

from which the equation of motion follows directly:
(90" + mf)p =0. (4.35)

Generalising the concept of the description of the harmonic oscillator in terms of
ladder operators, one finds for the time-independent field operator (with ¢ = ¢):

. dp 1 -
$(X) = /(2—7;7)3\/TTP <ap + atp> exp(ipX) , (4.36)

where E, = /% + m} is the energy of a particle with momentum 7 and the creation
and annihilation operators obey a commutation relation:

ap | = (@m0 (- 7) . (4.37)

The Hamiltonian can be written as:
d3 1
H = /(2—7_£3Ep§(a;§ap + apa;;) (4.38)
and the momentum operator is given by:
] &Ep
P— / Py (4.39)
For the commutator of H and P one finds:

" d®p E, d% _
[H’P} - / (2m)3 ZP (271)3q [a a’”+a7’a”’aqa"] ' (4.40)

With the help of Eq. (4.37) one can evaluate the commutator in Eq. (4.40):

[a ap+ apap,a aq} (271)35 (;5’ q) (a, pflg — :]rap)
(27'() (ﬁ q) (a pp — J;r;ap)
=0. (4.41)
Inserting this result into Eq. (4.40) gives:
5l _ dSP P Ty —
[H,P} = / ) ?p(a ap — apap) = 0. (4.42)

Since H and P commute they have a common set of eigenstates. These eigenstates
can be easily constructed, in total analogy to the harmonic oscillator, by successively
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4.3 Field strength renormalisation

applying creation operators on the ground state of the theory. We denote the ground
state for this free theory by |0) and note that, as usual:

apl0) =0. (4.43)

A one-particle state with momentum 7 is given by:

p) = /2Epa}|0), (4.44)

where the normalisation factor ,/2E, ensures, that the scalar product of one-particle
states is invariant under Lorentz transformations:

(qlp) = (0lag\/4E,Epat|0) = (27)%2E,08) (5 - 7), (4.45)

where in the last step we have used the commutator relation (4.37) and the normali-
sation (0|0) = 1. Lorentz invariance of (g|p) follows directly from the Lorentz invari-
ance of

d3
% = d*ps™ (p* — m3)O(po) - (4.46)
p

Many-particle states are of a different nature than one-particle states: their energy is
not fixed for a fixed total momentum g, but depends on the momenta of the particles
of the state. For example, for a two-particle state the energy is given by:

E:\/ﬁf+m3+\/ﬁ§+mg, (4.47)

where p; and pp = p — p; are the momenta of the two particles. However, we can also
express E in terms of the total momentum p and the invariant mass of the state M:

E=./p?>+ M?>. (4.48)

For a given invariant mass M the lowest energy of the state is realised for 7 = 0:

E=M=2\/pE+m5>2my. (4.49)

Since p; is not fixed, the energy spectrum of two-particle states is continuous. Ob-
viously, the same statement holds for all states with n > 1 particles. Thus, we can
characterise all states by their number of particles 7, their total momentum 7 and the
specific combination 7, of the momenta of each of the n particles:

1Ap) - (4.50)
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4 Remarks on renormalisation

We assume the states |1, ,) to be orthonormalised and so the completeness relation
for the full Hilbert space of states can then be written as:

0+ Yy [ ey ) (1l (451)

n=1 ny

Later on we will also need the completeness relation for the pure one-particle states
(n =1, my = myp):

d®p 1
111 part. — / (27_[)3 ZEp (m()) ‘1O,P> <1O,P| . (452)

Before we study the structure of the two-point function in detail, we note, that in the

Heisenberg picture one finds for the four momentum operator P = (H, P) and for an
operator O:

[P¥,0] = —id"O, (4.53)
from which immediately follows [PS95]:
$(x) = exp(iPx)¢p(0) exp(—iPx) , (4.54)

where ¢(x) = ¢(t, X) is the time-dependent field operator. Especially the time evolu-
tion of ¢(X) as given in Eq. (4.36) reads:

P(X,t) = exp(iHt) - (X) - exp(—iHt) . (4.55)
The series expansion of the exponential reads:
e e ((HE)"
exp(iHt) = };} i (4.56)

and so to interchange the first exponential and ¢(X) in Eq. (4.55), one needs these
commutators:

[H,a,] = —apE, (4.57)
[H,aﬂ — a'E, . (4.58)

Then the time-dependent field operator becomes:

p(x) = / (;53 \/mexp(i”;'-[t) <ap exp (ipX) —i—a; exp(—iﬁic’)) exp(—itt)
1

i RN + . oo
@n) IE, <ap exp(—iEpt) exp(ipX) + a, exp(iEpt) exp( sz))
1

(2n)® | /2E, (“P exp(—ipx) + a‘;, eXP(iPX)> : (4.59)
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4.3 Field strength renormalisation

Finally we are ready to investigate the time-ordered two point function of the free
Klein-Gordon field: first we insert a complete set of states, cf. Eq. (4.51). Then for
x% > 1% one finds:

(019(x)9(y)10) =0l (x >|o><0|4>< 2
LT [ s Oe@im,)

n=1 ny,

$(y)[0) - (4.60)

The first term vanishes, since the annihilation and creation operators in ¢(x) act on
the vacuum state to the right and to the left, respectively, giving 0. The matrix element
for all the particle states can be simplified with the help of Eq. (4.54):

(Ol (x)[nr,p) = (O] exp(iPx)¢(0) exp(—iPx)[ny,p)
= (0[¢(0)[n2,) exp(—ipx) , (4.61)

where in the last step we have used, that the vacuum has total momentum 7 = 0.
The momentum dependence of the matrix element has been factorised out into the
exponential, which can be seen in the following way [PS95]: we define a Lorentz
transformation Ay, which performs a boost from 7 to 0. Then we twice insert the
identity T = A, 1 Ay:

(01A, App(0) A, Aplna ) = (0[¢p(0)|map) (4.62)

where the Lorentz invariance of the vacuum and of ¢(0) have entered. Inserting Egs.
(4.61,4.62) into Eq. (4.60), the two point function is thus given by:

(0l(x = ¥ Y10l (O)ln0) / -

n=1 ny A

] exp(—ip(x—y)) . (4.63)

For 4° > x0 the result (4.63) is identical with x and y interchanged. Therefore, the
time-ordered two point function reads:

OTp(x)9(x)]0) = - 3 [{01g(0 |nm/2n32E N

n=1 ny
% [exp(=ip(x = y))|osyo + exp(=ip(y = 3)l oo | - (464)

The momentum integral is nothing but the Fourier transform of the Feynman (time-
ordered) propagator of a particle with mass m,:

OIT9(x)9 ()10} = 3 X 10l9(0) |mo!/dple"p I e

n=1 n, mA—i—le
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4 Remarks on renormalisation

All left to do is to calculate the matrix element in the last equation, which is straight-
forward for the free Klein-Gordon field (note that for the one-particles states we have

p) = [10,)
3
OIp(O)lmro) = | (;t;; ¢;T<0| (ap + a5) Imao)

- [ SF 2n32E (o,plm0) (4.66)

Remember that many-particle states |1, ) are created by successively applying cre-
ation operators on the vacuum:

n
|1),0) ~ f{“fn 0), (4.67)
1=

with Y ; i = 0. Thus, the matrix element in Eq. (4.66) can be evaluated with the
help of the commutator (4.37):

n
(Loplnr0) ~ (0lap ] Tay,10)
i=1

n

= (0] (ah,ap + (27)%® (5 - 7)) [147,10)

n
+ (0T Taj,10)(27)% (7 — 7
i=2

= 0,1 (27)%6®) (B — ') , (4.68)

and so obviously the matrix element vanishes for n > 1, since any creation operator
acting on the vacuum to the left gives zero. Thus, we find:

3
(0]¢(0)|np0) = / (;1 2;3 2115]9 (1o,p10,0)

— il 3:3) (7
/ > 3215 2E,(270)%6®) (B) 6
= On1 (4.69)

and so:

OTp(x)p()[0) = 3 Y [{0g(0) )] / dP 1eXP (Zip(x—y))

n=1 1y m + i€

d*p iexp(—ip(x —
_ / P p n]z(-i-zey)) . (4.70)
0
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4.3 Field strength renormalisation

In a free field theory the time-ordered two-point function is just the Fourier trans-
form of the momentum space propagator of a particle with mass my, i.e. it describes
the propagation of an exact one-particle state, since the matrix element in Eq. (4.68)
vanishes for all particle numbers n # 1.

Finally we will consider the case of an interacting theory, building on the statements
above. First one has to find the full Hamiltonian:

HF = Hfree + Hint ’ (4-71)

which commutes with the momentum operator Pr for the interacting theory. This
again implies, that they have a common basis of eigenstates, which are characterised
by particle number 17, momentum state 1, and total momentum p. The completeness
relation for the full Hilbert space then reads (|V) is the vaccum of the interacting
theory):

VIV + Y Z/ S 2E Gy @72)

n=1 1y,

Here m, is again the invariant mass of the n-particle momentum state n,. For n =1
one finds m, = m, which is the physical mass of an exact one-particle state and which
for an interacting theory in general differs from the bare mass mg in the Lagrangian.
The lower bound of m, might be somewhat below 7 - m, since in an interacting theory
bound states of n > 1 particles may form. Employing the same formalism as above
for the free theory, one finds for the time-ordered two-point function:

(V[Top(x)p(y)|V)
= const. + ZZ| V]$(0)|n0)] / d* P zexp (—ip(x —y))

= mA—He
d* p lexp(—lp(x—]/))
= const. + |[{V[¢(0)[10,0)| / p? —m2 +ie
+ ZZ| V|p(0)[np0)| / d p lexp —zp(x—y)) , (4.73)
P —m3 +ie

where |1g) is a one-particle state with mass m and momentum 7 = 0. The constant
term usually vanishes (as in the free case above) [PS95] and so the first contributing
term in this expansion by particle numbers is just the one-particle state. Then the
propagator in the interacting theory (the Fourier transform of the time-ordered two-
point function) takes the form:

Di(p) = i[(V9(0)[100)|”

p? —m? +ie

-+ mult.-particle contributions . (4.74)
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4 Remarks on renormalisation

Close to the pole p> = m? the propagator looks like a propagator for a free particle
with mass m, multiplied by the factor Z, = |(V|¢(0)|190}|>. Thus, the interpretation
of Z, for the interacting theory has become clear. It is the probability to create from
the vacuum an exact one-particle state. In contrast to the free theory this probability
is in general no longer 1, but one finds 0 < Z, < 1 [BD65].

This result for Z, can be generalised to spin-; fields [PS95] and so returning to Eq.
(4.31) we can write for the full spin—% propagator:

iZy(p +m) : L
Di(p) = 5— 55—+ It.-particle contribut
1(p) P22 e + mult.-particle contributions
close to the positive-energy pole Z i ( V Zzﬁs(p)) ( \ Zzus(p)) (4.75)
s p? —m? +ie ’ '

where we have used the completeness relation for the Dirac spinors, see Appendix
A.4.3. Finally, Eq. (4.75) implies how to modify the Feynman rules for the interacting
theory: for every external fermion assign an additional factor \/Z;.

4.4 QCD field strength renormalisation for massive
quarks

In Sec. 8.1 we will need the field strength renormalisation factor Z; calculated to first

2
order in the QCD coupling a5 = g—% and we will calculate this quantity already at this
point. Starting from Eq. (4.32) an expansion in «; yields:

aZ(P)‘
Zy=|1- =2
N -
=1+ aza_;p)‘ +0(a?) . (4.76)

Inserting the expression for the quark selfenergy derived in Eq. (4.24) one finds:

X (p) g 1 »

'p_m 47
1
+/dx <2xln(A)|p_m—i—2(x—2)maln(A)‘ )] . @477)
0 p=m

dp
with

A= —x(1—x)p*+ (1 —x)m*+xA? —ic . (4.78)
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4.4 QCD field strength renormalisation for massive quarks

Using p? = (p)? the integral becomes:

1
:/ x2xln — x)?m? + xA% —ie /dx4m
0

We note that:

—2(1 — x)m?

1
dln (A)
O/ <2xln |Vm+2(x—2)m 3 L:m>

x(1—x)(2— x)

(1—x)2m2 + xA2 —

)\2

(4.79)

9 2.2 2_ )
aln((l—x) m” + xA —ze> =1

and so we can rewrite the second integral:

x(1—x)(2—x)
(1 —x)?m? 4 xA? —

L = /dx4m2

1

_ N 22 2 _

—/dx2x(2 x)[ aln((l xX) m" 4+ xA° —ie
0

Integration by parts yields:

L= ~2In (A2 ~e) +/dx4(1 —x)In ((1-x

)\2

1—x)?m? 4+ xA? —

e T (1—x)2m? + xA% —

)\2

(4.80)

) + (1—x)2m? + xA2 —

2m? + x\?% — ie)

dx2 .
+0/ * (1 —x)?m? 4 xA?2 —ie

Then:

I=-2In </\2 —ie) +/dx41n ((1 — x)?m® + xA? —ie

—/dexln ((1—x)2m2—|—x/\2—ie) —|—/dx2(1_x
0

3

(4.81)

(4.82)

(4.83)
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4 Remarks on renormalisation

Substituting y = 1 — x we find:
1
[=-2In (AZ - ie> + /dy2ln <y2m2 +(1—y)A2— ie)
0

1 1
)\2
2,2 A2
—i—o/dyZyln (y m-+ (1 —y)A ze> +O/dy2y2m2+ Ay —ic (4.84)

The fictitious gluon mass A was introduced to regularise possible infrared divergences
in the integrals. However all three remaining integrals are actually convergent for
A = 0, which we will show in the following. We begin with:

1
I; = /dyZIn <y2m2 +(1—y)A? - ie) . (4.85)
0

For A = 0 the argument of the logarithm is always positive and we can drop the ie
term:

I3 = /1dy2ln <y2m2>
0

= 21n (m?) +4/1dyln(y)
0
—2In (m2> —4. (4.86)

For the second integral one finds analogously:
1
Iy = /dy 2yIn <y2m2 +(1—y)A? - ie)
0

A—0 _ /ldy 2yIn <y2m2>
0
1

=In <m2> + /dy4y In (y)
0

—In <m2> 1. (4.87)
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4.4 QCD field strength renormalisation for massive quarks

The integrand of the third integral vanishes for A — 0, except for the null set consist-
ing of y = 0, where the integrand approaches one. Thus:

1 AZ
k5= /dyzyzmz +(1—y)A? —ie
01
A=0 _ / dy0=0. (4.88)
0

Summing up the results, we find:
[=2In <A2 - ie) +3In (m2> _5. (4.89)

Since A2 > 0 one can drop the ie term and so the field strength renormalisation factor
to O(as) reads:

- _ 1 4ty A2
Zz—l—l—a— ) _1+ECF {—4—g+7—ln( - )—ZIn(Wﬂ . (4.90)

Note again the appearance of the fictitious gluon mass A, which was introduced to
regularise the infrared divergences. Any physical observables calculated with the
help of Z; must be independent of this mass and we will show in Sec. 8.1.3 why this
is indeed the case.
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Infrared divergences and soft radiation

In theories with massless states loop integrals usually suffer from infrared diver-
gences, as was seen in Chapter 3 and 4. However, such divergences can also arise
from other processes, namely those involving the radiation of soft (close to vanishing
energy) particles. In this chapter we will explore an example for such a process and
then calculate the divergent contribution of soft gluon bremsstrahlung for massive
quarks. In Sec. 8.1.3 we will then see, that this divergent contribution exactly cancels
against the soft loop divergences, which is an explicit proof of the Kinoshita-Poggio-
Quinn [KU76, Kin62, PQ76] and Kinoshita-Lee-Nauenberg [Kin62, LN64] theorems
for our special case.

