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ABSTRACT

This article analyzes the strategic decisions of firms whether to establish and adhere to a cartel when they can also

shape competition by investing into production capacity while being subject to unexpected demand shocks with

persistence. The model shows that a negative demand shock can facilitate cartel formation despite lowering collusive

profits. This is because lower demand reduces capacity utilization and makes competition more intense especially

when capacities are durable and when demand falls much within a short time. The model also shows that firms with

a low discount rate strive for a dominant position in the market which results in asymmetric capacity distributions.

These obstruct collusive strategies. This is interesting because a low discount rate is usually considered a facilitating

factor for collusion.
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 1 INTRODUCTION 

This paper shows under  what circumstances a demand shock raises firms' inclination to collude and

what role capacity constraints and the intensity of competition play in this context.  The relevance of

this analysis is shown by an own evaluation of 41 cartel cases prosecuted by the European Commission

between 2001 and 2010. The Commission suspected that changes in demand were causal for cartel

formation in 25 of the 41 decisions, with excess capacities being named in 13 cases. An increase in the

intensity of competition prior to collusion is reported in 28 cases.1

Analyzing the cartels prosecuted by the European Commission shows that demand shocks can

take a variety of forms. Demand can move up (e.g. the conspiracy in sodium chlorate) or down (e.g. the

French beef cartel). Behavior may be influenced by changes in demand prior to cartel formation (e.g.

the two aforementioned cartels) or by changes in demand expected to occur after the establishment of

the conspiracy (e.g. the expected decline in demand for carbonless paper or the expected increase in

demand for animal feed phosphates). Demand shocks can be quite persistent (e.g. graphite electrodes)

or supposedly temporary (e.g. fine art auction houses) while occurring abrupt (e.g. French beef) or

slowly (e.g. professional videotapes). To allow for demand patterns that match this case evidence we

model demand by a Markov-process (Kandori 1991, Besanko et al. 2010.1, 2010.2) where demand

moves up or down across D discrete states while the persistence of demand conditions can be varied by

the  researcher.  This  demand  model  appears  to  be  more  in  line  with  the  case  evidence  for  cartel

formation than other demand specifications that are frequently used when analyzing cartel stability, i.e.

deterministic demand cycles (Haltiwanger and Harrington 1991), i.i.d. demand shocks (Rotemberg and

Saloner 1986), or a Markov-growth model (Bagwell and Staiger 1997).

The existence of excess capacities, which are observed in 13 out of the 41 analyzed decisions,

can be the result of a decline in demand (e.g. graphite electrodes, needles) or may have reasons in the

history of a firm and/or industry like expectations that did not fulfill later. For example, in the hydrogen

peroxide case the firms had built capacities in anticipation of an increase in demand that did not come

true. This example underlines the property of capacities being the result of endogenous investment

decisions of the firms which are modeled explicitly in this article. In doing so, our model complements

literature on the stability of collusion that – to date – has assumed capacities to be exogenously given

and symmetric (Fabra 2006: 72), to be chosen prior to a repeated product market game (Knittel and

Lepore 2010: 133), or to be chosen at the beginning of every period while depreciating completely at

1 I am grateful for this thorough evaluation that was conducted by Daniel Herold for his MSc-thesis.
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the end of a period (Staiger and Wolak 1992: 206). 

To be more specific about the model, we set up an infinitely repeated game where two capacity-

constrained one-product firms supply a near-homogeneous product and are subject to Markov-type

demand shocks. At the beginning of every period, the firms learn the current level of demand and

capacities as the capacity stock from previous periods is subject to stochastic depreciation events. The

firms make two decisions. First, every firm decides whether to compete or collude and sets a price for

its good accordingly. Second, the firms decide how much to invest into their production capacity. These

decisions are made by every firm with the objective to maximize its value, i.e. the present value of

future operative profits net of investment expenditures. The model for competition has initially been

described in the online appendix to Besanko and Doraszelski (2004) and has been applied, for example,

by Chen (2009) and Besanko et al. (2010.1, 2010.2). The model for collusion is based on Fershtman

and Pakes (2000).  The colluding firms are assumed to determine prices as the Nash (1950, 1953)

solution to a bargaining game. Collusion is stabilized by price wars in combination with a grim trigger

strategy (Friedman 1971, Rotemberg and Saloner 1986).

Analyzing firms' decisions concerning competitive or collusive market conduct and investment

is  non-trivial  as  these  decisions  are  interdependent  and affected  by stochastic  events.  To see  this,

consider that the profits depend on the state of demand and firms' production capacities. The optimal

investment  decision  depends  on  future  profits  and,  thus,  relies  on  both  the  expected  evolution  of

demand and the expected evolution of capacities. As demand shocks are assumed to be exogenous and

to  occur  stochastically,  firms  can  predict  from the  current  level  of  demand  with  what  probability

demand  will  be  in  some  specific  state  in  a  future  period.  Capacities  also  evolve  to  some  extent

exogenously as depreciation events and investment success are modeled to be stochastic following

known  probability  distributions.  However,  the  probability  distribution  of  investment  success  also

depends endogenously on firms' optimal investment strategies, i.e. the higher the invested amount the

higher is the probability of investment being successful. 

Our model allows us to calculate the profit function, the policy function, and the value function

of a representative firm both in competition and collusion. The profit function shows the profits of the

firm for all combinations of the firms' capacities in all demand states. Based on these profits, we use a

variant of the Pakes and McGuire (1994) algorithm to calculate the optimal investments of the firm for

all  combinations  of  capacity  and demand,  i.e.  the  policy function.  This  enables  us  to  analyze  the

determinants  of  firms'  investment  decision  and  the  resulting  distribution  of  capacities  both  in

competition and collusion. Our calculation also yields a collusive and a competitive value function
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which  show  a  firm's  present  value  of  future  profits  (net  of  investment  expenditures)  for  all

combinations  of  capacity  and  demand.  We calculate  the  incremental  value  of  collusion  for  every

combination of capacities and demand by subtracting the competitive firm value of a firm from its

collusive counterpart. We interpret that a cartel is more likely to be formed for higher values of the

incremental value to collude.

The contribution of our paper is twofold. First, the paper is among the first to explicitly explore

cartel formation and, thus, complement the established literature on cartel stability. Our model supports

the observation that cartel formation is facilitated by events that raise the intensity of competition and,

thus, raises the incremental value to collude. Second, the paper studies the relationship between firms'

investment  decision  into  capacity  and  their  decision  to  form  and  maintain  an  explicit  collusive

agreement. It finds that a low discount rate, which is commonly considered to be a facilitating factor

for collusion, may make the firms invest into quite asymmetric capacities, which effectively impedes

collusion. To see this, we give an overview of the main effects that can be observed in the model.

Demand effect: Profits are a positive function of demand. A decline in demand lowers collusive as well

as competitive profits. The same is true for the collusive and competitive firm value. Hence, the

incremental value to collude falls along with demand if the demand effect is not offset by the

competition effect.

Competition effect: More intense competition, as measured by a low price-cost margin, lowers both the

competitive profit and the firm value and, thus, raises the incremental value of collusion.  For

example,  intense  competition  was  observed  prior  to  the  formation  of  the  conspiracies  in

Methionine, Soda Ash, Vitamins, and Plasterboard (Grout and Sonderegger 2005). Competition

is  intense when production  capacities  are  high  relative to  demand.  Hence,  the  existence  of

excess capacities contributes to the intense competition that is observed in 28 of the 41 cartel

cases that we refer to above. Such a situation can be brought about by different types of events.

(i) A negative demand shock may make competition more intense. This is especially true when

prior to the shock the industry had been characterized by binding capacity constraints which

had given the firms some market power. Lower demand makes the capacity constraints less

binding which results in more intense competition. This is especially true when the decline

in demand is pronounced and occurs quickly.

(ii) When capacities are fairly durable they cannot be adjusted quickly to situations of lowered

demand. In this case it takes the firms some time to reduce production capacities by means
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of depletion and, thus, mitigate the higher intensity of competition. The longer the firms

remain subject to intense competition the more strongly does their competitive firm value

decrease. This effect is less pronounced when capacity depreciates at a higher rate.

(iii) The collusion-enhancing effect of falling demand vanishes when the firms had produced at

capacities that more than suffice to serve demand even before the drop in demand. In this

case, the negative demand shock only somewhat raises the intensity of competition and the

above  demand  effect  becomes  relatively  more  important,  i.e.  the  incremental  value  to

collude may even fall along with demand. However, high capacities are generally associated

with a high level of competition irrespective of the state of demand. This causes the level of

the incremental value to collude to be high as well. For example, the citric acid cartel was

formed in 1991 after one firm had significantly expanded its capacity in 1985 and 1988

which contributed to a decline in prices of about 45% between 1985 and 1990.2

Symmetry  effect:  A symmetric  capacity  distribution  is  found  to  facilitate  cartel  formation.  With

asymmetric capacities, the larger firm enjoys scale- respectively cost-advantages over the small

firm in competition and has a lower incentive to establish a collusive agreement. This finding is

consistent with the observation that  cartels  are most frequently observed among firms with

similar  market  shares.  When  the  capacities  are  fairly  skewed  one  also  finds  that  collusion

cannot  necessarily  be  stabilized  by price  wars  in  combination  with  a  grim trigger  strategy

(Friedman 1971, Rotemberg and Saloner 1986, Compte et al. 2002). 

The latter effect, i.e. collusion cannot necessarily be stabilized when the capacities of the firms

are fairly asymmetric, shows that the scope of collusion depends on the investments which the firms

choose in competition and the resulting capacity distributions. The model shows that the investment

decision of the firms is  mainly affected by the values of firms'  discount rate and the depreciation

probability of their  capacities.  We identify three different types of competitive equilibria that have

different properties with regard to cartel formation.

Type A – Asymmetric Competition:  When capacity depreciates quickly and firms strongly discount

future profits they invest into somewhat asymmetric and relatively high capacities. Asymmetry

implies  that  especially  the  large  firm has  a  small  incentive  to  collude.  High capacities  are

associated with a high intensity of competition irrespective of the state of demand. Thus, a

negative demand shock often aggravates cartel formation because of a strong demand effect.

2 DG Comp Case No COMP/E-1/36 604 – Citric Acid
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Type S – Symmetric Competition: When capacity depreciates slowly and the firms strongly discount

future profits they invest into rather symmetric and not overly high capacities. As the durable

capacities  cannot  be lowered quickly in  response to  a  drop in  demand intense competition

would persist for a relatively long time. Therefore, a negative demand shock often facilitates

cartel formation because of a strong competition effect.

Type P – Preemption Races: When capacity depreciates quickly and firms discount future profits at a

low rate they engage in preemption races in order to attain a dominant position in the market.

These result in fairly skewed capacity distributions where collusion is not necessarily stable in

our model. Given firms' inability to stabilize a collusive agreement such a cartel will not be

formed.

Asymmetric  capacities and, thus,  instability of collusion is  observed when the firms

discount future profits at a low rate. This is interesting because the literature typically argues

that  a  low  discount  rate  contributes  to  stabilizing  rather  than  destabilizing  a  collusive

agreement. Our finding is novel and illustrates the importance of analyzing firms' decision to

collude  in  the  context  of  their  entire  strategy  set  that,  for  example,  includes  investment

strategies  as  well  as market  conduct  strategies like collusion or competition.  Analyzing the

interactions between different types of strategies shows that a low discount rate does not always

contribute to stabilizing collusion as it may also cause firms to invest into asymmetric capacities

which cause collusion to be unstable.

