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Zusammenfassung

In dieser in thematisch vier Teile gegliederten Arbeit wird die Phasenstruktur und Ther-
modynamik von Materie untersucht, die der starken Wechselwirkung unterliegt. Wir
verwenden dafiir eine Kombination von Ergebnissen reiner Yang—Mills-Theorie aus Git-
terrechnungen mit einem System von trunkierten Dyson—Schwinger-Gleichungen fiir die
Quark- und Gluon-Propagatoren der Quantenchromodynamik mit 2 + 1 Quark-Flavor in
Landau-Eichung.

Zu Beginn 16sen wir das gekoppelte System der Dyson—Schwinger-Gleichungen fiir
die nicht-storungstheoretischen Quark- und Gluon-Propagatoren, wobei die Riickkopp-
lung der Quarks auf das Gluon explizit miteinbezogen wird. Dieses System stimmt
bei verschwindendem chemischen Potential beziiglich der Temperaturabhiangigkeit des
Ordnungsparameters fiir chirale Symmetriebrechung quantitativ mit Ergebnissen der Gitter-
Quantenchromodynamik iiberein. Bei nicht-verschwindendem chemischen Potential, bei
dem Gitterrechnungen aufgrund des Vorzeichenproblems nicht verldsslich sind, finden wir
einen kritischen Endpunkt bei moderaten Temperaturen und hohem chemischen Potential.
Alle gefundenen Ergebnisse stimmen mit denen aus fritheren Arbeiten iiberein. Weiterhin
vergleichen wir unsere Resultate mit anderen kiirzlich erschienenen Ergebnissen fiir das
Phasendiagramm der Quantenchromodynamik.

Im Anschluss priasentieren wir Ergebnisse fiir Fluktuationen der Quark- und Baryonen-
zahl bei nicht-verschwindender Temperatur und chemischen Potential. Wir diskutieren, wie
sich die Fluktuationen und deren Verhiltnisse bis zur vierten Ordnung bei verschiedenen
Temperaturen und chemischen Potentialen bis zum kritischen Endpunkt verhalten. Im
Vergleich mit aktuellen experimentellen Daten fiir die Schiefe- und Kurtosis-Verhiltnisse
sind unsere Ergebnisse kompatibel mit dem Szenario eines kritischen Endpunktes bei
hohem chemischen Potential und einem gewissen Abstand zur Freeze-Out-Linie.

Darauffolgend diskutieren wir eine trunkierungsunabhingige Methode zur Berechnung
von thermodynamischen Grofen mittels des Dyson—Schwinger-Zugangs. Der Machbar-
keitsbeweis wird mit Hilfe eines Nambu—Jona-Lasinio-Modells erbracht und anschlieend
wenden wir die Methode auf das in dieser Arbeit verwendete Dyson—Schwinger-Framework
an. Dadurch erhalten wir den Druck, die Entropiedichte, die Energiedichte und das Wech-
selwirkungsmal. Sowohl im Bereich der chiralen Ubergangstemperatur als auch darunter
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stimmen die Ergebnisse zufriedenstellend mit Gitterresultaten {iberein. Ebenfalls diskutie-
ren wir, wo die Methode ihre Grenzen findet.

Zuletzt untersuchen wir den Einfluss eines homogenen, endlichen, dreidimensionalen
Volumens auf die Phasenstruktur der Quantenchromodynamik. Wir bestimmen die Abhén-
gigkeit der Position des kritischen Endpunktes von der Wahl der Randbedingungen sowie
der GroBe eines kubischen Volumens mit Seitenléinge L. Wihrend signifikante Volumen-
effekte erst fiir L < 5 fm auftreten, sind Volumina der GroBe L3 > (8 fm)3 sehr nahe am
unendlichen Volumen. Weiterhin zeigen wir, dass eine ordnungsgeméfe Behandlung von
Finite-Size-Artefakten essentiell fiir verldssliche Aussagen liber Volumeneffekte ist.
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Abstract

In this work, which is topically divided into four parts, we study the phase structure and
thermodynamics of strong-interaction matter. To this end, we employ a sophisticated,
well-studied combination of results for pure Yang—Mills theory from lattice calculations
and a truncated set of Dyson—Schwinger equations for the quark and gluon propagators of
(2 + 1)-flavor quantum chromodynamics in Landau gauge.

First, we solve this coupled set of Dyson—Schwinger equations for the fully nonpertur-
bative quark and gluon propagators, where the backcoupling of quarks onto the gluon
is explicitly taken into account. This system agrees at vanishing chemical potential
quantitatively with results from lattice-regularized quantum chromodynamics regarding the
temperature dependence of the order parameter for chiral symmetry breaking. Furthermore,
at nonzero chemical potential, where lattice calculations are not reliable due to the sign
problem, we find a critical endpoint at moderate temperatures and large chemical potential.
All obtained results are in agreement with previous works. In addition, we compare our
results with other recent phase-diagram calculations.

Then, we present results for quark and baryon number fluctuations at nonzero temperature
and chemical potential that are extracted from the quark propagator. We discuss the changes
of these fluctuations and ratios thereof up to fourth order for several temperatures and
chemical potentials up to the critical endpoint. In view of recent experimental data for
the skewness and kurtosis ratios, our results are compatible with the scenario of a critical
endpoint at large chemical potential and with a certain offset from the freeze-out line.

Next, we discuss a method to compute thermodynamic quantities within the Dyson—
Schwinger approach that is independent of the employed truncation. As a proof of principle,
we first apply it to Nambu—Jona-Lasinio model and subsequently to our Dyson—Schwinger
framework. As a result, we obtain the pressure, entropy density, energy density, and
interaction measure across the phase diagram of quantum chromodynamics. Below and
around the chiral transition temperature, we find a satisfactorily agreement with lattice
results. The limitation of the method is discussed, too.

Finally, the impact of a uniform, finite, three-dimensional volume on the phase structure
of quantum chromodynamics is investigated. In particular, we determine the dependence

vii



Abstract

of the location of the critical endpoint on the boundary conditions and the volume of a
three-dimensional cube with edge length L. We find that noticeable volume effects appear
for L < 5fm, and volumes as large as L3 > (8fm)?> are very close to infinite volume.
Furthermore, we demonstrate that a proper treatment of finite-size artifacts is crucial for
reliable statements about finite-volume effects.

viii



Contents

Zusammenfassung

Abstract

List of abbreviations

1

2

Prologue

Setting the scene: QCD in a nutshell

2.1 The generating functional . . . . . .. ... .. L oL
2.2 Symmetries . . . . ... e e e e e e e
2.3 Functional relationsand DSEs . . . . . .. ... ... ... 0.
2.4 Nonzero temperature and density . . . . . . . . . ... ...
2.5 Phasesof QCD . . . . . . . . . . . ...

QCD’s phase diagram from quarks and gluons

3.1 Truncationscheme . .. ... ... ... ... ... ... ... .....
3.2 Quark and gluon propagators inmedium . . . . . .. ... ... ...
3.3 Phasestructureof QCD . . . . . . . . . ... ... ...
34 Summary .. o.o. .. e e e e

Quark and baryon number fluctuations

4.1 General formulae . . . .. ... Lo o
4.2 Regularization of the quark number density . . . . . .. ... ... ...
4.3 Fluctuations in the phase diagram . . . . . . . ... ... ... .....
4.4 Summary ... .o e e e e e e e e e e e e e e

Thermodynamics from the quark condensate

5.1 Connecting the quark condensate and thermodynamics . . . .. ... ..
5.2 NJLmodelstudy . ... ... ... .. .. ...
5.3 EquationofstatefromDSEs . . ... ... ... .. ... . ... ...
54 Summary ... e e e e e e

vii

xi

12
17
26
29

35
35
44
49
54

55
56
60
62
71

73
74
77
80
85

ix



Contents

6 Finite-volume effects on the phase diagram
6.1 DSEsinafinitevolume . . . . . ... ... ... ... ... ...
6.2 Quark and gluon propagators . . . . . . . .. .. ...
6.3 Taming the finite-size effects . . . . . . .. .. ... ... ... .....
6.4 Results for the phase structure of QCD . . . . . . ... .. ... ... ..
6.5 Summary . . . . ... e e

7 Epilogue

A Notation and conventions
A.l Naturalunits. . . . . . . . . . . . e
A.2 Euclidean space-time . . . . . . . . . . . . . . i
A.3 Fouriertransform . . . . .. .. ... ... ... .

B Path integral over a field derivative
C Derivation of the quark DSE

D Explicit expressions and technical remarks
D.1 Infinite-volume calculations . . . . . . . . . . . . ... ... .. ...
D.2 Finite-volume calculations . . . . . . .. .. .. .. ... ... ...,

Bibliography

101

105
105
105
108

111

113

117
117
126

131



List of abbreviations

Even though defined in the text when first introduced, here we collect the abbreviations
that are used throughout this work.

ABC
BRST
DCSB
CEP
DSE
EoS
FAIR
FRG
NICA
NJL
nPI
O(n)
PBC
QCD
RHIC
STAR
STI
SU(n)
U(n)
YM

antiperiodic boundary conditions
Becchi—Rouet—Stora—Tyutin
dynamical chiral symmetry breaking
critical endpoint

Dyson—Schwinger equation

equation of state

Facility for Antiproton and Ion Research
functional renormalization group
Nuclotron-based Ion Collider Facility
Nambu—Jona-Lasinio

n-particle irreducible

orthogonal group of degree n
periodic boundary conditions
quantum chromodynamics
Relativistic Heavy-lon Collider
Solenoidal Tracker at RHIC
Slavnov-Taylor identity

special unitary group of degree n
unitary group of degree n
Yang—Mills

X1
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1 Prologue

In the 1960s, due to the commissioning of more and more powerful particle accelerators,
the physics community faced a vast abundance of particles which are subject to the strong
interaction, one of the fundamental forces of nature. These particles, called hadrons, come
in two types: mesons and baryons. The former carry integer spin, while the latter are
particles with half-integer spin. It was realized that the whole hadron spectrum can be neatly
explained if one assumes that hadrons are composite objects made of pointlike particles
called quarks [1-3]. In particular, baryons are made out of three quarks and mesons consist
of one quark and an antiquark. Therefore, quarks carry fractional elementary electric
charge (minus one-third or two-thirds) and are spin—% particles. That quarks are more
than a mere classification scheme for hadrons and not fictitious particles was confirmed
by high-energy electron-proton scattering experiments. It was found that the proton is
indeed composite and consists of pointlike particles off which the electrons scatter [4, 5].
Originally, quarks came in three different species referred to as flavors (up, down, and
strange). However, more flavors were theoretically postulated [6—9] and the existence of
three additional ones (charm, bottom, and top) is experimentally confirmed [10-15].

It was soon realized that quarks need to have another quantum number [16, 17] in order
to remedy the deficiencies of the quark picture as described above. For example, the
AT baryon, which is a spin—% particle, would require the three quarks to be spin-aligned
with vanishing angular momentum, thus violating the Pauli exclusion principle. This new
quantum number, called color, can be interpreted as an additional charge akin to the electric
one, and quarks occur in three different colors (red, green, and blue).' Finally, the quantum
field theory of the strong interaction—quantum chromodynamics (QCD)—was formulated
and presented as we know it today [19—24]: a non-Abelian gauge theory with quarks and
gluons as fundamental fields. The latter are the massless spin-1 gauge bosons that couple
to the color charge of the quarks, thereby mediating the strong force, and interact among
themselves, too. QCD exhibits the remarkable feature of asymptotic freedom [25-28], i.e.,
the coupling strength tends to zero at asymptotically small distances. More precisely, the
strong coupling constant decreases logarithmically at large momentum scales. This makes

1" “The idiot physicists, unable to come up with any wonderful Greek words anymore, call this type of

polarization by the unfortunate name of ‘color,” which has nothing to do with color in the normal sense.”
— R. P. Feynman [18]
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QCD perfectly suited for a perturbative treatment at these scales, and QCD is therefore
extremely well and systematically understood in the regime where perturbation theory can
be applied. Combined with key experiments that confirmed theoretical predictions, see,
e.g., Refs. [29-32] and references therein, QCD became the established theory describing
the strong interaction within the Standard Model of particle physics.

As the momentum scale decreases, the interaction strength becomes stronger and stronger
which inevitably renders perturbation theory invalid at some point, and phenomena beyond
the reach of perturbation theory emerge. Probably the most prominent ones are confinement
and the dynamical breaking of chiral symmetry. Regarding confinement, one usually
differentiates between color and quark confinement. The former describes the fact that
all asymptotic particle states observed in nature are color singlets, i.e., color-neutral
objects, while the latter is associated with the notion of a linear rising potential between a
quark-antiquark pair. Explaining (and deriving) confinement thoroughly from the basic
principles of QCD is an intricate task with many facets and still an open, unsettled question.
However, confinement is not the focus of the investigations presented here, and we refer
the reader, e.g., to Refs. [33-36] and references therein. On the other hand, the dynamical
breaking of chiral symmetry, one of the global symmetries of QCD, is a common theme
of this work. It accounts for the vast majority of the hadron masses because quarks
acquire a large amount of dynamical mass due to the strong quark-gluon interaction in
the low-momentum region—colloquially known as “mass from nothing.” This solves the
riddle of a proton mass of around one GeV even though the masses of its constituents, two
up quarks and one down quark, are only a few MeV.

Soon after the emergence of QCD, its properties and phase structure at nonzero
temperature and density gained significant attention, see, e.g., Ref. [37] and references
therein, and are still subject of tremendous theoretical and experimental efforts [38, 39].
It was realized that QCD predicts a novel state of matter [40, 41]. At sufficiently high
temperatures and/or densities, hadrons “dissolve,” i.e., quarks and gluons are deconfined
and form the so-called quark-gluon plasma. Convincing experimental evidence that the
quark-gluon plasma indeed exists and is created in heavy-ion collisions has been put
forward [42-44]. Its existence is by now widely accepted. The experimental exploration of
the QCD phase diagram is subject of several large-scale heavy-ion collision facilities. In
particular, the already operating Beam Energy Scan program [45—47] at the Relativistic
Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory, USA, as well as the
future Compressed Baryonic Matter experiment [48] at the Facility for Antiproton and Ion
Research (FAIR), Germany, and the future Nuclotron-based Ion Collider Facility (NICA)
[49] at the Joint Institute for Nuclear Research, Russia, are tailored to probe QCD’s phase
structure. In a typical heavy-ion collision experiment, heavy nuclei, e.g., gold or lead, are
accelerated close to the speed of light, collide head-on, and in course of that penetrate,
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Figure 1.1 Contemporary, theoretically conjectured sketch of the QCD phase diagram in terms of
baryon chemical potential g and temperature 7. Environments where the corresponding phases
are expected to be realized are shown as green areas. Furthermore, we indicate the approximate
chemical-potential regions that are/will be covered by RHIC, FAIR, and NICA (blue arrows).

compress, and heat each other. As a result, a short-living fireball of extremely hot and dense
matter—the aforementioned quark-gluon plasma—is created for a very short time. As the
fireball expands, it cools down and hadronizes. At some point after the hadronization,
the chemical freeze-out takes place, i.e., the abundancies of the created hadrons do not
change anymore (no more inelastic scattering). Finally, the kinetic freeze-out happens that
is characterized by frozen momentum distributions of the reaction products; in other words,
no more elastic scattering and the mean free path of the reaction products is large. Such
a collision is a very transient event. From the initial lump of the quark-gluon plasma to
kinetic freeze-out, only around 10~2! seconds pass. In the end, the produced hadrons and
emitted dileptons as well as photons are experimentally measured. The former carry mostly
information about the later stages of the collision event, while the latter are colloquially
known as “messengers” of the early stages of a heavy-ion collision since they escape the
initial fireball almost without any interaction. The experimental techniques and analyses to
cope with a heavy-ion collision are highly nontrivial and by no means simple. For more
details, we refer the reader, e.g., to Refs. [48, 50] and references therein.

On the theoretical side, the structure of the QCD phase diagram is mostly conjectured. In
Fig. 1.1, we show a contemporary sketch of the phase diagram of strong-interaction matter
in the up-T plane, where up and T denote baryon chemical potential and temperature,
respectively. At vanishing chemical potential, ab-initio lattice QCD [51] provides firm,
overwhelming evidence for the following and by now well-established picture: the confined
hadronic low-temperature phase characterized by dynamical chiral symmetry breaking is



1 Prologue

connected through an analytic crossover to the deconfined high-temperature phase of the
quark-gluon plasma with (partially) restored chiral symmetry [52-56]. At nonvanishing
chemical potential, however, lattice QCD is plagued by the notorious sign problem [57, 58].
It describes, loosely speaking, that the statistical probability interpretation of the integrand
of the path integral breaks down at nonvanishing (real) chemical potential, making the
standard lattice algorithms based on Monte Carlo importance sampling void. Therefore,
other methods are needed to complement the lattice calculations in order to gain qualitative
(and, in the long term, quantitative) information about the phase structure of QCD at
nonzero temperature and chemical potential.

There are many effective models of QCD that have the same symmetries and describe
some of its aspects. Prominent examples are the hugely successful Nambu—Jona-Lasinio
(NJL) model [59-63] and its bosonized version, the quark-meson model [64-69]. A priori,
these low-energy effective models of QCD do not contain any gluon dynamics. To remedy
that (at least to some extent), enhanced versions of the NJL and quark-meson model rely on
the Polyakov loop potential [70-75]. The latter couples aspects of confinement to the chiral
dynamics, however without backcoupling of the fermionic matter sector onto the gluonic
sector. Thus, gluons are no active degrees of freedom, and their reaction to the medium
and the chiral dynamics of the quarks can neither be studied nor directly taken into account.
A different approach is possible within the functional frameworks of Dyson—Schwinger
equations (DSEs) [76-79] and the functional renormalization group (FRG) [80-83]. They
are fully nonperturbative and obtained directly, without any approximation from the
generating functional of the theory they are applied to. Thus, the DSE and FRG approaches
to QCD are well-suited to obtain reliable information about the phase structure. Notably,
they do not suffer from the sign problem and calculations at nonzero chemical potential
are straightforward. In their untruncated form, both methods constitute an infinite set
of coupled equations that describe QCD exactly, i.e., from first principles. However,
truncations are necessary to obtain finite and hence numerically feasible sets of equations.
In this work, we use DSEs to explore the phase diagram of QCD, which are, in short, the
equations of motions for the correlation functions.” Particularly, we employ a truncation
scheme that combines lattice results for quenched QCD with DSEs for the quark and
unquenched gluon propagators. This scheme has been studied extensively in the past, see
Ref. [79] for a comprehensive review, but some of its aspects are not mapped out yet: on
the one hand thermodynamics and on the other hand the impact of finite volume—these
two topics are subject of this thesis.

Coming back to Fig. 1.1, if we turn to nonzero chemical potential, DSE and FRG studies
as well as model calculations find that the continuous crossover becomes steeper with

2 Moreover, they are a versatile tool for the investigation of bound states [84—89], aspects of the purely
gluonic sector of QCD [89-91], and contributions to the anomalous magnetic moment of the muon [92-94].
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increasing chemical potential and eventually terminates in a second-order critical endpoint
(CEP) followed by a first-order phase transition at large chemical potential. Proving the very
existence of and hence subsequently locating the conjectured, putative CEP is one of the
main goals of the experimental endeavors at RHIC, FAIR, and NICA. At low temperatures
and very large chemical potential, it is expected that color-superconducting phases emerge.
The transition to the quark-gluon plasma is either of first or second order, which depends
on the details of how color superconductivity is realized. In course of the investigations
presented here, we do not cover the whole phase diagram but are mostly interested in the
crossover region up to the CEP and hence focus on that region.

As already mentioned, in this work we use a well-studied truncation scheme for the
quark and gluon propagator DSEs to explore (2 4 1)-flavor QCD at nonzero temperature
and chemical potential. While the phase structure was already studied in several previous
works using that truncation scheme, thermodynamic aspects were not discussed, though
they are crucial in order to make contact with experiment. Prime candidates for that
are ratios of baryon number fluctuations, which can be measured in heavy-ion collision
experiments; recent results from the STAR (Solenoidal Tracker at RHIC) collaboration
are already available [95, 96]. These ratios are interesting because they are expected to
deliver distinct signals as soon as the CEP—if existing—is approached [47, 97]. Thus, the
first aim of this work is the computation of fluctuations with an emphasis on ratios and the
question under which circumstances these are in qualitative agreement with experiment.

Fluctuations are defined as derivatives of the pressure, which is nothing but the negative
thermodynamic potential. For a comprehensive thermodynamical understanding, however,
it is highly desirable to get hold of the pressure itself because other quantities such as the
entropy density or the energy density follow directly from the pressure. Unfortunately,
computing the latter from DSEs is a difficult task, and results are scarce and obtained so
far only within simple truncations. The reason for that is a technical obstacle rooted deep
within the DSE framework. Generally speaking, the starting point for the derivation of
every DSE is a first derivative of the thermodynamical potential. Alas, an integration is
only possible for certain (simple) truncations. Therefore, it is highly desirable to be able to
compute thermodynamic quantities using DSEs in a truncation-invariant manner. This
is the second aim of this work. We explore a novel truncation-independent method that
allows us to compute thermodynamic quantities from DSEs, demonstrate its effectiveness,
and subsequently compute the pressure and associated quantities.