5.1 Example of an infrared divergence

To provide a simple example, we consider the process depicted in Fig. 5.1: two scalar
particles with momenta p; and p; and identical mass m scatter into two different
scalar particles, one with momentum g and mass M? (zigzag line) and one with mo-
mentum k and mass A (dashed line). The exchange particle we assume also as scalar
and having mass m. We will now calculate the cross section for this process and then
study the massless limits A — 0 and m — 0.

Since the scattering can occur through any of the two diagrams, we have to add
their amplitudes coherently and, omitting constants, we find:

1 1

(5.1)
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5 Infrared divergences and soft radiation

P, m koA pa, 7,M

_>
p1,m q.M p1,m k,A

Figure 5.1: Scattering of two scalar particles into two different scalar particles.

and the relevant part of the cross section reads:

do ~ 6@ (p1+p2—q—k) M| 2E, 2E; .

(5.2)
One can now rewrite the g integration into a four momentum integral times a /-
function:
3
4 d7k

do ~ 6®) (p1+p2—qg—k)o (qz—M2> ]M|2d qz—Ek

, d%k

— _1\2 _ AL2 el
=5 ((pr+p2—R? — M) M

In the center-of-mass (c.m.) frame, with the initial particles moving along the z-axis,
the four-momenta of the particles become:

p1= (ﬁ 0,0 5—m2) , (5.3)

2\ g
p2 = g,o,o,—\/ﬁ> , (5.4)
k= (Ek,E) ) (5.5)
7= (Vs—E,—k) (5.6)

with Ex = 4/|k|? + A2. Then:

(1 +p2—k)2 =M =s5— M>+ A2 —2\/sE, =0

s — M? + A?
:>Ek:2—\/§
5 S—M2—|—/\2_Ek
:>5<(P1+P2—k)2—M2>: ( Z\f\/g >, (5.7)
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5.1 Example of an infrared divergence

and so one can replace the J-function in the cross section (note that dE; = E£}Jd|%|):

—M2+A? -
d 0 (S 25 Ek> 2 [k[dEpd QY
7~ e M2 S (5.8)

The propagator denominators in Eq. (5.1) become:
(p1—k)> —m?* =A% —2p; -k =A%+ (—\/§Ek + Vs — 4m2|K| cos 9k> , (5.9)
(pp—Kk)2—m?> =A% —2py -k =A%+ (—\/EEk + /s — 4m2|K| cos(7 — Ok)>
— 224 (—\/EEk — Vs — 4m2[k| cos ek) . (5.10)

and, thus, the squared matrix element reads:

2
MP = 1 N 1
(p2 —k)>—m? "~ (pr—k)> —m?
2
_ 2% — 2\/sE
M 4 (SEZ — (s — 4m?2) k|2 cos? 6;) — 2A2+/3E;
2
B 2A% — 2./sEy (5.11)
A4 A2 4 5]k[2(1 — cos? 0 ) + 4m2|k|? cos? 6 — 2A2/5Ej '

Inserting Eq. (5.11) into the cross section formula (5.8) and carrying out the Ej inte-
gration yields:

2 o
do A% — s+ M? k| Ay 5.12)
A% 4 5A2 4 5[K|2(1 — cos? 0;) + 4m2|k|? cos? 0 — 202 /SE¢| 45
with:
. — M2+ A2\?
KPP =E2 A2 = (%) 22 (5.13)
S

As long as A and m are finite this cross section is well defined. However for A — 0 it
shows a soft divergence:

2
lim do —s5 4 M? s — M? dQy
Am0 e 2 )2 25 4
- s (2\%2) (1 — cos? 6y) + 4m? (%) cos? Oy Vs 45
2
~ 4s € (5.14)
s(1 — cos? 0) +4m? cos? ;| 8s (s — M?)
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5 Infrared divergences and soft radiation

If we lower the c.m. energy down to /s ~ M, the cross section becomes infinite,
which is unphysical. The divergence is called soft, since k| ~s — M2, and thus close
to the threshold, the energy of the particle with momentum k becomes arbitrarily
small. However, the cross section even bears another type of divergence, namely a
collinear divergence, as one can see by letting in addition m — 0:

1
1
li ~ /d O , 5.15
a0 : €08 (1= cos? ;)2 e (6.15)

which is clearly a divergent quantity. The divergence occurs for cosf; = 1, i.e. for
0 = 0, which implies that the particle with momentum k is emitted collinearly. Thus,
this kind of divergence is called collinear. In physical terms this divergence can be
understood by acknowledging that collinearly emitted particles continue to interact
and cannot be assumed to be asymptotic states. Therefore, in the collinear regime the
scattering cannot be described by the two simple diagrams in Fig. 5.1, but one would
have to take into account all the interaction processes among the collinear particles.

In this section we have explored two types of infrared divergences, namely soft and
collinear ones. As we have seen, soft divergences can be regularised by assigning a
finite (fictitious) mass to the emitted particle. This is exactly analogous to regularis-
ing infrared divergences occurring in loop calculations, cf. for example Sec. 4.4. As
already mentioned, physical observables must not depend on this fictitious mass and
we will see that this is indeed the case. Note that the collinear divergences obviously
only occur when both the emitted and the exchanged particle are treated as mass-
less. Thus, collinear divergences are absent in any calculation with massive exchange
particles.

5.2 Soft gluon bremsstrahlung

In Sec. 8.3 we will calculate the cross section for gluon bremsstrahlung in DY pair pro-
duction. Since the gluon is massless, this cross section also suffers from a divergence
originating in the emission of soft gluons. Therefore, we will introduce in Sec. 8.3 a
fictitious gluon mass to regulate this divergence, just as we did for the loop process
in Sec. 3.2. To proof that the cancellation of these soft divergences still holds in our
scheme, we will calculate the cross section for g5 — 7*g (which is closely related to
DY pair production, see Sec. 7.3.2) in the soft gluon limit and isolate the divergent
piece. This piece we then can compare to the divergent part of the loop correction in
Sec. 8.1.3 and there we will see that they exactly cancel.
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5.2 Soft gluon bremsstrahlung

— N — —
P2 « k p2 H q
no g ppoo* )

Figure 5.2: Quark-antiquark annihilation into a virtual photon with gluon emission.

5.2.1 Cross section

The relevant processes are depicted in Fig. 5.2. We employ the following conventions
for the masses of the particles:

pi =mi, (5.16)
p5 =m3, (5.17)
7 = M?, (5.18)
=A%, (5.19)

and we keep the mass of the quark fixed at the quark-gluon vertex. Thus, in the left
diagram the exchange quark has mass m, and in the right diagram mass m;. Note,
that we break current conservation at the quark-photon vertex, since there the quark
mass changes. However, this is of no consequence to the argumentation in this section
and in DY pair production this problem is overcome, see Sec. 7.3.3. « and u represent
the Dirac indices at the vertices. Using the Feynman rules of Appendix B one finds
for the sum of the amplitudes:

—p, + K+ my — K+ my . .
Er U el RN UED

= egt® - 05(p2) 5™ ug (p1) - €, (q)ex (k) , (5:20)

M = egt” - 55(p2) | ¥

where t7 are the SU(3) color matrices, cf. Appendix A.5. Averaging over initial and
summing over final states, one recovers:

-— 2 1 — a _ v * *
M = 35 X Cr (s s (po) (p)SPes(pr)-€if0)es K)ena)epth
s,5" polaris.
62g2
= e BT [(p, — ma)S ™ (py +m1)S"] - s 5:21)
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5 Infrared divergences and soft radiation

where the calculation of the color factor Cr is given in Appendix B.2. The cross section
for g7 — 7*g then reads:

(270)*6W (p1 + p2 —k —¢q) ‘—| d°q &’k

d .
7= (27)2E, (271)32E;

(5.22)

41/ (p1- p2)? — mim3
We are performing calculations in the soft gluon limit (cf. introduction of Sec. 5.2) and
we define this limit by choosing an energy scale w, which is much smaller than the

energies and momenta of the participating quarks. Then we require for the energy Ej
and the momentum & of the gluon:

E<w, (5.23)
k| <w, (5.24)

and so we can neglect k in the following places:
0 (pr+pa—k—q) =8 (p1+p2-1), (5.25)
and

(py —m2)S™ (py +my)

o WPyt K+m " y;ﬂl—lé+m1 N
+m
—(py —ma) ['Y _szp 2 'YV +’YV%’Y“} (py +m1) . (5.26)

Now we note that:

(py = m2)y" (py — m2) = (2p3 — 7" (py + m2)) (= py + m2)
= 2p5(—py +m2) . (5.27)

An analogous relation holds for (p, + mq)y*(p; +m). Then:

(= ) ) = (py = ma)(py ) | P2 PL g
and:
B pﬁ
(py+m1)S"P(py —ma) — (py +ma)7" (py — ma) [pfz-k - Pl%k] - (5.29)
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5.2 Soft gluon bremsstrahlung

Therefore the squared matrix element becomes:

J— 62g2 poc pac plg p,B
_ o U vy . 2 1 2
‘M’ = G Tl = ma)y ey 4 m) 7] {Pz ko p -k} P2k prk "8uv8up
o a 72
=Cr f [(VZ - mZ)’)/V(Vl + ml)’)’v} : Lﬂfzk - pflk} “8uv s (5.30)

where the square of the expression in brackets indicates contraction over the Lorentz
index a. Inserting Egs. (5.25) and(5.30) into the cross section formula (5.22) one finds:

277)45%) - ’g?
_(@n) (P1+"’2 ‘7>cpe ST [(p, — m2)y" (py + m1)y"]

4\/ p1 Pz — m? m2 4
‘ [ P2 P1 dsq d’k

do

2
p2-k ﬂ} S (27)32E, (271)32E
_ o (prtpr—q) e
4/ (pr - pa)? — mdm3 *
d’k

2
(- |- M . (5.31)
pz . k Pl . k (27T)32Ek

d3q
—Tr [(py — m2) ¥ (py +m1)y"] - (= g’w)m

We have effectively separated the phase space of the virtual photon and the gluon and
so all left to do, is to solve the following integral:

[ k[ r
‘%|< Ek _pz-k plk

_ d3k [ m3 N m3 N m3 +m3 — g 5:32)
R (TR I TR R
<w

where we have used, that in the soft gluon limit (p; + p2)? — ¢°.
The first part of Eq. (5.31) is just the Born cross section for the process g7 — v* and
so the cross section for soft gluon emission becomes:

do = dO'qq_y),* CF (533)

47‘(2( I

5.2.2 Phase space integral for soft gluons

The idea how to solve the integral I in Eq. (5.32) is the following [tHV72]: in the last
term shift one of the momenta by a parameter « (cf. Sec. 3.1.3) and then introduce a
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5 Infrared divergences and soft radiation

Feynman parameter to combine the two factors in the denominator. Then all three
integrands will be of the same type and thus all we have to do is to find their solution
once:

1 ®
(p1-K)(p2- k)~ (p-K)(q-k)°

with p = ap; and g = po. We will see in a minute which value to choose for a. First
we introduce Feynman parameters to combine the two denominators:

(5.34)

m:/dx[xp-k—i—(l—x)q-k]2

dx [(xp + (1-x)q) - k]2

dx [k : k] - (5.35)

O O~ _©°

Now all three terms in Eq. (5.32) are of the same form and we have to solve the

following integral, where we use p? = (p°)? — |p|> = m?:

:/|k\zd|k\/dcos(9/dqo _
/ L

1
= 2t [ [kPal] [ dx ! !
0

N 2
2 VIR (4o - 71l

) 1
:27r/|k|2d|k| 1 7
|k|2+/\2|p||k| |%|2+/\2_|ﬁ||k|x -1
1 1
| | | | |E|2 a2 (p9)2(|k|2 + A2) — | 7)2|k|?
w
- 4n/ PR — : 30

] IR|2 + Az mPLk? =+ (p0)A2
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5.2 Soft gluon bremsstrahlung

Euler substitution of the first kind gives:

- . 5 uZ _)\2
u=\/|k|2+ A2+ k| = [k| = T (5.37)

T 2_ )2 2, )2
o R e (5.38)
du 2u? 2u?
and so the integral becomes:
2
VaZ+A 2 +w 24 A2 (uzz—u/\2>
I, =4 / du 2 5
2_)2 2_)2
A (u_ MZMA ) (<u2u)\ ) m2+)‘2(p0)2>
\/m‘F(U (1,{2 . )\2)2
— 4 / du g . (5.39)
1 u <(u2 —A2)"m? + 4u2A2(p0)2>
Partial fraction decomposition yields:
Va2 +A24+w , Va2 +A24+w 102 ﬁ u
L =4 — —4 i :
2= / duumz & / du utm? + u?(2(pY)? — m?)2A% + A4m?
A A
(5.40)