The paper is structured as follows. In section 2, we present the industry model and introduce the

specification  of  fluctuating  demand  with  persistence.  Moreover,  we  specify  our  assumptions  on

competitive  and  collusive  conduct.  In  section 3,  we  evaluate  the  model  for  different  parameter

combinations and analyze its properties for the three types of competitive equilibria. Moreover, we

provide  robustness  checks.  Section 4 concludes.  Technical  background  information  and  further

robustness checks are provided in Appendix A and Appendix B.
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 2 THE MODEL

This section presents our dynamic duopoly model with near-homogeneous products, demand shocks

with persistence, price competition, and endogenous capacity investments. Subsection 2.1 explains our

assumptions on demand. Subsection 2.2 elaborates on firms' production costs as a function of their

capacity. Subsection 2.3 assumes that the competing firms individually set prices in order to maximize

profits. Subsection 2.4 states our assumptions on collusion, i.e. collusive prices are jointly set as the

Nash solution to a bargaining game. Collusion is stabilized by price wars in combination with a grim

trigger strategy. In competition and collusion, firms are assumed to invest into production capacity with

the  objective  of  maximizing  the  present  value  of  expected  operative  profits  net  of  investment

expenditures. Results are presented in section 3.

 2.1 Structure and Evolution of Demand

The representative consumer has utility function (1) as initially proposed by Bowley (1924).

u=q0+aq1+a q2−
b
2

q1
2
−

b
2

q2
2
−γ q1 q2  , (1)

where q0≥0 is the consumption of a numeraire good and qj≥0 denotes the consumed quantities of the

goods produced by the two one-product firms in our duopoly model where firms are being indexed by j

 {1,2} and -j=3-j. Let q=g/b, where q  [0;1[ measures the degree of product differentiation, ranging

from 0 for independent goods to 1 for homogeneous goods.

We maximize utility function  (1) with respect to the quantities  q0,  q1,  and  q2 subject to the

budget constraint y=q0+Sqjpj, with y denoting the representative consumer's income and the price of the

numeraire being set to p0=1. This yields the linear inverse demand function in (2).

p j (q)=a−bq j−θb q− j    ∀ j∈{1, 2}  (2)

q denotes a (21)-vector whose elements represent the outputs of the  two firms.  The representative

consumer's demand function for good j looks as shown in (3).

q j( p)=
a (1−θ)−[1+(J−2)θ] p j+θ p− j

b⋅[1+(J−2)θ−(J−1)θ2]
   ∀ j∈{1,2}  (3)

p denotes a (21)-vector whose elements represent the prices of the two firms.
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Given that persistent demand shocks are thought to be a possible cause of cartel formation we

assume Markov-process demand fluctuations (Kandori 1991, Besanko et al. 2010.1 and 2010.2) that

allow for such shocks. We introduce an exogenous market size parameter G in our model that can be

interpreted as the total mass of customers.  Total demand for good  j (qj) is found by multiplying the

demand of one representative customer (3) by G.

q̃ j ( p)=Γ⋅q j ( p)    ∀ j∈[1 ; J ]  (4)

Without loss of generality we normalize the median value of G to 1.0. Varying market size G rotates the

demand curve while keeping its intercept with the price-axis fixed. This implies that a drop in demand

reduces the number of customers but leaves the distribution of consumers' tastes unchanged.3

Conducive to solving the model by the numerical Pakes and McGuire (1994) algorithm, the

number of demand states is assumed to be finite. There are D demand states and the demand state in

period t, dt, lies in {1,2,...,D}.4 Every demand state translates into a market size, i.e. G=G(d) where G is

increasing in  d so that a higher value for  d corresponds to a bigger market. We propose a specific

functional form for G(d) in section 3. In Table 1 we define the transition probabilities prob(dt+1|dt) that

govern the transition from state dt in period t into dt+1 in period t+1. Demand moves up or down by no

more than one state per period, which occurs with probability (1-r)/2, or it remains at its previous level

with probability r. Hence, r can be interpreted as a measure of persistence of demand shocks. In the

border  demand  state  dt=1  (dt=D)  the  probability  of  moving  down  (up)  is  zero.  This  raises  the

probability of remaining in the old state by (1-r)/2. The stationary distribution over demand states is

uniform, i.e. over time every demand state is visited with probability 1/D. This specification of demand

parallels the one used by Besanko et al. (2010.1).5

3 The literature on the stability of cartels typically uses one of four types of demand movements. These are i.i.d. demand 

shocks (Rotemberg and Saloner 1986), deterministic demand cycles (Haltiwanger and Harrington 1991), non-

deterministic demand movements in a Markov-growth model (Bagwell and Staiger 1997, Hamilton 1989), and Markov-

process demand fluctuations (Kandori 1991, Besanko et al. 2010.1 and 2010.2).

4 In principle, the number of demand states can take any value. However, computation time requires D not to be 

excessively large. In section 3, we assume D=9.

5 Besanko et al. (2010.1) measure the persistence of demand only somewhat differently. They define a parameter rB  

[0,0.5] as a measure of demand uncertainty where higher values indicate more volatile demand. In our model, r  [0,1] 

measures demand persistence where more volatile demand is indicated by lower values of r. The two measures relate to 

each other as follows: rB=(1-r)/2.
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dt=1 1<dt<D dt=D

prob(dt+1=dt-1) 0 (1-r)/2 (1-r)/2

prob(dt+1=dt) (1+r)/2 r (1+r)/2

prob(dt+1=dt+1) (1-r)/2 (1-r)/2 0

Table 1: Transition probabilities of demand

 2.2 Costs and Capacity

The  cost  function  of  the  firms  is  modeled  as  proposed  in  the  online  appendix  to  Besanko  and

Doraszelski (2004) and applied by Chen (2009) and Besanko et al.  (2010.1). We assume capacity-

constrained firms whose capacity q takes one of M positive values. In period t, the capacity state of the

industry is st=(s1t, s2t)  {1, 2, …, M}, where sjt denotes firm j's capacity level and firm j's capacity is qjt.

For example, sjt denotes the firm's number of plants with qjt being the total output that can be produced

by these plants.  In section 3, we specify a function qjt=5·sjt that relates sjt and qjt through a plant size

(here: 5) which can be chosen by the researcher.6 In the following, the time subscript  t is sometimes

dropped to make the notation more concise.

Given that firm j holds qj units of capacity, the total cost of producing qj units of output is 

C j( q̃ j∣q̄ j)=
1

1+η(
q̃ j

q̄ j
)
η

q̃ j , with η>0  . (5)

Equation (5) poses a “soft” capacity constraint because for qj≤ qj marginal costs cj are relatively small.

c j( q̃ j∣q̄ j)=( q̃ j

q̄ j)
η

 (6)

For  h>1 and qj> qj marginal costs rise quite steeply, i.e. firms face substantial diseconomies of scale

once they produce at or above their capacity. Soft capacity constraints can be considered a reasonable

approximation of reality because the assumption of diseconomies of scale can be motivated by the

existence  of,  for  example,  overtime  allowances,  higher  maintenance  costs,  or  a  higher  number  of

rejects. These additional costs make it unprofitable for a firm to produce a quantity that is way above

the  planned capacity  qj. Note  that  the  higher  the  parameter  h the  closer  are  we to  hard  capacity

constraints which is about the case for h≥10. Figure 1 presents a graph of marginal costs for h  {2.5,

10, 40}.

6 Section 3 and Appendix B show that our qualitative conclusions are not sensitive to this choice of parameter values.
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From a modeling point of view, the use of soft capacity constraints is convenient because it

allows us to concentrate on Nash equilibria in pure strategies in the product market game. To see this

consider that in case of hard capacity constraints demand can exceed firms' production capacity. This

would require to specify a rationing rule (see, for example, Besanko and Doraszelski 2004: 27) which

may result in a profit function that is not quasi-concave such that pure-strategy equilibria often fail to

exist. This is different with soft capacity constraints where it is not necessary to ration consumers. This

results  in  profit  functions  that  are  continuous  and  quasi-concave.  Hence,  a  unique  pure  strategy

equilibrium exists (Maggi 1996: 242).

We allow the firms in our model to invest into capacity.  In every period,  firm  j invests  an

amount xj≥0 to raise and/or maintain its production capacity. The higher xj the higher is the probability

(axj)/(1+axj) that  the  investment  is  successful,  where  a>0  indexes  how  likely  investments  are

successful. The probability (axj)/(1+axj) rises concavely in both  a and  xj. This modeling structure is

consistent  with a  time-to-build model  (Besanko and Doraszelski  (2004:  28),  Kydland and Prescott

(1982)). By assumption, a firm may only move up by one step per period, i.e. it may transit from state

sj to sj+1 but not to sj+2. A firm's stock of capital may also depreciate which occurs with probability d.

Again, a firm may only move down by one step per period, i.e. it can transit from state sj to sj-1 but not

to sj-2. 

In  writing  down the  transition  probabilities  of  firm  j we distinguish  three  cases.  First,  the

capacity of a firm that is in the lowest state sjt=1 may only move up or stay at the previous level but

cannot move down any further. Second, a firm that is in the highest state sjt=M may only transit to state

Figure 1: Marginal costs with qj=10
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sjt+1=M-1 or remain in the highest state sjt+1=M but cannot attain a higher capacity. Third, a firm that is

in some intermediate state 1<sjt<M may either move up or down by one state or remain in the same

state. The resulting transition probabilities prob(sjt|sjt+1,xj) are provided by Table 2.

sj=1 1<sj<M sj=M

prob(sj-1|sj,xj) 0 d/(1+axj) d/(1+axj)

prob(sj|sj,xj) 1/(1+axj) (1+daxj-d)/(1+axj) (1+axj-d)/(1+axj)

prob(sj+1|sj,xj) (axj)/(1+axj) ((1-d)axj)/(1+axj) 0

Table 2: Transition probabilities of capacity

 2.3 Competitive Conduct

After demand has realized the firms set prices simultaneously and then produce to satisfy demand (4).

Equation (7) defines the profits of firm j.

π j= p j q̃ j( p j , p− j)−C j ( q̃ j( p j , p− j)∣q̄ j )  (7)

Individual profit maximization requires solving the system of non-linear first order conditions (8) for

the vector of profit-maximizing prices pc.

∂ π j

∂ p j

= q̃ j+
∂ q̃ j

∂ p j

⋅( p j−c j) =
!

0

q̃ j−
Γ(1+(J−2)θ)

b⋅[1+(J−2)θ−(J−1)θ2 ]
⋅(p j−( q̃ j

q̄ j
)
η

) = 0
 (8)

Following  Chen  (2009),  we  solve  for  the  values  in  pc numerically  and  calculate  the  competitive

equilibrium profit pc,j and quantity qc,j of firm j according to equations (7) and (4). The properties of the

profit function across the capacity space have been explored in the online appendix to Besanko and

Doraszelski (2004), by Chen (2009), and by Besanko et al. (2010.2). Graphs of the profit function and a

discussion of its properties are provided in section 3.1.