The previous two topics this work is concerned with are carried out within a DSE setup
that is formulated in an infinite three-dimensional volume. However, it is apparent that
a heavy-ion collision takes place in a finite volume: the initial fireball is of finite extent
with typical scales of several femtometers in each direction. Volume effects on important
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observables such as fluctuations may be considerable and need to be taken into account,
particularly in view of the experimental search for the (putative) CEP. Moreover, the whole
phase structure as sketched in Fig. 1.1 inevitably becomes volume dependent for small
enough volumes. Thus, the third aim of this thesis is the investigation of finite-volume
effects on the phase structure of QCD.

To summarize, this thesis is organized as follows. In the next chapter, we recapitulate
selected aspects of QCD that are relevant for this work and discuss the functional framework
of DSEs, which we use for our investigations. After introducing our truncation scheme
for the coupled system of quark and gluon propagator DSEs and discussing our result for
the phase diagram of (2 4 1)-flavor QCD in Chapter 3, we continue with the calculation
of quark and baryon number fluctuations across the QCD phase diagram in Chapter 4.
Then, in Chapter 5, we present a truncation-independent method to obtain thermodynamic
quantities from DSEs and subsequently compute the pressure and associated quantities.
In Chapter 6, we investigate the impact of a finite volume on the phase structure of QCD.
Finally, we conclude with a summary and give an outlook in Chapter 7. At this point, we
encourage the reader to have a glance at Appendix A where our notations and conventions
are detailed.

Parts of this work are already published. Chapter 4 and parts of Chapter 3 are based on
Ref. [98] while Chapter 5 is derived from Ref. [99]. The topics covered in Chapter 6 are
subject of Ref. [100]. Furthermore, this work is partially connected to the topics discussed
in Ref. [101], which are presented in detail elsewhere [102].



2 Setting the scene: QCD in a nutshell

In the following, we try to give an overview of the theoretical framework and concepts
relevant for this work. Since a comprehensive treatment is beyond the scope of this chapter
and details can be found in many textbooks on quantum field theory, we refer the reader to
Refs. [37, 103—-108] on which the following is based.

2.1 The generating functional

Being a quantum field theory, QCD’s defining quantity is its Lagrangian. Working in four-
dimensional Euclidean space-time?, it is constrained by locality, Euclidean invariance®,

local SU(N,)color gauge invariance, and renormalizability. The Lagrangian is given by

- . 1
£acp = Va(BD + MapVp + 7 Fig @.1)
and its first term describes the dynamics of the quark fields ¢ and ¥ = ¥ Ty,. They
are Np-dimensional vectors in flavor space; each entry being a N .-dimensional vector in
color space, N. = 3, with Dirac spinors as components. These degrees of freedom are
summarized by the collective indices « and 8. The covariant derivative

D, =0, +igASt? (2.2)

contains the coupling of the quarks to the gluon fields A%, a = 1,..., N2 — 1, with
coupling constant g. Furthermore, /7 is the current-quark mass matrix and t¢ are the
generators of the gauge group SU(N¢)color- They span the corresponding Lie algebra and
obey [t2, 8] = i £b¢1¢ with totally antisymmetric structure constants f42¢. Quarks
transform by construction according to the fundamental representation of SU(N¢)color»
while gluons transform with respect to the adjoint representation. The second term in
Eq. (2.1)is the Yang—Mills (YM) Lagrangian [109] and governs the dynamics of the gluon

3 See Appendix A for our notations and conventions.

4 That is, invariance under translations, rotations, boosts, and reflections in R*. This corresponds to the
usual Poincaré invariance in Minkowski space.
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fields. It is expressed in terms of the field strength tensor
Fo = 3,A% — 35 A% — gfbcabAc . (2.3)

Its last term reflects the non-Abelian nature of QCD and gives rise to gluon self-interactions.
Besides the usual kinetic term, the YM part of the Lagrangian contains terms cubic and
quartic in the gluon fields. This feature makes QCD distinct from quantum electrodynamics
with gauge group U(1). The latter is Abelian, thus, all structure constants vanish and no
self-interactions between photons arise. From the QCD Lagrangian, we obtain the action

Igcp = / Lqocp (2.4)
X
and immediately the partition function’

Z = / D[y yA]e Taen (2.5)

Unfortunately, the partition function as naively written down above is plagued by
deficiencies. These can be traced back to the local gauge invariance of QCD. The Lagrangian
as well as the action are by construction invariant under local gauge transformations

v-yY=Uy, y-yU=yU,
. (2.6)
Ay = AY = UA, U+ —(3,U) U,
g

where U € SU(N¢)color 18 space-time dependent, U = U(x), and A, = A%7?. It follows
that the integration in Eq. (2.5) includes field configurations that are related by a gauge
transformation. They are physically equivalent, i.e., they yield the same action, and
therefore generate an infinite factor, the volume of the gauge group, that has to be properly
factorized and absorbed into the normalization of the path integral. In principle, this poses
no problem if one considers only gauge-invariant quantities as usually done in lattice gauge
theory. Functional methods like DSEs, however, rely on gauge-dependent quantities and
we have to fix the degeneracy in the partition function caused by the gauge invariance of
the theory. Furthermore, the differential operator —8,,9% + 9,0, corresponding to the
kinetic term of the gluons has vanishing eigenvalues. Thus, it cannot be inverted and the
equation for the perturbative gluon propagator is ill-defined. The gauge must be fixed in
order to overcome these problems.

> D[yvA]l = DYy DY [1,,4 DAY, and the normalization of the path integral is implicit.
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However, even with a well-defined gluon propagator, e.g., from adding a gauge-fixing
term to Lqcp akin to quantum electrodynamics, it turns out that the scattering matrix of
QCD lost the crucial property of being unitary. Unphysical longitudinal and scalar gluon
polarizations remain in the spectrum. Historically, it was found that contributions from
loops of scalar particles with the odd property obeying Fermi—Dirac statistics are missing
to cancel these polarizations—eventually restoring the unitarity of the scattering matrix.
This was observed and elaborated in the context of quantum gravity [110-112].° A more
intuitive picture within the path-integral approach, where these odd particles naturally
arise, was put forward in Refs. [116, 117] and is summarized in the following.

In order to overcome the above mentioned problems, we aim to restrict the integration
in Eq. (2.5) to gluons obeying the condition

FlAy] =0, 2.7

where ¥ is a local functional that fixes the gauge. For a given field configuration and all
physically equivalent ones related via a gauge transformation, the gauge-fixing functional
is supposed to single out exactly one representative. To embed this into the path integral,
we consider the quantity

A A,)] = / DU §(F[4Y]) (2.8)

known as the (inverse) Faddeev—Popov determinant. It is gauge invariant and the integration
covers all possible gauge transformations.” From Eq. (2.8), it follows that

1= Ag[Ay)] /@U&(?[AH]), (2.9)

which resembles a completeness relation in the space of all gauge fields. After inserting
this expression for the identity under the path integral in Eq. (2.5), a change of variables
Ay, — Af;] s performed. This allows for the desired factorization of the group integration
because the measure, action, and A ¢ are invariant. The (infinite) factor stemming from
the group integration is absorbed into the normalization of the path integral and we arrive
at the gauge-fixed partition function

Z= / DY TA Ay [A]8(F[Ay]) e Toeo | (2.10)

6 The same is found in the path-dependent approach of Mandelstam [113-115].

7 More mathematically, J DU is the path-integral version of the integration with respect to the Haar measure
dU on the gauge group G = SU(N¢)color [118, 119]: [ DU = [ [1, dU(x). Since SU(Nc)color is a
compact Lie group, the Haar measure is left and right invariant, i.e., [ dU = [ d(U'U) = [5d(UU").
It is thus straightforward to show that A}l [Ay] is gauge invariant.



2 Setting the scene: QCD in a nutshell

Now, it is left to bring Eq. (2.10) into a form more suitable for practical calculations since
it looks still rather formal. First, we have to choose a gauge. We employ the generalized
linear covariant condition

FlA)] = 0,4, —w (2.11)

with an arbitrary function w independent of A,,. Because observables are insensitive to
gauge-fixing details, Eq. (2.10) is further multiplied by a Gaussian e~ Jw?/28) / V2mE
followed by a functional integration with respect to w [120]. Again, this affects only the
overall normalization of the partition function and is thus physically unimportant. The
width £ of the Gaussian is arbitrary and reflects the freedom of choosing a gauge. Second,
we need an explicit expression for the Faddeev—Popov determinant. From its definition
(2.8), we find

574V

Ag[Ay] = det SU

U=t 2.12)

1
= det [——angbs(‘*)(x — y)] ,
g

where Df)’b =89, +gf “bCAf) is the covariant derivative in the adjoint representation.
The last step is to write A ¢ as an exponential of some action such that Eq. (2.10) is of the
form “ f Dlfields] e~2i°"” again. This is accomplished by expressing the determinant as
an integral over Grassmann variables [116, 121], viz.,®

Ag[A)] :/:o[cz:']exp(—/ E“BVbecb) (2.13)

with Grassmann-valued, complex scalar fields ¢4 and ¢¢. They are anticommuting like
fermions, but the corresponding propagator is bosonic. Violating the spin-statistics theorem
[122, 123], these fields are absent in the physical spectrum. Due to these rather odd
properties, they are called ghosts. For an Abelian theory, f abc — () and the Faddeev—Popov
determinant is independent of the gauge field. Ghosts still appear but decouple and their
contribution is absorbed into the normalization of the path integral. This is similarly true
for some noncovariant gauge conditions, e.g., the class of axial gauges [124] or the flow
gauges of Ref. [125].°

Putting all things together and introducing sources J = (7q, e, j&. 0%, 0%) for the
fields, we finally arrive at the generating functional

Z[J] = / DY P AcE] e taeo+ls (2.14)

8 The factor 1/g is conveniently absorbed into the normalization of ¢% and €.
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2.1 The generating functional

with the gauge-fixed action

W 7 1 1 2 .~
I(%fCD - / (wa(lp + m)aﬂl//ﬂ + ZF\?O'FlilU + i (avA‘;) + 1c“8vD§bcb)
x

(2.15)
and the source term

I_] I/ (ﬁaW(x"‘lpana'ijAﬁ+5aca+5a00). (2.16)
X

The latter is an auxiliary quantity that allows for the derivation of correlations functions in
terms of functional derivatives of Z[J] with respect to the sources. Note that an additional
factor of i appears in front of the ghost term in Eq. (2.15) because we choose the ghosts to
be real. More details about the choice of real versus complex (and anti-Hermitian) ghost
fields can be found, e.g., in Refs. [78, 126]. Furthermore, Landau gauge is used throughout
this work. This corresponds to the limit § — 0 of the gauge parameter, and the gluons are
thus strictly transverse, d, A5 = 0.

In a series of works, it was shown that the theory given by the gauge-fixed action (2.15)
is multiplicatively renormalizable [120, 128-131], see also Refs. [103, 132-135] and
references therein. The unrenormalized Lagrangian is connected to the renormalized one
containing counterterms via the multiplicative rescaling

W—>Z;/2w 1}—)25/21}, Aﬁ—)Z;/zA‘“), c“—>Z§/2c“

2.17)

E“—>Z;/25“, g—>Zgg. m— Z,m

with renormalization constants Z», Z3, Z3, Z g» and Z,, for quarks, gluons, ghosts,
coupling constant, and mass, respectively. Though in principle necessary, a rescaling of
the gauge parameter (§ — Z¢£) is omitted because Landau gauge is a fixed point of the
renormalization group. The additional renormalization constants Z1g, Z1, Z1, and Z4
for the quark-gluon, three-gluon, ghost-gluon, and four-gluon vertex, respectively, are not
independent but related to the ones introduced in (2.17) via

Zip=ZgZ,ZN?* . Zy=2,73?,
) B (2.18)
Z1=242:2,*,  z4=22272.

These equations are consequences of the Slavnov—Taylor identities (STIs) [136, 137],

9 Ghost-free YM theory in linear covariant gauges is discussed in Ref. [127]. However, the presented
approach is limited to perturbation theory in Feynman gauge and at the expense of higher and higher
multi-point gluon self-interactions depending on the order of the perturbative expansion.

11



2 Setting the scene: QCD in a nutshell

which are extensive relations among QCD’s correlation functions and the non-Abelian
generalization of the Ward—Takahashi identities [138, 139]. Quantities on the left-hand
sides of (2.17) are bare while the ones on the right-hand sides are renormalized. Generally,
the renormalization constants depend on the regularization scheme, renormalization
scheme, and renormalization point ¢. In our numerical calculations (see Appendix D)
we employ a Pauli—Villars regulator [140] characterized by a regularization scale A g,
resulting in the dependence Z; = Z;({, Areg) of the renormalization constants. We use a
momentum-subtraction scheme to determine the Z;’s relevant for our calculations.

Finally, we would like to add the important remark that the Faddeev—Popov method does
not fix the gauge completely, i.e., it is incomplete. In particular, we tacitly assumed that

(i) the gauge condition (2.7) has exactly one solution on the set
&(4,) = {UAVU_1 + L (0,U) Ul:Ue SU(NC)Color} (2.19)
g

of physically equivalent gauge-field configurations for a given A4,;
(ii) the Faddeev—Popov determinant is positive, Az [A4,] > 0.

Both assumptions are generally not true. The latter holds only in the vicinity of A, = 0,
and the multiple solutions of ¥ |g(4,) = 0 are known as Gribov copies [141-145].10
The issue raised by the second assumption can be treated by restricting the integration
in Eq. (2.14) to the subset of gauge fields obeying the gauge condition and for which the
Faddeev-Popov operator 85 [Af,] 1/8U ‘ U —1 18 positive definite. More details can be found
in Ref. [145] and references therein. Furthermore, the impact of Gribov copies was studied
in detail on the lattice, see, e.g., Refs. [156-160], and found to affect the ghost propagator
yet mildly influence the gluon propagator at (deep) infrared momenta—a scale much below
the temperature and chemical potential range we are interested in. Thus, we can safely
ignore the problem of Gribov copies in this work.

2.2 Symmetries

In the following, we summarize some of the symmetries of the gauge-fixed action (2.15)
and Lagrangian, respectively. Even though we work in Landau gauge, what follows in
this section is independent of the value of the gauge parameter £. Symmetries are an
all-important concept in physics. For example, symmetry considerations lie at the heart

10" There are, however, approaches that circumvent the Gribov problem, e.g., stochastic quantization [146—153]
or topological gauge fixing [154, 155]. Their discussion lies beyond the scope of this work and we refer the
reader to the cited literature.

12



2.2 Symmetries

of the immensely successful Standard Model of particle physics. Tightly connected to
continuous symmetries is Noether’s (first) theorem [161-163]: each unbroken, continuous
symmetry that leaves the action invariant leads to a conserved current, and the integral of
the current’s time component over R3 defines the corresponding conserved charge. The
breaking of a symmetry, which is characterized by the behavior of the action and the
Noether current, can be

(i) explicit: the symmetry is in principle not a symmetry at all because the action is not
invariant, and the corresponding Noether current is not conserved;

(i) dynamical (or spontaneous): the action is invariant, and the Noether current is
conserved. However, the ground state of the system does not share the symmetry. In
other words, the corresponding charge operator does not annihilate the vacuum, and
the latter is thus not invariant under the corresponding symmetry transformation.
Intimately related to that is Goldstone’s theorem [164, 165]: for each generator
of a continuous global symmetry that does not annihilate the vacuum, there is
a massless spin-zero boson in the particle spectrum. These particles are called
Nambu—Goldstone bosons.'! If the symmetry is in addition (weakly) explicitly
broken, the emerging particles have a nonzero (though relatively small) mass. In this
case, they are called pseudo-Nambu—Goldstone bosons. A pedagogical introduction
to dynamical symmetry breaking can be found, e.g., in Ref. [167];

(iii)) anomalous: the symmetry is broken during quantization, i.e., the classical action is
invariant, and the classical Noether current is conserved, but the quantized theory
is not invariant anymore. In general, the classical symmetry is violated during the
(inevitable) process of regularization and renormalization. A prominent example is
the anomalous nonconservation of the axial-vector current known as the Adler—Bell—
Jackiw anomaly [168, 169].'? More details on anomalous symmetry breaking can
be found, e.g., in Refs. [173—175] and references therein.

With these different kinds of symmetry breaking in mind, we discuss the different
symmetries of QCD in the following.

BRST symmetry

First, for the sake of completeness, we begin with a more technical symmetry. Since
we gauge fixed our theory, the Lagrangian is not invariant under local SU(N¢)color
transformations anymore. However, it was found by Becchi, Rouet, and Stora [176—178]

T The occurrence of a massless state due to dynamical symmetry breaking was first discovered by Nambu in
the context of superconductivity [166].
12 This issue already surfaced in the early days of quantum electrodynamics [170—172].

13



2 Setting the scene: QCD in a nutshell

and independently by Tyutin [179, 180] that the gauge-fixed Lagrangian is invariant under a
transformation that is, roughly speaking, a usual infinitesimal gauge transformation with the
ghost field playing the role of the transformation parameter. This so-called BRST symmetry
can be seen as a generalization of the SU(N,)color symmetry. The corresponding BRST
transform of a generic field ¢ is of the form ¢ — ¢ 4+ As¢ with a constant Grassmann
number A, and s denotes the BRST operator. Its action in linear covariant gauges on quarks,
gluons, and ghosts is defined as follows:

sy = —igc?t?y, sAj = Dzbcb,
. (2.20)
sc? = —%f”bdcbcd, ¢4 = ga,,,Az.

The BRST operator has the important property of being nilpotent with index two on
the ghost mass shell, i.e., s>¢ = 0 for any field ¢ € {y, A%, %, &%)} provided the ghost
equations of motion hold. An off-shell nilpotent formulation, which is more general and
convenient in formal calculations, can be obtained by introducing the Nakanishi—Lautrup
auxiliary field [181-184] that functions as a Lagrange multiplier for gauge fixing. The
on-shell form (2.20) is then obtained by integrating out the auxiliary field. In general,
the BRST transformation is a very powerful tool. For example, it can be used to proof
the renormalizability of QCD and the gauge independence and unitarity of the scattering
matrix; see, e.g., Refs. [185, 186]. Furthermore, it allows one to fix the gauge solely on the
level of the Lagrangian, i.e, without referring to the path integral [187], and the STIs can
be elegantly derived [78, 105]. Last, we would like to remark that the BRST symmetry
generates a conserved charge, but it is still under debate if the BRST symmetry is broken
by nonperturbative effects. !* Since a more thorough discussion of the BRST framework is
beyond the scope of this section, we refer the reader to the already cited literature and to
Refs. [126, 188] as well as references therein.

Flavor symmetries

Next, we discuss the flavor symmetries of QCD. To this end, we decompose the quarks
into left- and right-handed ones: ¢ = ¥ + ¥R, where Y = %(]l — ¥Y5)¥ and
YR = %(]1 + y5)¥. In the chiral limit, m = 0, the classical QCD Lagrangian is thus
invariant under global U(Ny)r, x U(Ng)g transformations that transform left- and right-
handed quarks independently. This invariance is known as chiral symmetry and is, together
with its breaking, a central theme of this work. A pedagogical introduction can be found,
e.g., in Ref. [189]. It is more convenient to express the chiral symmetry in terms of vector

13 For example, the Kugo—Ojima confinement scenario [185] relies on an unbroken BRST charge.
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2.2 Symmetries

(V) and axial-vector (A) transformations according to 14
U(Np)L x U(Np)r >~ SUWNg)v x U(1)y X SU(Np)a x U(1)4 . (2.21)

However, not all of these symmetries are (exactly) realized in the real world, partially due to
the fact that the quarks are not massless. The U(1)y symmetry is the only exact symmetry
of QCD and corresponds to the conservation of the baryon number in strong-interaction
processes. The conserved Noether current reads j, = ¥y, ¥ with 9, j, = 0.

Regarding SU(Nr)v, from Noether’s theorem we find the vector current j& = Yy Ty,
Its divergence is given by 9, j = ¥ [t%, m] ¥, and we see that the current is conserved as
long as all quarks are mass degenerate, i.e., m o 1. However, due to the very small mass
difference between up and down quarks, SU(N¢)y is almost realized in the light Ny = 2
sector of QCD and describes isospin symmetry. Even taking the heavier strange quark
into account, SU(Nf = 3)v can still be regarded as an approximate symmetry because
the masses of up, down, and strange quarks are still smaller than the characteristic scale
Aqcp of the strong interaction: m, ~ mg < ms < Agcp = 200-300MeV. This is
reflected, e.g., in pion and kaon masses that are in the same ballpark compared to the
typical hadronic scale of one GeV. Furthermore, the low-lying hadron spectrum can be
successfully deduced based on an SU(N;y = 3)y symmetry [190, 191].