The integrand of the second integral in the last equation at most diverges like % near
u = 0, thus:

2 —Az s

lim [ du— = lim |—

A—0 us3 A—0 | 2u? A
A

[t
- 2
= const. , (5.41)

and so the second integral is not divergent for A — 0. Since we are only interested in
the divergent piece, we retain only the first integral of Eq. (5.40):
Vw?+A24w

IV — 457 / du—s

A AT o (2—“’) . (5.42)
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5 Infrared divergences and soft radiation

We have finally found the divergent part of the integral in Eq. (5.32):
2 / 2
1% = 87log e + 47 (mf +m3 — %) /dxAﬁ log = (5.43)
A J k2 A
Only one integral remains:
/1
0

One can make use of the parameter a, so that the coefficient (p — q)? of x? vanishes,
which simplifies the x-integration:

W‘>| =Y

1 1
x 14
5.44
0/ x(p—q) +q)° O/ 2p—q)?+2x(p—q)q+q* 649

| |
(p—9)?=0=a’pi —2apipa+p3=0. (5.45)
In the soft gluon limit (p; + p2)? = 4% and so we find for a:

a?m? + a(m? +m3 — q*) + m3 20 (5.46)
2
m2 42 — 2 M2 42— a2 2
SO L e L Sk S mytm g Ak i R (5.47)
2my 2mq my
We are free to choose among the solutions and in the following we will use:
2
2 2_ 2 2 2 _ 2 2
miy+m5—gq miy+m; —g m3
Ni=py = ———————— F —_ ] ——. 5.48
- 2m? J < 2m? m3 (548)

Also note that:
20 q=p" 4+ —(p—9)’=p"+07=20p-9)-q=p"—0q". (5.49)
Thus, Eq. (5.44) becomes:

2(p—9q)-9q q°
2
w p
= lo (—)
72— g & 72
« a’m?
_ 1) 5.50
a?m? — m3 °8 ( m3 (5:50)
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and so the divergent part of I finally becomes:

24 2 2 2,2
1% = 8rrlog (2760) +47_(0c(m1 +2m2 211 ) log <‘X st log (Z_w)

2 _ 2
o my ms ms

4e? a(m? +m3 — g?) a?m?
=2mlog [ = | |2 L2 1 L. 5.51
" Og( 1 ) e my B\ g o2l

Inserting the last equation into Eq. (5.33) finally yields the divergent part of the soft
gluon emission cross section:

i T I R B
do —quqﬁy*.CpEIOg(v) [—2— 3 log m% . (5.52)

5.3 Aspects of soft bremsstrahlung

As already mentioned above, the soft gluon divergence of the last equation exactly
cancels against a similar divergence arising in virtual (loop) processes at the same
order of ag, cf. Sec. 8.1.3. This cancellation is no mathematical coincidence, but a
physical necessity, as we will lay out in the following: consider an experiment, set
up to measure the total cross section of exclusive bremsstrahlung, like for example
ete” — utu 7y, where a real photon is emitted and detected. Since the photon
is massless, the results of the current chapter tell us, that the cross section should
actually be infinite (soft divergence). However, measurements always find a finite
cross section for such a process. The reason lies in the experimental setup itself: every
real detector, for e.g. photons, has a lower sensitivity bound below which it will not
detect the photon anymore. In other words, all photons with energy smaller than
the energy resolution w of the detector pass by unnoticed. All these events look
like non-bremsstrahlung ete™ — utu~ processes to the experimenters. Thus, one
actually measures not the total bremsstrahlung cross section, but the cross section
for bremsstrahlung with photon energy E, > w. However, in Sec. 5.1 above we
found, that the divergent (soft) part of the cross section emerges for E, — 0 and
so the resolution w of the detector itself actually regularises the cross section. Thus,
any prediction made by theory has to take into account the regularising resolution
parameter w.

The situation is rather different, if one considers the total cross section of an in-
clusive process, like e"e™ — uTu~ X, where the particle(s) X is(are) not detected.
While the measured cross sections are of course still finite, in theory one encounters
soft divergences as shown above, for example when X is a real photon. One can
regularise these divergences in any scheme of choice, for example by introducing a
photon mass. However in contrast to the exclusive measurement, no regularising pa-
rameter is provided by the experiment, since the photon is not detected. Therefore,
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5 Infrared divergences and soft radiation

it becomes immediately clear, that a prediction made in any consistent regularisation
scheme cannot depend on a regularising parameter like a (fictitious) photon mass.
The theorems by Kinoshita-Poggio-Quinn [Kin62, KU76, PQ76, Ste76] and Kinoshita-
Lee-Nauenberg [Kin62, LN64] actually prove, that in perturbation theory in QED and
QCD this cancellation of soft divergences in inclusive processes is fulfilled in all orders
of the respective coupling constant.
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Nucleon structure

This chapter is devoted to the details of studying the structure of the nucleon. The
standard tool to experimentally access the structure of charged particles is electron
scattering and we will first derive the formalism for elastic and inelastic electron-
nucleon scattering. Since in inelastic scattering the partonic nature of the nucleon is
revealed through Bjorken scaling, we will then study its partonic content and intro-
duce the parton distributions functions (PDFs). Finally we will look into the proper-
ties of the PDFs and the origin of Bjorken scaling violations, which lead to the DGLAP
equations, that describe the evolution of the PDFs with the hard scale. The ideas of
this chapter have been drawn from [PS95, HM84, ESW96, Jaf85], to which we refer for
more details.

6.1 Electron scattering

QED is the quantum theory which describes the electromagnetic interaction among
charged particles and it is the best understood theory of all quantum theories. One
reason for this is that the electromagnetic coupling constant « is rather small in the
energy ranges accessible by experiments, which allows the application of perturbation
theory. For the same reason the scattering of electrons (or in general charged leptons)
is an ideal tool to probe charged objects, since the leptonic part of the interaction is
well under control. In this section we will first develop the formalism for electron-
muon scattering (i.e. scattering off point-like targets) and then generalise the concept
to scattering off protons.
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6 Nucleon structure

q4

K H

Figure 6.1: e~ u~ — e~y scattering to lowest order in QED.

6.1.1 Elastic scattering on point-like targets

In Fig. 6.1 we show the process under consideration here, namely elastic electron-
muon scattering to first order in QED (i.e. one-photon exchange approximation).
Using the Feynman rules of Appendix B, one finds for the amplitude of this process:

iM = 2y (K') (—ien" Yus(k) - _% g (p') (—ien*)us (p)
2

= M = —is(K') v us (k) iy (p')yuus (p)

NN

le le
N

it (kK (p, 7)), (6.1)

where we have introduced the leptonic currents of the electron ]5 _ and the muon

jﬁ_. Squaring the amplitude, averaging over initial and summing over final spins we
obtain:

s,t S’,t’
et woopp
= q—4-Le, Liy . (6.2)
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6.1 Electron scattering

The leptonic tensor Lf " of the electron can be evaluated using the completeness rela-
tions of Appendix A.4.3 and the trace relations of Appendix A.4.2:

L= Zus Yyt ue (k)i (k) us (k')

= %TR [(K + m)y" (K +m)y"]

= 2 [k 4+ KK + g (m? — K - K)|

= 2[R KK g (i — K K)] (6.3)
where m is the electron mass. Completely analogous one finds for the muon tensor:

with the muon mass M. Note that the electron and the muon current are conserved,
ie. quj = qyj’;, =0, where g = k — k' = p’ — p. Thus, one also finds

qul!Y =g, LY = qu;‘K = qVLgZ =0. (6.5)
We can now contract both leptonic tensors and obtain:
LY L, =42(p k) (p-k)+2(p k) (p-K)
—2(p/p)m =2 (K k) M2 — 4] (6.6)

Finally we are ready to calculate the cross section for elastic electron-muon scattering.
For 2 — 2 scattering, as in our case, the cross section reads, cf. Appendix A.6:

2m) 6@ (p+k—p' — k) w112 d3py d3r

do = ( 3 3 :
4/ (p -k — M2 (271)° 2p}y (2)° 2E!

(6.7)

In the laboratory (lab.) frame, where we assume the muon to be at rest, the four-
momenta of the particles become:

k=(EF), 6.8)
K = (E',E’) ) 6.9)
g=(v,§) = (E —E k- l?’) , (6.10)
p=(M0) . (6.11)
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6 Nucleon structure

For large beam energies E we can neglect the mass of the electron and thus find
|k| = E and |k’'| = E’. The cross section in the lab. frame therefore becomes:

d — et LFY LH_5(4) k S N2 o (p! d4 /dBk/
ot = o imgalh o (pk =y =) ((P2) @ (h0) d*p' Sy
2 371
I pooppe N2 g2 d’k
= Eriie L ((p+k—K)? = M) S, (6.12)

where we have introduced the electromagnetic coupling constant « = %. We define
the scattering angle between incoming and outgoing electron as 6, which results in:

¢* = (k—K)? = =2k -k’ = —2EE’ + 2EE’ cos §
= —4EE’sin2§ . (6.13)

Note that p - g is not an independent variable:

2
M= (p) = (p+q) =M +2p-q+q°
= qz =-2p-q=—-2Mv. (6.14)
The last relation is a typical feature of elastic scattering and a similar relation will

play an important role in the inelastic case in Sec. 6.1.3. The energy of the outgoing
electron is fixed by the J-function in Eq. (6.12):

(p+k—K)>—M>=0 (6.15)
= 2M(E — E') — 4EE’ sin? g =0 (6.16)
, 2ME
2M +4Esin® §
E (6.17)

N 1—|—2%sin2§ .

Note that the energy of the scattered particle changes since we are considering elastic
scattering in the lab frame. This is due to the recoil of the target with mass M. For
very heavy targets (i.e. M — o0) initial and final energy of the light scattered particle
become equal, cf. Eq. (6.17). In any case in elastic scattering the final energy is fixed
by the mass of the target, the initial energy and the scattering angle.

With all these considerations the contraction of the leptonic tensors can be rewritten
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6.1 Electron scattering

in terms of the initial and final energy of the electron and the scattering angle:

LY Ly =4 2K (p+k=K)) (p-K)+2 (K - p) (k- (k4 p—p) =2 (K- k) M?|
=4 |(—q?+2E'M) EM + (¢* +2EM ) E'M + ¢*M’|

— 4 [AMPEE' — Mg?v + qZMZ]

— 16M2EE' [1 + % sin2 & gin? 9]

2 2
6 2 6
_ 2/ 204 .oV
= 16 M“EE {cos > T e sin 2} . (6.18)

Inserting the last equation into the cross section formula (6.12) yields:

2 2
a"8M 2 4 q 2 0 / ! 32 4 N2 3¢/
dUlab: q4 |:COS E—WSITI E ) ZM(E—E)—4EE s E (E) dE'dQ).
(6.19)
The J-function in the last equation can be used to perform the E’ integration:
/ ! i a2 0 / / E i 2 9 - /
6 (2M(E —E') —4EE'sin” 5 |dE' =6 | E' — ——5——4 | |2M +4Esin" 5| dE
E E
=6 E - dE’, 6.20
( 1+2%5in2§> 2ME (6:20)
and so finally one finds for the cross section:
2 (73 2
doja, _ 4a” (E') 02?1 42?
dQ g* E 2 2M? 2
2 / 2
« E 5 0 qg° . -0
= ———FF— = — = . 21
1E2 sin4§ 3 [cos >~ o SN 5 (6.21)

A closer look at Eq. (6.21) reveals the nature of the different contributions. The first
term is just the cross section for Rutherford scattering:

2
dalab

dQ)

4 (6.22)

- .40 -
Ruth. 4E%sin® 5

It describes the scattering of a light, spinless and point-like charge on a very massive,
spinless and static point-like charge and it shows the characteristic sin—* g behavior.
The second term takes into account the recoil of the target, as already mentioned
above. The expression in brackets has two parts and to find their origin we consider
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6 Nucleon structure

the case of scattering on a spinless muon. What changes is, that the muonic current is
now simply given by [HM84]:
o=+ p (6.23)

The leptonic tensor of the muon then reads:

Liw = (p+P)ulp+p), (6.24)

and so the contraction of the two leptonic tensors for a spinless muon becomes (we
again neglect the electron mass):

LYY Ly =2 [KPK + KK+ g (=K - )] (p+ P )u(p+ 1)
=22(K-(p+9)) (k- (p+9)) + (p+ )2 (k- K)?]
—2 :2 (K- 2p+k—K)) (k- @p+k—K)) + 2p+k—K)2 (k- k')}

- , , s
=2 2(2ME’—%> <2ME+%) +(4M2+4Mv+q2)%}

2My=2M(E-E")=—¢* _ _8M2EE’ 4 2M2q2}

= 16 M2EE’ {1 — sin? g]

0
= 16 M?EE’ cos? 5 (6.25)
The resulting cross section is (Mott scattering):
dalab tXZ E’ 2 0
= ——— = 2
dO Mott AF2 sin4g E CcOos 5 (6 6)

Comparing Eq. (6.26) with Eq. (6.21) we find, that the cos? g term must be due to the
interaction of the electron with the charge of the muon, since in the former equation
the muon is treated as spinless. Note that this term vanishes for backward scattering
(i.e. 8 = m), which is a consequence of the helicity conservation of the vector interac-
tion among particles at very high energies [HM84]: clearly an electron scattered at an
angle of 180° would have to experience a helicity flip and thus the cross section for
this process vanishes. Since the difference between Egs. (6.26) and (6.21) is the spin of
the muon, the remaining term proportional to sin? g has to originate in the interaction
of the electron’s spin with the muon’s magnetic moment (i.e. its spin).

Obviously the structure of the target is encoded in the angular distribution given by
the term in brackets in Eq. (6.21). Thus, by scattering off electrons of targets of interest
and measuring the angular distribution of the outgoing electrons, information about
the targets internal structure can be obtained. Specifically, any deviation from the
form of Eq. (6.21) hints to a non-point-like structure.
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ql

p p

Figure 6.2: ¢~ p — e~ p scattering to lowest order in QED.