Let Vj denote the expected present value of firm j, and let xj denote the amount firm j invests in

the current period  t given the industry is in capacity state  s and demand is in state  d. We focus on

symmetric Markov perfect equilibria. This allows us to concentrate on any firm  j, knowing that the

policy function and the  value  function  of  firm  j and that  of  the  other  firm  -j are  the same if  the

capacities of their respective competitors and the state of demand are the same. Equation (9) shows the

Bellman equation for this problem.
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V j (s , d )=max
x j≥0 (πc , j(s , d )−x j+

1
1+r
∑
s j '=1

M

W j(s j ' )⋅prob(s j '∣s j , x j))  (9)

In this equation, 0<r<1 is the discount rate and sj, respectively sj', are firm j's capacity states in periods t

and t+1. We assume that the discount rate is the same for all firms so that r is not indexed by j.

Wj is the expected present value of the firm in period t+1 over all possible future states of the

capacity of firm j's competitor s-j' and over all possible future states of demand d'. 

W j(s j ')=∑
d '=1

D

∑
s− j'

V j(s− j ' , s j ' , d ' )⋅prob( s− j '∣s− j , x− j(s , d ))⋅prob (d '∣d )  (10)

The first prob-term shows the probability that the competitor of firm j moves from capacity state s-j into

state  s-j' given that the firm behaves according to its policy function  x-j(s,d). The second  prob-term

shows the probability that the industry moves from demand state d into state d'.

To obtain firm j's policy function we determine the first-order condition (11) of value function

(9).

−1+
1

1+r
∑

s j '=1

M

W j(s j ' )⋅
∂ prob (s j '∣s j , x j)

∂ x j

=0  (11)

Note that for 1<sj<M the sum in equation (11) consists of three summands because sj'  {sj-1, sj, sj+1}.

For  sj=1 and  sj=M the number of summands reduces to two. The partial derivatives of the transition

probabilities can be calculated from their functional forms provided in Table 2. We plug these terms in

equation (11) and define D as in (12).

Δ={
α

1+r
[W j(s j+1)−W j (s j)] if s j=1

α

1+r [(1−δ)⋅(W j(s j+1)−W j(s j))+δ⋅(W j(s j)−W j(s j−1))] if 1<s j<M

α

1+r [δ⋅(W j(s j)−W j(s j−1))] if s j=M

(12)

We determine the optimal investment strategy xj(s,d) of firm j by solving first-order condition (11) for

xj(s,d).

x j(s , d )={ 0 if Δ<0
max (0,(−1+√Δ)/α) if Δ≥0

 (13)
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 2.4 Collusive Conduct

Our collusive model is based on Fershtman and Pakes (2000). The two firms are assumed to collude in

prices but do not coordinate their investment policies (semi-collusion).  Such semi-collusion has been

reported,  e.g.,  for  the  Norwegian  cement  cartel  (Steen  and  Sørgard  1999)  or  the  conspiracies  in

nitrogenous fertilizer,  synthetic fibers,  plastics and aluminum (Davidson and Deneckere 1990).  We

define Vk,j(s,d) as the collusive present expected value of firm j when it chooses price pk,j, sells quantity

qk,j, makes profits pk,j, and invests xk,j. Moreover, let Vdev,j(s,d) define firm j's expected present value if it

deviates from the collusive agreement. In this case it chooses price  pdev,j,  sells quantity  qdev,j, makes

profits  pdev,j,  and  chooses  investment  xdev,j.  Along  with  the  related  literature7 we  assume  collusive

conduct to be enforced by a grim trigger strategy (Friedman 1971), i.e. after an observed deviation all

cartel firms revert to the competitive equilibrium forever. The firms in our model are assumed to be

completely informed about the capacities and the strategies of the other players. As a consequence,

every firm  j anticipates if any other firm has an incentive to deviate at the collusive price and as a

precaution lowers its  own price to the competitive level  in  order  to render defections unprofitable

(Green and Porter 1984). We comment on each of these parameters and assumptions in turn.

Equation (14) shows the collusive present value of profits.

V k , j(s , d )=max
xk , j≥0(πk , j ( s , d )−xk , j+

1
1+r
∑

s j '=1

M

W k , j(s j ')⋅prob( s j '∣s j , xk , j))  (14)

The collusive expected present value of firm j in period t+1 (Wk,j) is defined in equation (15), which is

similar to the competitive future firm value as defined in equation (10).

W k , j( s j ' )=∑
d '=1

D

∑
s− j '

V k , j(s− j ' , s j ' , d ' )⋅prob(s− j '∣s− j , x− j(s , d ))⋅prob(d '∣d )  (15)

To determine the collusive profit pk,j we specify a collusive price vector pk. We assume that the firms

determine prices as the solution to a bargaining game and comment on this assumption below. Along

with Fershtman and Pakes (2000: 213) we use the Nash (1950, 1953) solution to this game and assume

that the firms choose prices pNBS that maximize condition (16).

7 See, for example, Rotemberg and Saloner (1986), Davidson and Deneckere (1991), Haltiwanger and Harrington (1991), 

Staiger and Wolak (1992), Bagwell and Staiger (1997), Fershtman and Pakes (2000: 213), Fabra (2006), and Knittel and 

Lepore (2010).
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max
p j∀ j

πNBS=∏
j=1

J

(πNBS , j−πc , j )  (16)

As in the case of the competitive model,  we solve for the profit-maximizing vector of prices  pNBS

numerically and calculate the equilibrium profit pNBS,j and quantity qNBS,j for every firm j.

Our set of assumptions aims at a balance between the computational tractability of the model

and its economic meaningfulness. When firms are assumed to be symmetric it is natural to focus on

collusive agreements where the firms maximize joint profits and distribute the gains equally. When

firms  are  asymmetric  there  is  less  agreement  on  collusive  rules.  Using  the  Nash  (1950,  1953)

bargaining solution provides a convenient way for dealing with some important topics arising in this

context. It allows us to avoid ambiguity by concentrating on a scheme without side payments or output

quotas where  profits  are distributed according to the  earnings follows output principle (Bain 1948:

618), i.e. “each firm receives revenue only from the output it produces and sells itself.” These desirable

features emerge because the Nash bargaining solution ensures, first, that every colluding firm receives

at  least  its  competitive  profit  and,  second,  that  firms  with  a  higher  threat  point  gain  more  from

collusion.8

Firm  j's  incentive  to  deviate  from  an  unconstrained  semi-collusive  equilibrium  at  Nash

bargaining prices is determined by its deviation present value of profits as shown in equation (17).

V dev , j(s , d )=max
xdev , j≥0(πdev , j(s , d )−xdev , j+

1
1+r
∑
s j '=1

M

W j(s j ')⋅prob (s j '∣s j , xd , j))  (17)

Let us define the deviation profit pdev,j(s,d,p-j,pdev,j) more formally as a function of firm j's deviation price

pdev,j and the price of the other firm p-j. Following our above reasoning we assume that the other firm

sets the Nash bargaining price p-j,NBS. Given this price we solve numerically for the profit maximizing

price of the deviator  pdev,j using the competitive first-order condition  (8). The assumption of a grim

trigger strategy implies that  Wj is the competitive expected present value of firm j in period t+1 (see

equation (10)), which is fully defined by our solution of the game for competing firms (see section 2).

The optimal investment xdev,j is determined according to conditions (11) and (12). 

When at least one of the cartel firms would have an incentive to deviate from Nash bargaining

prices pNBS we assume that the firms return to competitive prices pc. This implies collusive profits pk,j as

8 Note that the assumption of Nash bargaining does not drive the results that are reported in section 3 to a great extent. We

find very similar results when assuming the firms to set prices in order to maximize joint profits instead of employing 

the Nash bargaining solution.
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shown in (18).

πk , j(s , d )={πNBS , j(s , d ) if {V dev , j ( s , d )≤max
xk , j≥0(πNBS , j (s , d )− xk , j+

1
1+r
∑
s j '=1

M

W k , j ( s j ' )⋅prob( s j '∣s j , x k , j))}∀ j

πc , j(s , d ) otherwise
(18)

The assumption of a reversion to competitive prices pc is also attributed to the uniqueness of this set of

prices. In some cases, deviations could also be prevented if the cartel firms chose a set of prices below

Nash bargaining prices but above competitive prices. Determining such a pricing vector is difficult for

at least two reasons. 

First, there is a continuum of constrained semi-collusive equilibria at supra-competitive prices

and the firms have to  coordinate  on one of them. This  poses a selection problem not  only to  the

researcher  but  also  to  the  firms.  This  selection  problem is  particularly difficult  in  industries  with

asymmetric firms and differentiated products. Second, this set of prices would be dependent on the

investment strategy of the firms. To see this, consider that the deviation incentive of the firms does not

only depend on the collusive price vector but also on firms' investments in the collusive and the deviant

case  (see  equations  (17) and  (18)).  This  deviation  incentive  would  have  a  feedback effect  on the

collusive price vector and consequently on firms' profits, values and investments which, again, affect

the deviation incentive. The result would be a highly complex optimization problem where one would

have to determine endogenously in the optimization process not only the competitive, collusive and

deviant  value  functions  as  well  as  policy  functions  for  all  firms  but  also  their  pricing  strategies.

Assuming collusion at Nash bargaining prices and reversions to competitive prices provides us with

unique pricing strategies that  can be calculated independently from the policy functions and value

functions  of  the  firms.  This  greatly  simplifies  the  task  of  determining  firms'  optimal  investment

policies. The properties of the collusive stage game are explored in section 3.1.

We use the above model to analyze the additional value that accrues to the firms in period  t

from forming a stable cartel. In equation (19), we define firm j's incremental value from collusion Wj as

the difference between its expected collusive present firm value Vk,j(s,d) and its expected competitive

present firm value Vj(s,d).

Ω j(s , d )=V k , j(s , d )−V j(s , d ) (19)

The  incremental  value  to  collude  Wj(s,d)  depends  on  the  state  of  demand  d and  the  production

capacities available to the firms  s in the current period  t.  Therefore,  Wj(s,d) depends on the future

profits  and investments of firm  j given its  expectations about the development of demand and the
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capacity investments  of  the  other  firm(s).  Given these  complex  interactions,  section 3 studies  the

effects of demand shocks on the incremental value to collude of a firm j. 

 3 RESULTS

This section analyzes the properties of our model and derives conclusions for the stability and the

formation of collusive agreements. Subsection 3.1 explores the properties of the competitive and the

collusive stage game equilibria with regard to changes in demand and capacities. It shows that for a

negative demand shock to raise the additional profits from collusion the production capacities of the

firms must not be too high. Therefore, subsection 3.2 identifies the determinants of firms' investment

policy and the resulting capacity distribution. These mainly depend on the useful life of capacities

(measured by the depreciation probability d) and the discount rate r of the firms. We find three types of

competitive capacity distributions whose properties are explored in subsections 3.3 to 3.5. In particular,

we analyze how changes in capacity or demand affect the incremental value to collude  W in these

equilibria. Subsection 3.6 shows that our results are robust to changes in the persistence of demand r

and the hardness of capacity constraints h and that they extend to values of r and d other than the ones

used in subsections 3.3 to 3.5.