The SU(N¢)a-related axial-vector current reads j5',, = Vyyyst®y with divergence
djs, = Vys{t®, m}y. Thus, the current is explicitly broken as soon as 711 # 0. Since
the explicit breaking due to the quark masses is rather weak, at least in the two- and
three-flavor sector, one would expect SU(N¢) 5 to be approximately realized. Therefore, one
should find nearly-degenerate parity partners in the low-lying hadron spectrum. However,
this is not observed in nature: the apparent isovector-vector and isovector-axial-vector
partners p and a; differ in mass by about 460 MeV [192]. The solution of this puzzle is
that QCD exhibits a feature called dynamical mass generation. In addition to their bare
mass, quarks acquire a large dynamical mass of several hundred MeV—even in the chiral
limit—due to the strong quark-gluon interaction. In other words, SU(N¢)a is dynamically
broken, and we call this (in a slight abuse of notation) dynamical chiral symmetry breaking
(DCSB). This also explains a proton mass of the order of one GeV even though the proton’s
constituents are only two up quarks and one down quark. !> The pseudo-Nambu—Goldstone
bosons in three-flavor QCD are the three pions, the four kaons, and the n meson. At this
point, it is worth to emphasize that DCSB is an inherently nonperturbative phenomenon
and appropriate tools are needed to explore it. One is the framework employed in this

14 Rigorously, the isomorphism relation reads U(n) ~ (SU(n) x U(1))/ Zy, but we ignore this mathematical
subtlety here.

15 The large nucleon mass as a result of dynamical symmetry breaking was already proposed in the pre-QCD
era by Nambu and Jona-Lasinio in the early 1960s [59, 60].
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2 Setting the scene: QCD in a nutshell

work, the DSEs. DCSB manifests in the nonvanishing vacuum expectation value of the
composite operator ¥/, the so-called quark condensate (YY) = (YL¥r + Yr¥L). In
general,

(yy)

_ = 0 if chiral symmetry is exactly realized ,
(2.22)

= 0 if chiral symmetry is broken,

and the magnitude of the quark condensate is a measure for the extent of chiral symmetry
breaking. For massless up and down quarks, m,, mq — 0, the numerical value of the up-
and down-quark condensates in vacuum is (itu) = (dd) ~ — (250 MeV)? [193-195],'°
i.e., chiral symmetry is indeed dynamically broken. The quark condensate is a well-suited
and widely employed order parameter for the breaking/restoration of chiral symmetry.
In particular, monitoring its temperature and chemical-potential dependence allows one
to draw the chiral phase diagram of QCD—the latter being the central object this work
revolves around. Some more details on the calculation of (1) are given in Section 2.5.

Last, the U(1)s symmetry. It is anomalously broken because the path-integral measure
is not invariant under U(1)4 transformations [196, 197]. Tightly connected to that is the
presence of instantons, regular solutions of the classical equations of motions minimizing
the action [198], that induce additional effective 2 Ny-quark interactions that break the
U(1)a symmetry explicitly on the quantum level [199-201]. The relatively large n’ mass
of 958 MeV compared to the 1 with a mass of 548 MeV [192] indicates that the former is
not a pseudo-Nambu—Goldstone boson, and U(1)4, is thus not dynamically broken.

In order to summarize the flavor symmetries of QCD, the breaking patterns in the case
of three quark flavors are graphically depicted in Fig. 2.1.

Discrete symmetries

Finally, the QCD action is invariant under charge conjugation (C), parity (P), and time
reversal, which are discrete symmetries. In writing down the Lagrangian, we omitted the
so-called € term, which is given by

_ Nig?

fog= 15
0= Gan2

98‘)0-1)/0/ ;la ;1/0'/ . (2.23)
It is CP violating but otherwise compatible with other symmetries and constraints. The
0 parameter can be related to the electric dipole moment of the neutron, and from
experimental results follows the upper bound 8 < 10~° [202, 203]. The question why 6

16 The numerical value is to be understood within the modified minimal subtraction (WS) scheme at the
customary renormalization scale of 2 GeV.
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2.3 Functional relations and DSEs

quantization

SU(3)V X U(l)v X SU(3)A X U(l)A SU(3)V X U(l)v X SU(3)A

A~

m o1

m = diag(my, mq, ms)
SU(3)\/ X U(I)V X SU(3)A oy % g £ m SU(3)V X U(l)\/ X SU(3)A
| u d s

|

| DCSB

|

v
SU@B)y x U(l)y

Figure 2.1 Global flavor symmetries and their successive breaking in three-flavor QCD starting
from the classical theory in the chiral limit (upper left). A solid (dashed) arrow indicates that the
breaking is explicit (dynamical). Symmetries shown grayed out are in principle broken but to an
extent such that they can still be regarded as approximately fulfilled.

is so small is commonly known as the strong CP problem. The discussion of this issue
lies outside the topic of this work, and we refer the reader, e.g., to Refs. [204—206] and
references therein.

2.3 Functional relations and DSEs

Having collected and summarized aspects of QCD that are relevant for this work, we
now focus on functional relations and further discuss the DSEs, which can be seen as the
equations of motions for correlation functions. With the sources already collected in a tuple,
J = (Na: Na, j&.0%,0%), we do the same with the fields, viz., ¢ = (Y, 1;0,, AZ, ¢, c?)
for the sake of brevity. The most important objects of any field theory are correlation
functions—normalized expectation values of an arbitrary number of fields. They are all
encoded in the generating functional, Eq. (2.14), and obtained via functional differentiation
with respect to the sources. Thus, a generic n-point correlation function, n > 1, in the
presence of sources is given by

_7&
) — f°(D¢ ¢i1(xi1) ce ¢in(xin,)e Igep+1s
/°©¢ e_I(%tCD'f'IJ

1 §"Z[J]
 Z[J) 8, (xiy) ... 85, (xi,)

(Piy(xiy) ... di,(xiy))
(2.24)

and the physical correlation function is obtained for vanishing sources, J = 0. In order to
avoid cumbersome minus signs due to the exchange of anticommuting Grassmann-valued
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2 Setting the scene: QCD in a nutshell

quantities, we use left and right derivatives, i.e.,

—

5 . — a4~
5 ﬂ if Jj E{Tla»]f,ga}, o
5 - (2.25)

S_Ji iijE{T]a,O'a},

and analogously for derivatives § /§¢; with respect to the fields. The correlation functions
(2.24) contain a redundancy in the sense that they can be decomposed into connected and
disconnected parts. The latter do not contribute to the scattering matrix. Thus, one is
usually only interested in the former and we define

WI[J] = log Z[J] (2.26)

that is the generating functional for connected correlation functions. The simplest case are
the macroscopic fields ®; that are one-point correlation functions, i.e., expectation values
of single fields in the presence of sources:

o _ 1 8ZlJ] _swl]
Z[J]8Ji(x)  8Ji(x)

®i(x) = (¢i(x)) (2.27)
For example, W, (x) = (Vg (x))) and A% (x) = (A (x))) are the macroscopic quark
and gluon fields, respectively.

The connected correlations functions are free of disconnected contributions but still
contain parts that are disconnected upon cutting one internal line. It turns out that
the connected correlation functions can be build solely from contributions that are not
disconnected after cutting one internal line. This is called one-particle irreducible (1PI),
and the corresponding generating functional is the 1PI effective action, I'yp, which allows,
loosely speaking, for an even more efficient way to store information than using W.
Note that one can also define functionals that generate correlation functions that are not
disconnected if more than one internal line is cut. This leads to the framework of nPI
techniques, see, e.g., Refs. [207-213]. The 1PI effective action is the Legendre transform
of W with the macroscopic fields (2.27) as the new variables: '’

Fypi[®] = —W[J] + / Ji(x) @i (x). (2.28)

X

17" The summation J; ®; is understood to yield a well-defined scalar expression in the sense that the ordering
of sources and fields is correct, i.e., J; ®; = g Wy + Yono + ... in Eq. (2.28).
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2.3 Functional relations and DSEs

The sources are obtained by the inversion of Eq. (2.27), J = J[®], for a given macroscopic
field ®. Furthermore, §T"1p; /8®P; = J;, which are the quantum equations of motions that
govern the dynamics of the macroscopic fields. Moreover, in the limit of vanishing sources,
their solutions describe the stable ground state of the theory.

The central quantities in this work are the propagators, i.e., the physical connected
two-point functions. In particular, the quark and gluon propagators

Sup (¥, ¥) = (Va(@) T =2, (2.29)
D (x,y) = (A2 AL ()0 (2.30)

Since the expectation values are calculated based on Eq. (2.24), these propagators are fully
dressed—they contain all possible quantum fluctuations of QCD and are consequently
nonperturbative objects. Both can be obtained either from W or I'1p; according to

§2W[J] ( 82T pi[ D] )‘1
Sa ) :—_ == - = 5 2.31
B = 57 o \595()5%a(x) 3D
§2W[J] 82T pi[®] 1\~
ab _ _
Drolxy) = 8;0(0)8j4(x) |j=0 (Mg(ww(x)) ’ (&52)

where the derivatives of the 1PI effective action have to be evaluated at the stationary point
8 pr/8®; = 0. The corresponding (inverse) bare propagators, known from perturbation
theory, are obtained with ['jp; = I(%fCD for vanishing macroscopic fields, ® = 0. The
inverse bare quark propagator reads

So (X ¥) = (# + map 8@ (x - ), (2.33)

while the inverse bare gluon propagator is given by

[Dg,l?)a(x, Y)]_l = 8ab |:—5v082 + (1 - é) avaa] 8(4)()6 -)). (2.34)

The higher-order n-point correlation functions, n > 3, are analogously obtained by n
derivatives of a generating functional. However, by vertices we always mean 1PI correlation
functions. For example, the quark-gluon vertex I'¢ , is the 1PI two-quark-one-gluon

v,af
correlation function and defined by

83T p1[P]
8Wp(2)8We (y)8AL(x)

gy 4p(x.y.2) = (2.35)
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2 Setting the scene: QCD in a nutshell

It is related to the connected two-quark-one-gluon correlation function via

J=0) _ 8wlJ]
o 81p(2) 87 ()82 (x)

(A5 ) Ya (1) V5 (2))

J=0

(2.36)

8 ( 82T 1p1[ D] )_1
80 (x) \8Wg(2)8Wa(y)

== [ DI Sua 06T 000 Sep0.2).
U, v, W

J=0

All connected correlation functions admit a similar decomposition into 1PI ones, but the
resulting expressions become quickly quite involved [214-216]. These decompositions are
frequently used in the derivation of DSEs, which we discuss soon. In terms of Feynman
diagrams, Eq. (2.36) means that the connected two-quark-one-gluon correlation function
is obtained from the quark-gluon vertex, i.e., the 1PI two-quark-one-gluon correlator, by
attaching propagators to the external legs of the latter.

Now, we turn to the DSEs [76-79, 217-220]. They are the equations of motion for the
correlations functions and based on the identity (see Appendix B)

8 f
0= / e e oty (2.37)
1
that can be rewritten to yield the master DSE

f
8T 1pr[ D] SISCD

§0;, 8¢

1. (2.38)
Ox—> Dr+38/8Jk

The DSE for every n-point correlation function can be derived from this equation without
any approximation by means of the following procedure: '®

(i) choose appropriate fields ®; and ¢;, and compute the first functional derivative of
1 éfCD explicitly. In the resulting expression, replace any remaining fields according
to pp — D +8/8Jx;

(ii) apply n — 1 additional field derivatives to both sides of Eq. (2.38);
(iii)) decompose higher connected n-point functions (n > 3) into vertices [see Eq. (2.36)];

(iv) set the sources to zero, which is equivalent to evaluate the macroscopic fields at their
physical vacuum expectation value, and identify propagators and vertices.

18 This procedure is well suited for an automated, algorithmic derivation of DSEs for any given action [221].

20



2.3 Functional relations and DSEs

The resulting equation, the DSE for the n-point correlation function in question, is a
self-consistent integral equation that depends on other and higher n-point functions. This
is a salient feature all DSEs have in common. They thus form an infinite tower of coupled
integral equations, which needs to be truncated to allow for a numerical treatment. Note that
truncations, however, are not arbitrary but guided by preserving symmetries and keeping
STIs and multiplicative renormalizability intact. We would like to emphasize that the
infinite tower of DSEs describes QCD exactly. Thus, DSEs—even (reasonably) truncated
ones—constitute a fully nonperturbative approach that is able to describe phenomena, like
DCSB, that are beyond the reach of perturbation theory.

The quark DSE

Most important for this work is the DSE which solution is the renormalized dressed quark
propagator. ' Using the recipe given above and resolving the index structure, the DSE for
the dressed quark propagator Sy for a flavor f* in homogeneous space-time and Fourier
transformed to momentum space reads (see Appendix C for details)

S;(p) =24 (ip + Zm,mys) + 7 (p) (2.39)

with the self-energy

f
yA
2/ (p) =gzczf““dz—2 ][ D)1 Sr ()T (. p) (2.40)
3 q

where k = p — ¢g. There is a separate DSE each quark flavor f, and color degrees of
freedom are removed by means of a color trace from which the second-order Casimir factor
sz““d = (Nc2 — 1) /2N, in the fundamental representation of SU(N,)color Originates. For
the sake of brevity, the Dirac structure is not resolved explicitly via indices.

The quark DSE (2.39), shown graphically in Fig. 2.2, is one of the central equations in
this work. Again, we would like to emphasize that this equation is exact but depends on
two other (unknown) correlation functions: the dressed gluon propagator D, and the
dressed quark-gluon vertex r({ (in its reduced form; see Eq. (A.23)), which obey their
own DSEs. They are either known a priori or have to be determined in a self-consistent
calculation of the coupled set of DSEs for the quark propagator, the gluon propagator, and
the quark-gluon vertex. This again illustrates the infinite-tower nature of the DSEs, and our

19 From now on, all quantities are understood to be renormalized ones. Thus, they carry an additional
dependence on the renormalization point ¢, which we suppress for the sake of brevity, and are independent
of the regularization scale Areg that regularizes the divergent loop-momentum integrals.

21



2 Setting the scene: QCD in a nutshell

® = Tt ——e

Figure 2.2 Graphical representation of the quark DSE. Solid and curly lines denote quark and
gluon propagators, respectively, and a large black dot indicates that the propagator is fully dressed.
Dots at joints with more than two lines are vertices. A small black dot denotes a bare vertex, while
a large gray dot is a fully dressed one (i.e., a 1PI correlation function). The Feynman diagrams in
this work are created using JaxoDraw [222].

truncation to obtain a finite set of equations, which can be solved numerically, is detailed
in the upcoming Section 3.1 of the next chapter.

The inverse dressed quark propagator is of the form

S (p) = ipAs(p?) + Br(p?), (2.41)

where the vector dressing function Ay and the scalar dressing function By contain all the
nonperturbative information. Thus, they have a nontrivial momentum dependence, and
the bare quark propagator is recovered for A ( P> =27 2f and By ( p>) =7 2f Zm,my.
Inverting Eq. (2.41) in Dirac space yields

—ipAr(p?) + Br(p?)
p?A%(p?) + B2 (p?)

—ip + My (p?)
p?+ M7 (p?)

Sr(p) =

(2.42)
= Zs(p?)

Here, we introduced the quark wave function Zz ( p>)=1/4 7 ( p?) and mass function
My ( p?) =B 7 ( p?) /A 7( p?). The latter is renormalization-point independent®’ and its
infrared value at p? = 0 can be interpreted as a constituent quark mass. Since the two Dirac
tensor structures p and Ipjrc behave differently under chiral transformations—the former
is invariant, while the latter is not—a nonzero scalar dressing function (or equivalently
mass function) signals the breaking of chiral symmetry. With the parametrization of the
dressed quark propagator in terms of dressing functions, the quark DSE translates into to a
coupled set of self-consistent equations for the dressing functions. They are obtained by
suitable projections in Dirac space and given by

1
Ar(p?) = 7] + i Te[p=r(p)] (2.43)

20 provided the employed truncation preserves multiplicative renormalizability.
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2.3 Functional relations and DSEs

and

1
By (p?) = Z Zm,my + 3 Tr[Z/(p)]. (2.44)

where the trace is taken in Dirac space. We refer the reader to Appendix D for details how
we solve these equations in practice.

The gluon DSE

In Landau gauge, the (color-stripped) dressed gluon propagator is described by one dressing
function Z(k?) and is of the form

Z(k?)
Dy (k) = Py (k) =5 (2.45)
with the four-dimensional transverse projector
kvk
PI (k) = 8po — k—z" . (2.46)
The corresponding DSE is shown diagrammatically in Fig. 2.3 and given by
D35 (k) = Z3 Dy (k) + M5 (k) + Mo (k) - (2.47)

It contains the bare gluon propagator, obtained from the dressed propagator by setting
Z(k?) = 1, and two self-energies: the pure YM self-energy T1YM contains all diagrams
without explicit quark content, while IT,,, denotes the quark-loop contribution that couples
the gluon dynamics to the matter sector.

Already in quenched QCD, i.e., pure YM theory without quarks, solving the gluon DSE
numerically poses a nontrivial task due to the appearance of one- and two-loop diagrams
and the additional dependence on three- and four-point functions; see the comprehensive
review [90] and references therein for details and further reading. Therefore, and as
described later, we do not calculate the YM diagrams explicitly but take unquenching
effects triggered by the quark loop into account. We thus refrain from showing explicit

expressions for TTY>, which can be found, e.g., in Ref. [78], while the quark-loop reads

g2 24 f
Mot = -5 3 2 f wlusior/oos @] @as)
f 3 J4q

where p = g — k, which defines the momentum routing of the loop, and the trace has to
be evaluated in Dirac space. Analogously to the quark DSE, the gluon DSE boils down
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2 Setting the scene: QCD in a nutshell

Figure 2.3 Graphical representation of the gluon DSE. Dashed lines denote ghosts, and the
quark-loop diagram contains an implicit flavor sum. Signs and symmetry factors are implicit, too.

to a self-consistent equation for the dressing function: contracting Eq. (2.47) with the
transverse projector yields

1

=7
Z(kz) 3+ —5

o P (N0 + T () (2.49)
Finally, we would like to note that this equation needs further treatment before one
can attempt solving it numerically because it is plagued by technical issues, see, e.g.,
Refs. [223, 224]. First, it turns out that the quark loop has a nonvanishing longitudi-
nal component, PL_ (k)15 (k) # 0 with the four-dimensional longitudinal projector
PL (k) = kvks/ kz, which seems to be at odds with the transversality of the gluon
propagator in Landau gauge; see Ref. [225] for a recent study. Second, spurious quadratic
divergences appear. Both issues need to be addressed properly, and details how this is
accomplished in this work are given in Appendix D.
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2.3 Functional relations and DSEs

Detour: a short FRG overview

Since we later compare with results obtained from it, in the following we take a short detour
and discuss another important functional method: the FRG [80-83]. It is based on Wilson’s
renormalization-group concept [226-229], where quantum fluctuations are integrated
out step by step instead of all at once. One starts with the bare action at an ultraviolet
cutoff scale Ayy and integrates out momentum shells starting from high-momentum
(short-ranged) down to low-momentum (long-ranged) fluctuations. Technically, this is
realized by introducing a momentum scale k that works as an effective infrared cutoff
above which all fluctuations are integrated out, and the exponential in the generating
functional is supplemented with a regulator term, e_léfCDJrI S — e_IéfCD_I;:ngI 7, which
makes the generating functional scale dependent. In momentum space, the regulator
term is of the form / ]Zeg [¢] = % f 4 i (—q)R;cj (9)¢;(q) and can be seen as a momentum-
dependent mass term for the fields. As a consequence, all quantities derived from the
now scale-dependent generating functional inherit this dependence. In particular, the
1PI effective action becomes the so-called effective average action I';. The regulator Ry
implements the successive integration over momentum shells as explained above. It has
to obey lim 2 /52,9 Ri(q) > 0, limg2,,2_,o Ri(q) = 0, and limg_ 5, Rx(q) — oo.
Thus, in the momentum-scale region 0 < k < Ayy, R suppresses all fluctuations below
k while the ones above are left unchanged. This guarantees that limg_, 5, ['x = ISfCD
and limg_, o'y = T'ipy, i.e., the effective average action interpolates between the bare
action in the ultraviolet and the full quantum effective action in the infrared. The evolution
of the effective average action is governed by the nonperturbative flow equation [230-232]
(in compact matrix notation)

(@] 1 .
g/i I 5Tr[(rk[cb] + Ry)

-1 a&] , (2.50)

ok

where I‘]’C’ [@];; = 82T /8®;8P;, and the trace has to be taken in momentum, color, flavor,
Dirac, and field space, where minus signs are included for the fermionic subspace of
the latter. The functional integro-differential equation (2.50) is the central pillar of the
FRG approach and solving it is the eventual aim of every FRG study. A more detailed
discussion is beyond the scope of this work, and we refer the reader to the cited literature
and references therein.