6.1.2 Elastic scattering on the nucleon

We are now in a position to investigate elastic electron-proton scattering for which
the leading order process is shown in Fig. 6.2. The structure of the amplitude for this
process is very similar to the corresponding amplitude of electron-muon scattering,
cf. Eq. (6.1). The major difference is that the interaction of the virtual photon with the
proton is no longer a pure vector interaction ("), but, in our ignorance of the proton’s
structure, we have to assume a more general form:

—iQuy —
qg;‘ ity (p) (—ieT" )us(p)

iM =y (K')(—iey" )us (k)

N

= M = — iy (K')y"us(k)ig (p")Tus(p)

NN

UK Ju(p,p') (6.27)

&lm &lm
N

where we have introduced the hadronic current J,. Since I', transforms like a four-
vector, Lorentz invariance demands that the most general form must be constructed
out of 7,, 7° and the incoming and outgoing momenta p, and py. However the

electromagnetic interaction conserves parity and so y° cannot be involved. Employing
the Dirac equation, cf. Appendix A.4.3, one finds, that the most general ansatz reads:

r,= A7y+B(p/+p)y+C(P/_p)y ’ (6.28)

where have introduced combinations of the momenta p, p’ for convenience and where
A, B and C are Lorentz scalars. They degend on the Lorentz invariant quantities
p*> = M;, p> = Mj and p-p' = Mj — 34°. Thus, A, B and C depend only on

g%. Finally we can exploit the conservation of the hadronic current, which demands
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(remember: g = p' — p):

7" Ju(p,p') =0 (6.29)
=ity (p) (Ag +B(r? = (1)) + Ca?) ug (p) = 0 (630)
=it (p') (Cq) usr(p) = 0 (6.31)
=C=0, (6.32)

where we have exploited p? = (p')? = M%, and the Dirac equation:

iy (p)p" = iy (p' )M, (6.33)
puy (p) = Mpuy(p) . (6.34)

Thus, we are left with only two terms:
Ty=Av,+B{p +p). (6.35)

The (p’ + p), term actually contains a vector and a tensor interaction and it is conven-
tion to decouple these two by applying the Gordon identity, which reads for fermions
with mass m [HM84]:

ia(p")vuu(p) = ap’) u(p), (6.36)

with the Dirac sigma symbol ¢y, = % [y, 7v]. Thus, we can replace (p' + p), in Eq.
(6.35):

Ouy
Ty = F(4*) 7 + Ra2(4%)i 2% : (6.37)

The form factors F; and F, are functions of the Lorentz invariants, which can be con-
structed out of p and p’ or, equivalently, p and g and there are only two independent
combinations, namely p? = M%, and g%. For the case of elastic scattering, which we
are considering here, p - ¢ is not an independent quantity, cf. Eq. (6.14).

We have finally found the form of the hadronic current:

v

Ju(pp!) = 1) B+ Balg) G| (). (639

Therefore, the squared amplitude, averaged over initial and summed over final spin
states becomes:

64
M == ( Y i (k) us (k)i (k) oy uy (k ) ( Y ity (p')Tpus( )s(P)Fvus/(p’)>

tt 5,8

[

= —-L" Hy,. (6.39)
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6.1 Electron scattering

The leptonic tensor L*” was already calculated in Eq. (6.3). For the hadronic tensor
Hy,, one finds:

Hw/— Z”s Fy”s’ )us’(p)rvus’(p/)

— %TR (¢ + M) Ty (p+ Mp) T, . (6.40)

Again neglecting the electron mass, the contraction of L*" and Hj, in the lab. frame
takes a form very similar to Eq. (6.18):

LHY . Hyy

_ 2t 2 ‘1 20 7 2 )2 20
=16M,EE [(Pl(q) 4M2 F3(q )) cos” 5~ (Fl(q )+ Ea(qg )) sin” > | -

Thus, the cross section for elastic electron-proton scattering becomes, cf. Eq. (6.21):
dalab . [X2

dQ  4F2sin*{

2
X [(Ff(q ) — 4?\421?2 (q )) Coszg— 2?\42 (R +Fz(q2))zsin2 g] . (642)

E
E

The last equation is the Rosenbluth formula. For g2 — 0 the photon wavelength be-
comes very large and thus, one expects that the structure of the proton is no longer
really resolved and it starts to look like a point-like particle with charge e and mag-
netic moment . This implies that the form factors should behave like:

1 (6.43)
B(*=0)=u,—1. (6.44)
Experimentally one finds p, ~ 2.79 [Groupl0]. F; and F, are also known as Dirac

form factors. It is common to introduce combinations of F; and F,, which are known
as electric and magnetic (Sachs) form factors:

q2
aM2
Gu=F+F. (6.46)

Ge=Fh+-—5hF (6.45)

Note, that in the limit |§ |2 < M;% these form factors can be interpreted as the Fourier
transforms of the electric charge and magnetic moment distribution of the proton
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[HMB84]. In terms of Gg and G, the cross section takes the form:

doiap o E|GE+TGYy L6 2 .20
= = | = —21G =, 6.47
d0 T 4E2sin*fE | l+tT o2 TOMER (6.47)
with T = -2 Thus, by measuring the angular distribution of the scattered electrons

Mg
at fixed g%, information about the proton’s electric and magnetic structure can be
obtained. Many experiments performed in this way have indicated, that the electric
form factor takes a dipole form [HM84]:

2 -2
G 2:(1—”7—) . 6.48

() 0.71 GeV? (649
In addition, experiments which rely on the Rosenbluth formula for data analysis,
including latest high precision measurements [Q105], have determined a constant
ratio for the electric and magnetic form factor for —g% < 6 GeV?:

upGe(4?)

) ~1. (6.49)

Rosenb.

However, recent experiments, relying on the polarisation transfer technique for mea-
suring this ratio, show a systematic decrease of this ratio with —g% [P*05], which is
inconsistent with the measurements employing the Rosenbluth analysis. The reso-
lution of this discrepancy seems to be the (apparently) too simple assumption, that
the electron almost exclusively interacts with the proton via one-photon exchange.
Theoretical approaches incorporating two-photon exchange contributions appear to
be able to describe the discrepancy [BMT05, ABC*05, AMTO07].

Comparing the result (6.47) with the cross section for elastic scattering on the muon
(6.21) one finds, that if the proton were point-like, G and Gy would have to be
constant. However, Eq. (6.48) shows that this is not the case and so the proton must
have some inner structure. A very useful tool to investigate this structure is inelastic
electron scattering, which we will present in the next section.

6.1.3 Inelastic scattering on the nucleon

With increasing Q> = —g? the probability for elastic electron-proton scattering de-
creases significantly, since the elastic form factors behave like dipoles, cf. Eq. (6.48),
and the proton will most likely break up into fragments. Such a process, where the
initial state proton is destroyed and many fragments form the hadronic final state,
is called inelastic scattering and it is depicted in Fig. 6.3. Unlike the case of elastic
scattering, it is much more difficult to find the hadronic current, since the final state
can be comprised of all kinds of particles and not just a single proton state. However,
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6.1 Electron scattering

p

Figure 6.3: ¢~ p — e~ X inelastic scattering to lowest order in QED.

if one is only interested in the inclusive reaction it is possible to access this process on
the cross section level. For an n-particle final state the differential cross section reads,
cf. Appendix A.6:

do =

m)* oW (p+k—K —YI,p) 2 &K o d>p!
L2 | M [T oy | - 650
(7T) (Pi)O

2 2 M2 271)3 2 i

4\/ (p- k)" —m2M; (2m) i=1

As we want to describe an inclusive cross section, we have to take into account all
possible final states X;;, which we can achieve by summing over all these states:

doepex = Z
e X 4\/(;9-k)2 — m2M3

(2m)* oW (p+k—K — X1, p)) My &K I d’p] .
" (2m)’2E i1 \ (2)° 2(ph)o
(6.51)

We may not know the exact form of the squared amplitude |Myx, |2, but, drawing on
the results for elastic scattering, we know that it can be decomposed into a leptonic
and a hadronic part:

4
My |* = ;—447TMPLVV K, (6.52)

with the leptonic tensor L"", cf. Eq. (6.3). The factor 47t M), is just convention. Insert-
ing this ansatz into the cross section formula (6.51), one finds, that the cross section
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completely factorises:

4 31/
d0upsex = L C ammpr 4K
4\/(p~k) _szzq (27)" 2E
Wlpta-Xar), dp;
X X —l
Z My L\ o2
317/
- ! —4 amy LKy (6.53)
4\/(p-k) _szzq (271)° 2F/

Once again we have to invoke general principles to constrain the otherwise unknown
hadronic part W,,, which depends only on the external momenta p and g: since in
the squared and spin averaged/summed amplitude no 7y matrices remain, Lorentz
invariance demands that W, must be constructed out of all possible combinations of
the metric tensor g, the Levi-Civita tensor €*P1* and the momenta p and g. Since
parity is conserved by the electromagnetic force, no parity violating terms e*f7# Padp
can appear and we make the following ansatz:

Wyw = Agu + Bpupy + Cuqv + D(pugv + qupv) + E(puqv — qupv) - (6.54)
Current conservation at the hadronic vertex demands:
"Xy =q" Xy = 0= g"Wyy =q"Wyy =0, (6.55)
from which follows:

E=0, (6.56)
(A+Cq*+Dp-q)qu+ (Bp-q+ Dg*)p, =0, (6.57)

which can only be fulfilled for all p, and g, if their coefficients vanish:

D— _Pq'z 15 (6.58)
1 p-q 1 p-q q
q 7 7>

Therefore, the hadronic part contains only two unknown functions:

2
quqv ' Fa
Wy = A (guv - Z_z) +B (P#Pv + (%) udv — pqzq(igﬂq‘/ t q;ﬁ%))

— _ 5];45]1/ 1 - p_q B P_q
=W ( Suv + 7 ) +W2M;27 (PV e qy) (Pv p qv) , (6.60)
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6.1 Electron scattering

where we have introduced the standard inelastic structure functions W; and W5. Since
they must be Lorentz scalars, they can only be functions of the invariants, which
can be constructed out of p and g. For a final hadronic state with invariant mass
(p +9)? = W? these invariants are g2, p* = M% and:

WZ_qZ_MZ
p.g= 5 P (6.61)

Thus, except for the constant p?, there are two independent dynamical variables in-
volved. Instead of W2, however, it will prove to be useful to introduce Bjorken-x:

_ 7 _Q
X = = .
2p-q  2p-4q
Note that in the kinematics of electron scattering ¢* is always negative, cf. Eq. (6.13),

and one usually introduces the positive variable Q> = —g2. In the lab. frame the
Bjorken variable takes a simple form:

(6.62)

2
X = Q ,
2Mp1/

(6.63)

with v = E — E/, as above. Comparing Egs. (6.14) and (6.63), one finds in the limit of
elastic scattering: x = 1. Therefore, Bjorken-x can be understood as a measure for the
inelasticity of the process. It is important to note at this point, that elastic scattering
can be described by only one dynamical variable (e.g. Q?), while inelastic scattering
always involves two independent variables (e.g. Q% and x).

Now that we have found the general form of the hadronic part W, we can finally
calculate its contraction with the leptonic tensor. For this purpose it is useful to
rewrite the leptonic tensor in terms of g =k — k" and ¢ = k + k'

LW = gtq" —q'q" + " . (6.64)

The term g#g" does not contribute due to current conservation and so in the lab. frame
the contraction reads (again we treat the electrons as massless):

1 )
LW = Wi (=(7')° = 34°) + Wagm {(P g+ (M;% - M) }
p

qZ
— Wy 4k K + WZML% {p- (k4 k)P = [p- (k= k)2 —2(k-K) M2}
_ W, 4k K+ WZ% {4(p- 1) (p-K) —2(k-K)03}
p

= 4EF’ {2W1 sin? g + W, (1 — sin? g)]

0 0
= 4EF’ {Wz cos? > + 2W; sin? E] ) (6.65)
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Finally, the cross section (6.53) becomes:

dUep—)eX . 1 64 4:7'L'MPE/2
dOQdE’ |, 4MpE (zn)f‘ q4 2E/
a® E’
= EELW ) WW
@ F
16E2E"sin*§ E
a2

0 . o0
= m Wz(x, Qz) COS2 5 + 2W1(x, QZ) Sll’l2 E , (666)
2

LHY . Wy

LY - W,

where we have made the dependence of the structure functions on x and Q? ex-
plicit. By measuring the angular and the energy distribution of the scattered electrons
one can now determine the inelastic structure functions W; and W,. Note that the
structure functions have dimension (energy)~! and it is common to introduce the di-
mensionless combinations F; = M,W; and F, = vW, instead. In Fig. 6.4 we show

0-5 T T LI | T T T T T T LI

04 | -

G o03f | % S S S S
X
z

= 02} =

0.1 F x=0.175 -

0 L1 1 11 1 1 1 1 L1 11

10 100
Q* (GeV?)
Figure 6.4: Inelastic structure function F, = vW, as a function of Q? at fixed

x measured in yup — wux. Data are from the European Muon Collaboration
[Collaboration85].

the experimentally obtained F, at fixed x = 0.175 over a wide range of Q*>. The
measurement was done by the European Muon Collaboration in yp — uX reactions
[Collaboration85]. It was an important discovery, that within the error bars the struc-
ture function appears to be constant with Q2. This behavior (dependence on only one
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6.2 The parton model

dimensionless variable, namely x) is called Bjorken scaling and is a hint, that actually
an elastic scattering process is taking place. This points to the composite nature of
the proton, since this is the kind of behavior one would expect for an interaction with
point-like particles inside the proton. In the next section these particles, called partons
by Bjorken, will reveal themselves to be the quarks, the interaction among which is
governed by QCD.