 3.1 Effects of Demand and Capacity on Profits

Our analysis starts with calculating prices, outputs and profits of the two firms in the stage game of our

duopoly model.  We set the model parameters at values a=4, b=0.1,  a=0.0625,  q=0.9,  M=6, J=2, and

D=9. Demand states  d translate into a market size  G according to function  G=0.75+0.05·d, i.e.  G 

{0.80,  0.85,  ...,  1.2}.  Given  this  parametrization,  demand  for  firm  j's  product  varies  between

qj(0)=16.84 in demand state d=1 and qj(0)=25.26 in demand state d=9 when both firms charge a price

of  zero.  We assume that  firm  j's  capacity  qj is  linked to  state  sj by the function  qj=5·sj such  that

maximum  capacity  exceeds  maximum  demand,  qj(sj=6)>qj(0,d=9).  The  stage  game  equilibria  are

calculated for each of the M∙M∙D=324 combinations of capacities and demand. 

Figure 2 shows the collusive and competitive prices and profits of firm 1 for all combinations of

capacities  s1 and  s2 in demand states  d=1, 5, and 8. We illustrate how the collusive and competitive

stage-game equilibria (i.e. costs, output, price, and profits) depend, first, on demand and, second, on the

distribution of capacities. Third, we analyze how demand and capacities affect the additional profits

gained by switching from competition to collusion  pk,j-pc,j. This provides some first evidence for the

demand effect and the competition effect that are outlined in the introductory section 1.
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We start by analyzing the effect of demand on costs, output, price, and profits. Demand effect

on costs: For a specific capacity sj and given our assumption of soft capacity constraints (see equation

(6)) the marginal costs cj of a firm j fall along with its output, i.e. they are smaller in times of lower

demand. Demand effect on output: With fixed marginal costs, a drop in demand d would lower both the

competitive and the collusive equilibrium output of the firms. In our model this effect is partially offset

because  lower  demand  reduces  marginal  costs.  However,  our  numerical  evaluations  indicate  that

despite the reduction of marginal costs the competitive and collusive equilibrium outputs fall when

demand is reduced. Demand effect on price (see Figure 2): As lower demand implies lower output and,

thus, lower marginal costs, competitive equilibrium prices fall when demand falls. This is different in

the collusive equilibrium where the firms supply a lower than competitive output in all demand states

and, thus, produce at marginal costs close to zero for a wide range of capacity combinations s. Hence,

the collusive price remains fairly constant when demand changes. The collusive price only falls as a

response to a drop in demand when the firms produce at low capacities and, thus, are subject to more

Figure 2: Price and profits in the stage game



Johannes Paha Cartel Formation with Endogenous Capacity and Demand Uncertainty -18-

pronounced diseconomies of scale.  Demand effect on profits (see Figure 2): Putting the above effects

together, one finds that in our model a drop in demand lowers both competitive and collusive profits.

This is what we termed the demand effect in the introduction.

We continue our analysis by exploring the effect of changes in the own capacity s1 of firm 1 and

of changes in the capacity s2 of its rival on the costs, output, price, and profits of firm 1. Capacity effect

on costs: Condition (6) implies that an increase in its own capacity s1 lowers the marginal costs c1 of

firm 1. There is no direct effect of changes in the capacity s2 of firm 2 on the marginal costs of firm 1.

Capacity effect on output: A higher own capacity s1 raises the equilibrium output of firm 1 by lowering

marginal costs  c1. A higher capacity  s2 of the rival firm 2 lowers the rival's marginal costs  c2 and its

price  p2.  This results in a business stealing effect and lowers the equilibrium output of firm 1. As

business stealing is more of an issue in competition the above effects of changes in s1 and s2 are more

pronounced in the competitive than in the collusive equilibrium. Capacity effect on price (see Figure

2): The competitive price of firm 1 falls in its own capacity s1 because of the lower marginal costs c1.

The price also falls  in the capacity  s2 of  firm 2 because of  the more intense competition and the

business stealing effect. In collusion, these price effects of changes in  s1 and  s2 can mainly be seen

when the firms produce at low capacities where the firms are subject to pronounced diseconomies of

scale.

Capacity effect on profits (see  Figure 2): Both the competitive and collusive profits of firm 1

fall when its rival 2 expands its capacity  s2. In competition, this is the consequence of more intense

competition resulting in both a lower equilibrium price and output. In collusion, a higher capacity s2

puts firm 1 at a bargaining disadvantage and enables firm 2 to claim a larger share of aggregate profits.

Analogously,  when firm 1 expands its own capacity  s1 it  typically earns a higher  collusive profit.9

However,  the  competitive profit  of  firm 1  is  inversely u-shaped  in  its  own capacity  s1.  This  is  a

consequence of the assumption of soft capacity constraints. To see this consider a situation where the

capacity s1 of firm 1 has been small initially and is expanded to a medium level. Firm 1 mainly benefits

from lower costs and a higher output (see above) which results in a higher profit. Now, consider that

capacity s1 is further expanded from intermediate to high levels. The cost and output effect are not that

pronounced any more. However, stealing business from firm 1's rival means lowering the output and

marginal costs of firm 2 making it a fiercer competitor as can be seen from the lower prices. As a

consequence,  the competitive profit  of firm 1 decreases when it  expands its  own capacity  s1 from

9 It can be shown that the assumption of Nash-bargaining is not critical for this result. One attains the same conclusion 

when assuming the firms to maximize joint profits and distribute them according to the earnings follows output 

principle.
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medium to high levels. This effect has only a minor impact on collusive profits where the firms often

keep prices constant when capacity changes.

We turn to the gain in stage-game profits generated by switching from competition to collusion

Figure 3 displays the differences between the collusive and the competitive profits of firm 1, i.e. pk,1-

pc,1,  for all  combinations of  s1 and  s2 in demand states  d=1, 5, and 8.10 The gray bars indicate the

capacity combinations where pk,1-pc,1 decreases when demand falls from d=9 into d=8, from d=6 into

d=5,  or  from  d=2 into  d=1.  One  observes  two  effects  of  changes  in  demand  that  depend  on the

combination of capacities s1 and s2 chosen by the firms.

1. When the firms produce at high capacities the short-run gain from collusion pk,1-pc,1 falls when

demand moves into a lower state (gray bars). This is mainly a consequence of the demand effect

that makes collusive profits fall along with demand.

2. When the firms produce at medium or low capacities the short-run gain from collusion pk,1-pc,1

rises when demand moves into a lower state (white bars). This is mainly a consequence of the

above  effect  that  production  at  low  capacities  means  production  subject  to  pronounced

diseconomies of scale. A lower demand results in lower output and, thus, lower marginal costs.

This results in more intense competition and competitive profits fall more strongly in demand

than collusive profits (competition effect).  This makes collusion relatively more desirable in

comparison to competition as can be seen by a higher gain from collusion in the stage game.

These findings raise the question what is deemed to be the border between a high or a low

capacity. It can be shown that capacities may be considered high when aggregate capacity suffices to

satisfy demand even when the goods are given away for free. Hence, the distinction between high and

10 Note that all graphs in Figure 3 are rotated by 180° as compared to Figure 2. This ensures a better visibility of the plots.

Figure 3: Profit differences in the stage game
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low  capacities  is  a  function  of  the  state  of  demand.  Demand  state  d=1:  Every  firm  could  sell

qj(0)=16.84 units of its product at a price of 0. The total duopoly-quantity of 33.68 could be produced

with about 6.7 units of capacity.  Figure 3 shows that a drop of demand from state d=2 into state d=1

raises the profit difference pk-pc in all but one capacity states s where the sum of capacities s1+s2 takes a

value of 7 or lower. Demand state d=5: Every firm could sell qj(0)=21.05 units of its product at price 0.

The total output of 42.11 units could be produced with about 8.4 units of capacity. In the model, a drop

of demand from state d=6 into state d=5 raises the profit difference pk-pc in all capacity states s with

s1+s2≤9.  Demand state d=8:  The maximum aggregate output of the two firms is 48.42 and could be

produced with about 9.7 units of capacity. When demand drops from d=9 into d=8 the profit difference

pk-pc rises in  all  capacity states  s where  s1+s2≤10 applies. Therefore,  in  all  three cases  a  negative

demand shock raises pk-pc when the firms produce at binding capacity constraints.

To summarize, a negative demand shock contributes to cartel formation in industries where it

makes competition more intense (competition effect). Such a situation occurs when prior to the shock

binding capacity constraints had given the firms some market power but become less binding thereafter

which results in more intense competition. When prior to the shock an industry had been characterized

by production capacities that more than suffice to serve demand cartel formation becomes even less

likely. This is a consequence of the smaller market size and the lower competitive and collusive profits

(demand effect).

 3.2 Determinants of the Capacity Distribution: d and r

Subsection 3.1 shows for what combinations of capacity a negative demand shock raises the short-run

gain from collusion pk,j-pc,j of firm j. This raises three questions:

1. What distribution of capacities should one expect in the competitive equilibrium? 

2. How does this capacity distribution change when the firms switch to collusive conduct and

how does this change in capacities affect the incremental value to collude, i.e. the present value

of additional future profits. 

3. What parameters shape these capacity distributions?

The  first  and  the  second  question  are  answered  in  subsections 3.3 to 3.5 where  we  analyze  the

economic properties of the different equilibria found in our model. This subsection 3.2 answers the

third question. It shows that we find three types of competitive equilibria which are mainly shaped by

the values of the depreciation probability  d and the discount rate  r. Subsection 3.6 is also concerned
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with the third question and shows that changes in the parameters for the persistence of demand r and

the hardness of capacity constraints h do not affect the economic interpretation of our results.

Our analysis starts with calculating the competitive and collusive equilibria for all combinations

of parameters with r  {0.01, 0.02, ..., 0.1}, d  {0.01, 0.02, ..., 0.1}, r  {0.5, 0.7, 0.9}, and h  {2.5,

10, 40}. For every combination of these parameters our calculation proceeds in the following steps: 

1. Given a set of values for r, d, r, and h together with the profit functions described in subsection

3.1,  we use a  variant  of  the Pakes  and McGuire  (1994) algorithm to compute the optimal

investment xj(s,d) and the resulting firm value Vj(s,d) of some firm j for each of the M∙M∙D=324

combinations of demand d and capacity s. These policy and value functions are calculated both

in competition and collusion. Additional information on our implementation of the algorithm

including a pseudocode is provided in Appendix A.

2. Given the policy function of optimal investments, we simulate the probabilities  prob(s,d) to

observe a particular combination of capacities  s=(s1,s2) in demand state  d. These probabilities

form a limiting distribution of capacities (see Figure 4 on page 24 as an example). 

On the one hand, we determine limiting distributions that are unconditional on the recent

history of an industry. To simulate such a limiting distribution we choose a random starting state

(s,d) and let the industry evolve over 107 periods with firms investing in capacities according to

their policy functions. Recording the frequency with which each state was visited provides the

unconditional limiting distribution prob(s,d).

On the other  hand, this  paper  is  concerned with the question whether  a  perceptible,

negative  demand  shock  is  particularly  likely  to  facilitate  cartel  formation.  Therefore,  we

calculate the conditional probabilities prob(s,dt|dt-t=dt+t) of observing capacity combination s in

demand state  dt under the condition that demand has previously made  t  [1,4] consecutive

downward movements. In other words, we assume that demand t periods earlier was  t states

higher (dt-t=dt+t) and we calculate the conditional limiting distributions prob(s,dt|dt-t=dt+t).

3. In the third step, we calculate the M∙M∙D=324 values of the incremental value to collude W , i.e.

for all combinations of capacity s and demand d, by subtracting the competitive firm value Vc,j

from the collusive firm value Vk,j.