From Eq. (2.50) follows that the flow equation for I’y itself and all derived ones are
of one-loop structure, which is technically convenient. However, the flow for an n-point
function contains dressed vertices up to order n + 2. For example, the flow equation for
the quark propagator contains diagrams involving the quark-quark, quark-gluon, and quark-
ghost scattering kernels, which are four-point functions. In contrast to that, the self-energy
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2 Setting the scene: QCD in a nutshell

of the quark DSE is one single one-loop diagram. On the other hand, renormalization
comes along automatically in the FRG approach thanks to the regulator term, i.e., all
appearing integrals are by default ultraviolet finite. Finally, solving an FRG flow equation
necessitates the calculation of scale-dependent loop integrals at different scales k and
subsequently solving the differential equation with respect to k. This further increases the
numerical complexity compared to DSEs, which are integral equations only.

2.4 Nonzero temperature and density

Up to this point, we discussed QCD in vacuum. Since we started in Euclidean space-time
right from the beginning, the transition to QCD at nonzero temperature 7 > 0 and in
thermal equilibrium is rather straightforward by means of the Matsubara (imaginary-time)
formalism [108, 233, 234]. The integration in Euclidean-time direction is restricted to
the compact interval [0, 1/T], and with appropriate boundary conditions for the fields,
the partition function (2.5) is simply the path-integral representation of the (canonical)
partition function Z = Tre™# /T known from statistical mechanics, where H is the
Hamiltonian of the system. Being fermions, quarks obey antiperiodic boundary conditions,
ie., ¥(0,x) = —y(1/T, x), while periodic boundary conditions hold for gluons and
ghosts, A7 (0,x) = A7 (1/T,x) and c?(0,x) = ¢?(1/T, x). As a consequence of the
compactification of the time-integration interval, the continuous integration with respect to
the energy component in momentum space is replaced by a sum over discrete frequencies,

frm =13 f 1o =@, 251)
V4

Lyez P

Depending on the boundary condition, these so-called Matsubara frequencies are odd or
even multiples of n7: we have w, = (2{, + 1)nT if h obeys antiperiodic boundary
conditions and w, = 2€, 7T if h obeys periodic boundary conditions, where £, € Z."!

From (2.51) follows that the energy and vector components of the momentum are
not treated on equal footing anymore—in contrast to the vacuum. Thus, the Euclidean
O(4) symmetry in vacuum is explicitly broken to O(3) in the medium, i.e., the Matsubara
formalism is noncovariant. Phrased differently, with the introduction of nonzero temperature
via the Matsubara formalism, one chooses a specific reference frame: to wit, the rest frame
of the heat bath that is constituted by all particles of the system. In that frame, the heat
bath is static and equilibrated. The reduced symmetry alters the tensor structure of all
propagators and vertices. In a general frame characterized by its normalized four-velocity

2l Ghosts are Grassmann-valued quantities, but their propagator is bosonic. They thus obey periodic boundary
conditions, and their Matsubara frequencies are even, like those for the gluons.
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2.4  Nonzero temperature and density

u, these quantities do not depend on external momenta alone but in addition on the
four-velocity of the heat bath. For example, the inverse quark propagator is given by

S (psu) = igu-pCr(w, p) +i(p—shu-p)As(w,p)

(2.52)
+ Bp(w, ) +isu-p(p—shu-p)Dy(w.p),

where the dressing functions depend on the scalars w = u - p and 2 = p? — w?2. The
latter can be interpreted as a generalized squared three-momentum. In vacuum, w = 0
and the quark propagator reduces to its vacuum form, Eq. (2.41), while in the rest frame of
the heat bath, i.e., u = (1, 0), we get the familiar expression

S (p) = iwpyaCr(p) +iy - pAs(p) + Br(p) +iwpyay - pDs(p)  (253)

with momentum p = (wp, p) and w, = (2¢, + 1)nT, {, € Z. The dressing functions
depend separately on w, and p?. However, for the sake of brevity, we simply write
this as a dependence on p that has to be understood as F(p) = F(wp, p?), where
F € {C¢, Ay, By, Dr}. The symmetry breaking from O(4) to O(3) becomes apparent
through that dependence, different dressing functions for the temporal and spatial tensor
structures, Cy # Ay, and the appearance of a contribution corresponding to y4y - p.
The dressing function associated with the latter vanishes in vacuum, chirally-symmetric
phases, rainbow-ladder truncations, and perturbation theory. When nonzero, D is small
in magnitude and its influence on the other dressing functions is quantitatively negligible
[235, 236]. We thus set Dy = 0 throughout this work.

Since we aim to investigate QCD not only at nonzero temperature but also at nonzero
density, we have to describe the system grand canonically. To this end, the quark chemical
potential ¢ is added to the action as a Lagrange multiplier for the net quark density nz,

f f
Iscp = 18cp — D Mrny. (2.54)
s

where the net quark density is given by

1/T
nf=/0 dx4/xw}wf. (2.55)

The quark chemical potential can be absorbed into the quark’s kinetic part of the Lagrangian.
With Ty = ¥ysy, we can write

1T B
ISED—Z;Lfnf :/(; dxs / Wa(a-i-n’%—ﬁm)aﬁwlg +..., (2.56)
f X
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2 Setting the scene: QCD in a nutshell

where i = diaggayor(fus Uds s, - - . ) contains the chemical potentials for the different
quark flavors. It thus follows that the Matsubara frequencies of the quark are modified
according to wp — wp + ijLr, and the dressing functions become chemical-potential
dependent.”” Furthermore, they are complex valued at # 7 0 and real valued only at
vanishing quark chemical potential.

In summary, we use the inverse dressed in-medium quark propagator

S (p) =i(wp +ips)yaCr(p) +iy - pAs(p) + Br(p) (2.57)

that is the solution of the DSE

S7p) = 2] (i(wp +ip)va+iv-p+ Zmyms) + Sp(p).  (258)

The in-medium self-energy looks not much different than in vacuum. With the changes
induced by nonzero temperature and quark chemical potential, it is given by

f

7z

Zr(p) = g2 Cim ZET Y ][ Doe )y S @TL @ p). (259
3 ezl

where ¢ = (wy, q) with wy = (2£4 + 1) =T is the internal quark momentum. We use the
same momentum routing as in the vacuum, k = p —q = (wp — g, p — ¢). In writing
down the in-medium quark DSE (2.58), we chose to take the renormalization constants
from the vacuum since neither nonzero temperature nor quark chemical potential introduce
new divergences. All occurring divergences are already present in the vacuum [108].
Finally, the self-consistent equations for the three dressing functions read

1
1
A =73 + 5 Ty p =], 2.61)
1
Br(p) = 2{ Zy, ms + ;T[4 (p)]. (2.62)

The medium alters the structure of the Landau gauge gluon propagator, too. It splits into
two parts: the magnetic contribution that is transversal (_L) and the electric contribution

22 In full glory: SJTI = Sfl(wp,p,ﬂf;{ﬂf/ f# fPand F = F(wp. p>. ppi{ip 2 f/# f}) with
F € {Cy,Ar, Br}. The implicit dependence on all other quark chemical potentials stems from the
quark-loop diagrams in the gluon DSE, see Fig. 2.3. However, for the sake of brevity, we suppress all
chemical-potential dependencies of propagators and vertices.
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2.5 Phases of QCD

that is longitudinal (||) with respect to the direction of the heat-bath vector u = (1,0).
With k = (wg, k), wr = 2L 1T, the dressed in-medium gluon propagator is therefore of
the form

Duotl) = 235 (0) 28 4 ), 1y A1) 2.63)
with the two projectors

PLK) = (1= 80) (1 85a) (sw - "k—ﬁ) , (264

Pl (k) = Py (k) — Pig (k). (2.65)

where P (k) is the four-dimensional transverse projector, see Eq. (2.46). The magnetic
and electrlc dressing functions Z and Z, respectively, are unequal due to the effects
of nonzero temperature and/or quark chemical potential. They become degenerate in the
vacuum limit so that we recover the vacuum gluon propagator, Eq. (2.45). Analogous to
the quark dressing functions, Z | (k) = Z | j(wk, k?). Note that the in-medium gluon
propagator is still transverse with respect to its four-momentum—as it should be in Landau
gauge—because the magnetic and electric projectors are four-dimensionally transverse, i.e.,

(k) =k, J "’” o (k) = 0. The self-consistent equations for the magnetic and electric
dressmg functions read

! YM
Zh - e 2k2 0o (k) (Hva (k) + Hva(k)) : (2.66)
L 1o Y™
Z (k) =23+ k2 Poo (k) (Hvo (k) + Hvo(k)) ) (2.67)

and are obtained by contracting the in-medium gluon DSE, which takes the same form as
in vacuum, Eq. (2.47), but with the necessary changes due to nonzero temperature and/or
quark chemical potential, with the corresponding magnetic and electric projectors.

2.5 Phases of QCD

Even though we already touched upon the phase diagram of QCD in the introduction, we
now come back to it in this last section of our chapter on the theoretical framework of
this work and recapitulate some of its aspects. In general, different phases of matter are
categorized by their physical properties under certain thermodynamical circumstances
described by, e.g., temperature and density. In this work, we are interested in the chiral
phase diagram of QCD, i.e., the phase structure of strong-interaction matter determined by
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2 Setting the scene: QCD in a nutshell

Quark-gluon plasma
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Figure 2.4 Sketch of the QCD phase diagram as obtained from numerous studies within the
functional methods of DSEs and the FRG.

whether chiral symmetry is dynamically broken or restored.”® A contemporary sketch of
the QCD phase diagram in terms of temperature and baryon chemical potential obtained
from the functional frameworks of DSEs and the FRG—see Refs. [98, 101, 236-249] for
selected works—is shown in Fig. 2.4. At low temperatures and densities, chiral symmetry
is dynamically broken. Quarks acquire a huge amount of dynamical mass and are confined
into hadrons, which are the relevant degrees of freedom in this region of the phase diagram.
Staying at low chemical potential, the hadronic phase is connected via an analytic crossover
(dashed line) to the deconfined high-temperature phase of the quark-gluon plasma with
(partially) restored chiral symmetry. These findings are in perfect agreement with results
from first-principles lattice-QCD calculations [52-56] and by now well-established and,
without dispute, a solid cornerstone of our understanding of the phase diagram of QCD.
At low to moderate temperatures but high chemical potentials, a first-order transition
takes place (solid line) that consequently meets the crossover line at a second-order CEP
(black circle). For even higher chemical potentials and temperatures (well) below the CEP,
color-superconducting phases are present. Their phase boundary with the quark-gluon
plasma (dotted line) is either of first or second order, which depends on the details how
color superconductivity is realized [242, 246]. Not shown is the possible emergence of
inhomogeneous phases in the first-order region of the phase diagram [243].

In this work, we are concerned with the crossover region up to the CEP. In order
to distinguish the different phases and locate the crossover line and CEP, we need an
order parameter that measures to which extent chiral symmetry is dynamically broken
or restored. For example, suitable chiral order parameters are the scalar quark dressing
function (e.g., for the zeroth Matsubara frequency and at vanishing three-momentum) or

23 From now on, the term “phase diagram” always refers to the chiral phase diagram of QCD.
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2.5 Phases of QCD

the quark condensate. Usually, the latter is the chiral order parameter of choice and we
employ it, too. For a quark flavor f, the quark condensate (V1) # 1s obtained from the
corresponding propagator according to

o)y =-Ne2{ 2,7 Y. T[S @), .68

LyeZ q

where the factor of N, stems from the color trace, and the remaining trace is evaluated in
Dirac space. The respective vacuum expression of Eq. (2.68) is obvious. Unfortunately,
the quark condensate is only well defined in the chiral limit and plagued by a quadratic
divergence for all flavors with a nonvanishing quark mass. Therefore, it needs to be
regularized in order to get a finite expression. Since the quadratic divergence contained
in the condensate is of the form m Arzeg with the regularization scale (cutoff) Ag of the
summation and integration in Eq. (2.68), q2 = a)g + q2 < Arzeg, a well-defined, finite
expression is given by the difference

S i

Appr = (U¥)y — v)rr (2.69)

me, n’Zf/

which is known as the subtracted f-f’ quark condensate. The divergent part of the
f’ condensate cancels the corresponding one of the f condensate when the former is
multiplied by the corresponding mass ratio. Since the idea behind Eq. (2.69) is to remove
only the quadratically-divergent component in (V) #» the subtraction should be carried
out withmyg, > my.

As detailed in the next chapter, we work with 241 quark flavors, i.e., with two degenerate
light up/down quarks and a heavier strange quark. The latter is sufficiently heavier than the
former such that the subtracted up-strange quark condensate delivers a clean, distinct signal
of the chiral transition. We define the chiral transition temperature 7, by the inflection
point of A, ¢ with respect to temperature through

aAu S T’
Te({py}) = argmax W‘ (2.70)
T

Note that 7T is only a pseudocritical temperature in the crossover region of the phase
diagram because the crossover is not a true phase transition but connects the hadronic phase
continuously and analytically with the quark-gluon plasma. Thus, no unique definition of
T, exists in case of a crossover and its definition varies in the literature. Another widely
used definition is the maximum of the chiral susceptibility d(v /), /dmy,. All of these
definitions, however, yield the same result at the CEP and beyond in the first-order region,
i.e., for “true” phase transitions.
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Figure 2.5 Left: Columbia plot at zero chemical potential with U(1)4 broken at all temperatures.
Right: Same as the left diagram but with restored U(1), symmetry.

Strictly speaking, the phase diagram shown in Fig. 2.4 is only valid for physical quark
masses, i.e., for masses which result in a hadron spectrum that is in agreement with the
experimentally determined one. From a theoretical point of view, however, it is highly
interesting to investigate nonphysical quark masses because then one probes both chiral
and deconfinement aspects of QCD. For three flavors (with mass-degenerate up and down
quarks, m, = mqg = myq) and at vanishing chemical potential, the nature of the QCD
transition at nonzero temperature as a function of the quark masses is depicted in the
so-called Columbia plot [250], which is sketched in Fig. 2.5. In the limit of infinitely
heavy quarks (upper right corner in both diagrams), we are dealing in fact with pure
YM theory, and the observed transition is the first-order deconfinement transition of an
SU(N. = 3)color gauge theory [251].%* Since the chiral transition is an analytic crossover
for physical masses, it follows that, as the quark masses decrease from infinity, there is a
second-order line that separates the first-order region from the crossover.

The transition of the chiral three-flavor theory (lower left corner in both diagrams) is
expected to be of first order [253]. However, the fate of the anomalously broken U(1)
symmetry is expected to affect the chiral SU(3) transition, resulting in two versions of
the Columbia plot. If U(1)a gets restored with temperature, the transition in the chiral
two-flavor theory (upper left corner in both diagrams) is conjectured to be of first order,

24 The underlying symmetry, called center symmetry, is the invariance of YM theory under transformations
associated with the center € = {Jl x e2®in/Ne - p =0, ... N, — 1} of SU(N¢)color [252]. A center
transformation is a usual gauge transformation A, — U [4, — (i/g) 3,]U 1, U € SU(N;)color» Where
U(1/T,x) = zU(0, x) with z € €. Center symmetry is realized (broken) at low (high) temperatures, and
the transition is of first order only for N, = 3 and 3 + 1 space-time dimensions.
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2.5 Phases of QCD

too [253], and both corners are connected as shown of the right diagram of Fig. 2.5.
On the other hand, if U(1)4 is broken at all temperatures, the transition of the chiral
two-flavor theory is conjectured to be of second order. This implies the existence of a
tricritical strange-quark mass mgm, yielding the situation as displayed in the left diagram
of Fig. 2.5.

Finally, we would like to note that it is currently not clear which situation is realized in
QCD. Furthermore, the relative size of the regions and the location of mgrit with respect to
the physical point are still open questions. Since we do not investigate the structure of the
Columbia plot in this work, we refer the reader to Ref. [79] for a more detailed discussion
and further references. However, in Chapter 5 we exploit the fact that one arrives at pure

YM theory for large enough quark masses.
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3 QCD’s phase diagram from quarks and gluons

With the theoretical basis provided by the preceding chapter, we now detail how the quark
and gluon DSEs are truncated, discuss their solutions, and finally compute the QCD phase
diagram using order parameters that are extracted from the propagators. Parts of these
results are published in Ref. [98].

To reiterate once more, the quark and gluon DSEs are a coupled set of nonlinear integral
equations that further depends on fully dressed vertices. For example, in order to solve
the quark DSE for the dressed quark propagator, one needs the dressed gluon propagator
and the dressed quark-gluon vertex; the gluon DSE is even more complex, see Fig. 2.3.
Thus, truncations are inevitable to get a closed system of equations that can be solved
numerically. We employ a well-studied truncation scheme that is detailed below. In
short: input from lattice calculations for the pure YM part of the gluon DSE is used,
unquenching effects are accounted for by explicit calculations of the quark-loop diagrams,
and both is accompanied by an ansatz for the quark-gluon vertex that is motivated by an
STI combined with perturbative considerations at large momenta. As a result, we have
access to the dressed quark and unquenched gluon propagators at arbitrary temperature
and chemical potential. This framework evolved from quenched calculations to Ny = 2,
N =2+ 1,and Ny = 2 4+ 1 + 1 quark flavors [241, 244, 254-261], including forays into
color-superconductive and inhomogeneous phases [242, 243, 246], bound-state calculations
[101, 262, 263], and other gauge groups [236, 264]. A comprehensive review can be found
in Ref. [79]. Even though our truncation and versions thereof are used in several theses
[102, 235, 265-270], we shall explain it in some detail to keep this work self-contained to
a reasonable degree. Thus, some overlap with these studies cannot be avoided.

3.1 Truncation scheme

The quark-gluon vertex
First, we specify our expression for the quark-gluon vertex, which appears both in the quark

DSE and in the quark loop of the gluon DSE. The quark-gluon vertex DSE as shown in
Fig. 3.1 depends on the quark and gluon propagators and on other vertices, too. Solving
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3 QCD’s phase diagram from quarks and gluons

+ /gk\ ) }&
Figure 3.1 DSE for the quark-gluon vertex. In this version, it is always an external quark leg that
is attached to the internal bare vertex. This stems from beginning with quark derivatives of the

master DSE (2.38) followed by the gluon derivative. A different equation is obtained for the reverse
order, which can be found, e.g., in Ref. [271].

it poses a rather challenging task because one has to keep in mind that changes of the
quark-gluon vertex feed back into the quark and gluon DSEs and vice versa. Thus, in
principle, the coupled system of the DSEs for the quark propagator, gluon propagator, and
quark-gluon vertex must be solved self-consistently.

The complexity of the quark-gluon vertex becomes evident by considering its structure
in Dirac space. In vacuum, we have one Lorentz index and the two independent quark
momenta ¢ (incoming) and p (outgoing). The incoming gluon momentum k is constrained
by momentum conservation, k = p — ¢, and is thus a linear combination of the quark
momenta. Therefore, the basis decomposition is in general given by

{@v. Pv.vv} ¥ {Ibirac. 4. P-4 p} - 3.1)

which results in twelve different tensor structures for the quark-gluon vertex, each accom-
panied with a dressing function that depends on g2, p2, and p - g. Note that the basis (3.1)
is not unique. For example, desired properties such as transversality with respect to the
gluon momentum or invariance under charge conjugation would yield a different basis
decomposition [272]. Vacuum results for (parts of) the vertex DSE can be found, e.g.,
in Refs. [271-278]; for corresponding FRG results, see Refs. [279, 280].%° At nonzero
temperature and density, the situation is even more complex due to the presence of the
heat-bath vector u, and the number of tensor structures increases to thirty-two because the

25 Lattice results for the quark-gluon vertex are rather scarce, and to our knowledge, continuum-extrapolated
results at physical pion masses are not available yet. For a recent study, see Ref. [281].
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3.1 Truncation scheme

basis now reads

{avs posvv v} X {Iivac ., po g Pt g P-4 o} - (3:2)

Solving (parts of) the in-medium quark-gluon vertex DSE is thus even more challenging
than in vacuum, and the available studies are still exploratory [268, 282]. A different
yet complementary approach that allows to compute parts of the in-medium quark-gluon
vertex is the recently proposed FRG-assisted difference-DSE method [248, 249], where
medium effects are introduced by means of an expansion around FRG vacuum results.