6.2 The parton model

In the last section we determined that inelastic electron-proton scattering strongly
indicates the presence of point-like particles inside the proton. This observation led
to the advent of the parton model, which we will introduce in this section. First we
will make the connection between the inelastic structure functions and the partons
and then derive the parton distribution functions (PDFs) and explore some of their
properties. Since Bjorken scaling is actually violated by the interaction among the
partons, we will investigate the origin of the scaling violations in more detail. Finally
we will introduce the DGLAP evolution equations, which provide means to take into
account the scaling violations in the PDFs.

6.2.1 Bjorken scaling

We will now investigate the consequences for the inelastic structure functions F; =
MpW, and F, = vWj, if we assume the partons to be point-like spin—% particles. For
this purpose we recall the relevant cross sections. For elastic electron-muon scattering
we found:

do’g?‘%eﬂ o E’ 0 (/]2 50
B E 5 a2 S 5 67
d0 4E2sin? O E {COS 5 o S 2} . (6.67)
and for inelastic electron-proton scattering:
dUep—)eX 062 2 5 0 ) ) 0
dOdE" |, ~ 4E2sin* g [ 2(x, Q%) cos 5+ 1(x, Q%) sin 2] (6.68)

If the virtual photon actually interacts with only one spin—% particle (a quark) inside
the proton, the inelastic cross section (6.68) should become the elastic cross section
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6 Nucleon structure

(6.67), except for the differing charge of the quark. Note that (cf. Eq. (6.20)):

2
/dE’(S (1/ _ Q-) _ /dE’z} (E _E _ 2EF gin? 9)
2m m 2

= /dE’(S (E —E'(1+ EE sin’ 9))
m 2
E/
= f .
And so the demand on the structure functions is (the hat indicates the partonic nature
of the structure functions):

(6.69)

" Q?
Wy, =6 (1/ - %) , (6.70)
2W; — %cs (1/ — %) , (6.71)
where m is the mass of the quark. This implies:
o Q?
vWp =6 (1 - %> , (6.72)
A 2 Q2
2mW; — 2m_1/5 (1 - %) , (6.73)

and one explicitly sees, that both structure functions only depend on the dimension-

less variable % Nonetheless, Egs. (6.72) and (6.73) cannot be the final answer, since
we cannot tell on which one of the proton’s constituents the scattering took place. If
we, however, assume that the scattering occurs exclusively on one of the partons, we
can obtain the full structure functions (and so the entire cross section) by incoherently
summing up the individual partonic scattering cross sections. This assumption is also
known as the plane wave impulse approximation, especially in nuclear physics. It
relies on the premise, that while the hard scattering process takes place, the partons
do not interact among themselves and can thus be treated as quasi-free.

If the partons are quasi-free we can picture the proton as a bunch of partons moving
along, each of which is carrying a fraction ¢ of the proton’s four momentum. Then the
relation between the partonic (indicated by a hat) and the proton’s four momentum
is simply:

p=3p, (6.74)
from which immediately follows:
m? = (p)* = &p* = &M,
=m=_M, . (6.75)

102



6.2 The parton model

This implies that the structure functions become:

s sa(1- -2 Y os(1-" (6.76)
2 26Myv) g’ '
2mWy — 01— =-0(1—+<), (6.77)
20 Mpv 2{Mpv ¢ ¢
and so by virtue of the J-functions the virtual photon can only interact with a parton

carrying exactly the right momentum fraction x = %! For each type of parton i
one can now define the probability to find such a parton carrying the momentum
fraction ¢ by f;(¢). These probability distributions are known as parton distributions
functions (PDFs) and we will study their general properties in section 6.2.3.

Now we are ready to sum up all the individual partonic contributions. The sum
runs over all parton types i and over all possible momentum fractions ¢ weighted by
the probability to actually find a parton with momentum fraction ¢:

Fz(x) = VWZ = Z/dé E?fi(g)l/WZ

=L [ a i@ (1-3)
= Ze?xfl-(x) , (6.78)

Ri(x) = MWy = ¥ [ dé (&) M, Wy
- ;/dc e?ﬁ(é)lzw—nf% (1 - g)

=1 [z 0500 (1-7)

NI OF (6.79)

where we have taken into account the possible different electric charges e;e of the
different parton types and where we have adopted the standard convention for the
structure functions F; and F,. A very important consequence is the Callan-Gross
relation:

2xF(x) = F(x) . (6.80)

Even in total ignorance of the PDFs this relation provides a prediction testable by
experiment and it turns out, that it is well supported by the data. Furthermore it
shows that the partons have to carry spin %, since for spin-0 particles F; would vanish,
cf. Eq. (6.26).

103



6 Nucleon structure

6.2.2 Formal derivation of the parton model

To justity the ad-hoc introduction of the PDFs in the last subsection, we here will
present a more rigorous derivation of the parton model which follows the ideas pre-
sented in [Jaf85]. The basic course of things will be the following: one rewrites the
hadronic tensor Wy, in terms of hadronic currents. The major assumption then is,
that one can replace those with the currents of free quarks. After some current alge-
bra and consequently exploiting the Bjorken limit (Q% v — oo, QTZ = const.) one finds
that the hadronic tensor is basically given by a sum of quark matrix elements that can
be identified with the PDFs.

We start out by rewriting the hadronic tensor of Eq. (6.53) in terms of the hadronic
currents:

Wi = 47I1MP Ym)'6® (p+q=px) (p W@ 0XILOIp) 68D

with the proton state |p), where the sum over X runs over all final states and where we
have chosen the interaction to take place at x = 0 in space-time. The four-dimensional
d-function can also be represented by a Fourier integral and thus:

Wi = g | AEep (00— p)2) (O XHX O (65

We shift the current ], to the space-time point ¢ with the help of the momentum
operator P:

(p |exp (ip) ], (0) exp (—ipxl)| X) = (p |exp (iPE) J(0) exp (—iPg)| X)
= (p|1.(2)] X) . (6.83)

Since the final states form a complete set, we can exploit the identity ) |X)(X| =1
and find:

1 .
Wow = gopr, | 400 G2) (0 (@1 O)] p) (684
Note the following relation:

[ d*zexp (igd) (p [1.(0)1u(0)] p)
L [ d*zexp (i92) (p 1,(0)| X)X 1u(2)] p)

zg;/d‘lgexp (i(px + 9= p)E) (P 1J(0)] X)(X |]u(0)] p)

= ;(2ﬂ)45(4) (px+49—p) (P11 (0)| X)(X |].(0)| p) - (6.85)
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6.2 The parton model

We will work in the proton rest frame, where one finds that the J-function in the last
equation vanishes: in this frame the energy of the virtual photon is positive (70 =
v > 0) and the energy of the proton target is just its rest mass (p" = M,). Since the
electromagnetic interaction conserves the baryon number B, the final state X must
also have B = 1 like the proton. As the proton is the lightest baryon, the energy
of the final state has to be at least equal to the proton’s rest mass (p% > M,). Also
in deep inelastic scattering one finds q> = v?> — (§)?> < 0 and so there is always a
momentum transfer to the target. Then the energy of the final state actually obeys

Pk = \/MZ+(7)? > My = p°. Thus, the -function in Eq. (6.85) requires ¢° =
p® — p% < 0, which is obviously not fulfilled in the proton rest frame. Therefore, we

can simply replace the current product in Eq. (6.84) by a commutator, since the term
we have subtracted vanishes:

Wi = 47TM / d*Cexp (i92) (p | [Ju(&), 1 (0)] | p) - (6.86)

The major assumption of QCD now is, that the virtual photon actually interacts with
the quarks and, thus, we can replace hadronic currents by quark currents. In addition
in the parton model one assumes the quarks to be quasi-free:

Ju(§) = e ¥ (&) ¥ (E) (6.87)
Jv(0) = ¢;¥(0)7,¥(0) , (6.88)
(6.89)

where the photon interacts with the fractional quark charge e;. Using the following
commutator and anticommutator relations we can rewrite the current commutator:

[AB,C] = A[B,C] — [C,A] B
[A,BC] = {A,BYC—B{A,C} . (6.90)

The current commutator then becomes (the sum runs over all quark flavors i):
[J(S) Ze [$i(©)rutpi(8), Pi(0) 703 (0)]
= Ze $i(8)vu [¥i(8), Pi(0) v 1pi(0)]
= [$i(0) 1 9i(0), $i ()] vutpi(S))
$i(¢)

= Ze C)ru 9i(8), $:(0) } 1 i(0)
—i(0) 1y {$i(8), ¥i(0)} i () (6.91)
where we have exploited, that:
{9:(), 9:(0)} = {$:(), $:(0)} = 0. (6.92)
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6 Nucleon structure

To evaluate the anticommutators in Eq. (6.91) we note, that the quark fields are given
by [PS95] (we omit the index i for simplicity):

Lk (K)u k bt (k)vs(k ik 6.93
00 = [ G5 D (as B ik ) 46l Do xplit-0) 1 (699

] d’r 2 ——
#(0) = / ) y ( at (F)iy (F) + by (B)o9 (K ) (6.94)
and all the annihilation and creation operators anticommute, except:
{as(z?), a;,(E')} = (2m)36® (12 - E') Sssr s (6.95)
{bs (%), bj,(E')} = (2m)36® (% - E) Ossr (6.96)

Then all that remains of the first anticommutator in Eq. (6.91) is:

@0} = [ 5 Wﬁz/ e d;k'TZ
< ({as®),ali (k) | us ()1, (K) exp(—ik - ¢)
+ {2 (k) b* () } 03 (R)s (K explik )

_/ 271) 32k0 Z us () 15 (k) exp(—ik - ) + vs ()35 (K) exp(ik - £) )

3
_/ dekO (K +m)exp(—ik-&)+ (K—m)exp(ik-¢))
3

= (ia€+m)/(27(ri)—3k2k0 (exp(—ik- &) —exp(ik-¢)) , (6.97)

where have exploited the completeness relation for the quark spinors, cf. Appendix
A.4.3. In the Bjorken limit the quark masses give only corrections to the massless case,
and an expansion of the last integral around m = 0 yields [BD65, 1Z80] (note a sign
error in [Jaf85]):

(9O PO} = B¢ | 3260 | +Om) (69%)
with e(x) = ﬁ We note that:
(PO 9O} = (9O PO =3 | 50| (6.9
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6.2 The parton model

and so the current commutator of Eq. (6.91) has become:

(@) 0] = & [0770) = O3 7738)] % [ (&5 @].
(6.100)

The product of y-matrices can be decomposed into a symmetric and an antisymmetric
part:

YuYoYv = Sypva’)/g - ieypva’)’g’)’S , (6.101)
with the antisymmetric tensor € and

Spove = &up8vo + §uo&vp — &uv8po - (6.102)

Since the leptonic tensor L*" is symmetric, we only have to retain the symmetric part
and can replace in the current commutator:

YuYoYv — SuovaY’ (6.103)
YvYoYn — Svpue¥’ = Supvey” . (6.104)

Thus, we so far have found for the hadronic tensor in the Bjorken limit:

lim W, = WW /d4§‘exp iq-¢)
Q200

x Zei (P 1F(@)179:(0) = $:(0)1 i (2)] )% [e(e)0(@)]  (6105)
Before we go on, we shortly investigate the space-time region probed in deep inelas-

tic scattering. We will work here in the proton rest frame and we align the negative
z-axis along the momentum of the virtual photon. Then one finds:

7= (v0,0-v?+Q), (6.106)

which obviously fulfills g = —Q?. In the Bjorken limit we have Q? — oo but we keep

2
X = 21\%7 tixed. In this limit the four momentum of the virtual photon becomes:

2
qg=1v,0,0, 1/\/1—|—Q—>
4M%x2
=\|v,00, —v4/1+ 02
0,0, — 1 14M22
1// 7Yy +§ Q2

= (v,0,0,—v — Mpx) . (6.107)

12
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In light cone coordinates (cf. Appendix A.2) we find in the Bjorken limit, that only
one component of g becomes infinite:

g =9"—q = o0 (6.108)

TP S S VS s 6.109
g =q +q pr=—o" (6.109)

The space-time separation ¢ of the currents is the conjugate variable of g in the Fourier
transform in Eq. (6.86):

(g7¢ +q7¢"), (6.110)

N —

Q'C:

and in the limit g~ — oo, the theory of Fourier transforms shows, that the integrand
is dominated by the region {* ~ 0 [Jaf85]. As a consequence of g* = —M,px one

also finds, that || < M%,x [Jaf85, LS85]. Microcausality requires that the commu-

tator [J,(Z), Ju(0)] of the two observables vanishes for spacelike distances ¢% < 0.
Therefore, contributions to the integral in (6.86) can only come from the region which
satisfies ¢2 > 0, since otherwise the space-time points where the two currents act were
separated by a space-like distance. Then one obtains the condition:

Fg=¢rtg—¢t>o0, (6.111)

and so & ~ 0 forces ¢; — 0. Obviously only ¢~ stays finite in the Bjorken limit and
the time and space distances probed in deep inelastic scattering become:

5% = % ET+¢7| < M%x (6.112)
1 1
@l =5t =g < My (6.113)

which shows that deep inelastic scattering in the Bjorken limit is a light-cone domi-
nated process (¢2 — 0). A general misconception is, that it probes short distances and
time scales, which is evidently only true, if x does not become too small.