Depending on the values of the depreciation probability d and the discount rate r, we find three

types of competitive equilibria (labeled P, A, and S; also see Besanko et al. 2010.1 and 2010.2) whose
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properties are explored in greater detail in subsections 3.3 to 3.5.  Table 3 shows the  distribution of

competitive equilibria across the parameter space for d (in rows) and r (in columns) given r=0.5 and

h=10.11 It appears useful to think about the equilibria as being observed most frequently in one of four

regions for d and r:

d=low, r=low:  Multiple equilibria of types P, A, and S

d=high, r=low: Type P equilibria (preemption races; 

the competing firms invest into fairly asymmetric capacities)

d=high, r=high:  Type A equilibria (asymmetric competition; 

the competing firms invest into moderately asymmetric capacities)

d=low, r=high:  Type S equilibria (symmetric competition; 

the competing firms invest into fairly symmetric capacities)

The criterion for distinguishing different competitive equilibrium types is the most frequently observed,

i.e.  modal,  capacity  state  sc in  demand  state  d=9.  In  d=9  capacities  can  be  symmetric  (type  S),

asymmetric by no more than one unit of capacity (type A), or asymmetric by more than one unit of

capacity (type P).12 In contrast  to competition, the type of the collusive equilibria does not change

fundamentally with  d and  r.  Therefore, differences in the incremental value to collude across these

regions are typically caused by the different types of competitive equilibria rather than differences in

the collusive equilibria.

Table 3 shows that we sometimes find multiple equilibria for a certain set of parameters. These

can be of different types (P, A, or S) or of the same type. For example, the entry A S for d=0.03 and

r=0.07 means that we find competitive equilibria of types A and S. Value and policy functions that are

obtained in different restarts of the algorithm are treated as multiple equilibria of the same type if they

11 Table 3 does not report results for r=0.01 where the firms would engage in type P preemption race equilibria. With 

r=0.01 every firm puts a high weight on the option of earning high profits by becoming dominant in the future. 

Therefore, as long as the firms are fairly symmetric they invest into capacities way beyond market demand until an 

asymmetry emerges that is sufficiently strong to establish one firm as dominant and the other as dominated. This 

strategy is curtailed by the assumption of an upper bound for capacity, i.e. assuming a maximum number of M=6. Our 

evaluations indicate that choosing a fairly high maximum number for capacity states M can solve this issue but – 

because of the curse of dimensionality – results in drastically increased computation times. Therefore, we continue with 

the assumption of M=6 and refrain from reporting results for r=0.01.

12 In Table 3, the entry P/A for, e.g., d=0.08 and r=0.07 means that we find an equilibrium that has characteristics of type P 

and type A equilibria and does not allow for a clear distinction.
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satisfy  the  above  criteria  of  this  type  but  a  distance  measure  for  the  value  functions  and  policy

functions is higher than a predefined threshold as is explained in Appendix A.13 Competitive equilibria

of the same type are typically very similar so that the economic interpretation of their properties is the

same. Nonetheless, in sections 3.3 to 3.4 we illustrate the properties of our model for combinations of d

and  r where  we find  a  unique  competitive  equilibrium.  Our  sample  combinations  of  d and  r are

indicated in Table 3 by bold frames. In the case of collusion we also find multiple equilibria for some

parameter combinations that, however, are all of the same type. Section 3.5 establishes that a cartel

with Nash bargaining prices, grim trigger punishments and price wars, cannot be stabilized for some

combinations of (asymmetric) capacities and demand when the competitive equilibrium is of type P. In

the introduction, this is termed the symmetry effect. The respective combinations of d and r are shown

by the shaded areas in Table 3.

d  |  r 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.01 A S A S A S A S A S A S S S S

0.02 P A S A A S A S A S S A S S S

0.03 P P A A A A A S A S S S

0.04 P S P A P A A A A A S S S

0.05 P P P A A A A A S S

0.06 P P P P A A A A A A

0.07 P P P P A A A A A

0.08 P P P P P P/A A A A

0.09 P P P P P P/A A A A

0.10 P P P P P P/A A A A

Table 3: Distribution of competitive equilibrium types with r=0.5, h=10

 3.3 Type A: Asymmetric Competition

Subsections 3.3 to 3.5 are  concerned  with  the  first  two  questions  formulated  above,  i.e.  what

competitive and collusive capacity distributions are chosen by the firms for specific parameters of  d

and  r and how do these capacity distributions affect the incremental value to collude? We start with

competitive type A equilibria which are typically found when capacity depreciates quickly (high values

13 In order to detect multiple equilibria we run the algorithm multiple times with different starting values and random 

dampening factors for each of the combinations of parameters. In case of the three combinations of parameter values 

reported in sections 3.3 to 3.4 we use 100 restarts of the algorithm to establish that a unique competitive equilibrium 

exists for the reported parameter combinations (see Appendix A).
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of d) and when the firms strongly discount future profits (high values of r). The results presented in this

section are obtained by setting d=0.08 and r=0.08 with r=0.5 and h=10.

Figure  4 characterizes  the  nature  of  the  equilibria  by  showing  the  limiting  distribution  of

capacities  prob(s,d) for  d  {1,5,8} (1st to 3rd row). Column 1 shows the unconditional competitive

limiting distribution.  Column 2 shows the competitive limiting distribution conditional  on demand

having previously made t=4 consecutive downward movements. With r=0.5 such an event occurs with

a probability of about 4%. Column 3 shows the unconditional collusive limiting distribution. Figure 4

also provides the modal capacity state sc (respectively sk in the case of collusion) and the Herfindahl-

index H(d)∞. The Herfindahl-index as a measure of asymmetry is defined in (20).

H (d )∞=∑
s [( q̄1

q̄1+q̄2)
2

+( q̄2

q̄1+q̄2)
2

]⋅prob(s∣d )  (20)

Given the parametrization of our model, H(d)∞ is defined in the interval [0.5, 0.755] with higher values

Figure 4: Limiting distributions with d=0.08, r=0.08, r=0.5, h=10
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implying a more asymmetric industry structure.14 The modal capacity states sc and sk are defined as the

combinations  of  capacities  that  are  most  frequently  observed  in  the  competitive  or  the  collusive

limiting distribution.

We  start  by  characterizing  the  properties  of  the  limiting  distribution  in  the  unconditional

competitive equilibrium (see the 1st  column in Figure 4). One sees that every competing firm j aims at

the capacity where its competitive profit peaks (see Figure 2 in subsection 3.1). This is the case for a

capacity in the vicinity of sj=4. When demand falls the firms let their capacities deplete which results in

lower and – as depreciation follows a stochastic process – more asymmetrically distributed capacities.

The 2nd column in Figure 4 shows the conditional limiting distribution of capacities after demand has

dropped by t=4 states in a row. In this case, capacities cannot follow demand quickly and remain at

elevated levels for some time.

The collusive limiting distribution of capacities (see the 3rd column in Figure 4) reveals that the

colluding firms invest into higher and more symmetric capacities in collusion than in competition. A

similar observation has been made by Fershtman and Gandal (1994) in a model where firms invest into

cost-reducing research and development. Capacity rises because in collusion the increase in capacity

does not result in a price decrease (see Figure 2) while at the same time production costs are lowered

(see conditions (5) and (6)). Hence, the increase in capacity raises the collusive profit pk,j (see Figure 2).

The capacity expansion also causes a more symmetric distribution of capacities. The result of higher

and more symmetric collusive capacities is driven by the assumption of semi-collusion, i.e. the firms

collude in prices but do neither coordinate their investment policies nor their market shares (Fershtman

and Pakes 2000).

Figure 5 presents the value function of firm 1 in competition (Vc,1, 1st column) and collusion

(Vk,1, 2nd column) in demand states d  {1,5,8} (1st to 3rd row). Both value functions look pretty much

like the competitive and collusive profit functions that are displayed in Figure 2 and that are interpreted

economically in section 3.1. In particular, one finds the demand effect to apply: The competitive firm

value Vc,1 and the collusive firm value Vk,1 fall when demand declines. In the following, we describe the

properties  of  the  incremental  value  to  collude  W1=Vk,1-Vc,1 (see  the  3rd column  in  Figure  5)  and

demonstrate the influences of the  competition effect and the  symmetry effect that are introduced in

section 1.

14 The lower bound of 0.5 is found when the firms set symmetric capacities q1=q2 in all cases. The upper bound assumes 

the maximum asymmetry q1=5  q2=30 respectively q1=30  q2=5 to occur with a 50% probability each.
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The  competition effect postulates that the incremental value to collude is particularly high in

states with intense competition. (i)15 Such a situation can be brought about by a drop in demand when

prior to the shock the firms had produced at binding capacity constraints, i.e. with low or intermediate

capacities.  W1 rises  when due  to  the  negative  demand shock the  capacity  constraints  become less

binding and, thus, competition will be more intense.  This can be seen by the white bars in the 3 rd

column of Figure 5 which indicate an increase in W1 when demand falls by one state (d=9→8, d=6→5,

d=2→1). This is in line with our discussion of the short-run gain from collusion pk,1-pc,1 in subsection

3.1.

(ii) The competitive limiting distribution (1st column in  Figure 4) shows that due to the high

depreciation  probability  (d=0.08)  capacities  are  reduced  rather  quickly  in  competition  when  the

industry is hit by a negative demand shock. As the incremental value to collude typically falls when

15 The enumeration (i), (ii), and (iii) refers to the numbering used for the competition effect in the introduction.

Figure 5: Firm values and W  with d=0.08, r=0.08, r=0.5, h=10
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capacity is reduced16 the quick depreciation counteracts the intensification of competition and, thus,

works against cartel formation.  This is different when the demand shock is pronounced and occurs

quickly. When demand drops by t=4 states in a row capacity cannot follow suit quickly and remains at

elevated levels (2nd column in  Figure 4) where competition is intense and the incremental value to

collude is high. This finding provides evidence for cartels that were formed in response to a sudden

shock in demand. An example might be the French beef cartel where demand had fallen substantially in

2000 due to the discovery of the mad cow disease while production capacity and livestock remained the

same. This led to a sudden and substantial decrease in prices.

(iii) The collusion-enhancing effect of falling demand vanishes when the firms had produced at

fairly high, non-binding capacities even before the shock. In this case, competition is intense before and

after the shock and the demand effect dominates the competition effect. Our sample-industry provides

evidence of these patterns, i.e. the gray bars in Figure 5 show the capacity combinations where a drop

in demand (d=9→8, d=6→5, d=2→1) lowers W1.16 However, in these states the absolute value of the

incremental value to collude is still quite high which makes collusion desirable for the firms.

The  symmetry  effect postulates  that  a  symmetric  capacity  distribution  facilitates  cartel

formation. Therefore, we analyze the effect of capacities on the incremental value to collude. One finds

that W1 rises in the capacity s2 of firm 1's rival. This pattern has already been described in subsection

3.1 for the profit difference pk,1-pc,1 and is a result of the more intense competition and marginalization

of firm 1 in competition when firm 2 becomes more dominant.  However,  W1 can be u-shaped in the

own capacity  s1 of firm 1.  W1 is particularly low when firm 1 is dominant producing in the range of

capacity  state  s1=4  while  facing  a  smaller  rival  (s1>s2).  In  states  with  asymmetric  capacities  the

incremental value to collude is mainly shaped by the competitive value function Vc,1 which is inversely

u-shaped in firm 1's own capacity  s1 (also see the discussion of  pc,1 in section 3.1). Moreover,  the

incremental value to collude of a dominant firm often falls along with demand as can be seen by the

gray bars in Figure 5.