Instead of taking the vertex DSE explicitly into account, we follow a simpler approach
and employ an educated guess for the quark-gluon vertex. Our ansatz is based on an STI
combined with perturbative considerations in the ultraviolet. The STI in question that is
satisfied by the quark-gluon vertex is given by [103, 214]

ikvT{ (g, p) = G(*) [Hy (¢, p) S5 () — S5 (@) Hf (g, p)]. (3.3)

where G is the ghost dressing function, and H, H ¢ are related to the quark-ghost scattering
kernel, i.e., they contain a four-point correlation function. While the nonperturbative
behavior of the ghost is rather well-known both from functional methods and the lattice,
see, €.g., Refs. [90, 158, 160, 283-285], a comprehensive nonperturbative study of Hy
and H 18 not available yet.’® We thus resort to the Abelian version of Eq. (3.3), where
G =Hy =Hy =1,

ik,[/(q.p) = S7 ' (p) = S7 1 (q) . (3.4)

In vacuum, a “solution” of that Abelian STI, which is regular in the limit k — 0, is
provided by the Ball-Chiu vertex. It reads [287]

_ Ar(p?) + Ar(q?)
2

Ar(p?) — Ar(q?)

T2 (g, p)

v

(pv +av)(p +4)

2(p*—4q?) (3.5)
Br(p?) — Br(q?)
i(p2 — 612) (pv +qv)

-+ transverse terms,

where the transverse terms are transversal with respect to the gluon momentum, i.e., they
vanish upon contraction with k = p — ¢, and are therefore not constrained by the STI.

26 Recent results in that direction can be found, e. g., in Refs. [276, 286].
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3 QCD’s phase diagram from quarks and gluons

From Eq. (3.3), we can draw further information for our ansatz for the quark-gluon vertex.
The ghost dressing function is almost temperature independent on a large temperature
interval [256, 288-290], and the results of Refs. [276, 286] suggest that Hy and H ¢ are
infrared enhanced. Furthermore, the ultraviolet behavior is fixed by perturbation theory.
With this information in mind, we use the following model: the leading tensor structure
of the Ball-Chiu vertex construction (3.5) is supplemented with a phenomenological,
infrared-enhanced function I'(x) that accounts for missing non-Abelian contributions and
effects of all other tensor structures of the full vertex. Here, x is a squared momentum, and
its value depends on the location where the vertex is used. In terms of formulae, our ansatz
for the quark-gluon vertex in vacuum reads

1 Ar(p?) + As(g?
=T/(q, p)=Tx) P+ Ar( )yv, (3.6)
73 2

and its in-medium generalization is given by

%F{(q,p) =T'(x)

3

(5 Cr(p) + Cr(@)
4v f

3.7)

gy @+ A,«(q)) .

2

The phenomenological dressing function is the same in both cases and given by the
expression

d 1 oy 26
I(x) = dz-il-x n 1+A2/X( ;ﬁo log(1+x/A2)) , (3.8)
which is a sum of an infrared-dominant and an ultraviolet-dominant term. The scales
dy = 0.5GeV?, A% = 1.96 GeV? and the coupling org = g2/4m = 0.3 are fixed to match
the corresponding scales emerging from the lattice input that is used in our truncation of
the gluon DSE, which we discuss soon. This guarantees that the combination I'>Z / AJZ,
behaves like the running coupling in the ultraviolet, which is an important constraint for
any truncation of the quark DSE [271]. Furthermore, § = —9N. /(44 N, — 8 Ny) is the
anomalous dimension of the vertex and fo = (11 N. — 2 N¢) /3. The only free parameter
is thus the infrared strength d; that controls the amount of DCSB, and its determination is
discussed later.

The squared-momentum argument of I' is identified with the gluon momentum in the
quark self-energy, x = k2, while it is given by the sum of the two squared loop momenta
of the quarks in the quark loop of the gluon DSE, x = p? + ¢2. This is necessary to
maintain multiplicative renormalizability of the gluon DSE [291].
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3.1 Truncation scheme

This vertex ansatz was first introduced in Ref. [254] and successfully used in several
other studies; cf. the literature cited in the preamble of this chapter. From a systematic point
of view, however, our model is still a rather simple approximation of the full quark-gluon
vertex. Nevertheless, it has some important properties. First, it provides the correct
logarithmic running of the propagators with the correct anomalous dimension in agreement
with resummed perturbation theory in the ultraviolet. Second, it is sufficiently enhanced in
the infrared to trigger DCSB, where the amount is controlled by the phenomenological
parameter d. Third, it is temperature and chemical-potential dependent through the leading-
order term of the Ball-Chiu vertex, i.e., it contains at least some of these dependencies the
full vertex certainly has. Last, and most importantly, together with our truncation of the
gluon DSE that is further detailed below, it reproduces lattice result for the unquenched
gluon propagator and a chiral order parameter; see Ref. [79] for details.

On the other hand, our vertex suffers from two main insufficiencies. First, only the
leading tensor structure y,, is taken into account—only one (two) out of twelve (thirty-two)
tensor structures in vacuum (medium). Especially the scalar tensor structure (o< Ipjrac) iS
expected to play an important role for the correct pattern of chiral symmetry restoration at
high temperatures and/or chemical potentials. Second, related to that is the temperature
and chemical potential independence of the infrared strength d;. It should become smaller
at high temperatures and/or chemical potentials. This insufficiency is clearly visible in the
thermodynamic quantities computed in Chapters 4 and 5. A systematic improvement of
the vertex, however, is not the scope of this work and thus postponed to future studies.

The gluon DSE

An efficient truncation to deal with the complexity of the gluon DSE is to replace all
contributions without explicit quark content, i.e., all pure YM diagrams, by a fit to lattice
results for the quenched gluon propagator. The three-momentum dependence of the latter
for the zeroth Matsubara frequency, w; = 0, as obtained from the lattice calculations of
Refs. [256, 292] can be accurately described by [256]

e k2A2 bL, H(T)
Z9 (wp = 0,k2) = [( ¢ )

L, (k2 + A2)2 k2 4+ A2 aj, ||(T)
(3.9)
k? s Bo 2,42 4
— | ——log(1 + k</A
+ A2 ( 47 og( +k/ ))

with temperature-independent scales A2 = 1.96 GeV? and ¢ = 11.5GeV?, the coupling
as = 0.3, and the temperature-dependent fit parameters a | (7)) and b (7). Since
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3 QCD’s phase diagram from quarks and gluons

Eq. (3.9) represents the dressing functions of the quenched gluon, 8o = 11 N, /3 and the
anomalous dimension is given by y = —13/22, i.e., Nt = 0 in both quantities. The fit
of the parameters a | |(T) and b, | (T) to the lattice results of Ref. [292] was performed
in Ref. [235]. They were further fitted in temperature direction, including the vacuum
T = 0, using polynomials in order to have Eq. (3.9) available at arbitrary temperatures.
The results are (see Refs. [235, 256] for more details)

0.5950 + 1.10107%2 ift <1,

a1 (T)= (3.10)
—0.2965 + 0.8505t ift > 1,

0.5950 — 0.90257 4 0.400572 ifr < 1,

a(T) = (3.11)
—3.4835 + 3.61997 ifr>1,

1.3550 + 0.55487% ift <1,
by (T) = (3.12)
0.7103 + 0.42967 ift > 1,

1.3550 — 0.57417 + 0.32877¢2% ift < 1,

b||(T) = ) (3.13)
0.9319+0.11317 ift>1,

where t =T/ TCYM with the transition temperature TCYM = 277 MeV of SU(N. = 3)color
YM theory. The dressing functions for higher Matsubara frequencies are accessed via
Zjl_‘je” (wi, k?) = Zj]_t‘flz| (0, @ + k?), which is a good approximation because the gluon
fulfills O(4) invariance already for the zeroth Matsubara frequency rather well [256]. We
use the same approximation for the quark loop.

T @S Te = oo osllo e L+ Y
S

Figure 3.2 Coupled set of truncated DSEs for the quark and gluon propagators that is used in this
work. The white circle denotes our vertex ansatz, the white square is the quenched gluon propagator
from the lattice, and the flavor index f is made explicit. We use Ny = 2 4 1 quark flavors.
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3.1 Truncation scheme

With the quenched gluon propagator D\ (k) from the lattice in terms of the above
description, the DSE for the unquenched gluon propagator (2.47) takes the form

Dyt k) = [DE ()] ™! + Moo (k) . (3.14)

We keep the quenched lattice propagator fixed and add the quark loop: for a given quark,
the quark loop I, (k) is calculated explicitly, and the result is added to the quenched
gluon propagator to yield the unquenched gluon propagator. This approximation misses
implicit quark-loop effects in the pure YM self-energies. However, these are subleading in
a skeleton expansion compared to the quark-loop diagram. In vacuum, the impact of this
approximation on the gluon can be estimated within the framework of Ref. [291] and is
found to be below the five-percent level [293]. In other words, obtaining the unquenched
gluon by means of Eq. (3.14) is a rather good and well-justified approximation.

Final set of equations

Now, with our ansatz for the quark-gluon vertex and the description of the unquenched
gluon as detailed in the previous subsections, we finally arrive at a closed system of
truncated DSEs for the quark and gluon propagators, which allows us to calculate them at
(in principle) arbitrary temperature and chemical potential. To summarize, our final set of
equations reads

S (p) = Sy r(p) + Z5(p), (3.15)
Dyl (k) = [D¥s (k)] ™! + Mg (k) (3.16)

where the quark-gluon vertices appearing in the quark self-energy and in the quark loop are
given by our ansatz. The equations are shown diagrammatically in Fig. 3.2. The quark and
gluon DSEs are nontrivially coupled through the quark-loop diagram, i.e., the back reaction
of the quarks onto the YM section is explicitly taken into account. This establishes a
temperature and chemical-potential dependence of the gluon controlled by QCD dynamics
rather than modeling. Moreover, it allows for a consistent flavor dependence of all results,
and the gluon becomes sensitive to the chiral dynamics of the involved quarks.

Note that Egs. (3.15) and (3.16) still have to undergo the process of regularization and
renormalization. In particular, we have to remove the spurious quadratic divergence that
appears during the numerical evaluation of the quark loop. However, in order to keep this
chapter concise, we relegate these technical processes to Appendix D. There, we collect
the actual explicit expressions that are used in our calculations, detail the regularization
and renormalization procedure, and discuss numerical aspects how our set of truncated
DSEs is solved in practice.
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3 QCD’s phase diagram from quarks and gluons

Parameter fixing

Last, we have to fix our parameters, which are the infrared strength of the vertex d; and
the quark masses. We use Ny = 2 + 1 quark flavors: the light up and down quarks are
mass degenerate, m, = mq = My, i.e., we work in the isospin-symmetric limit, and
the strange quark is heavier, mg > m, 4.>’ The mass of the strange quark, however, is
not independent but obtained via the mass ratio ms/m, 4 = 25.7, which is a result of
demanding physical pion and kaon masses in the course of a bound-state calculation
using a bound-state-optimized version of our truncation scheme [102] as well as using
our truncation scheme within the framework of Ref. [294]. In order to fix d; and m, g4,
we compute the subtracted (up-strange) quark condensate A, s [Eq. (2.69)] at vanishing
chemical potential as a function of temperature. We observe that

(i) varying the infrared strength of our vertex ansatz results mainly in a change of the
inflection point of the subtracted condensate—smaller (larger) values of d; yield a
smaller (larger) inflection point;

(ii) my,q dominantly controls the high-temperature behavior of A, s, while it only mildly
affects the location of the inflection point.

Since we define the pseudocritical chiral transition temperature 7. by the inflection point
of the subtracted quark condensate with respect to the temperature, see Eq. (2.70), we
adapt d; and m, 4 such that 7; as found on the lattice is reproduced [54, 55, 295] while
at the same time A, matches corresponding lattice data at high temperatures. The
best result is obtained for d; = 8.49GeV? together with my,d($) = 0.8MeV (thus,
ms(¢) = 20.56 MeV) at our renormalization point { = 80 GeV. These seemingly rather
small quark masses are a result of our choice of a large renormalization point deep in
the perturbative ultraviolet. Note that our value of d; differs from the one reported in
Ref. [244] because we employ a Pauli—Villars regulator rather than a hard ultraviolet cutoff
for the regularization of the quark self-energy (see Appendix D for details). Phrased
differently, d; carries an implicit dependence on the employed regularization scheme. We
emphasize that these modifications are purely technical in nature, and all previous results,
in particular those presented in Refs. [241, 244, 261], remain fully valid.

In Fig. 3.3, we show the vacuum-normalized subtracted quark condensate as a function
of temperature at vanishing chemical potential with these parameters (black, solid line)
together with continuum-extrapolated lattice data from Ref. [54] (red squares). First, the
crossover nature of the chiral transition is clearly visible. The confined, chirally-broken
hadronic phase at low temperatures is connected to the deconfined, (partially) chirally-
symmetric quark-gluon plasma phase at high temperatures via an analytic crossover rather

27 Charm-quark effects (N; = 2 + 1 + 1) are qualitatively negligible [244] and thus not considered here.
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Figure 3.3 Vacuum-normalized subtracted quark condensate as a function of temperature at
vanishing chemical potential compared to the continuum-extrapolated lattice results of Ref. [54].

than a true phase transition. Second, we find a pseudocritical chiral transition temperature
at vanishing chemical potential of

T. = (156 &+ 1) MeV (3.17)

that agrees, by construction, with the lattice result. The given error is purely numerical. A
nontrivial result, however, is the almost perfect match of the steepness of the transition,
which is an outcome of our calculation. Another nontrivial result is the agreement of
the unquenched two-flavor gluon propagator at nonzero temperature [241] with lattice
results [296] as discussed and summarized in Ref. [79]. In combination with the nontrivial
quantitative agreement with lattice results for the subtracted quark condensate, we conclude
that our truncation is well-suited to describe QCD at nonzero temperature. The same is
true, albeit within some limitations, for nonzero chemical potential, too.

Finally, we comment on our choice of the chemical potentials. Even though we use
mass-degenerate light quarks, we have in principle three different quark chemical potentials:
Uu, Ud, and ps. Usually, it is more customary to use the phenomenologically-motivated
chemical potentials for baryon number, electric charge, and strangeness g, (g, and s,
respectively. The connection between these two sets of chemical potentials is given by

1 +2 1 1
My = ZUB T 7 1Q, Md = ZMUB — 7 HQ»
3 3 3 3
(3.18)
1 1
Ms—3MB 3MQ HUs -
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3 QCD’s phase diagram from quarks and gluons

From these relations, we find up = py + 24, HQ = fu — Md, and us = (g — Us. In
principle, the chemical potentials should be adjusted to match the conditions met in a
heavy-ion collision. First, from strangeness conservation follows that the strangeness
density ng has to vanish. Second, in Au-Au and Pb-Pb collisions, the baryon number and
charge densities nq and ng, respectively, are related by ng ~ 0.4ng [97]. In practice,
uB is treated as a free parameter, while puq and us depend appropriately on g such that
these conditions are satisfied. For temperatures around 150 MeV, the leading-order result
from lattice QCD is g ~ —0.02up while us ~ 0.2up [297, 298]. Thus, to a good
approximation we choose (y, = jtqg = u,q. Furthermore, it was checked within our DSE
framework that values for the strange-quark chemical potential g € [0, (ty 4] hardly affects
the location of the CEP [268]. Therefore, we choose s = 0, which is the naive way to
enforce strangeness neutrality. If not stated otherwise, by referring generically to “chemical
potential” we always mean baryon chemical potential, which is given by up = 3ty 4.2

3.2 Quark and gluon propagators in medium

Before we discuss our result for the QCD phase diagram, we present exemplary results for
the quark and gluon propagators. In the upper left and upper right diagram of Fig. 3.4, we
show the momentum dependence of the up-quark dressing functions C, and Ay, in the
lower left diagram the renormalization-point independent mass function M, = B, /A,
and in the lower right diagram the relative difference between C, and A, at vanishing
chemical potential for different temperatures. In order to include the vacuum results (dark
gray, solid lines), we plot against the squared four-momentum p? = a)g + p?, which
results in a different starting point for each curve. Furthermore, we show only the zeroth
Matsubara frequency of the nonzero-temperature results. First of all, the functions show
no temperature dependence for p2 > 40 GeV?2, which illustrates that the medium affects
only the infrared because the relevant scale at low momenta is set by the temperature
(and, if nonzero, by the chemical potential). This changes as soon as the momentum is
(much) larger than the scales set by medium effects, resulting in a degeneracy with the
vacuum solution in the ultraviolet. There, the dressing functions tend to their perturbative
expressions. Furthermore, the wave function Z, = 1/A, is close to one, indicating that the
quark is noncomposite in the sense that nonperturbative effects are minute and it behaves
like a current quark. This is also reflected in the mass function, which is of the order of
the current quark mass. On the other hand in the infrared, the dressing functions differ
significantly from their perturbative values. Looking first at the vacuum results, the dressing
functions C, and A, are degenerate, and the wave function deviates (strongly) from one at

28 We use this terminology already since the beginning of this chapter.
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Figure 3.4 Up-quark dressing functions C, and A, (upper left and upper right, respectively),
mass function M, = B, /A, (lower left), and relative difference between C, and A, (lower right)
at vanishing chemical potential for different temperatures. We show only the zeroth Matsubara
frequency of the T > 0 results and plot against the squared four-momentum.

infrared momenta, e.g., Z,(p? — 0) ~ 0.73. Physically, this can be interpreted as the
current quark being surrounded by a cloud of gluons and therefore behaving effectively like
a constituent quark. This manifests in the mass function, too. The quark rapidly acquires
a huge amount of mass that is of the order of a typical constituent quark mass—we see
DCSB at work, one of the most prominent nonperturbative features of QCD, which is
responsible for the bulk of the mass of visible matter. At nonzero temperature, C,, and
Ay are different, but for low temperatures (blue, dashed and red, dashed-dotted lines),
we observe a convergence toward the vacuum solution. The mass function tends toward
its vacuum version, too, as the temperature decreases, and we note that its temperature
dependence is very mild for 77 < 100 MeV and becomes increasingly noticeable for larger
temperatures. The larger the temperature, the smaller the overall magnitude of M, in the
infrared with the most rapid change in the region 0.87. < 7T < 1.27T, i.e, around the
pseudocritical chiral transition temperature. This is nothing but the continuous (partial)
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Figure 3.5 Real and imaginary parts of the up-quark dressing functions C, (upper row) and B
(lower row) at T = 145 MeV for different chemical potentials. We show only the zeroth Matsubara
frequency and plot against the squared three-momentum.

restoration of chiral symmetry at high temperatures as already seen in Fig. 3.3. Regarding
C, and A,, the former first decreases and then experiences a steep rise across the crossover
transition, while the latter is generally less temperature dependent than the former. From
the relative difference between the two functions, we first see again that the medium only
affects the infrared behavior of the quark, and second that Cy, and A, differ even at low
temperatures already on a five-percent level at infrared momenta. At high temperatures,
i.e., above T¢, the difference grows to around ten percent.

In Fig. 3.5, we show the momentum dependence of the real and (negative) imaginary
parts of the temporal dressing function C, (upper row) and the scalar dressing function
B, (lower row) at T = 145 MeV for different chemical potentials. The real part of C,
increases with increasing chemical potential, though rather mildly, while its imaginary
part reacts more strongly as pp increases but on a smaller magnitude compared to the
real part. Ay, which is not shown, behaves similarly but with the difference that the real
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Figure 3.6 Unquenched gluon dressing functions Z 1 and Z (left and right diagram, respectively)
at vanishing chemical potential for different temperatures In addition, we show our quenched fits to
lattice data [Eq. (3.9)] in light gray. We show only the zeroth Matsubara frequency of the T > 0
results and plot against the squared four-momentum.

part decreases with increasing chemical potential. From the real part of B, follows that
increasing chemical potential leads, just as increasing temperature, to a (partial) restoration
of chiral symmetry. Since the medium affects only the infrared, the imaginary parts of
the dressing functions have to vanish in the ultraviolet. This is indeed true for 4, and
B, and in particular for C,,. The latter is known for developing a bump in the ultraviolet,
which is caused if a regularization scheme is used that violates translational invariance,
e.g., a sharp ultraviolet cutoff [268, 269]. Particularly, the correct ultraviolet-vanishing
behavior of the imaginary part of C, is vital for the calculation of quark and baryon number
fluctuations—the topic we are concerned with in the upcoming chapter. Thus, we use a
Pauli—Villars regulator (see Appendix D for details) that is well-suited to get the correct
ultraviolet behavior of the imaginary part of C,, which is apparent from the upper right
diagram of Fig. 3.5.

Last, we discuss the unquenched in-medium gluon propagator. In Fig. 3.6, we display the
magnetic and electric gluon dressing functions at vanishing chemical potential for different
temperatures. Again, we show only the zeroth Matsubara frequency of the T > 0 results
and plot against the squared four-momentum. In addition, we show the fits to quenched
lattice data [Eq. (3.9)] in light gray for comparison at three temperatures. First, we observe
large unquenching effects both in the magnetic and electric part of the gluon. Unquenching
the gluon, i.e., taking the quark loop explicitly into account, leads to a significant reduction
of the bump in the nonperturbative momentum region as well as to a shift of the maximum
to slightly larger momenta. Furthermore, the quark-loop effects invert the temperature
dependence of the electric dressing function: Z ﬁlue generally increases with increasing
temperature, whereas the unquenched dressing function Z decreases as T decreases.
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Figure 3.7 Left: projected vacuum quark loop together with the in-medium (7 = 145MeV,
up = 0) magnetic (L) and electric (]|) quark loops. Right: electric quark loop at vanishing
chemical potential for different temperatures. The vacuum quark loop is shown for reference.