Now we come back to Eq. (6.105) and we note that we can get rid of the derivative
of the é-function, if we integrate by parts:

d% (eXP(iq €)Y ef (p [9i(0) v wi(0) — i(0)1 ()] P>>

=iq” <exp(iq €)Y et (p [9i(0) v wi(0) — i(0)1 i (2))] P)) +0(p°), (6114
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6.2 The parton model

where the terms with the proton momentum O(pf) come from the derivative of the
matrix element (the quark fields) and can be neglected in the Bjorken limit. Then after
partial integration the integral reads:

S
dim W =Jim i | eesplia )

< L p 177 9i0) = 0wl p) [c@)0@)] . (6115)
In light-cone coordinates the integral becomes:

Spovo_ + + +
lelinoow‘uv —qhil’loo — 87‘(2—M /2dé dC dCJ_ exp( C + zq C

xZei (P 9:(3)y79i(0) — ;(0)r7 i (&) p)

X [e (%(ﬁ + g—)) s(eteE — gi)} . (6.116)

Comparing the coefficient of (—g;y) in Egs. (6.60) and (6.116), one finds for the struc-
ture function F; = M,Wi:

Fi = lim —&' /2dg+dg dgLexp( gte +2q g*)

q——0

XZ%(PWH )77 9i(0) — ;(0) i (8)| p)

1 _ _
<Je(Ger+e)oere -] - 6.117)
We can use the J-function to perform the ¢, integration:
21 00
[ads@re —a) = [ag [aacse @) =n.  (6119)
0 0
In the Bjorken limit g™ < ¢~ and thus:
1
Yoq” 2’Y q (6.119)

where the light-cone matrices are 7+ = 7% + 9. The structure function has become:

F; = lim ——zq /2d§+d§ exp( +C +2q §+)

g~ —co
><Ze (|9 (&)7 T 9i(0) — $:(0)y " 9i (&) | p)
[ EhHheE)-e(-¢He(-¢), (6.120)
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where the @-functions guarantee that &2 = ¢*¢~ > 0. We can perform the &*
integration, if we integrate by parts:

g+ (exp( gre -I-zq C+> Ze (p i &)y yi(0) — 1/3i(0)'y+1p1-(§)|}?>)

=§q‘ (P( 7°¢ +2q é*)Ze (p |:(8)7 9i(0) - ¢i<o>v+¢i<¢>|p>>+0<p->,
(6.121)

and so F; reads (note a second sign error in [Jaf85]):

F, = lim —/d§+d§ GXP( gte +2q C+)

q—>oo7'[

xZe (P 9i()7 " 9i(0) — $:(0)y " i(E)] p)o(

— tim L far exp( )ze (P |§(©)7 9:1(0) — (0 9 (D) p)
g~ —00
(6.122)

with & = ¢, = 0. In the matrix element we find the following combination of
y-matrices:

Pry =9 (2 +7°) =9 (144 v, (6.123)

which is related to the operators defined by:

H_

P:t

2
_H
-

= (%) (*+7)
<13F’Y 70907 - (73)2)
(2i27 ry)

(1 + 40 ) , (6.124)

l\)lb—‘»-lklr—\ »l>|>—wl>|+—wl>l>—\

where we have used the definition of the y-matrices {7y, 7"} = 2¢"". The properties
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of the operators P* are easily found:

PT+P =1, (6.125)

2 1
(PE)" =1 [1£29"7+ 200y

,,),3
_1 (1 + 7073>
2
=P+, (6.126)
tpF _ 1 0 0,303
P=P Z(livv F907° ’Y’Y’Y’Y)
=0. (6.127)
The properties of P* are exactly those of projection operators and so we can define
"+"- and "—"-components of the quark fields as:
e = Py . (6.128)

Then Eq. (6.123) becomes:
Py =29"PTyp = 29T (P2 =29 g, (6.129)

since (P*)" = P*. The structure function simplifies to:

F = lim —/dg exp( )Ze

q——o0 47

¥l (©)9is (0) — ¢f, (0)9i (8)| p) -
(6.130)

Before we go on, we note that only connected matrix elements contribute to the
hadronic tensor W, and, thus, to the structure function F;. This implies that we
only have to consider the normal ordered product of the quark fields ¢ and ¢. How-
ever, under the normal ordering operator all the annihilation and creation operators
in Egs. (6.93) and (6.94) anticommute and one finds:

(pletOwi@|p)| = (p|4fOn@|r)
~ (p|wi@)¢f©)]p)

Therefore, we can switch the second term in the matrix element of Eq. (6.130) and
recover:

F; = lim —/d{,‘ exp( )Ze

q—>oo7'(

conn.

(6.131)

conn.

YL ()i (0) + 9 ()], (0)| p)
(6.132)
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One can now take away the ¢ dependence from the quark fields, if one inserts a
complete set of states |n) (again P is the momentum operator):

(p |94 @i (0) + 91 )y}, 0| p)
= L ((p[ol @[ n) r19i @)1 )+ (e i @)1 (|0l )] )
=)L (

(
(
(p |exp (i) 1, (0) exp (~iPE)| n) (n i (0)] p)
<
(
<

p

plexp (iPg) - (0) exp (~iPE)| m) ( |9}, (0)| p))

+
= L ((plexe ip-0) 0l exp (ipu- &) ) (1|42 O)1 )
+

¥1.(0)]p))
= Teww (50" =) (1@ p) P+ [

where we have used {* = ¢| = 0. The ¢ -integration is now easy to perform:

plexp (ip - &) iy (0) exp (—ipy - )| n) (

IIJL(O)‘ p>‘2) . (6.133)

/déeXP (é(ﬂﬁﬂ?*-ﬁ)) =2:27-5(¢" +p" —pu)
=45 (p" —xpt—py) (6.134)

where we exploited, that in the proton rest frame p* = M, and so g = —M,x =
—xp™. Finally the structure function F; has become:
2
o0 p)[)

= TR T (" = xp” = p) (100l @1 + (o
_Ze (filx) + fi(x)) (015)

where we finally have found the parton distributions functions:

=Y 0 (p" —xp™ —pi) [ g (O)| p) [, (6.136)
=Y o (pt —xpt = pi) | (n

which are only functions of x. f;j(x) can be understood as the probability to remove
from the proton a quark of flavor i with momentum fraction x and leave behind a
state with momentum p;} = (1 — x)p™ [Jaf85].

At this point it is useful to remember the basic assumptions that entered into this
result: first the parton model assumption, namely that the virtual photon interacts

v O)|p) (6.137)
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with only one quasi-free quark or antiquark inside the proton and thus the hadronic
currents can be replaced by free quark currents. And second the Bjorken limit, the
rigorous exploitation of which led to the final form of the structure function F;. Thus,
Eq. (6.135) finally justifies the ad-hoc introduction of the PDFs in Egs. (6.78) and (6.79).

6.2.3 General properties of parton distribution functions

In the last section we have derived the PDFs of the proton and in this section we will
explore some of their properties. The proton belongs to what is usually defined as
matter (as opposed to antimatter) and in the simplest ansatz, it can be pictured as
being composed of three constituent quarks (two up-quarks and one down-quark),
which exactly make up the quantum numbers of the proton: the up-quarks carry

spin %, isospin z-component % and electric charge %e and the down-quarks carry spin

%, isospin z-component —% and electric charge —%e [Group10]. Thus, in the lowest

possible state sit two up-quarks with opposite spin and one unpaired down-quark,
which exactly form a state with spin %, isospin z-component % and electric charge
+e, the proton. Beside these wvalence quarks the proton contains antimatter particles,
namely the antiquarks given by the distribution in Eq. (6.137). They originate in the
interaction of the valence quarks, which is governed by QCD: the gluons exchanged by
the valence quarks can decay into quark-antiquark pairs, which are called sea quarks.
Thus, the virtual photon, which probes the proton in deep inelastic scattering, does
not only see the valence quarks, but it can also scatter on a sea quark. Therefore, the

up-quark and down-quark distributions inside the proton can be written as:

u(x) = up(x) + us(x) (6.138)
i(x) =is(x), (6.139)
d(x) =dy(x) +ds(x) (6.140)
d(x) = ds(x), (6.141)

where the indices v and s stand for valence and sea, respectively. Since the proton does
not carry any of the quantum numbers of the heavier quarks (strangeness, charm,
...), these quark flavors can only exist as sea quarks and so e.g. the strange-quark
distributions read:

s(x) = ss(x) (6.142)
5(x) =35s(x) . (6.143)

Since the charm, top and bottom quark flavors are already much heavier than the
proton itself, their distributions are heavily suppressed and we will neglect them
from now on.

The quantum numbers of the proton can now be expressed in sum rules, which con-
strain the different distributions. For charge e, isospin z-component % and strangeness
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0 one finds [HM84]:

/ dx (u(x) — a(x)) = 2, (6.144)
01
/dx (d(x)—d(x)) =1, (6.145)
’ 1
/ dx (s(x) —5(x)) = 0. (6.146)
0

The total momentum of the proton must be carried by its constituents and therefore
the momentum sum rule reads:

1
/dxx (u(x) +a(x) +d(x) +d(x) +s(x)+5(x)) =1—xg, (6.147)
0

where x, is the momentum fraction carried by the gluons inside the proton:

1
/dxg(x) = Xg . (6.148)
0

The gluon distribution g(x) is not directly accessible in deep inelastic scattering, since
the gluons carry no electric charge.

The neutron is the isospin partner of the proton and if one assumes isospin sym-
metry (which is a reasonable assumption, since, for example, the masses of proton
and neutron are almost equal) the quark distributions of the neutron are fixed by the
proton distributions:

uf(x) =d"(x), (6.149)
df(x) =u"(x), (6.150)
sP(x) =s"(x), (6.151)

and analogously for the antiquarks. For the antiproton one finds simply by charge
conjugation:

uf(x) = aP(x), (6.152)
df(x) = dP(x), (6.153)
sP(x) =3P (x), (6.154)
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6.2 The parton model

and vice versa for the antiquarks. We will exploit the relations (6.149- 6.154) when
we consider DY processes in proton-nucleus (proton-neutron) or antiproton-proton
reactions.

Note that the PDFs obviously carry information especially about the soft interac-
tions of the quarks and gluons inside the proton, neutron, .... Their non-perturbative
nature makes them so far inaccessible to calculational approaches. Thus, in practice
they are fitted to the available experimental data from e.g. deep inelastic scattering
and DY processes, taking into account basic principles as the sum rules shown above.
An overview of properties and applications of PDFs can be found e.g. in [ESW96].

6.2.4 Scaling violations and the DGLAP equations

The discovery of Bjorken scaling, i.e. the dependence of the deep inelastic structure
functions F; and F, on only one universal variable x, was an important step towards
the parton model of the nucleon. However, there is experimental evidence, that
Bjorken scaling is actually weakly broken and the structure functions do also depend
on Q2. The quantitative explanation of these scaling violations is one of the successes
of QCD which incorporates the parton model in its high-energy limit (asymptotic
freedom), but goes beyond it for large, but finite Q.

Analysing the data for F, over a wide range of Q2 and for different values of x
one finds (in contrast to Bjorken scaling as implied by Fig. 6.4 above) the situation
depicted in Fig. 6.5. For very small and for large x there seems to be a logarithmic

T rrrrrm %' T rrrrmmg LI LALLI | 1
LE ﬁ*%% i x=0.35 E
E iii iiiig;iii%i%* E
— L x=0.015 §
o i |
= i X=0.65 |
H“H

01 F 4
F I .
: L1 11l L1 1 1l L1 ll*l%ljl} } l:

0.1 1 10 100

Q% (Gev?)

Figure 6.5: Inelastic structure function F, = vW; as a function of Q? for different x
measured in vFe — vX. Data are from the CDHSW Collaboration [BT91].
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6 Nucleon structure

< T

Figure 6.6: Virtual photon-quark interaction with gluon bremsstrahlung.

dependence of F, on Q? and only in the intermediate x-range Bjorken scaling seems
to hold. The origin of these scaling violations can be traced back to two types of
sources: bremsstrahlung type diagrams as depicted in Fig. 6.6 and virtual-photon
gluon interactions as depicted in Fig. 6.7.

In the case of gluon bremsstrahlung the virtual photon can interact with a quark
that has already lost some of its momentum fraction p; = xP by the emission of
gluon bremsstrahlung and only retains p, = zxP, where P is the proton momentum
and 0 < z < 1. For massless quarks these processes suffer from the same type of
collinear (or mass) singularities as discussed in Chapter 5. One finds that the cross
section for the process y*q — g can be written as [HM84]:

doy=g—qq

2
Oytq—qg = /dPT 2
e dpt

72 Pt
s 5 Q2
~ EPM (z)log ) (6.155)
where again Q> = —g? and where a cut-off #? was introduced to regularise the other-

wise divergent transverse momentum integral. The function Py, (z) is called a splitting
function and it gives the probability, that a quark, that originally carried a momentum
fraction x, after emitting a gluon retains a momentum fraction z - x.

In addition to the processes of Fig. 6.6 there exist virtual (loop) corrections to order
as to the v*g — g process, which also have to be taken into account. Summing up all

these contributions one finds that the splitting function Py, to lowest order becomes
[ESWO6]:

47 1+22 3
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6.2 The parton model

Figure 6.7: Virtual photon-gluon interaction with quark pair-production.

where 3 is a color factor and the +-prescription is given by:

/dxl—x /dx 1 ), (6.157)

for a smooth function f(x) on the interval [0, 1]. In this picture the structure function
F, of Eq. (6.78) is modified to [ESW96]:

rin @) =<5 o st s (1-3) () () + ()]

(6.158)

where the second term takes into account the quarks which carry momentum fraction
x (as seen by the virtual photon), but actually come from parent quarks that carried
momentum fraction y > x. C; is a finite function that takes into account possible
non-divergent contributions to F,.

The second kind of process that can modify F, is gluon pair production. There a
gluon carrying momentum fraction xP splits into a quark-antiquark pair and so the
virtual photon actually interacts with a quark carrying momentum fraction zxP with
0 < z < 1. In analogy to the gluon bremsstrahlung case above one finds for the cross
section of this process [HM84]:

QZ
Oryrgsqq ™ Equ(z) log (— , (6.159)

where the splitting function P¢(z) gives the probability, that a quark carrying mo-
mentum fraction z - x came originally from a gluon carrying momentum fraction x:

Pye(z) = ;<z +(1- )2) , (6.160)
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where % is a color factor. Thus, the structure function F, becomes:
1 , o
X o X X
F(x,Q%) =« e.z/d —{ (y) [5 (1——> + =P, (-) lo <—> +C (—)}
lsz vy fily y) Tam\y )82 1\y

ol ()on($) e ()]} wm

where ¢ is the bare gluon PDF and C, takes into account finite contributions from the
gluon pair-production processes.

