Allocation under Fixed Book-Prices

Henrik Vetter, Royal Danish Library DK-8600, Aarhus C, Denmark

Monthy Phyton's Flyong Circus: And now to something (completely) different.

Theory paper on fixed book prices.

European Union Policy: Fixed-price arrangements promotes title variety.

This paper: Do they, and if so is it a good idea?

Structure:

Publishers

Bookshops

Consumers

Publishers:

We think of fixed book-price system as:

Publishers determines w_i and ϕ .

Eliminating competition is comes down to $\phi > 0$.

We do not ask how ϕ is determined—just ask if it as good idea that $\phi>0$.

Then, is $\phi > 0$ a good idea?

To make this question precise we need Fixed cost, to say something about the value of books (and other things such as production costs).

Model:

1. Many titles, single title is exclusive, variety has value

marketing, proof reading etc.

Monopolistic competition is a way to capture this.

Value of books:

Let q_i be copies of title i and n number of titles.

For fixed $\sum_{1}^{n} q_i$, representative consumer puts more value on large n and low q_i . Example:

(1,1,1,1) better than (1,2,1,0)

Utility function:

$$u(q_i) = \alpha^{-1} m^{\alpha}, m = n^{\upsilon} \sum_{i=1}^n q_i^{\theta_i}, q_i = q_1, q_2, \dots, q_n$$

$$0 < \alpha < 1, 0 < \theta_i < 1, 0 \le v < 1$$

What is n^v ? Some value of the existence of a broad range of titles; maybe, after all, bookse are special.

Publisher costs:

Important: fixed cost

$$c(q_i) = cq_i + F$$

Bookshop costs: *w_i*

You can add more costs like $z + w_i$

Three market failures:

Wrong number of q_i and n.

Wrong i's; that is wrong title selection.

Our focus is on q_i and n; that is, right titles are in the market, for more see Spence, 1976).

So, our question is:

Does $\phi > 0$ in comparison to $\phi = 0$ give better values of q_i and n?

Title selection problem: use Spence (1976) but likely very, very messy.

Anyway: with our utility function the market selects the right title variety.

Some answers, part 1:

It follows from prop. 2 in the paper that:

Without fixed ($\phi = 0$) there are too few titles in the market, and too many copies per title.

Some answers, part 1--continued:

Too few titles and too many copies per title.

Should we sacrifice number of copies for variety?

Some answers, part 2: Not in this model (so far).

Introducing fixed prices (increasing ϕ to make it positive):

Proposition 3. An increase in the sales margin reduces welfare.

Some answers, part 3: Or maybe we should.

Reading oppertunity costs (van der Ploeg):

Price of a book is (DK): 35-40 euro.

Rebecca's unskilled wage (DK): 16/10 euro.

External examiner's wage (DK): 65/32 euro.

Some answers, part 3:

Let δ be social opportunity cost and δ_t private opportunity costs. Eg. taxes.

Proposition 4. $\delta_t << \delta$, an increase of the sales margin from being zero increase welfare.

Summing up:

Bad news for fixed book-price systems;

Prop. 3 says that ϕ >0 is bad.

Prop.4 just says that people spend too much time reading.

Although, given we accept externalities, ϕ >0 might bring about a better balance between number of titles and copies per title.

Where to go:

A modified model like that of Benassy (1996) allows us to be more precise on the value of n.

Quadratic utility might change prop. 3.

Title selection problem: asymmetry in θ_i and ϕ_i . As said, use Spence (1976) but likely messy.

Technical stuff: Monopolistic competition model.

One publisher=one title with our cost function.

Under symmetry, eq. defined by MR = MC and $\pi = 0$.

Define $m=n^{1+\nu}q^{\theta}$. Under monopolisitic competition we have $\partial m/\partial q_i=0$.

Technical stuff:

What is the problem with monopoly?

The social marginal value of q_i is:

$$SMV = m^{\alpha - 1} n^{\upsilon} \theta_i q_i^{\theta_i - 1},$$

Marginal revenue is:

$$MR = \theta_i (m^{\alpha - 1} n^{\upsilon} \theta_i q_i^{\theta_i - 1}).$$

Technical stuff: Social welfare:

$$W = \alpha^{-1} m^{\alpha} - n(cq + F),$$

Profit is:

$$\pi(q_i) = (p_i - \phi)q_i - cq_i - F.$$

$$p_i = m^{\alpha - 1} n^{\upsilon} \theta_i q_i^{\theta_i - 1}.$$

Technical stuff:

Profit maximizing monopoly behavior:

$$(p_i - (c + \phi))/p_i = 1 - \theta, \text{ or }$$

$$\overline{q}_i = \theta/_{(1-\theta)} \cdot F/_{(c+\phi)},$$

And m from $\pi_i = 0$,

$$p_i = m^{\alpha - 1} n^{\upsilon} \theta_i q_i^{\theta_i - 1} = c + F/q_i,$$