Second, the magnetic dressing function shows a much weaker temperature dependence than
the electric one. In particular, the electric gluon dressing function reacts much more to the
chiral dynamics of the quark compared to the magnetic dressing function, which manifests
in a significant reduction of Z) at infrared momenta k? < 1GeV? for temperatures around
and above T¢. This suggests that the often employed approximation of an O(4)-symmetric
in-medium gluon, i.e., Z) = Z, should be avoided if possible.

One reason for the different behavior of the magnetic and electric gluon dressing
functions is that the latter develops a thermal screening mass that stems from the quark
loop and is the dominant thermal effect induced by the unquenching. The projected
in-medium quark loops IT, | (again, see Appendix D for explicit expressions) behave
like T (k) = (m ||)2 /k? as k? — 0, where m | and m | are the magnetic and electric
thermal screening masses, respectively. Both appear only at nonzero temperature and/or
chemical potential and are dynamically generated, i.e., they do not spoil gauge invariance.
Naturally, m || = m (T, uB), and they react strongly as temperature and/or chemical
potential is increased. The appearance of such a thermal screening mass is illustrated in
the left diagram of Fig. 3.7, where we display the projected vacuum quark loop (dark gray,
solid line) together with the magnetic and electric in-medium quark loops at 7 = 145 MeV
and vanishing chemical potential. On the one hand, the magnetic quark loop (blue, dashed
line) does not develop a thermal mass because 7 is only nonzero if the global gauge
symmetry is broken like in color-superconducting phases. In the region of the pg-7" plane
that is covered in this work, m; = O for all 7" and ug. As a result, the magnetic quark
loop is similar to the vacuum one and deviates from the vacuum quark loop even at high
temperatures and/or chemical potentials only by a few percent. On the other hand, the
electric quark loop (red, dashed-dotted line) indeed develops a thermal screening mass,
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Figure 3.8 Relative difference between the electric gluon dressing function at nonzero and zero
chemical potential at 7 = 25 MeV (left) and T = 145 MeV (right).

and the behavior IT)(k) = (m||)2/k2 with m| # 0 as k% — 0 is clearly visible (dark
gray, dotted line). Here, at T = 145MeV and vanishing chemical potential, we find
m| ~ 383MeV. In general, the higher the temperature and/or chemical potential the
higher the electric screening mass, which is shown in the right diagram of Fig. 3.7. Again,
as for the quark propagator, the medium affects only the infrared behavior of the gluon.

Regarding the chemical-potential dependence of the gluon, which is induced by the
chemical-potential dependent quark loops, in Fig. 3.8 we display the relative difference
between the electric gluon dressing function at nonzero and zero chemical potential at
T = 25MeV (left diagram) and T = 145 MeV (right diagram). As expected, increasing
chemical potential affects only the infrared dynamics. At T = 25 MeV, which is rather
small and close to the vacuum, the deviation of Z from its g = 0 counterpart stays below
five percent for up < 400 MeV. At higher temperatures, however, this approximation
becomes quickly a poor one, which is apparent from the right diagram of Fig. 3.8. At
T = 145MeV and ug = 360 MeV (purple, dotted line), i.e., in the midst of the QCD phase
diagram, the gluon differs by almost 30% from its vanishing-chemical-potential version.
The same holds for low temperatures but very large chemical potentials ug = @ (1 GeV),
i.e., around the nuclear liquid-gas transition.

3.3 Phase structure of QCD

After having spent some time with the propagators, we now discuss our results for the phase
structure of QCD. As already mentioned, we use Ny = 2 4+ 1 dynamical quark flavors. In
Fig. 3.9, we show the vacuum-normalized subtracted quark condensate as a function of
temperature for different chemical potentials. In the left diagram, starting from vanishing
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Figure 3.9 Vacuum-normalized subtracted quark condensate as a function of temperature for
different chemical potentials in the crossover (left) and first-order region (right).

chemical potential (dark gray, solid line), the inflection point of the condensate and thus
T shifts to lower temperatures as up increases. At intermediate values of the chemical
potential, the crossover remains rather broad (blue, dashed and red, dashed-dotted lines).
If we increase ug further, the transition becomes steeper (green, dashed-double-dotted
line) and culminates at g = 495 MeV in a condensate with an infinite slope at a specific
temperature (purple, dotted line), which signals that the transition is not a crossover
anymore but of second order. This is precisely the location of the CEP.

At chemical potentials ug > 495 MeV, the temperature dependence of the subtracted
quark condensate is discontinuous. In particular, by tracking the chirally-broken Nambu
solution from low to high temperatures and the chirally-symmetric Wigner solutions down
from high to low temperatures until they do not exist anymore, i.e., until they are not an
attractive fixed point of the quark DSE anymore, we find a region where both solutions
coexist. This coexistence region is typical for a first-order phase transition and bounded by
spinodals. The upper (lower) spinodal is the one above (below) which the Nambu (Wigner)
solution disappears. This is displayed in the right diagram of Fig. 3.9 for a chemical
potential of ug = 600 MeV. The actual (physical) first-order transition lies within the
coexistence region and has to be determined based on thermodynamics: the physically
realized solution maximizes the pressure, and the transition line is thus given by the line of
equal pressure of the Nambu and Wigner phase. We come back to this issue in Chapter 5.

By monitoring the behavior of the subtracted quark condensate across the -7 plane,
we can draw the phase diagram of QCD, and our result is shown in Fig. 3.10. The chiral
crossover line (black dashed) becomes steeper with increasing chemical potential and
terminates in a second-order CEP (black dot) at

(1P, Tepp) = (495 £2,119 £ 2) MeV (3.19)
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Figure 3.10 Our result for the QCD phase diagram with Ny = 2 + 1 quark flavors compared to
freeze-out points from heavy-ion collisions extracted by different groups/methods [303-308]. In
addition, we show the crossover from the lattice [299] (blue band); see also Refs. [300, 301].

followed by the coexistence region (shaded gray area) of a first-order phase transition
bounded by spinodals (black, solid lines). Furthermore, we show the line of chemical
potential to temperature ratio ug /7 = 3 (gray, dotted line), which emphasizes that our
CEP is located at rather large chemical potential, MEEP / Tcep ~ 4.2. Again, the error in
Eq. (3.19) is purely numerical. We also show results for the crossover line obtained from
lattice-QCD calculations (blue band) [299]; see also Refs. [300, 301]. This band features
a very small error at small chemical potential that rapidly increases as pp increases. At
us/T = 3, the error becomes so large that further extrapolation becomes meaningless.
However, combined evidence of different methods on the lattice suggest that no CEP exists
for ug /T < 2-2.5[299, 302] in agreement with our result.

In addition, we show results for freeze-out points extracted from heavy-ion collisions by
different groups/methods [303-308]. In the crossover region at small chemical potential,
the different freeze-out results spread by almost twenty MeV in temperature direction
around the pseudocritical chiral transition temperature. While in the presence of a proper
(first-order) phase transition one would expect the freeze-out to occur at temperatures
below the critical one, this notion is hard to formulate in the crossover region of the phase
diagram, where no unique definition of 7; exists. At large chemical potential, however,
where we find a first-order phase transition and a mismatch of the temperature ordering of
some freeze-out points, we have to expect either corrections to some of the experimental
freeze-out data or to the DSE result in order to get a proper ordering of the freeze-out
points with respect to our first-order region at large ug.
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3 QCD’s phase diagram from quarks and gluons

Another characteristic of the crossover line is its curvature. At small chemical potential,
the crossover line 7, () normalized to its g = 0 value 7. = 7,(0) can be parameterized
by an expansion in the dimensionless ratio of chemical potential to the pseudocritical chiral
transition temperature at vanishing chemical potential, i.e.,

Te(us) 1B \> me\*
1o (EB) k(BB L 3.20
T. K2 T. K4 T. + (3.20)

where «; is the curvature. We fit this expression to our crossover line shown in Fig. 3.10
(black, dashed line) for 0 < ug < 240 MeV and find

ko = 0.0238 £ 0.0010,

(3.21)
k4 = 0.0008 =+ 0.0005 .

The error contains the numerical error from the fit and a conservative estimate from varying
the upper bound of the fit interval. Recent lattice calculations, however, yield a curvature
in the range 0.0120 < 2 < 0.0153 [299-301, 309]. Thus, our result is approximately a
factor of two too large compared to the lattice results.

Intimately related to the mismatch of freeze-out points in the first-order region and a too
large curvature of the crossover line is the important question of the systematic error that is
accompanied with our truncation. The systematic error of the CEP location is particularly
important. To this end, we need to compare systematically with other/different truncations
such as the recent FRG calculation of Ref. [247] and the FRG-assisted difference-DSE
framework put forward in Refs. [248, 249]. This comprehensive comparison—which is
necessary to arrive, in the long term, at a common quantitative statement from functional
methods regarding the location of the CEP—is currently ongoing and results will be
discussed elsewhere in the future. Nevertheless, in Fig. 3.11 we show our result for the
crossover line and CEP (black, dashed line and black circle) in comparison with recent
results from other functional studies: the FRG-assisted difference-DSE method, where
parts of the quark-gluon vertex are calculated explicitly (blue, dashed-dotted line and blue
square) [249]; the same approach but with a quark-gluon vertex constructed based on its
STI (red, dashed-double-dotted line and red square) [248]; the FRG approach to QCD
as presented in Ref. [247] (green, dotted line and green triangle). First, we notice that
the CEPs cluster in the region 490 MeV < up < 680MeV and 90MeV < T < 120MeV,
which hints that sufficiently sophisticated truncations within the functional frameworks of
DSEs and the FRG seem to favor this region regarding the location of the CEP.?” Second,

29 Simpler DSE truncations without backcoupling to the YM sector and with a model gluon propagator, see,
e.g., Refs. [240, 245, 310], typically find a CEP in a region that is excluded by the lattice. Thus, these
truncations should be used nowadays for phase-diagram calculations only for exemplary purposes.
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Figure 3.11 QCD phase diagram from functional methods: this work, FRG-assisted difference-
DSEs with parts of the quark-gluon vertex calculated explicitly (FRG-assisted 1) [249], same but
with an STI-based construction of the vertex (FRG-assisted 2) [248], and the FRG approach to
QCD [247]. The crossover transitions and CEPs are indicated by lines and symbols, respectively.

compared to our result, the other studies feature a CEP at higher chemical potentials
and slightly lower temperatures together with a smaller curvature of the crossover line.
As already mentioned and discussed elsewhere [79], our unquenched gluon propagator
agrees satisfactorily with lattice results. The same is true for the FRG calculation and the
FRG-assisted difference-DSE method (at least in vacuum). One major difference between
these studies and this work is that they use a different quark-gluon vertex: they take
more tensor structures into account, which is undoubtedly an advantage compared to our
truncation. However, both Ref. [247] and Refs. [248, 249] use an O(4) symmetric gluon,
Z = Z, . Furthermore, Refs. [248, 249] use the O(4) approximation C, = A, in the
vertex. Both are, based on our results, rather severe approximations; see Section 3.2. Other
approximations of the FRG study and the FRG-assisted DSE approach are, for example,
that only vacuum tensor structures are used for the quark-gluon vertex, strange-quark
dynamics are not fully taken into account and approximated by light quarks, and imaginary
parts of FRG flows due to nonzero chemical potential are discarded. The effect of these
and other approximations on the location of the obtained CEPs are not yet clear. Generally
speaking, there are approximations that are used in Refs. [247-249] but not in this work
and vice versa. The extensive and nontrivial investigation of their impact is currently
ongoing and subject to future work.

In the following closing remarks of this chapter, we briefly discuss how our truncation
of the quark-gluon vertex can be improved. First, the most obvious extension of our
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3 QCD’s phase diagram from quarks and gluons

current setup is to take more tensor structures of the quark-gluon vertex into account.
Especially the scalar tensor structure is expected to be important for a correct pattern of
chiral symmetry restoration as temperature and/or chemical potential increases. Second,
meson contributions to the quark-gluon vertex—made explicit via a skeleton expansion of
the diagrams in the vertex DSE—might be important. The exploratory results of Ref. [263]
(see also Ref. [102]) indicate that meson contributions decrease the curvature but have
no significant impact on the location of the CEP. Taking these results at face value, pion
and sigma-meson contributions affect the location of the CEP on the 5-10% level. Third,
baryon effects might play a vital role, especially at high chemical potential. The exploratory
study of Ref. [261] indicates that baryon contributions have the potential to shift the CEP
to larger temperatures and/or chemical potential. These points should be kept in mind if
one aims at a systematic improvement of our truncation of the quark-gluon vertex.

3.4 Summary

In this first nonintroductory chapter, we presented our truncation scheme for the quark and
gluon propagators of (2 + 1)-flavor QCD in Landau gauge, which parameters have been
fixed to yield 7T.(pup = 0) as obtained on the lattice. In agreement with previous works,
we found quantitative agreement with lattice results for the temperature dependence of
the subtracted quark condensate, which is a nontrivial outcome of our calculation because
we fixed only T.(uug = 0) but not the steepness of the chiral crossover. Furthermore,
we showed the behavior of the quark and gluon dressing functions for various 7" and ug.
In particular, the use of a Pauli—Villars regulator cured the erroneous large-momentum
behavior of the imaginary part of the temporal quark dressing function Cr, which was
found in earlier studies. The obtained phase diagram features a second-order CEP at
(,u(BjEP, TCEP) ~ (495, 119) MeV, and the overall changes compared to previous works
due to the modified regularization scheme and a slightly lighter strange quark are very
small and purely technical in nature. Finally, we compared our result with the recent
phase-diagram calculations of Refs. [247-249]. However, an in-depth comparison of
the employed approximations is necessary in order to make reliable statements of the
systematic error of the CEP locations. This is a topic for work that will be presented
elsewhere in the future.
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4 Quark and baryon number fluctuations

In the previous chapter, we presented our result for the QCD phase diagram: we found
a crossover transition at small chemical potential that terminates in a second-order CEP
at large chemical potential, u$¥°/ Tcpp ~ 4.2. The currently operating Beam Energy
Scan program at RHIC as well as the future Compressed Baryonic Matter experiment at
FAIR together with NICA at the Joint Institute for Nuclear Research are dedicated to the
experimental exploration of the QCD phase diagram [45—-49]. The emphasis is on proving
the very existence and subsequently locating the (putative) CEP. Therefore, in order to put
the theoretical results to the test, observables were identified that are able to deliver signals
of the CEP in experiments. Provided the freeze-out in heavy-ion collisions is sufficiently
close to the phase boundary and CEP, fluctuations of the conserved charges baryon number,
strangeness, and electric charge are promising candidates and expected to provide this
information [311-318]. Various ratios of cumulants of these conserved charges can be
extracted from heavy-ion collision experiments in event-by-event analyses and compared
to corresponding ratios obtained in theoretical calculations; see Refs. [47, 97, 319, 320] for
extensive review articles.

Results for fluctuations from lattice QCD are available at vanishing and small chemical
potential [298, 321-324] but need to be extended toward higher chemical potential.
Unfortunately, the notorious sign problem poses a severe obstacle. Within the hadron
resonance gas approach and refined effective models, a plethora of results on fluctuations of
conserved charges have been obtained, see, e.g., Refs. [325-335] for selected works. Studies
of fluctuations using DSEs, however, are rather scarce and available only within simple
truncations with a model gluon propagator and thus no backcoupling effects [336-339].

In this chapter, we outline how the quark number density—our starting point for the
fluctuations—is obtained from the dressed quark propagator and furthermore regularized
because it develops a spurious divergence in the course of its numerical evaluation. Then,
we compute quark and baryon number fluctuations and ratios thereof, improving thereby
the previous results of Refs. [336-339], where no backcoupling of quarks onto the gluon
was taken into account. In particular, we discuss the skewness and kurtosis ratios and
compare with recent experimental data from the STAR collaboration [95, 96] taken during
the first RHIC Beam Energy Scan. The results of this chapter are published in Ref. [98].
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4 Quark and baryon number fluctuations

4.1 General formulae

In three-flavor QCD (not in the isospin-symmetric limit), there is a conserved charge for
each quark flavor controlled by the three quark chemical potentials (y, (4, and ps. The
quantities we aim to study are fluctuations of these conserved charges, i.e., higher-order
derivatives of the thermodynamic potential

T
Q= _Vlog Z(T, fhy, prd, [s) 1)

with respect to the quark chemical potentials,

uds 1 ai-i—j-i—kQ “42)
ijk T4—(l+]+k) a/»Lfl au/é aMéc

with i, j,k € Ng. Here, V is the volume of the system and Z the grand-canonical partition
function, i.e., the generating functional (2.14) for vanishing sources with the in-medium
action (2.56). The prefactor serves as a normalization in order to render the fluctuations
dimensionless. As mentioned in the previous chapter, the quark chemical potentials are
related to the ones for baryon number (B), strangeness (S), and electric charge (Q) via

1 +2 1 1
Mu—3MB 3MQ, Md—3MB 3MQ’
(4.3)
1 1
Hs =3 KB~ 3HQ— Ms.

With these relations and using the chain rule of differentiation, we find for example the
second-order baryon number fluctuation

B 1 9°Q
=
T2 9u?

a (4.4)

= é [ + 15+ 06 + 20037 + 145 + 419)]

in terms of quark number fluctuations. Other fluctuations can be determined analogously.
In general, fluctuations and ratios thereof are sensitive to phase transitions [311-318] and
are therefore well-suited to explore the phase structure of QCD. At the CEP, the correlation
length of the system diverges (at least in infinite volume), .o, — 00, and XE o £8, with
an exponent ¢ > 0. Thus, the proximity of the CEP is expected to leave clear imprints
on the qualitative behavior of the fluctuations. In this work, we consider baryon number

fluctuations up to fourth order and leave other fluctuations to future work.
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In heavy-ion-collision experiments, the fluctuations manifest themselves as event-by-
event fluctuations of the net-baryon number, the net-charge, or the net-strangeness. The
cumulants C,f( of the corresponding probability distribution of the conserved charge
X € {B, Q, S} are related to statistical quantities through [97]

My = C{¥, 0z = CX, (4.5)
Sx =¥ () k=0 ()7 (4.6)

where My, 0}%, Sx, and ky denote the mean, variance, skewness, and kurtosis of the
distribution, respectively. On the other hand, the cumulants are related to the fluctuations
via C,;X =Vr3 X;)f . Thus, the explicit volume dependence cancels in ratios, and prominent
ratios related to the baryon number are

B B B
X1 My X3 X4 2

—_— = —, —_— = SB UB s - = KBUB ) (47)
s o x5 x5

and analogous expressions hold for charge and strangeness. These relations bridge the gap
between theoretical results on the left-hand sides and experimentally accessible quantities
on the right-hand sides. Again, see Refs. [47, 97, 320] for more details. Note that in
experiment, fluctuations of the net-proton and net-kaon number are measured that serve as
proxies for the theoretically calculated baryon number and strangeness fluctuations.

After having discussed some general aspects of fluctuations, we are now left with finding
a formula that is suitable for our functional approach to compute quark and subsequently
baryon number fluctuations, see Eq. (4.4). To this end, we resort to the 2PI formalism. The
thermodynamic potential can be written as a functional of the propagators of the theory
and is given by [207] (see also Ref. [340] for an overview) 30

14
—7 Q[S, D] = Trlog S™' —Tr[1 - Sy'S]
1 1
—3 Trlog D™1 + > Tr[1— DO_ID] (4.8)

+ Eint[S’ D] ’

where S and D denote the dressed quark and gluon propagators, respectively, with all
degrees of freedom®!, So 1 and Dy ! are their bare counterparts, and the interaction
functional Ej,; contains all 2PI diagrams with respect to S and D, where all internal lines

30 The ghost, which we omit for brevity, would appear as another fermionic contribution in Eq. (4.8).
31" Flavor, color, Dirac, and momentum degrees of freedom for S'; color, Lorentz, and momentum ones for D.
Thus, the traces in Eq. (4.8) have to be understood in the functional sense over all these spaces.
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4 Quark and baryon number fluctuations

are given by dressed propagators. The right-hand side of Eq. (4.8) is the exact expression
for the 2PI effective action I';p; [207] but evaluated at the stationary point. This is vital for
the equality of the 2PI effective action with the thermodynamic potential (up to a sign and
a four-dimensional volume factor) that holds only at the stationary point. Inserting the
explicit expression for I'ypy into the stationary conditions

3L 2pr 3L 2pr
=0, =0 4.9
3S 8D (4.9)

yields the equations of motions for the propagators. These are—not unexpected—the
DSE:s but this time derived from the 2PI effective action: >’

St=5"1+%,
(4.10)
D' =Dyl + 10,
where the quark and gluon self-energies X and IT, respectively, are given by
8 o) int 8 & int
= , n=-2 . 4.11
3S 8D 1D

Diagrammatically, the self-energies are thus obtained from the 2PI diagrams that constitute
Eint by cutting one internal line.