Note that we have found the log(Q?) behavior of the structure function that we
saw in the deep inelastic scattering data in Fig. 6.5. However, Eq. (6.161) cannot stand
as it is, since it depends on the (arbitrary) regulator 2. On the other hand it also
depends on the bare parton distributions f;(x) and g(x) and since we cannot switch
off the strong interaction when measuring e.g. F,, fi(x) and g(x) are not measurable
quantities. One can exploit this fact and define a renormalised quark distribution
function in the following way [ESW96]:

File ) = filx) + / av 50 [ (210 (%) +, (2))]

() m(5) e ()]

where we have introduced the factorisation scale 2. Note that the functions éq and
Cg do not have to be identical to the finite contributions C,; and Cq above. This arbi-
trariness in defining finite contributions into the PDFs is called factorisation scheme
dependence and in principle one can choose any scheme one prefers. However, once
chosen, the same scheme has to be applied in all further calculations involving these
scheme dependent PDFs. In terms of the renormalised f;(x, #?) the structure function
is independent of the regulator #2, but now depends on the factorisation scale 1%

(0 = x et Jart (s [s (1) + g () s (Z)

(6.163)
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6.2 The parton model

where the superscript S on the finite contributions indicates the scheme dependence.
A particularly simple scheme is the DIS scheme, where one defines all finite contribu-
tions into the renormalised PDFs. Since the choice of the renormalisation scale y? is
arbitrary, one usually takes yz = Q2 for simplicity and, thus, finds in the DIS scheme:

FPS(x, Q%) = xZ:eZ2 PIS(x, %), (6.164)

and so we can obtain the renormalised distribution functions fP°(x, Q%) by measur-
ing F, as a function of x and Q2.

Obviously F, cannot depend on the arbitrary factorisation scale u? and therefore
the derivative of Eq. (6.163) with respect to 2 (or better log(#?)) must vanish:

9
dlog(p?)

Xs

filx, 4?) = E/ldy ; {fi(% 1) Py (g) +8(y, 4?) Py (g)} - (6.165)

The last equation is called the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
equation [Dok77, GL72, Lip75, AP77] and it describes the evolution of the quark dis-
tributions with the factorisation scale 2. Using (6.164) this translates to a prediction
for the measurable Q? dependence of the structure function. The DGLAP equation is
a basic ingredient of all PDF analyses and one of the basic equations of perturbative
QCD. In our example the splitting functions were calculated only to order a5, however
in principle one can calculate the evolution to any desired order of the strong cou-
pling. Note that also a similar equation for the evolution of the gluon distributions
exist, which, however, will play no further role in this work.

In this subsection we have described the origin of the scaling violations and the
DGLAP evolution equations for the PDFs. We will draw on our findings later on
in Sec. 8.6, where we describe how to avoid double-counting of the NLO processes
we explicitly consider (vertex corrections, gluon bremsstrahlung and gluon Compton
scattering).
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The Drell-Yan process at leading order

In this chapter we will study the production of DY pairs at leading order (LO, a? = 1!)
in the strong coupling. We will start out with the standard parton model description
of the DY process and point out its virtues and shortfalls. Afterwards we will in-
troduce our extended model for this process and we will begin by calculating the
partonic DY cross section for the general case of massive quarks. Our aim is to extend
the parton model approach by parametrising the soft parton interactions through dis-
tributions for parton transverse momentum and quark masses. Therefore, we will
investigate the kinematics of this process in detail and find, that special care is neces-
sary, as to prevent unphysical kinematical solutions to spoil the result. After having
fixed the correct kinematics, we will introduce our distributions for the initial trans-
verse momenta and masses of the participating quarks and finally present the results
of our extended LO approach.
Note that certain results of this chapter have been published in [ELM10].

7.1 Introduction - the Drell-Yan process in the parton
model

The Drell-Yan process [DY70], depicted in Fig. 7.1, describes the production of lepton
pairs with large invariant masses ¢* in collisions of two hadrons (usually nucleons).
The idea is, that a quark from hadron 1 and an antiquark from hadron 2 annihilate
and produce a virtual photon, that finally decays into a lepton pair. In experiments
this pair is then measured in the detector, while the hadron remnants usually remain
undetected. In the parton model the cross section for this particular process takes
on a very simple form: it is given by the cross section of the partonic subprocess
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7 The Drell-Yan process at leading order

g7 — v* — 11—, which is given by QED, times the probabilities to actually find the
two annihilating quarks inside the colliding hadrons. However, these probabilities
are basically just the PDFs, that we found in Sec. 6.2 in deep inelastic scattering. So

the hadronic cross section for this process reads (the hat denotes partonic quantities)
[PS95, HMB84]:

1
do = Y [ dvidaz g1, %) filxa, 1) - 46 (1, 2, 4%) (7.1)
i
0

where the ¢; are the fractions of the quark charges. Since we do not know what kind
of quarks formed the virtual photon, we have to sum over all flavors and antiflavors
and integrate over all possible momentum fractions x; of the quarks to obtain the full
cross section. It is noteworthy, that, in contrast to deep inelastic scattering, one here
probes correlations of valence- and sea-quark PDFs, which provides further input to
constrain these distributions. The factorisation of the cross section into a hard part
(subprocess) and a soft part (PDFs) is proven for the DY process for quarks moving
collinearly with their parent nucleons, at least for leading twist (expansion in %) in
[CSS88].

Figure 7.1: DY production in a nucleon-nucleon collision: a quark and an antiquark
annihilate into a virtual photon, that eventually decays into a lepton pair; X; and X»
denote the nucleon remnants. See main text for details.

Already at this point, one shortfall of the parton model approach becomes evident:
we found in the derivation of Egs. (6.136) and (6.137), that in the Bjorken limit the
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quarks do not carry any transverse momentum (perpendicular to the momentum of
the parent nucleon). Thus, in the parton model picture also the virtual photon (and so
the DY pair) has vanishing transverse momentum by virtue of four momentum con-
servation. All DY pairs in the parton model approach are produced with transverse
momentum pr = 0, however, experimental evidence shows clearly, that DY pairs have
a broad pr-distribution. These distributions cannot be described in such a simple ap-
proach. Furthermore, one finds, that in the parton model one can describe the shape
of measured DY pair invariant mass spectra, but that one always underestimates the
cross section by a factor K. This K-factor depends on the kinematics (e.g. hadronic
center-of-mass energy) of the conducted experiment and it is (in QCD) so far not a
calculable quantity. We will illustrate the K-factor problem in Sec. 7.6. These two
shortcomings where the main motivation to introduce the extended model which we
will present in this work.

7.2 Observables, conventions and notation

In this section we present the relevant DY observables, conventions and notation used
throughout the remainder of this work, unless where explicitly stated otherwise. It
will turn out to be useful to write four-momenta using light-cone coordinates, cf.
Appendix A. Leptons are treated as massless. We will exclusively study reactions
involving nucleons and antiprotons, both carrying mass my. We define the target
nucleon to carry the four momentum P; and the beam nucleon to carry the four
momentum P, (cf. Fig. 7.1). In the hadron center-of-mass (c.m.) frame we choose the
z-axis as the beam line and the beam (target) nucleon moves in the positive (negative)
direction. Therefore, the nucleon four-momenta read:

P = (?,0,0,—,/2 —m%\,) , (7.2)
P, = (?,0,0,—%\/2 —m%\,) , (7.3)

which implies for the large momentum components of the nucleons:

s /s
P;:szgﬂ/z—m%vm—%m@, (7.4)

with the hadronic c.m. energy +/S. Note that in high energy experiments /S > my
and so the nucleon mass is usually neglected. However, we want to study our model
also at comparatively low c.m. energies (e.g. v/S ~ 5.5 GeV at PANDA [TLP*09]).
Therefore, in the present work we include the nucleon mass since its influence should
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7 The Drell-Yan process at leading order

become significant at these energies. We denote the four momentum of the parton in
nucleon 1 (2) as p; (p2). The on-shell condition in light-cone coordinates then reads:

mi =pi =pip = (Fi)* (7.5)

The observables accessible in experiment are the invariant mass g> = M? of the DY
pair, its transverse momentum (with respect to the beam line) pr and its momentum
along the beam line g,. However, instead of g, often the Feynman variable xr is
used. Since there are different definitions of xr around, we here will first clarify the
situation in this work. For the virtual photon in Fig. 7.1 the maximal g, is derived by

requiring the invariant mass of the undetected remnants to vanish and the photon to
move collinearly to the nucleons:

(Pi+P,—g)? =X220 (7.6)

= S+ ¢%—2V5/q2 4 (§2)2 =0 (7.7)
S —g*

= = max - 7.8

2\/3 (‘12) (7.8)

In the literature and in the data presented by many experimental groups the Feynman
variable [Group10] is defined as:

Xp = 24, ~ 1z
VS (9z)max
NS
= (Gz)max >~ —— . (7.9)

2

Note that this approximation for xf is obviously only good for g < S. Since we
perform studies in the small S region, our definition of the Feynman variable x}, is :

Yz =g, 2V/S
(92)max S —q*’

without any approximations. Depending on the experiment which we study we will
use xr or xp according to Eq. (7.9) and Eq. (7.10).

Xy = (7.10)

7.3 Partonic subprocess cross section at leading order

In this section we will first calculate the partonic cross section for the production of a
virtual photon and then show that it is closely related to lepton pair production. The
connection between the two cross sections will be helpful later on in the calculation
of next-to-leading-order corrections in Chapter 8, since it considerably simplifies the
phase space integrals. Although we introduce different masses for the annihilating
quarks, we finally will show, that current conservation is not violated when actually
considering the production of DY pairs.
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Y

*

q71

q q

Figure 7.2: Quark-antiquark annihilation into a virtual photon.

7.3.1 Cross section for virtual photon production

Using the Feynman rules of Appendix B one finds for the amplitude of the process
qq — 7" depicted in Fig. 7.2:

iM = 0y (p2) (iey") us(p1) - €,(q) (7.11)
= |MJ* = e*0g (p2)7" s (p1)i1s(p1) 7" vg (p2) - €;(9)eu(q) , (7.12)

where we have omitted the fractional quark charges, since we will take them into
account explicitly in the hadronic cross section later on. Averaging over initial spins
and summing over the polarisations of the photon, one obtains:

2
|M|* = eZ (—8uv) TR [(py —m2) v (p +m1) '], (7.13)

where we have assigned masses according to p? = m?, p5 = m3 to the quarks. Note,

that the replacement ), €;,(q)ev(9) — —gpuv is actually only valid for real photons.
However, in our calculations for DY pair production all we have to know is how
to properly replace this factor, as we will see in Sec. 7.3.2. Therefore, we can keep
this otherwise improper treatment of the photon polarisation sum without further
consequences. The cross section for this process then becomes, cf. Appendix A:

1(27)%™ (p1 + p2 — q) €2 SRE
= g( : (plz = q)z (=8u) TR[(py = ma2) v (py + 1) 7] (271# ,
4/ (p1 - p2)* — m2m3 !

(7.14)

where % is the color factor, cf. Appendix B.2.
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q7

Hy,

Figure 7.3: Virtual photon decay into a lepton pair.

7.3.2 Connection of virtual photon and DY pair production

Consider the process shown in Fig. 7.3: a virtual photon is emitted in a general type
of scattering process and decays into a lepton pair. We denote the unknown part of
this amplitude by H, and find:

—johv '
q% iy (p}) (—ieyy) vs(ph) (7.15)

2
e _
= M’ = HuHJqqﬂsf(P’l)v”vs(zé)vs(P’z)?“us(zﬂ’l) - (7.16)

Averaging over initial and summing over final spins, the squared amplitude becomes
(remember that we treat the leptons as massless):

2
e
IMP? = Wi g TR [//17"27']

4¢?
= Wyv? ()" (p2)" + (p1)"(P2)" — &uvP1 - P3]
WL, (7.17)

where we have collected the spin-averaged unknown part in W,,. The cross section
for the entire process then can be factorised in the following way (we omit the phase
space integrals of the unknown part W, since they are of no consequence to the
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following argumentation):

N
-~ . LMY
do ~ Wy (pi, q) (sz > VW2 0) sy ok

@) d'q
= Wyv(Pi,Q)(S Zpi_q (27‘[)3
&’py dp)

4
x &) (q - pll - Plz) Uw(p/lrplzlq) (27‘()32E£ 2E§

N

I";@i)

d4
= Wy (pirg (sz ) q)é(qz—Mz) dM? - J™(q) (7.18)

where the sum runs over all incoming and outgoing momenta of the unknown part.
The function [/ can also be constructed out of the most general Lorentz form involv-
ing the metric tensor and the momentum g:

nv — flg]/lll

1214

iy (7.19)
q

The electromagnetic current is conserved at the lepton-photon vertex, since one finds:

gL ~ [(P)u + (P2)u] [(PD" (2) + (P1)Y (P2)" — g - P5]
’ Y+ () (P)Y = ()Y + (12)Y) (1 - p2)]

— (7.20)
This implies:
au]" = q " =0 (7.21)
9'q"
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The coefficient function f; is now easily found:
guw]" =3f1 (7.23)
1
= fi= 58 7 L

d3p d?’p
3 (27) 3%15/ 25/2 6@ (q— ph — pb) guv L™

402

4e d*p!
= 3@ ] 28! ((p5)2) © (Bg) d*py o™ (q— pi — p5) [~20} - pa]

2 d;?lé ((q -~ P’l)z) ® (E; — E1) [—qz]

e
~ 3-473g4

— 1B @ (B~ |B]) d|py] [ 40 s (2 =25} (B, — || cos6)
3m2q /

—a f e
-~ 2 i
3724q2 & / sin 0df 4(E; — |7| cos 0)?