When the firms are asymmetric with capacities  sj  {s,s'} and  s<s' the incremental value to

collude of the large firm is lower than that of the small firm, i.e. Wj(s)>Wj(s'). This finding is supported

by  all  numeric  evaluations  of  our  model.  This  is  because  of  the  shift  in  the  collusive  limiting

distribution towards higher and more symmetric capacities as compared to competition. With more

symmetrically  distributed  collusive  capacities,  expected  future  profits  are  distributed  more

16 Exceptions are explained below in this section in the context of the symmetry effect.
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symmetrically  in  collusion  than  in  competition.  The  previously  dominant  firm  would  loose  its

supremacy in the cartel. Therefore, collusion creates a higher benefit for a small firm than for a large

firm. Since a cartel is only formed when both firms find it profitable to collude it is the incentive of the

high-capacity firm that is decisive for cartel formation. This finding is consistent with the observation

that cartels are most often observed among firms with similar market shares.

 In the competitive limiting distribution asymmetric capacity states with a large and a small firm

are  observed  rather  frequently.  This  implies  two  findings  for  our  type  A sample  industry.  First,

asymmetry makes cartel formation in such an industry fairly hard. Second, as the incremental value to

collude of a  dominant firm often falls  along with demand the risk of cartel  formation is  typically

lowered when demand falls in this industry with non-durable capacities (d=0.08) and impatient firms

(r=0.08).

 3.4 Type S: Symmetric Competition

In this subsection, we analyze firms' incremental value to collude for parameter values that yield a type

S competitive equilibrium. Type S equilibria are typically found when capacity depreciates slowly (low

values of d) and the firms strongly discount future profits (high values of r). In particular, we use the

parameter values d=0.02 and r=0.09 while setting r=0.5 and h=10.

Figure 6 shows the competitive limiting distributions both unconditional on the recent history of

the industry (1st column) and after t=4 negative demand shocks in a row (2nd column). For the above

parameter  values  we  find  two  collusive  equilibria  (labeled  type  kA and  type  kB)  whose  limiting

distributions are shown in the 3rd and 4th column. We do not find evidence of further competitive or

collusive equilibria. Figure 6 also provides the modal capacity state and the Herfindahl-index for each

of these limiting distributions.  Figure 7 shows the value of firm 1 in competition (1st column), in the

collusive  equilibria  of  type  kA (2nd column)  and  of  type  kB  (4th column).  It  also  provides  the

incremental value to collude for all capacity states s in demand states d=1, 5, and 8 for the collusive

equilibria of types kA (3rd column) and kB (5th column).

The competitive type S equilibrium is shaped by the low depreciation probability d. The long

useful  life  of  production facilities  prevents  capacities  from being adjusted  quickly to  situations  of

lowered demand. Therefore, the capacities are chosen to cater average demand and respond fairly little

to demand shocks. They are kept fairly constant as long as demand is in states  d≥5 and decrease in

response to lower demand mainly in states d<5. The firms invest into quite symmetric capacities. This
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is because a preemption race for a dominant position (see subsection 3.5) would bear the risk that – as a

result of the infrequent depreciation events – the firms involuntarily end up in an unfavorable situation

with very high and symmetric capacities which are associated with intense competition and low profits.

The collusive limiting distributions reveal the same effects that are described in subsection 3.3.

The colluding  firms  invest  into  higher  and more  symmetric  capacities  than in  competition.  In  the

collusive type kA equilibrium the firms most frequently invest into capacity states (3,4) and (4,4), i.e.

both firms expand their capacity. The modal capacity state in the collusive type kB equilibrium is (3,3)

for all demand states, i.e. the small firm expands its capacity while the large firm maintains about its

competitive  capacity.  The  effects  of  fairly  durable  capacities  that  are  described  above  for  the

competitive limiting distribution also apply to the collusive limiting distribution: As compared to the

collusive equilibrium with  d=0.08 (see subsection 3.3) the assumption of durable capacity (d=0.02)

results  in  more  symmetric  collusive  limiting  distributions  where  capacity  varies  fairly  little  when

demand changes.

Figure 6: Limiting distribution for region 4 (d=0.02, r=0.09, r=0.5, h=10)



Johannes Paha Cartel Formation with Endogenous Capacity and Demand Uncertainty -30-

Figure 7 shows that the shape of the competitive and the collusive value functions resembles the

shape of the underlying profit functions (see Figure 2) as was also described for the value functions of

type A equilibria (see subsection 3.3). The  demand effect applies, i.e. lower demand lowers both the

competitive  and the  collusive  firm values.  With  regard  to  the  symmetry  effect one  finds  that   the

incremental value to collude W1 of firm 1 rises in the capacity s2 of its rival and may be u-shaped in its

own capacity s1. Moreover, the incremental value to collude of a large firm is lower than that of a small

firm. 

We turn to the competition effect. (i), (iii)17 One sees that a negative demand shock may raise the

incremental value to collude (white bars in the 3rd and 5th column of Figure 7) when capacities are not

too high and when firm 1 did not have a dominant position prior to the drop in demand. This is the case

when firm 1 produces at about capacity  s1=3 or  s2=4 while facing a smaller competitor 2. (ii) The

conditional limiting distribution (2nd column in Figure 6) shows that durable capacities cannot follow

17 The enumeration (i), (ii), and (iii) refers to the numbering used for the competition effect in the introduction.

Figure 7: Firm values and W in region 4 (d=0.02, r=0.09, r=0.5, h=10)



Johannes Paha Cartel Formation with Endogenous Capacity and Demand Uncertainty -31-

suit quickly when demand falls by  t=4 steps in a row. Hence, the firms are likely to be stuck with

suboptimally high capacities where a drop in demand results in more intense competition and a high

incremental value to collude. 

The competitive limiting distribution in  Figure 6 shows that the firms most frequently invest

into capacity states with symmetric capacities of a medium size where a decrease in demand raises the

intensity of competition and, thus, the incremental value to collude. As a consequence, with durable

capacity (d=0.02) a drop in demand is more likely to result in a rising incremental value to collude than

in the case of shorter-lived capacities (d=0.08, subsection 3.3). This is especially the case for demand

states d≥5 where capacities respond fairly little to changes in demand. When demand falls further (d<5)

the competitive limiting distribution in  Figure 6 shows that the firms let their capacities deplete and

become more unevenly sized. The emergence of dominant firms and the lower capacities mitigate the

competition effect and those capacity states are observed more frequently where the incremental value

to collude W1 falls along with demand.

These effects are similar for the collusive type kA and type kB equilibria. The main difference is

the choice of higher capacities in the type kA equilibrium. This results in both a lower collusive firm

value Vk,1 and a lower incremental value to collude W1 in the collusive type kA equilibrium than in the

type kB equilibrium. To summarize, a negative demand shock facilitates cartel formation especially in

industries with durable capacities.

 3.5 Type P: Preemption Races

Besides competitive equilibria  with moderately asymmetric (type A, see subsection 3.3) and fairly

symmetric capacity distributions (type S, see subsection 3.4) we find a third competitive equilibrium

(type P) where firms engage in preemption races that result in fairly asymmetric capacity distributions.

This can be seen in  Figure 8 which shows the competitive limiting distribution of capacities and the

value  Vc,1 of  firm 1 for all  capacity states  s in  demand states  d=1, 5,  and 8.  We find competitive

equilibria of type P when capacities can quickly be adjusted downwards (the depreciation probability d

is high) and the firms are sufficiently patient (the discount rate r is low). Figure 8 is derived by setting

d=0.08, r=0.02, r=0.5, and h=10. 

Competitive preemption race strategies that result  in fairly asymmetric capacities have been

described by Besanko and Doraszelski (2004). During a preemption race, firms continue to invest as

long as their capacities are similar. This competition in investments is intense because the low discount
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rate r induces the firms to put a large weight on future profits – when a firm expects to have attained a

dominant position – as opposed to current investment expenditures. The race comes to an end once

there is a sufficient difference in firms' capacities that can occur more quickly for higher values of the

depreciation  probability  d,  which  generates  depreciation  events  more  frequently.  The  depreciation

events contribute to  the creation of asymmetric capacities. Once sufficiently asymmetric capacities

have emerged, the investment race stops and the small firm reduces some of the excess capacity that

has  been  built  during  the  race  (Besanko  et  al.  2010.2:  1179).  In  the  resulting  product  market

equilibrium the high-capacity firm generates profits by selling a high quantity at a low price while the

low-capacity firm benefits from selling a low quantity at a higher price (see Figure 2).

No graphs or other results are provided for collusion. This is because with this parametrization

and  the  resulting  asymmetric  capacities  collusion  cannot  be  stabilized  in  all  capacity  states  s.  In

particular, a large firm that faces a very small competitor prefers being a dominant competitor, i.e. it

Figure 8: Limiting distribution and competitive firm value for region 2 (d=0.08, r=0.02, r=0.5, h=10)
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already earns the maximum competitive profits shown in Figure 2, over sharing collusive profits with

another firm. In this context, consider the above result that in our model colluding firms invest into

above-competitive  and  fairly  symmetric  capacities.  This  may  make  collusion  unattractive  for  a

previously dominant firm. Collusion that cannot be stabilized by a grim trigger strategy with price wars

goes beyond the assumptions of our collusive model (see subsection 2.4).  This is  a variant of the

symmetry effect.

Noticeably, this instability of collusion occurs when the discount rate is low, which is typically

considered a stabilizing factor for cartels. This finding illustrates the importance of analyzing firms'

decision to collude in the context of firms' entire strategy set that also includes investment strategies.

Analyzing the interactions between different strategies yields new insights such as the above one: A

low discount rate  r does not always contribute to stabilizing collusion as it may also cause firms to

invest into asymmetric capacities which are associated with collusion being unstable.18

 3.6 Robustness Checks

In  the  following,  we  address  the  third  question  raised  in  subsection 3.2:  How do  changes  in  the

parameters d, r, h, and r affect the results presented above? When evaluating the properties of the type

A, S, and P equilibria for combinations of r and d other than the ones used in subsections 3.3 to 3.5 one

finds that the equilibria obtained for these adjacent parameter combinations differ from the presented

ones only in their numerical values. They do not reveal any new properties, effects or insights.