Therefore, evaluating Eq. (4.8) at the stationary point means nothing but that the
propagators have to obey their equations of motion, i.e., are solutions of the corresponding
DSEs. Note that the relations given above allow for an alternative way of deriving DSEs.
Furthermore, even a theory itself can, in principle, be defined solely by a given 2PI effective
action, i.e., without referring to a path integral or Lagrangian in the first place. In general,
there are also contributions from one-point functions, i.e., from the macroscopic fields
®; [Eq. (2.27)], to the 2PI effective action, which, however, vanish at the stationary point.
The corresponding stationary conditions 8'2p; / 8®; = 0 imply vanishing external sources,
J = 0. In this case, the macroscopic quark fields vanish, (y)(/=9 = (y)(/=0 = q,
due to their Grassmann nature. Furthermore, (A M)(J =0) = 0, too, because otherwise
Euclidean invariance would be broken.

With an explicit expression of the thermodynamic potential in terms of the propagators,
Eq. (4.8), i.e., well-suited for our DSE framework, we can now find a formula for the quark
number density. For a flavor f, it is generally given by

082

_ 0% (4.12)
s

ng =

32 In the derivation of Eqs. (4.10) and (4.11), we used 8 (Trlog A) /84 = A~ and 8 (Tr AB) /8A = B.
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The s derivative splits into an explicit and an implicit part, where the latter accounts for
the chemical-potential dependence of the propagators because Q2 = Q[S, D], viz.,

IQ  IQ
B/Lf a,uf

8Q S  8§Q aD

—— . (4.13)
S, D=const. 8S a“f 8D 8Il’Lf

Now, the stationary conditions come in handy: the last two terms in Eq. (4.13) do not
contribute to the quark number density because 82 /8S = 82 /8D = 0. The same holds,
of course, for the ghost contribution, too, which we do not write explicitly. We thus find

Q2
ne=——
s a/’Lf S, D= const.
(4.14)
_r Tr[as"_1 S} 4 2Bim .
4 a/’Lf 8/’Lf S, D=const.

At this point, one might think that we are stuck because to our knowledge there is no
closed, explicit expression of Ej, available for our truncation scheme. However, the only
chemical potential-dependent quantities in the interaction functional are the propagators
because there are—by definition—no dressed vertices involved in the 2PI formalism. All
vertices appearing in the diagrams of Ejy, in particular the quark-gluon vertex that would
be (strongly) chemical-potential dependent in its dressed form, are bare. Thus, with all
propagators held fixed, the chemical-potential derivative of the interaction functional
vanishes, aaim/auf}&D:mm =0.

Therefore, with 95, Em F = —Z{ y4 and after carrying out the traces in flavor, color,
and momentum space, we eventually find

ng=-NZJT ) ][ Tr[y4 Sy (q)] . (4.15)
tyez V4

where the remaining trace has to be evaluated in Dirac space. This last trace is straightfor-
ward to compute and yields the final formula

+ips)C
ng=4iNzZIT 3 ][ _ g PGy,
ez 71 (@ Hip)*Crlq) + 42 A% (q) + By (q)

As a side remark, the quark number density can also be written as an expectation value,
ng = (¥ FYayy) (=0 "and its gauge invariance is guaranteed by the Landau—Khalatnikov—
Fradkin transformations [341, 342]. Finally, we emphasize that Eq. (4.16) is obtained
without any approximation and is therefore exact—in particular, truncation independent.
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4 Quark and baryon number fluctuations

4.2 Regularization of the quark number density

With the quark number density given in Eq. (4.15), in principle, we simply have to carry out
the Dirac trace and subsequently evaluate the three-momentum integration and Matsubara
sum. However, it is not that easy, and we observe that

(i) it is necessary to perform the Matsubara sum first, followed by the three-momentum
integration; >

(i1) a very large number of Matsubara frequencies is necessary—the sum has to cover
frequencies up to |wg| = @ (1 TeV)—in order to obtain stable results;

(iii) even with the previous findings taken into account, 1 s develops a spurious divergence,
which is caused by the necessity of cutoffs in course of the numerical evaluation of
the Matsubara sum and three-momentum integration.

The latter is particularly severe because the “naive” expression (4.15) for the quark number
density is thus not well-defined and needs to be regularized. It can be argued that the
divergence is rooted in the Matsubara sum. To this end, we employ the subtraction scheme
used in Refs. [245, 343], which is a Euclidean version of the contour-integration technique
for Matsubara sums [37, 108], and discuss it in the following.

Let h(q4.q;{itr}) be a function that depends separately on the energy component
and spatial components of the four-vector ¢ = (g4, ¢) as well as on chemical potential.
Furthermore, thinking of g4 as a complex-valued quantity, 4 is assumed to be analytic in an
infinitesimal neighborhood of the real g4 axis, which includes in particular the Matsubara
frequencies at g4 = wy = (244 + 1) 7T with £, € Z. Now, our aim is to compute the
Matsubara sum 7' ) ez h(wg.q:{j1r}). Keeping the chemical-potential dependence
general **

a contour integral by virtue of the residue theorem:

, the Matsubara frequencies lie on the real g4 axis, and the sum can be written as

T Y h(wg.q:{psh) = Y hwg.q:{ins)) res(p, wg)
LyeZ LyeZ
“4.17)

d
_ 7%; zi;h(qmq;{uf})fp(%)

with ¢(g4) = —i/ (1 + ¢94/T), which is analytic and bounded on C \ {wg : {4 € Z}
with residue res(¢, wg) = T at the Matsubara frequencies. The contour €, shown in the

33 Consequently, the summation and integration is not performed in an O(4)-invariant way. Numerically, we
thus have independent (and different) cutofts for the Matsubara sum and the three-momentum integration.
34 That is, not of the particular form wq + iy since h is, apart from the analyticity assumption, arbitrary.
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€

Figure 4.1 Contours (blue, solid lines) for the frequency summation: original contour € (left)
and the deformed one (right). The Matsubara frequencies are indicated by black dots.

left diagram of Fig. 4.1, consists of counterclockwise-oriented circles with infinitesimal
radius n > O that enclose each Matsubara frequency. It can be deformed into line integrals
in the upper and lower half plane, displayed in the right diagram of Fig. 4.1. Incorporating
the minus sign contained in ¢, which inverts the direction of the line integrals, and using
1+ eiq“/T)_1 =1-(1+ e_iq4/T)_1, we find

—00=i 4y h(qa, q; {ir))
T h(wg.q:{pr}) =/ —
&,ZE:Z ! ! co—in 2T 1+elad/T

) /oo+i71 dgs h(q4.q:{nr}) (4.18)

—oo+in 2 1+ e_iq4/T

®© (4 qa
—— h(qa. q; :
o [ S haaitih
which holds for every function / that is analytic in an infinitesimal neighborhood of the
real g4 axis.

The first two contributions on the right-hand side of Eq. (4.18) involve the Fermi—Dirac
distribution functions and are thus ultraviolet finite due to the exponential damping, while
the third term does not depend explicitly on temperature or chemical potential and is known
as a “vacuum contribution” in the literature [108]. Indeed, the continuous integration
f_o; dqa /27 is the zero-temperature limit of the Matsubara sum 7" ) ez Thus, we
conclude that this term contains the divergence, and a finite, divergence-free expression can
be obtained by subtracting it from the Matsubara sum on the left-hand side.*> Therefore,
the regularized quark number density is given by

‘ > dg
npE = _N°sz]£ (T >, Tr[me(wq,q)]—/_mz—;Tr[wa(qM)])-

LyeZ
(4.19)

35 A divergence in the quark number density (and derived quantities) occurs on the lattice, too, and it can be
further shown that the divergence is already present in the free, noninteracting continuum theory [344].
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4 Quark and baryon number fluctuations

In order to illustrate the subtraction scheme %1073
for the quark number density, in Fig. 4.2 we dis- 12 . .
— wg sum —~~ ¢4 Integration
play the real part of the Matsubara sum (blue, difference

solid line) and the real part of the ¢4 integration
(red, dashed line) of Tr[y4 S, ] together with their
difference (green, dashed-dotted line) as a func-
tion of the three-momentum at 77 = 100 MeV
and ug = 150 MeV. The regularized up-quark
number density is then, apart from various pre- _4 : :
factors, obtained by integrating the difference 0.01 1 100
with respect to the three-momentum. First, the || [GeV]

imaginary part of both the w; sum and the g4 inte-
gration of Tr[y4 Sy] vanishes, i.e., the density is
real as it should be. Recall that the quark dressing
functions are complex valued for nonvanishing
chemical potential, and generally Tr[y4 S,] € C,
too. Second, the integration of the Matsubara sum alone is positive and would result
in combination with the global minus sign in Eq. (4.15) in a negative density. The g4
integration, however, is larger than the sum and their difference yields a negative value
upon integration and eventually a positive density. Furthermore, though hardly visible in
the figure, the sum does not tend (sufficiently close) to zero for large |¢|. Consequently,
the result of the numerical three-momentum integration depends on the employed cutoff.

Figure 4.2 Re(T 3, <7 Tr[yaSu]) and
Re ([ dgaTr[ysS.]/2m), labeled “wg
sum” and “q4 integration,” respectively, and
their difference.

Finally, the ¢4 integration has the same asymptotic behavior than the sum, and the difference
of both therefore admits an unambiguous three-momentum integration.

With a regularized expression for the quark number density at hand, the fluctuations are
obtained by additional chemical-potential derivatives of it. For example, the second-order
up-quark number fluctuation (also known as the quark number susceptibility) is given by

1 0ny®

T2 3_Mu , (4.20)

X2 =
and other quantities are obtained analogously.

4.3 Fluctuations in the phase diagram

Now, we proceed with our results for the fluctuations. In this work, we discuss quark
and baryon number fluctuations, which are obtained within our DSE framework from
the quark number density along the lines of the previous section. Before we continue,
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Figure 4.3 Left: second-order up/down-quark number fluctuation at vanishing chemical potential.
The lattice results are taken from Refs. [55, 322]. Right: up/down-quark number density in the
vicinity of the CEP for three different chemical potentials.

however, we briefly comment on the notation for the remainder of this chapter. Since we
work in the isospin-symmetric limit of mass- and chemical-potential-wise degenerated
light quarks, the up- and down-quark number fluctuations are consequently degenerate,
too, and simply called the up/down-quark number fluctuation Xﬁ’d. It does not contain
a degeneracy factor of two so that the “true” light-quark number fluctuation, if needed,
would be given by Xlﬁght =2 X‘,J,’d. The same applies to the quark number density of the up

and down quarks.

Quark number fluctuations

In the left diagram of Fig. 4.3, we show the second-order up/down-quark number fluctuation
at vanishing chemical potential as a function of temperature (black, solid line) in comparison
to lattice-QCD results (colored symbols) [55, 322]. The agreement with the lattice is not
as good as for the subtracted quark condensate, see Fig. 3.3, but still very reasonably. Our
result increases up to T &~ 165 MeV and reaches an asymptotic value of approximately
0.72 in the high-temperature region above 7T;. Clearly, this saturation is well below the
Stefan—Boltzmann limit, X;’d — las T — oo, and happens at much too low temperatures.
This is the first place where the deficiencies of our vertex ansatz as discussed in Chapter 3
become noticeable. The correct high-temperature behavior of the fluctuations is caused by
the continuous weakening of the quark-gluon interaction above T, which drives the system
eventually toward the Stefan—Boltzmann limit. Necessary for that are tensor structures
of the quark-gluon vertex which react strongly to the restoration of chiral symmetry. In
Landau gauge, the full in-medium quark-gluon vertex contains twenty-four different tensor
structures, and half of them are only present when chiral symmetry is broken. This is clearly
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4 Quark and baryon number fluctuations

not captured by our ansatz, Eq. (3.7). Phrased differently, we overestimate the remnant
effects of DCSB at temperatures above 7¢, which leads to the high-temperature artifacts
seen in X;’d. In this work, however, we are not interested in the high-temperature limit,
and our vertex ansatz delivers satisfying results in the temperature region 120-160 MeV,
i.e., below and around the pseudocritical chiral transition temperature.

Since X;’d experiences the most rapid growth in the region of the crossover, its inflection
point with respect to temperature can also be used to define the pseudocritical chiral
transition temperature, for which no unique definition exists because of the crossover nature
of the transition. We find TC(XZ) = 153 MeV, which is in good agreement with our result
from the subtracted quark condensate, Eq. (3.17).

Now, we turn to nonzero chemical potential. The right diagram of Fig. 4.3 displays the
up/down-quark number density n, g = T3 X‘f’d at three different chemical potentials around
our CEP as a function of temperature. At ug = Mng (red, dotted line), the slope of the
density tends to infinity at T = Tcgp, which will yield a diverging second-order fluctuation.
For chemical potentials above the critical one, the system undergoes a first-order phase
transition, and the density is therefore discontinuous across the phase boundary and shows a
finite jump (blue, solid line). This behavior is consistent with results from effective models,
see, e.g., Refs. [63, 345]. The location of the first-order transition lies within the (at this
chemical potential very small) region between the upper and lower spinodal lines shown
in the phase diagram in Fig. 3.10. Below the chemical potential of the CEP, where the
transition is an analytic crossover, the slope of the density around the pseudocritical chiral
transition temperature is finite (green, dashed-dotted line). Generally, the density changes
continuously as a function of temperature for all ug < M(B:EP. At large temperatures,
the density is an almost linear function of the temperature regardless of the value of the
chemical potential.

The fluctuations can also be used to draw conclusions about the scaling behavior at
the CEP. Thus, next we discuss the scaling behavior of the second-order up/down-quark
number fluctuation in the vicinity of the CEP. At this point, the fluctuation diverges with a
characteristic critical exponent ¢. For a fixed temperature, the behavior of )(g’d close to the
CEP as a function of the chemical potential is described by

2t = |Ee, (4.21)

where ft = 1 — ug/ ,ugEP . For our scaling analysis, we use the path parallel to the
chemical-potential axis at the fixed temperature T = Tcgp from lower ug up to the critical
value Mng, i.e., we approach the CEP from the crossover side, it > 0. In general, the value
of the critical exponent depends on the path that is chosen in the ug-T plane [328, 346].

Since the CEP is expected to be in the same universality class as the three-dimensional
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Figure 4.4 Logarithm of the second-order up/down-quark number fluctuation as a function of

log i, where i = 1 — up /S > 0, at T = Tcgp. The red, solid line is a linear fit.

Ising model [311, 347-349], here (with a path not asymptotically parallel to the first-order
line) one expects a critical exponent of ¢ ~ 0.79 [350-352]. Mean-field scaling according
to Landau theory would entail ¢ = 2/3 [353]. We extract ¢ from

log X;’d = —¢log i1 + const. 4.22)
using a linear fit, where the offset is ;& independent, and find the critical exponent
e =0.65+0.05, (4.23)

which is in agreement with the mean-field value. The given error contains the numerical one
that stems from the fit but it is dominated by the uncertainty that is accompanied with the
precise location of the CEP. The fit together with the scaling behavior is shown in Fig. 4.4.
It becomes apparent that scaling sets in rather late, namely not until M(B:EP — up < 3MeV,
indicating that the critical region in chemical-potential direction is quite small. This is
consistent with results obtained within effective models, see, e.g., Refs. [328, 345].

It is not surprising, however, that the critical exponents of our CEP are mean field
because the effects that trigger the CEP are purely gluonic in nature. In Ref. [258], it was
shown that the inclusion of explicit pion and sigma-meson contributions generates the
correct critical O(4) scaling at the chiral transition of the chiral two-flavor theory at nonzero
temperature but vanishing chemical potential. We thus expect that the extension of these
contributions to nonzero chemical potential holds the potential to put our CEP in the correct
Z, universality class. Building upon the works [101, 262], taking pion and sigma-meson
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4 Quark and baryon number fluctuations

effects at nonzero temperature and chemical potential within our truncation into account
has been accomplished recently [263], though under approximations in an exploratory
fashion. A detailed discussion can be found in Ref. [102]. Thus, in principle, we have
the framework at hand to compute the critical exponent ¢ with pion and sigma-meson
contributions explicitly taken into account. However, a tremendous computational effort
(in terms of CPU hours) is required, and this study is postponed to future work.

Before we continue with the baryon number fluctuations, we would like to comment on
strangeness neutrality. Our choice of a vanishing strange-quark chemical potential, pg = 0,
combined with the isospin-symmetric limit we are working in (i.e., it = 0) corresponds
to a fixed strangeness chemical potential of s = ug/3; see relations (4.3). As discussed
earlier, the strangeness chemical potential is in general a nontrivial function of ug and T
such that strangeness neutrality is fulfilled, i.e., such that the strangeness density vanishes.
However, since this work is the first that is concerned with obtaining thermodynamic
quantities from DSEs with the truncation detailed in the previous chapter, we postpone
the consistent implementation of strangeness neutrality to future work and keep us = 0
throughout this work.*® While we do not expect Xg’d to be strongly affected by that choice,
this is certainly different for 5. Thus, we refrain from comparing this quantity with lattice
results. Nevertheless, we use it to compute baryon number fluctuations.

Baryon number fluctuations

With the quark number fluctuations at hand, we are now able to compute the baryon
number fluctuations. In particular, we are interested in the changes induced by increasing
chemical potential in the fluctuations and ratios thereof as we approach the CEP. In the
course of this work, we limit ourselves to fluctuations diagonal with respect to the quark
flavor and neglect off-diagonal fluctuations. This is, at least to some extent, justified by
lattice-QCD results indicating that off-diagonal fluctuations are subleading as compared to
diagonal ones [322, 324]. Then, the n®-order baryon number fluctuation, n > 1, in the
isospin-symmetric limit of degenerate up and down quarks is given by

1
A = 5 A+ 3) (424

We choose a selection of fixed chemical potentials and evaluate the baryon number
fluctuations as functions of temperature. The result is shown in the left diagram of Fig. 4.5,

36 The impact of strangeness neutrality on thermodynamic quantities was studied in Ref. [354] within the
Polyakov-loop enhanced quark-meson model using the FRG. At large chemical potentials, quantitative
corrections up to the order of twenty percent for some thermodynamic quantities were found. Therefore,
the proper implementation of strangeness neutrality should be aimed at in the long term.
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Figure 4.5 Second-order baryon number fluctuation approaching the CEP (left) and beyond in
the first-order region of the phase diagram (right).

where we display the second-order baryon number fluctuation approaching the CEP. At
vanishing chemical potential (gray, solid line), the behavior is similar to the up/down
quark number fluctuation, see Fig. 4.3, i.e., we find a monotonous increase below and
around the pseudocritical chiral transition temperature. At nonzero chemical potential
about halfway toward the CEP, a bulge begins to develop at and around 7 (blue, dashed
line). The bulge becomes larger and more pronounced with increasing chemical potential
(red, dashed-dotted line). Close to the location of the CEP, the bulge grows considerably
and becomes a sharp peak (green, dashed-double-dotted line) that finally diverges at the
CEP (purple, dotted line), as expected from the behavior of the quark number density as
discussed above.>’ The behavior of )(]23 in the first-order region is shown in the right diagram
of Fig. 4.5. Similar to the quark condensate, the second-order baryon number fluctuation
splits into two branches corresponding to the chirally-broken Nambu solution (blue, solid
line) and the (partially) chirally-symmetric Wigner solution (red, dashed line) of the DSE
for the quark propagator. The overlap of the two branches defines the coexistence region of
a first-order transition that is bounded by spinodals, which are indicated by vertical gray,
dotted lines. For temperatures above and below the coexistence region, )(g is only very
slowly varying with temperature and almost constant.

Next, we discuss ratios of fluctuations that are directly related to experimental quantities
in heavy-ion collisions through event-by-event analyses [see Eq. (4.7)]. In Fig. 4.6, we show
the skewness ratio )(g’ / )(g (left diagram) and the kurtosis ratio )(E’ / X]23 (right diagram),
transformed by the inverse hyperbolic sine for better visibility, again as a function of
temperature for different chemical potentials up to the CEP. The ratios show distinctive

37 In principle, one could fine-tune the chemical potential to come arbitrarily close to the actual divergence.
In practice, however, limited numerical accuracy together with finite computational resources always lead
to a very sharp peak of )(]23 with a very large but still finite magnitude.