 2a 1 [ 1 }1
37 |7] [4(Eq — |7l cos8)] ,

—20 1 { 1 1 ]
~ 3m |q] [4(E;—1q])  4(E,+q])

where we have introduced the electromagnetic fine-structure constant & = £~ ~ 5-.
Inserting Egs. (7.19) and (7.24) into Eq. (7.18) one recovers:

N ‘g a2 gz X o T
do ~ W (pi, ) (Zpl ) )5<q M>dM3q(8 q>

13
— MZ p § p 1 . }ll/ ‘3 ‘i 1 7 25
‘uv l’ ( ! ) 27[)32Eq 3;[q2 ( g q ) g ( ’ )

with E% = g% + (§)?. Thus, the cross section for lepton pair production can always
be found by calculating the cross section for virtual photon production and then
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replacing:

g 7‘;2 (_gw qqq) 7 (7.26)

After this detour, we can finally calculate the partonic cross section for DY pair pro-
duction by performing the replacement (7.26) in Eq. (7.14):

. 1(27)%0W (p + py — y
oy = 2D D E g [y, ) o (p, + ) 7]

3
4\/(191 - p2)? — m3m3

3
LI (TR L P
37Tq2< g+ g2 dg (2m)32E,

_ 4ma® 29" —q* (m3 — 6m1m2 +m3) — (m? — m3)?
d3q
8% (p1+p2—1) dqu ' (7.27)
q

Note, that if we put in the last equation all quark masses to zero and integrate over
the phase space, we recover the textbook cross section [PS95], as it should be:

47t 2g*
mi=mop—=— 0_/ Z 5()(p1+p2_q)dq25 (qZ_Mz) d4q

qq—>l+l

4mx2

7.3.3 Current conservation

By assigning different masses m; and m, to the annihilating quark and antiquark in
Fig. 7.2, current conservation is violated at the quark-photon vertex. One can easily
see this by contracting the quark current with the photon momentum g:

o(p2, m2) Y u(p1,m1) - qu

a( )y

=0(p2, ma) g u(p1,ma)
a( )
=o( )

U{p2,my (V1 +V2) u(py,my)
0(pa, ma) (my — ma) u(py,my) #0. (7.29)

However, for DY pair production as depicted in Fig. 7.3 this is not an issue since the
current is conserved at the lepton-photon vertex. To realise this one has to look at the
gauge dependent part of the photon propagator. The propagator has the following
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Lorentz structure, cf. Appendix B:

Guv(q) ~ (gw —-(1-9) quv> , (7.30)

with gauge parameter {. Now we insert the gauge dependent part of Eq. (7.30) be-
tween the quark and lepton currents and exploit the Dirac equation, cf. Appendix
A:

9(p2,m2) " u(pr,ma) - (quqv) - ks, m) " v(ko, m)

0(p2,ma) g u(p1,m1) - ii(ky, m) g v(ka, m)

0(p2, m2) (py + Vz) u(pr,my) - ik, m) (K1 + K2) o(ka, m)

=0(p2, ma) (m1 — ma) u(p1,my) - (ky, m) (m —m) v(ka, m)

0, (7.31)

and so the amplitude is current conserving as long as the produced leptons have equal
masses (0 in our case).

7.4 Kinematics

In this section we will work out the kinematics of the LO DY process in different
schemes. We begin by comparing the standard textbook parton model with a naive
approach which uses the light-cone component definition of the parton momentum
fractions. It will turn out that in the latter case unphysical solutions appear that must
be removed to be consistent with the standard parton model. We will then apply the
lessons learned from this comparison when we derive the kinematics for the case of
quarks carrying initial transverse momentum and mass.

7.4.1 Standard collinear parton model

In the following we want to derive the standard textbook result for the differential
LO DY cross section and, therefore, we treat the interacting partons as collinear with
their parent nucleons and we here keep the nucleons and partons massless. The
hadronic LO DY differential cross section in the standard parton model is given in
Eq. (7.1). There x; and x, are the momentum fractions carried by the annihilating
partons inside the colliding nucleons and in the standard parton model, cf. Eq. (6.74),
they are connected to the nucleon momenta via:

pP1 = X1P1 , (7.32)
P2 = szz . (733)

Note that it becomes immediately clear from Egs. (7.32) and (7.33) that the incoming
partons move collinearly with the nucleons. According to Eq. (7.28) no transverse

132



7.4 Kinematics

momentum can be generated for the virtual photon (and thus for the DY pair) in the
LO process:

P, =pa, =0 (7.34)
= 6@ (p1+p2—q) = 5((p1 +p2)° — 4°) 6@ (7,)
x3((p1+p2)*—q°) . (7.35)

The maximal information about the DY pair that can be gained from Eq. (7.1) is
double differential and a common choice of variables is the squared invariant mass
M? and Feynman'’s xr (cf. Sec. 7.2) of the virtual photon:

A 2
dz —/d4q47m 5(M2—q2>5(4)(m+pz—q)5(xF— iz )

dM?2 dxp - 9q2 (q,z)max
47a? (p1+ p2)
= 5 (M? — 2) 6 — b _PEJE ) 7.
9IM?2 (M (pl + Pz) ) (Xp (qz)max ) (7.36)
The two J-functions connect x; and x, with the chosen observables:
M? = 2pips = x1%28, (7.37)
VS (x2 —x1)

Xp=+—r—+—-"72, 7.38
F Z(QZ)max ( )

with (§z)max = @, cf. Egs. (7.8) and (7.9). Solving for x; and x, yields:

¥ = _(QZ)max xXr £ \/((EIZ)max xF)Z + M?
= NG

_ _(qz)ma:(/%F =+ Econ ) (7.39)

_ (g)max vp £ \/((qz)mx x5)? + M2

2 s
(qz)max xr £ Econ
= , 7.40

with the energy of the collinear DY-pair:

Econ = \/Mz + ((QZ)max xF)z . (7.41)

However the solutions corresponding to the lower (negative) sign in Egs. (7.39,7.40)
are always negative. Only the upper solutions are in the integration range of Eq. (7.1)
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and are physically meaningful. For the negative solutions the parton energies would
be negative on account of Egs. (7.32) and (7.33). The hadronic cross section then reads:

MZ O /dxl/dxz Zq fi(x1, M?) f:(x2, M?)

4rra® 5 2 (p1+p2):
X M2 ) (M — (P1 + Pz) ) ) (xF — —(qz)max )

1 1
= [dn [ 2 Y3 filo, M) filxa, M)
0 0 :

47toc2

(‘]z)max 5(x1

- x1+) 6(x2 — x2+)
9M S\/ qZ maxxF +M2

4o (‘h)max
_ 2 2 2
= Zi:qiﬁ(xl+,M ) filxa. M?) Grz “gp o (7.42)

The last equation is the standard parton model formula for the hadronic LO DY cross
section.

7.4.2 Naive collinear parton model

In this section we work out the complete collinear kinematics using the definition of
the parton momentum fraction as the ratio of light-cone components of the parton
and the nucleon, cf. Egs. (6.136) and Egs. (6.137). We show that there exist other
solutions for the parton momentum fractions x; which are neglected in the standard
parton model right from the start. These other solutions will turn out to be unphysical
and are derived at this point only to provide insight into difficulties arising from a
transverse-momentum dependent calculation as discussed in Secs. 7.4.3 and 7.4.4.

The partons inside the nucleons carry some fraction of their parent hadron’s longi-
tudinal momentum. Labeling the parton momentum inside nucleon i with p; we can
define these fractions as ratios of plus or minus components of the partons and the
corresponding components of the nucleon momenta. In the DY scaling limit (S — oo
and M?/S finite) P, = PZ’L — /S become the large components while all other com-
ponents vanish (again we keep the partons and nucleons massless in this section for

134



7.4 Kinematics

simplicity). We define the following momentum fractions:

2

X1 = e —Zlg , (7.43)
1
24
Pop iy (7.44)
V'S
+ +
% % - p—\/zg , (7.45)
. Py
X = = . 7.46
2= g (7.46)

Note that Egs. (7.43) and (7.45) are the standard definitions for the light-cone momen-
tum fractions, cf. Sec. 6.2.2. The tilde quantities in Egs. (7.44) and (7.46) are introduced
for later convenience. The kinematical constraints for these fractions are the onshell
conditions:

pl=pp; =0= x4 =0, (7.47)
Pi=pip; =0=1005=0, (7.48)

together with the invariant mass condition:

M? = (p1 +p2)? = 2p1p2 = pi Py + 01 PS
= (x~1f2 + xlxz) S ’ (749)

and the relation for Feynman xr:

(p1+p2), 1 _ _
= e 2qm PP )
S
— % (F1 — X1 + X2 — %2) . (7.50)

We will show now that the constraints in Egs. (7.47-7.50) can be fulfilled by two dif-
ferent sets of momentum fractions x;, £;. Equation (7.47) implies 1 = 0 or x; = 0. In
the first case one finds:

=0 (7.51)
2
Eq. (749) - M? = X% (7.52)
=x1#0# x (7.53)
7499 = 2 =0 (7.54)
VS

Eq. (750) = yp = (xp — x1) (7.55)

Z(QZ)max‘
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7 The Drell-Yan process at leading order

This is just the standard parton model solution, Egs. (7.37) and (7.38), as described in
Sec. 7.4.1. However there exists another solution, namely for x; = 0:

x1=0 (7.56)
2
Eq- (749) MT = 1% (7.57)
= %) #0 # % (7.58)
Fe 748 = vy = 0 (7.59)
.., VS
Eq. (7.50) = Xr = (X1 — xz)w . (760)
zZ /max

Kinematically this second solution represents the (strange) case where each parton
moves into the opposite direction of its respective parent nucleon (this solution corre-
sponds to the lower (negative) sign solutions in Egs. (7.39, 7.40)). One can see this in
the following example, where we choose xr = 0:

. . M
X1 =X = % (7.61)
1 _ 1 _ M
= pi=5({ —p7) =5Von ==, (7.62)
and analogously one finds:
p=—. (7.63)

2

Since nucleon 1 (2) moves into negative (positive) z-direction, cf. Egs. (7.2) and (7.3),
the partons here move exactly opposite. The parton momentum fractions x; (not £;!)
entering the PDFs, however, are those of partons that move into the same direction as
their parent nucleon. The second solution is thus physically not meaningful and it is
discarded right away in the standard parton model approach.

The essential difference between the standard and the naive parton model is the fol-
lowing: In the (collinear) standard parton model all components of p; are fixed at once
by p; = x;P;. This automatically implies &; = 0. Such a procedure is without problems
if one sticks to the collinear dynamics. In Sec. 7.4.3 below, however, we include initial
transverse momenta of the partons, i.e. we have to deviate from p; = x;P;. The natural
choice would be to define x; via one nucleon momentum component (the large one).
This is exactly what we have done here for the collinear case. However, in the naive
parton model x; and ¥;, i.e. p;” and p;, are introduced as independent variables which
are then constrained by the kinematical and onshell conditions (7.47)-(7.50). Therefore
one falls into a trap by picking up the additional unphysical solutions for &; # 0. The
same happens for the more complicated case including initial transverse momenta in
Secs. 7.4.3 and 7.4.4.
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Including in addition initial transverse momenta for the partons one has to model
the distributions of these momenta. However there is a constraint the chosen model
has to obey: in the Bjorken limit one should come back to the standard parton model
and not to the naive one since only the former emerges from QCD. In the following
we will point out how to modify the naive parton model such that one ends up with
the standard parton model. This procedure will then be generalised to the case where
initial transverse momenta of the partons are included in Sec. 7.4.3. In the naive
parton model the hadronic cross section reads:

dUnalve

O drr /dxl/dXZZq fi(x1, M?) fi(xp, M?)

47ta® 2 2 (p1+p2):
X N2 1) (M — (p1+ p2) ) 0 (xp — —(qz)max )
1 1
= /dxl/dxz qufl-(xl,Mz)f;(xz,Mz)
0 0 i
y 47102 2(q2)maxx1x2 (6(x1 — x1,) 8(x2 — x2, ) + 8(x1) 6(x2))
9M?2 §3/2 |(X1XZ — flfz) (x1 +x+ X + f2)| )

(7.64)

The unphysical second solution for the momentum fractions in the last expression is
represented by:

§(x1) 5(XQ) xlfi(xl, MZ) xzf;(xz, MZ) . (765)

Its contribution does not vanish since one obtains for large enough M? [GRV9S]:
: 2
lim (xf(x,M?) >0. (7.66)
We now introduce a notation which we will keep throughout the rest of this work.

Whenever we explicitly disregard unphysical solutions of the type of Egs. (7.56)-(7.60)
under an integral we denote this integral by {. Then for the naive model one finds:

da 47102 2 2
b= Jon ot Lttt 8

2(qz)maxx1%2 (6(x1 —x1,) 6(x2 — X2, ) + 6(x1) 6(x2))

X
S3/2|(x1xp — X1%) (%1 + X0 + ¥ + %) |

7

(7.67)
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whereas the correct model gives:

1 1
do 4rra ) )
T g[dxl g[dxz ongz L1 M) flxa, M)

2(92)maxx1x2 (6(x1 — x1, ) 8(xp — x2, ) +6(x1) 6(x2))

X
S3/2 | (x1xp — ®1%0) (x1 + X2 + X1 + %2)|

1 1
47o?
— /dxl/ Yo T qufl (x1, M?) f+(x2, M?)
0 0

2(qz)max(x122)6(x1 — x1,) (%2 — x2,)
53/2(X1XZ)(X1 + XZ)

47ta 2(qz)
B 2, 2\ £ 5 z Jmax
= Dabfilan M) filoe, M) ot o

X

4rta’ (g)
— 27 2\ £ 2 z )Jmax
- Zl:ql fl(ler’ M )fl(x2+’ M ) 9M2 SEcoll * (768)

Note that in the last expression we have recovered the standard parton model result
Eq. (7.42).

The main reason to present this naive approach in detail will become clear in the
next section where we lift the simplification of a collinear movement of the partons
with the nucleons.

7.4.3 Intrinsic transverse momentum

As already mentioned above, no DY pair transverse momentum (pr) is generated in
the simple collinear parton model approach. Nevertheless, measurements indicate
a Gaussian form of the pr spectra at not too large pr. This has been studied in
approaches including initial quark transverse momentum distributions, e.g. [DMO04,
AT06]. In the current work we also present an approach incorporating primordial
quark transverse momentum to address this issue. However, we have to consider, that
unphysical solutions for the momentum fractions x; can appear, cf. Sec. 7.4.2, which
have to be removed properly. In earlier studies [LLM05, LGLMO06, LLM07, Lin06] this
important constraint was not considered and, thus, wrong results obtained. Note that
the correct solutions can always be identified by putting all transverse momenta and
masses to zero and then by checking if the well known parton model 