In the following, we show how different assumptions on the hardness of capacity constraints

affect our results. The above results assume a marginal cost function with h=10 that rises steeply when

the output qj of firm j approaches or exceeds the capacity qj. i.e. the capacity constraints are fairly hard

(see Figure 1 in subsection 2.2). Now, we assume h  {2.5, 10, 40} and find that varying h does not

generate new equilibrium types other than those of types A, S, and P. To illustrate the effect of different

18 Table 3 shows that this effect does not apply to all parameter combinations that yield a type P equilibrium. Stable cartels 

are found for values of r≥0.04 because the limiting distributions are typically more symmetric when firms are less 

patient, i.e. they share more characteristics with type A equilibria where collusion is stable (see subsection 3.3). This 

result is economically meaningful. Stable cartels in competitive type P equilibria can also be found for some values of d 

when r<0.04. This should be considered an artifact of the choice of the state space especially the upper bound for 

capacity, i.e. assuming a maximum number of M=6. Our evaluations indicate that choosing a fairly high maximum 

number for capacity states can solve this issue but – because of the curse of dimensionality – results in drastically 

increased computation times. Therefore, we continue with the assumption of M=6 and do not interpret the respective 

results economically (also see Footnote 11 on this issue).
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assumptions on h,  Figure 9 presents the incremental value to collude of firm 1 in our type A sample

industry with d=0.08, r=0.08, r=0.5 (see subsection 3.3) for h  {2.5, 10, 40}. Assuming even harder

capacity  constraints  (h=40)  does  not  change  our  results  much  as  can  be  seen  in  Figure  9.  The

incremental value to collude is fairly similar for  h=10 and  h=40. The main difference is that with

harder capacity constraints being dominant is of greater value for the firm. This can be seen in the more

pronounced u-form of  W1 for  h=40 and the more frequent capacity states where a drop in demand

lowers the incremental value to collude (gray bars).

More differences can be seen when assuming softer capacity constraints (h=2.5). In this case,

changes of demand and firms' capacities have a smaller effect on marginal costs, price, and profit of

some firm j. One also finds that with soft capacity constraints the firms do not vary capacity as much

across demand states as in the case of harder capacity constraints. Therefore, the competition effect, i.e.

the intensification of competition in response to a decline in demand, is relatively moderate while the

Figure 9: Incremental value to collude of firm 1 (W1) with d=0.08, r=0.08, r=0.5
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demand effect, i.e. the decline in profits and firm values due to a drop of demand, is comparatively

strong. Hence, a negative demand shock lowers the additional profits from collusion (pk,j-pc,j) even for

medium-sized capacities. Similarly,  the incremental value of collusion in  Figure 9 falls along with

demand for almost all capacity states. This makes cartel formation in response to a decline in demand

less likely and underlines the importance of capacity constraints for the patterns of cartel formation.

Moreover,  when capacity constraints  are soft  (h=2.5) we also find a  greater multiplicity of

equilibria within the types A, S, and P. This is because with smaller diseconomies of scale the following

trade-off becomes more relevant for the firms: Either they invest into higher production capacities and,

thus, lower production costs. Or they save on investments but produce at higher marginal costs. This

greater  substitutability of  investment  costs  and production costs  gives  rise  to  a  greater  number of

equilibria without, however, affecting our qualitative conclusions.

 Appendix B shows that our results are robust to changes in the persistence of demand r. More

persistent demand gives the firms more time to adjust to new demand conditions such that a greater

number of equilibria (of the types A, S, and P) may emerge for every combination of parameters.

However, these equilibria are very similar. None of our qualitative conclusions is affected by changes

in r.

 4 CONCLUSION

To conclude this paper, we would like to respond to some frequently asked questions:

1. What can we learn from the above model about cartel formation?

The above model identifies two markers for cartel formation. First, symmetry among firms is a

risk factor  for  cartel  formation (symmetry effect).  Second,  firms'  gain from collusion is  the

higher the more intense competition would be absent the conspiracy (competition effect).

2. Isn't the answer to question 1 trivial?

No.  It  is  not  so  much  the  finding  that  symmetry  and  intense  competition  facilitate  cartel

formation which makes this article interesting. Its contribution is to identify factors that make

competition intense and/or contribute to a symmetric capacity distribution. Moreover, it shows

how changes in these factors affect the intensity of competition and symmetry.

3. What makes competition intense and how can we identify such circumstances? 

In  the  above model  with  near-homogeneous  products  competition  is  intense  and,  thus,  the
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incremental value of collusion is high when the production capacity of the firms exceeds the

level that is needed to satisfy demand at a price of zero. Evidence of such a situation is provided

by low values of the price-cost margin or a low return on sales. A situation where demand is

small relative to production capacities can be brought about by an exogenous shock that lowers

demand. It can also be caused endogenously by firms' decision to invest into higher capacities.

4. Can negative demand shocks be used as a screening device to identify industries that are prone

to cartel formation?

No, not in isolation. Changes in demand can have ambiguous effects. The pure demand effect

suggests  that  a  decrease  in  market  size  makes  collusion  less  profitable  in  absolute  terms.

However, the firms' incremental value to collude may rise when the drop in demand contributes

to  making  competition  more  intense.  This  is  the  case  when  previously  binding  capacity

constraints become less binding in the smaller market (competition effect). Given the interaction

of demand and capacity, demand alone is not a good screening device. This can also be seen by

the case evidence provided in the introduction. It shows that many kinds of demand shocks have

already been observed prior to cartel formation.

5. Can excess capacities be used as a screening device to identify industries that are prone to

cartel formation?

No, not in isolation. The existence of high capacities contributes to intense competition which is

a facilitating factor for cartel formation. However, when capacities had been high even before a

negative demand shock the intensity of competition will not be raised much more due to such a

shock.  The  incremental  value  to  collude  will  even  fall  because  of  the  lower  market  size.

Moreover, it depends on the distribution of capacities across firms whether the risk of cartel

formation is high or low in an industry. Suppose an industry where one firm is dominant with a

high capacity while facing a small rival. In this situation, the large firm has a small incentive to

form a cartel despite its high production capacity.

6. Are there predictors for the distribution of capacities?

Yes. The model shows that the firms choose fairly different investment strategies depending on

their discount rate and the useful life of capacities. (a) When capacity is quite durable the firms

invest into capacity that is appropriate to cater average demand. Therefore, the firms are fairly

symmetric and capacities are not adjusted much in response to demand conditions. Under such

circumstances changes in demand have a strong impact on competition such that cartels may
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easily be triggered by negative demand shocks. (b) When capacity is less durable, asymmetric

capacity  distributions  arise  more  often  which  the  firms  try  to  exploit  in  order  to  attain  a

dominant  position.  Asymmetry  makes  cartel  formation  less  likely.  Moreover,  striving  for

dominance leads to high capacities and intense competition. Therefore, the demand effect is

often  stronger  than  the  competition  effect  and  a  decrease  in  demand  tends  to  lower  the

incremental value to collude. (c) When the firms have a low discount rate and produce with

short-lived  capacities  their  desire  for  dominance  is  even  stronger  which  results  in  fairly

asymmetric  capacity  distributions  where  collusion  cannot  necessarily  be  stabilized  (at  least

under the assumptions of our model). This is interesting because a low discount rate is typically

considered a facilitating factor for collusion as it helps to stabilize cartels.

7. What are the main takeaways from this model?

The model shows clearly that product market strategies like collusion and competition must not

be analyzed in isolation. At the same time, firms pursue other strategies like investments into

production capacity which are affected by the same factors like the strategies in the product

market.  Here,  it  is  the  discount  rate  which affects  both types  of  strategies.  To date,  a  low

discount  rate  was  quite  undisputedly  considered  a  facilitating  factor  for  collusion.  After

analyzing the interaction between investment strategies and product market strategies one must

conclude that a low discount rate can even obstruct collusive strategies by making firms go for a

dominant position in the market.

8. What might be done next?

The above model can be extended in a variety of ways. For example, it may be worthwhile to

relax the assumption of semi-collusion and analyze firms' strategies when they also coordinate

their investment strategies. Instead of price-fixing the firms might also be assumed to allocate

customers or markets, or to allocate market shares. Additionally, one may assume a competition

authority with the ability to detect, prosecute and fine cartels. This will also complement the

model by introducing costs  of collusion.  Moreover,  the type of investment strategy may be

broadened by allowing for product innovations instead of or in addition to capacity investments.

The firms might also be allowed to choose among a greater set of strategies in the product

market besides competing or colluding. For example, they might also be allowed to engage in

exclusionary  strategies  with  the  goal  of  driving  competitors  out  of  the  market  instead  of

conspiring  with  them.  Moreover,  in  addition  to  building  capacity  the  firms  might  also  be

allowed to actively reduce capacity.
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APPENDICES

 Appendix A The Algorithms and Multiplicity of Equilibria

Pseudocode 1: Competitive optimization

1: Initialization

2:  Calculate competitive equilibrium pc(s,d), qc(s,d), pc(s,d)  s, d

3:  Policy and value function

4:  Policy function: x0c,j(s,d) = z(s,d,j)·pc,j(s,d)  s, d, j

5:  x1c,j(s,d) = x0c,j(s,d)

6:  Value function: V0c,j(s,d) = z(s,d,j)·pc,j(s,d)/r  s, d, j

7:  V1c,j(s,d) = V0c,j(s,d)

8:   With values of z(s,d,j) being drawn pseudo-randomly from a uniform distribution  [0,1]

9:  Program controls

10:  tolV = tolV-1 = tolx = tolx-1 = 20

11:  l = 1

12: Optimization

13:  while (tolV > tol)  (tolx > tol)

14:  Use x0c and V0c (Gauss-Jacobi scheme) to calculate optimal policy function x1c

according to equations (12) and (13)

15:  Update value function V1c with values of x1c and perform a policy iteration on V1c

16:  Update distance measures

17:  tolV-1 = tolV 

18:  tolx-1 =  tolx

19:  tolV = max | (V1c-V0c)/(1+|V0c|) | 

20:  tolx = max | (x1c-x0c)/(1+|x0c|) |

21:  Determine dampening factor l
22:  if (tolV > tolV-1)  (tolx > tolx-1), 

draw l pseudo-randomly from a uniform distribution  [0,1]

23:  else, set l = 1

24:  Update value and policy function with dampening

25:  V0c = l·V1c + (1-l)·V0c

26:  x0c = l·x1c + (1-l)·x0c

27:  end

28:  Return V1c and x1c

Pseudocode  1  presents  our  implementation  of  the  Pakes-McGuire  (1994)  algorithm  used  for  the  optimization  in  the

competitive model. The main characteristics of the algorithm are the use of a Gauss-Jacobi scheme (14:), i.e. the policy

function in iteration l is calculated by use of information from the value and policy function obtained in iteration l-1 only.

Moreover, we use a policy iteration scheme for updating the value function (15:), i.e. we iterate on the value function for

(typically) 3 steps while using the same candidate policy function. The optimization is stopped when both sup norm distance

measures tolV and tolx fall below a tolerance of tol=5e-8 (12:), i.e. when the modification in the entries of the value function
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and the policy function between any two iterations is very small.

The policy function x0c is initialized (4:) by multiplying the profits pc,j(s,d) of firm j that correspond to the entries

in the policy function by a pseudo-random number z(s,d,j) drawn from a uniform distribution in the interval [0,1]. The value

function V0c is initialized (7:) in a similar fashion by multiplying a naïve estimate of firm j's value, i.e.  pc,j(s,d)/r, with a

pseudo-random number.

We use a dampening scheme to prevent the algorithm from visiting a sequence of policy and value functions all

over again. Hence, the value and policy function used in iteration l+1 are generated as weighted averages of the functions

from iterations l and l-1 (25: and 26:). When using a fixed dampening factor l the circling behavior of the algorithm is not

always avoided completely. Therefore, we draw a new value of l  [0,1] from a uniform distribution in every iteration. This

dampening scheme is only applied in iterations where one of the distance measures tolV or tolx exceeds its respective value

from the previous iteration (22:). Otherwise, we use a value of l=1 (23:). This helps the algorithm to stay on a convergence

path while  avoiding jumps away from the  previous  candidate solutions.  Such jumps often indicate that  the algorithm

oscillates  between  different  types  of  candidate  solutions  rather  than  converging  to  an  equilibrium of  the  game.  The

occasional use of undampened updating (l=1) results in a faster convergence than in the case of continuously employed

dampening.

The randomness in the initialization of the value function V0c and the policy function x0c as well as the randomness

in the choice of the dampening factor  l ensures that the algorithm generates a unique sequence of candidate solutions in

every  restart  with  otherwise  identical  industry parameter  values.  When  a  game  has  multiple  equilibria  our  algorithm

possesses the ability to converge towards them. We explore this multiplicity by running the algorithm several times on the

same set of parameter values.

Pseudocode 2 presents our implementation of the Pakes and McGuire algorithm (1994) used for the collusive

model. Its main structure mimics that for the optimization of the competitive model. However, it is in some instances more

complex. We need to calculate (or load) the product market equilibria in competition, collusion and in deviation periods (3:

to 6:). The collusive policy and value functions  x0k and  V0k are initialized (8: to 14:) by multiplying each entry of their

competitive counterparts by a number z(s,d,j) drawn pseudo-randomly from a uniform distribution in the interval [0.5,1.5].

We assess in every iteration whether some firm would want to deviate from a collusive equilibrium at Nash bargaining

prices and, if yes,  set  prices,  quantities and profits  at competitive,  i.e. price war levels,  and at  Nash bargaining levels

otherwise (21: to 22:). The stopping criterion of the algorithm (19:) is determined by the convergence of the collusive policy

function and value function (x0k and V0k) only. This is because the deviation policy function and value function (x0d and

V0d)  closely resemble  their  competitive  versions  so  that  convergence  of  x0d and  V0d is  achieved  more  quickly than

convergence of x0k and V0k.
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Pseudocode 2: Collusive optimization

1: Initialization

2:  Product market equilibria

3:  Load competitive equilibrium pc(s,d), qc(s,d), pc(s,d)  s, d, V1c and x1c

4:  Calculate Nash bargaining equilibrium pNBS(s,d), qNBS(s,d), pNBS(s,d)  s, d

5:  Calculate deviation equilibrium pdev(s,d), qdev(s,d), pdev(s,d)  s, d

6:  Initialize collusive equilibrium pk(s,d)=pNBS(s,d), qk(s,d)=qNBS(s,d), pk(s,d)=pNBS(s,d)  s, d

7:  Policy and value function

8:  Policy function: x0k,j(s,d) = z(s,d,j)·x1c,j(s,d)  s, d, j

9:  x1k,j(s,d) = x0k,j(s,d)

10:  x1d,j(s,d) = x0d,j(s,d) = x0c,j(s,d)

11:  Value function: V0k,j(s,d) = z(s,d,j)·V1c,j(s,d)  s, d, j

12:  V1k,j(s,d) = V0k,j(s,d)

13:  V1d,j(s,d) = V0d,j(s,d) = V0c,j(s,d)

14:   With values of z(s,d,j) being drawn pseudo-randomly from a uniform distribution  [0.5,1.5]

15:  Program controls

16:  tolV = tolV-1 = tolx = tolx-1 = 20

17:  l = 1

18: Optimization

19:  while (tolV > tol)  (tolx > tol)

20:  Price war assessment

21:  If for some combination of s and d deviation is profitable for at least one firm, 
set pk(s,d)=pc(s,d), qk(s,d)=qc(s,d), pk(s,d)=pc(s,d) 

22:  Otherwise set pk(s,d)=pNBS(s,d), qk(s,d)=qNBS(s,d), pk(s,d)=pNBS(s,d)

23:  Use x0k and V0k (Gauss-Jacobi scheme) to calculate optimal collusive policy function x1k

24:  Use x0d and V0d (Gauss-Jacobi scheme) to calculate optimal deviant policy function x1d

25:  Update value function V1k with values of x1k and perform a policy iteration on V1k

26:  Update value function V1d with values of x1d and perform a policy iteration on V1d

27:  Update distance measures

28:  tolV-1 = tolV 

29:  tolx-1 =  tolx

30:  tolV = max | (V1k-V0k)/(1+|V0k|) | 

31:  tolx = max | (x1k-x0k)/(1+|x0k|) |

32:  Determine dampening factor l
33:  if (tolV > tolV-1)  (tolx > tolx-1), 

draw l pseudo-randomly from a uniform distribution  [0,1]

34:  else, set l = 1

35:  Update value and policy function with dampening

36:  V0k = l·V1k + (1-l)·V0k  x0k = l·x1k + (1-l)·x0k

37:  V0d = l·V1d + (1-l)·V0d  x0d = l·x1d + (1-l)·x0d

38:  end

39:  Return V1k, x1k, V1d and x1d
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The numeric and to some extent stochastic nature of our algorithm causes some slight variation in the policy and

value  functions  that  are  obtained  in  different  runs  of  the  algorithm.  As  a  consequence,  one  requires  a  method  for

distinguishing this  normal variation attributable to the numeric nature of the algorithm from the variation caused by the

existence of multiple equilibria. To make this distinction we compute the sup norm distance measure 

tolx u , y=max
s , d ∣

xu(s , d )−x y (s , d )
1+∣xu(s , d )∣ ∣  (21)

for every pair of policy functions (indexed by u and  y) that are obtained in all runs of the algorithm for the same set of

parameter values. An analogous measure tolVu,y is calculated for the value function. 

(a) We conclude that two solutions are (imperfect) representations of the same equilibrium if the values of the distance

measures tolxu,y and tolVu,y are sufficiently small, i.e. differences in the values of the policy and value functions are

attributed to the numeric nature of the search. We use the threshold values  tolxu,y≤5e-5 and tolVu,y≤5e-6 with our

stopping criterion in the optimization being tol=5e-8.

(b) When the distance measures are above the thresholds tolxu,y≤5e-5 and tolVu,y≤5e-6 we conclude that the respective

equilibria are distinct.

For each of the parameter combinations evaluated in sections 3.3 to 3.5 there exists only one type of competitive

equilibrium.  This  is  checked  by  restarting  the  algorithm  100  times  for  every  combination  of  parameter  values.  The

maximum tolerances between these solutions obtained in different restarts for the same set of parameters are as follows.

max(tolxu,y) max(tolVu,y)

type A (section 3.3, d=0.08, r=0.08, r=0.5) 6e-7 1e-7

type S (section 3.4, d=0.02, r=0.09, r=0.5) 6e-6 1e-6

type P (section 3.5, d=0.08, r=0.02, r=0.5) 7e-7 9e-7

We do not find evidence of a further collusive equilibrium than the one presented in subsection 3.3 for  d=0.08,  r=0.08,

r=0.5. This is also true for r=0.7 and r=0.9. Moreover, we do not find evidence of further collusive equilibria than the ones

of type kA and kB presented in subsection 3.4 for d=0.02, r=0.09, r=0.5. This is because the maximum distances of policy

or value functions of  the same type are very small.  The two equilibria  are distinct  from each other  because distances

between equilibria of different types are no smaller than  tolVu,y=0.027 and  tolxu,y=0.24.  We find the following distances

between the collusive value or policy functions obtained in the 100 different restarts of the algorithm.

max(tolxu,y) max(tolVu,y)

section 3.3, d=0.08, r=0.08, r=0.5 3e-7 1e-6

section 3.4, d=0.02, r=0.09, r=0.5 2e-6 5e-7 eq. of same type A or B
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 Appendix B The Effects of Demand Persistence on Competitive and Collusive Equilibria

We have calculated the competitive and collusive policy and value functions of the firms for the  parameter combinations r

 {0.01, 0.02, ..., 0.1}, d  {0.01, 0.02, ..., 0.1},  r  {0.5, 0.7, 0.9}, and  h  {2.5, 10, 40} but only present results for

r=0.5 in section 3. Here, we show that the presented results are robust to changes in r. Tables 4 and 5 correspond to Table 3

in the main text and show the distribution of competitive equilibrium types across the parameter space spanned by d and r

when  assuming  r=0.7  or  r=0.9  together  with  h=10.  The  existence  of  multiple  equilibria  typically  deteriorates  the

convergence properties of the algorithm and may result in lengthy computation times. Therefore, for r=0.7 and r=0.9 we do

not analyze parameter combinations with  d<0.05   r<0.06, where multiple equilibria are most likely. In order to detect

multiple  equilibria,  we run  the  algorithm 10 times  (20  times  in  case  of  r=0.5)  on  every combination  of  parameters.

Analyzing Tables 4 and 5 yields the following findings:

1. Changes in the persistence of demand only have a small impact on the distribution of equilibrium types across the

parameter space spanned by d and r. One merely observes a faint effect that type A equilibria somewhat spread out

into the regions of type P and type S equilibria. 

2. A higher persistence of demand r is found to result in a greater number of equilibria (typically of the same type)

for some combinations of parameter values. For example, for d=0.08, r=0.08 we find one competitive equilibrium

in the case of  r=0.5 and for  r=0.7 and two competitive equilibria for  r=0.9 that are denoted A.1 and A.2. The

longer time spent in every demand state allows the firms to choose from a greater variety of similar policies. The

competitive limiting distributions of these equilibria are shown in Figure 10.

3. Figure 10 shows that all four competitive equilibria are very similar. Higher persistence of demand only somewhat

alters the characteristics of the equilibrium. The longer time, which a firm expects to stay in any demand state,

makes the firms adjust their capacities more closely especially to states of low demand. However, these differences

are minor. The collusive equilibria share an even greater degree of similarity. (No graph is provided for this case to

keep the presentation concise.) Therefore, the function of the incremental value to collude is very similar for the

evaluated values of r.

We conclude that the level of demand persistence has a surprisingly small effect on the strategic patterns in our model. The

most visible effect of more persistent demand is the emergence of a greater number of equilibria. 



Johannes Paha Cartel Formation with Endogenous Capacity and Demand Uncertainty -46-

d – r 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.01 A S A S A S S S

0.02 A S A S A S S S

0.03 A A S A S A S S

0.04 A A A A S S

0.05 P P P P.1
P.2 P/A A A A A A S

0.06 P P P P P.1
P.2 A A A A A

0.07 P P P P.1
P.2

P.1
P.2 A A A A A A

0.08 P P P P P P/A, P/S A A A A

0.09 P P P P P P P/A A A A

0.1 P P P P P P P/A A A A

Table 4: Distribution of competitive equilibrium types (r=0.7)

d – r 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.01 A S A S A S A S S.1
S.2

0.02 A S A S A S A S S.1
S.2

0.03 A A A S A S A S

0.04 A.1
A.2 A A A S A S

0.05 P.1
P.2 P P P P/A.1

P/A.2 A A A A A A

0.06 P P P P P A A.1
A.2 A A A

0.07 P P P P P A A.1
A.2 A A A

0.08 P P P P P P A A A.1
A.2 A A

0.09 P.1
P.2 P P P P P A P/A A.1

A.2 A A

0.1 P.1
P.2 P P P P P P/A A A A

Table 5: Distribution of competitive equilibrium types (r=0.9)
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Figure 10: Competitive limiting distributions with d=0.08, r=0.08, h=10

Figure 11: Incremental value to collude with d=0.08, r=0.08, h=10
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