67



4 Quark and baryon number fluctuations

8 12
i IMeV]
Py -==240 480 — |
m><m 4 A - =360 -cee- 495 EQ>(<\1 6 B '.\.
a;w ________ e n‘-!\v e e ,
:,i O Bim=rw=—— T \-\ /\;n\.‘;,_.- o 5 0 ||‘\-:I'-
= v = X N A
£ 2 6 : " g [MeV]
g —47 S 0 - 360
. —12 1 -==240 - 495
100 120 140 160 180 100 120 140 160 180
T [MeV] T [MeV]

Figure 4.6 Skewness ratio x5 /x5 (left) and kurtosis ratio x5 /x5 (right) approaching the CEP.
We show the inverse hyperbolic sine of the ratios for better visibility. Since arsinh(x) ~ x as
x — 0 and arsinh(x) ~ +1og(2|x|) as x — +o00, we get in principle a logarithmic plot in both
positive and negative direction.

features. Whereas for small chemical potentials up to halfway toward the CEP all structures
are small in size, these grow rapidly as the CEP is approached. The skewness develops
a characteristic rise with temperature when the crossover is approached accompanied
by a zero crossing and subsequently an equally drastic decrease when the temperature
is increased further. This structure becomes extremely pronounced close to the CEP.
Note that we do not show the ug = 0 result since all odd fluctuations vanish at zero
chemical potential. Correspondingly, the kurtosis ratio XE / )(]23‘ develops an asymmetric
double-peak structure across the phase boundary. In general, both ratios react strongly
across the crossover line and particularly to the presence of the CEP, which emphasizes
that (ratios of) fluctuations are well-suited quantities to explore the phase diagram of QCD.
In Fig. 4.7, we display our result for the ratio

)(113 / )(g' computed along our crossover transition 10 =TT
line 7.(pup). For small chemical potential up 0.8 - ,//

to ug/ T < 1.5, itis expected from the hadron 0.6 - /,’/

resonance gas model that the ratio is approxi- y/

mately given by tanh(ug/T) [355, 356]. This 0.4 - //

was found in the Polyakov-loop enhanced quark- 02 4 / — B
meson model as well [357], and also shows up - —— tanh
in our calculation. Sizable deviations only occur 0.0 - .

for larger chemical potential. After its maximum 0.0 0.7 14 2.1 28

at ug /T = 1.6, the ratio goes down again and e /T
signals the approach to the CEP in the course of Figure 4.7 Ratio 1% /x? as a function of

which X% increases significantly as already seen us /T compared to the hyperbolic tangent
in Fig. 4.5. along the crossover line T, (iB).
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Figure 4.8 Skewnessratio x5 / x5 along the crossover line and along lines with a fixed temperature
distance from the crossover. Furthermore, we show experimental data from the STAR collaboration
at most central collisions at RHIC [95, 96]. We adopt the pg-/syy translation from Ref. [307].

Even though one has to be cautious when comparing theoretical results (for fluctuations)
with experimental data, there is considerable interest to do so. The caveats involved are
related to the experimental situation in heavy-ion collisions such as the finite volume and
the finite temporal extent of the fireball and the question whether/when the system is in
thermal equilibrium. Furthermore, these are related to details of the experimental analysis
such as centrality cuts, the question whether proton number fluctuations are a proxy for
baryon number fluctuations, and potential other issues. More details can be found in the
reviews [47, 97] and references therein.

Nevertheless, we attempt such a comparison in the following. In Figs. 4.8 and 4.9, we
present our results for the skewness ratio )(]33 / XE and the kurtosis ratio XE / )(5, respectively
(solid, blue lines), along the crossover line. Remember that we determine the latter from
the inflection point of the subtracted quark condensate [Eq. (2.70)], and several definitions
are employed in the literature because 7¢ is not uniquely defined. For the skewness, this
criterion leaves us on the left and positive branch of the oscillations shown in Fig. 4.6.
For the kurtosis, however, we probe the small negative region around the phase boundary
once the chemical potential becomes large. At small chemical potential, there is a good
agreement between our results and recent experimental data for net-proton fluctuations
from the STAR collaboration at most central collisions [95, 96], which was collected during
the first phase of the Beam Energy Scan program at RHIC. From a collision energy (center
of mass energy per nucleon pair) of \/% = 14.5GeV on, about halfway toward our CEP,
this agreement becomes worse and disappears completely for \/@ < 11.5GeV.
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Figure 4.9 Same as Fig. 4.8 but for the kurtosis ratio x5 /x5.

In order to discuss this aspect further, we also evaluate the skewness and kurtosis ratios
on lines with a fixed temperature distance of three, six, and nine MeV below the crossover
line. The idea of this comparison is to study the impact of two different effects. First, as
already mentioned several times, there is no unique definition of the critical temperature
in the crossover region, and it is therefore by no means clear whether a given definition
should coincide with the experimental freeze-out line or not. Second, as the chemical
potential becomes larger and a potential CEP is approached, it is also not clear whether
the freeze-out line and the crossover line have the same curvature. In other words, it
may very well be that the freeze-out line bends stronger than the crossover line and the
distance between the two lines grows with chemical potential. Taken at face value, our
results shown in Figs. 4.8 and 4.9 seem to support this notion at least on a qualitative
level. At small chemical potential, variations in both ratios with temperature are very
small and cannot be discriminated by the data. The two data points at \/% = 19.6 GeV
and \/% = 14.5GeV, however, favor a scenario with a freeze-out line very close to
the crossover line, and we conclude that this is generally the case for \/% > 14.5GeV.
The results for the kurtosis ratio at \/ﬁ = 11.5GeV and \/% = 7.7GeV, however,
suggest that the freeze-out line in this region of the phase diagram is separated from the
crossover line by at least nine MeV in temperature direction. The corresponding results for
the skewness ratio show the same general trend, although on a less quantitative level than
the ones for the kurtosis.

Finally, we would like to note that several caveats are involved in the comparison of our
results with the experimental data. On the one hand, we already mentioned the caveats on
the experimental side, which are discussed and reviewed in Refs. [47, 97]. On the other
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hand, our theoretical calculation in its present state suffers from several limitations. First,
the influence of off-diagonal fluctuations is not taken into account yet. Second, as already
discussed in Chapter 3, there is a probably substantial error associated with the precise
location of the CEP. This error is expected to be reduced in the future by the systematic
in-depth comparison with other truncations within DSEs and with FRG studies. Third, one
has to keep in mind that the critical exponents of the CEP found in this work are mean
field. The transition from mean-field scaling to the correct Z, universality class of the
three-dimensional Ising model is expected to result in a decrease of the size of the critical
region around the CEP [328], which in turn will drive our results closer to the STAR data
even if the location of the CEP remains unchanged.

4.4 Summary

Within the truncation scheme presented in the previous chapter, here we investigated for
the first time quark and baryon number fluctuations. The starting point has been the quark
number density, which has been extracted from the quark propagator by means of an exact
formula derived from the thermodynamic potential in propagator representation. With a
nonperturbative quark propagator and numerically necessary cutoffs, we found that the
expression for the quark number density needed to be regularized. To this end, we employed
a subtraction scheme based on a Euclidean version of the contour-integration technique for
Matsubara sums. With a regularized quark number density at hand, we computed quark
and baryon number fluctuations and ratios thereof across the QCD phase diagram. In
particular, we determined the critical scaling behavior of the second-order up/down-quark
number fluctuation at our CEP. Given our truncation of the quark-gluon vertex, we found
not surprisingly mean-field scaling. We also found that the high-temperature behavior of
the fluctuations is quite sensitive to the details of the quark-gluon vertex, which allowed us
to identify possible improvements of our truncation scheme. Furthermore, in order to make
contact with recent data from the Beam Energy Scan program at RHIC, we determined
the skewness and kurtosis ratios along our crossover line. In addition, we also scanned
lines with a fixed temperature distance below the transition line. While our results agreed
with the STAR data for ug < 250 MeV along the crossover, qualitative agreement at larger
chemical potential had been obtained (at least to some extent) assuming the freeze-out and
crossover lines separate at larger chemical potential.
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5 Thermodynamics from the quark condensate

The quark and baryon number fluctuations, which we calculated in the last chapter, are
the first foray into QCD thermodynamics within the DSE truncation used in this work.
However, our starting point has been the quark number density but not the pressure
itself. Generally speaking, in order to understand and explain the various phases and
thermodynamic properties of QCD, the quantities of choice are the pressure, entropy density,
and energy density—in short, the equation of state (EoS)—as functions of temperature and
chemical potential. Moreover, the knowledge of the EoS of matter under a given physical
environment is important for numerous reasons ranging from hydrodynamic simulations in
the context of heavy-ion collisions to astrophysical issues like supernovae or neutron stars;
see, e.g., Refs. [358, 359] for reviews.

At vanishing chemical potential, QCD’s EoS is well-known from first-principle lattice
QCD, where the full continuum-extrapolated EoS is available [360, 361]. However, the
situation is different at nonzero, real-valued chemical potential. There, lattice QCD is
hampered by the notorious sign problem [58]. Results for the EoS are limited to rather
small chemical potential and usually obtained via extrapolation from imaginary chemical
potential or using the Taylor expansion technique [299, 300, 302, 362].

Within functional methods, which do not suffer from the sign problem and are thus
well-suited to complement lattice calculations, the computation of the EoS boils down to the
calculation of the thermodynamic potential €2, Eq. (4.1), that contains all thermodynamic
information of the system. In contrast to the FRG where solving its flow equation yields
directly the thermodynamic potential, see, e.g., Refs. [74, 354, 363-366], accessing this
quantity with DSEs is extremely difficult and has been accomplished so far only within
simple models [245, 367, 368]. This is due to the fact that at the very beginning of the DSE
framework stands a derivative of the effective action. The master DSE reads [Eq. (2.38)]

£
8T 1p1[D] _ 81(%(:13
3P; 3¢i

1, (5.1
dr—> DPr+8/8J%

and at the stationary point, the effective action is, up to a sign and volume factor, equivalent
to the thermodynamic potential. Thus, a (functional) integration is necessary to get hold of
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5 Thermodynamics from the quark condensate

the potential itself. This obstacle manifests more directly in the 2PI formalism. Recalling
the explicit form of €2 as a functional of the propagators [Eq. (4.8)],

—K Q[S,D] = Trlog S~ ! — Tr[]l — So_lS] — lTrlog D!
T 2

{ (5.2)
+ 5 Tr[1— Dy D] + EinlS, DI,
we readily see that an explicit expression for the interaction functional Ejy, is needed to
compute the potential. Unfortunately, such a closed, explicit expression is only available
for certain truncations where the quark-gluon vertex does not depend on the quark dressing
functions—which, in principle, should be the case; see Eq. (3.5). For example, in rainbow-
ladder truncations with a gluon model where the quark-gluon vertex is simply the bare one,
the interaction functional is given by E irﬁinbow'ladder [S] = % Tr []1 — Sy s ] In particular, to
our knowledge there is no closed, explicit expression of Ej, available for our quark-gluon
vertex ansatz.

Therefore, it is highly desirable to develop a truncation-independent way to calculate
the thermodynamic potential, and with that the EoS, from DSEs. In this chapter, we
present such a method that is based on a general relation between the quark condensate
and the entropy density. The method, which is detailed in the following, was initially
proposed in Ref. [369]. It is together with first results—the ones presented in the upcoming
Section 5.3—published in Ref. [99].

5.1 Connecting the quark condensate and thermodynamics

In this section, we mainly consider only one light flavor with quark chemical potential
u for the sake of brevity. As already mentioned earlier, the fundamental quantity for
thermodynamics is the thermodynamic potential

T

where T is the temperature, V' the volume of the system, and Z the grand-canonical
partition function. The thermodynamic quantities pressure (P ), entropy density (s), and
quark number density (n) follow from the standard relations [108]

P(T. p) = — (T, 1) — 2(0,0)),

0T ) IQUT, 10) 54

ST ==—7— E
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5.1 Connecting the quark condensate and thermodynamics

A subsequent Legendre transform of the pressure yields the energy density
E(T,pw) =Ts(T, ) + pun(T,pw) — P(T, 1), (5.5)
and with that, one defines the interaction measure
I(T.p) = &(T.pn) =3P(T. p). (5.6)

It is related to the trace of QCD’s energy-momentum tensor, hence also referred to as the
trace anomaly, and measures the deviation of the EoS from the one of an ideal gas, which
is givenby & = 3P.

In addition to temperature and chemical potential, the current quark mass / can also
be seen as an additional variable the thermodynamic potential depends on. It enters the
action as an external source for the field bilinear ¥y, and the quark condensate is thus

obtained via
0T, usm)

om

(Y )(T, s m) (5.7)

In principle, this relation can be inverted to yield the thermodynamic potential, at some
given temperature and chemical potential, as an integral over the quark condensate with
respect to the current quark mass,

m2

T, i) = AT i) = [ @’ GT i), (538)
mi
Unfortunately, this relation is not suitable for an actual calculation because the thermody-
namic potential and the quark condensate are both divergent. The divergence is contained
in the vacuum contribution of €2 and even present in the noninteracting theory [108];
see also the discussion in Section 4.2 and particularly Eq. (4.18). Since the divergence
is independent of temperature and chemical potential—the introduction of a medium
does not introduce new, additional divergences—we expect that suitable derivatives of
the thermodynamic potential and quark condensate are finite. Therefore, differentiating
Eq. (5.8) with respect to temperature and using the relations (5.4) yields the well-defined,
i.e., divergence-free equation

my b 0 T, . /
s(T,u;mz)—s(T,u;m1)=—/ dm’ W‘”);T“m), (5.9)
mi

which, in principle, allows us to extract the entropy density from the quark condensate.
What is left to use this relation in practical calculations is to specify the integral limits. We
set the lower one to the physical current quark mass, m1 = m, and send the upper one to
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5 Thermodynamics from the quark condensate

infinity, m, — oco. The advantage of the latter is that an infinitely heavy quark freezes
out of the system since it is too heavy to get thermally excited and does not contribute
to thermodynamics. The corresponding entropy density is then simply the one of pure
YM theory: limy, oo S(T, pt;m2) = 5y (T). Thus, our final expression for the entropy
density reads

(5.10)

00 P 0 T, i l
s(T, w;m) = sy (T) —i—/ dm’ (WW);T pim) .

If gluons are no active degrees of freedom, the YM contribution is set to zero. For QCD,
lattice calculations conveniently provide sy, over a large temperature range [370, 371].
Note that Eq. (5.10) implies

Os(T.pim) _ 3(Yy)(T, psm)

b 5. 1 1
om aT 1)
which is nothing but the Maxwell-like relation
2QT. ?QT.
(T, p;m) (T, p;m) (5.12)

omoT a oT dm

that can alternatively be used as a starting point to derive Eq. (5.10).

Having the entropy density at hand, the pressure at vanishing chemical potential follows
thermodynamically consistent from

T
P(T,0) = P(Ty,0) + / dT's(T’,0), (5.13)
To
and an additional integration over the quark number density n(7, ) yields the pressure at
nonvanishing chemical potential,

T
P(T, ) = P(Ty,0) +/

To

w
dT’s(T’,0) + / du' n(T, ). (5.14)
0

Analogously to s, the pressure offset P(Tp, 0) at some reference temperature 7o and
vanishing chemical potential is an input parameter and taken from the lattice [360, 361].

In the case of 2 + 1 flavors, which we use in our DSE framework, we have to consider two
degenerate light quarks with mass m, 4 and additionally a heavier strange quark with mass
mg > my q. In order to calculate the entropy density, we integrate within the Columbia
plot along the following path in the my g-m, plane: first, at fixed strange quark mass,
the up/down quark mass from the physical point to the physical strange quark mass and
then both masses to infinity; see Fig. 5.1 for a graphical depiction. The generalization of
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msg

My, d

Figure 5.1 Integration path (red) within the Columbia plot for the entropy density for 2 + 1
flavors. The thick dot denotes the physical point.

Eq. (5.10) to the (2 + 1)-flavor case reads

my P o u ,
S(TAgip)) = sy (T) +2 / am 8O0 4yt m

+2 /mdm’%(ﬂ {ugy:m' m') (5.15)

+/ dml a(;ﬂT >S(T, {/,Lf};ml,m/)s

which is constructed such that the Maxwell relation (5.12) holds. The factor of two that
multiplies the first two integrals accounts for the isospin-degeneracy of the light quarks.

Finally, we would like to stress that Egs. (5.10) and (5.15) are obtained without any
approximation and are therefore exact thermodynamic relations, which establish a general
relation between the entropy density and the quark condensate. They are applicable as
soon as the quark condensate as a function of the current quark mass (at fixed temperature
and chemical potential) is available.

5.2 NJL model study

Before we apply the method as described above to our DSE framework, we first show in the
following that it works effectively and yields reliable results. For this proof of principle,
we use a two-flavor NJL. model as a testing ground. It is a low-energy effective model of
QCD, which was originally formulated by Nambu and Jona-Lasinio in the pre-QCD era
as a field-theoretical description of interacting nucleons [59, 60] but later reinterpreted
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5 Thermodynamics from the quark condensate

as a model for quarks [372-374]. The NJL model shares the global symmetries of QCD
and, in particular, has the feature of DCSB. In contrast to our DSE setup, gluons are no
active degrees of freedom and quarks interact, in the simplest form of the NJL model,
via pointlike four-quark vertices. A detailed discussion of the multiple facets of the NJL
model is well beyond the scope of this work, and we refer the reader to the comprehensive,
seminal reviews [61-63].

In the following, we use a two-flavor NJL model in mean-field (Hartree) approximation,
where the thermodynamic potential C2xjr, can be calculated analytically. We are therefore
in a position to compare the entropy density calculated directly from the thermodynamic
potential with the one obtained from the quark condensate according to Eq. (5.10). The
two-flavor, mean-field NJL Lagrangian is given by [63]

(M —m)?

Lmenor, = Y (i — M)y — c

(5.16)

where m denotes the current quark mass, M the constituent quark mass, and G the
coupling constant. Since £m¢.NjL consists of the free Dirac Lagrangian and a constant, i.e.,
field-independent term, the resulting thermodynamic potential is the noninteracting one of
a free quark gas [108] shifted by the constant term. It thus reads

(M —m)?
4G

+T ][ Z 10g<1 + e_(Eq+Z“)/T>:|

9 ;=41

QueNgL = — 2Ny N, |:][ EqO(Areg — 1q1)
q

(5.17)

with E; = /g% + M? and the Heaviside step function ®. Here, Ny = 2, N, = 3,
and p is the chemical potential of the two degenerate (isospin-symmetric) light quarks.
We regularize the divergent vacuum part of the thermodynamic potential with a sharp
ultraviolet cutoff, |g| < A, but leave the convergent medium contribution unaltered.
For a given temperature 7" and light-quark chemical potential p, the physical constituent
quark mass—the NJL counterpart of the quark mass function in the DSE framework—is
the global minimum of the thermodynamic potential and found through the stationary
condition d QuyeNgL /IM = 0, and the quark condensate is given by

YY) meoL, = —(M —m)/2G . (5.18)

Finally, the model is complete once the parameters are fixed. The NJL model is nonrenor-
malizable, and the regularization scale A, is therefore part of the model parameters. We
use m = 5.6 MeV, A = 587.9MeV, and G = 2.44/A2 which were determined in

reg’
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Figure 5.2 Left: integrand of the entropy formula for the NJL model as a function of the bare
quark mass at two different temperatures, below and above T, and vanishing chemical potential.
Right: temperature derivative of the up/down quark condensate from our DSE framework along the
mass path shown in Fig. 5.1, again below and above 7. but exemplarily at g = 300 MeV. In both
diagrams, the vertical gray, dotted line marks the physical quark mass.

Ref. [63] to yield a pion mass and decay constant of m, = 135MeV and f; = 92.4 MeV,
respectively, in vacuum. With these parameters, we find

(i) an in-vacuum constituent quark mass of My,. &~ 400 MeV;
(ii) a crossover transition at zero chemical potential with 7.(u = 0) ~ 193 MeV;
(iii) a second-order CEP at (u, T')cep & (322, 82) MeV.

We are now in the position to compute the entropy density on the one hand directly from
the thermodynamic potential (5.17) using the relations (5.4) and one the other hand via the
method described in the previous section, i.e., by means of Eq. (5.10). Note that sy, = 0
because gluons are no active degrees of freedom in the NJL model.

In the left diagram of Fig. 5.2, we show the integrand of the entropy formula, viz.,
(VY )mino /0T as a function of the bare quark mass at vanishing chemical potential
and at two fixed temperatures, one below (blue, solid line) and one above (red, dashed
line) T.. We find that the temperature derivative of the quark condensate is indeed finite,
i.e., divergence free, a smooth function of the bare quark mass, and drops independent of
temperature to zero for large masses. The reason for the latter is that sufficiently heavy
quarks freeze out: their condensate is basically temperature independent. In other words,
at one point they are simply too heavy to get thermally excited and do not contribute to the
thermodynamics of the system. Therefore, the behavior of 3 (V¥ )menu /0T as a function
of the bare quark mass is such that its integration with respect to m is well-defined, and we
conclude that the method described in the previous section should yield reliable results.
The overall behavior displayed in Fig. 5.2 can be explained as follows. First, note that the
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5 Thermodynamics from the quark condensate

freeze-out of heavy quarks implies that the heavier the quark mass, the higher 7, i.e., the
transition from dynamically broken chiral symmetry to partially restored chiral symmetry
takes place later (in the sense of higher temperatures). Second, the pure, unsubtracted
quark condensate [Eq. (2.68)] generally has a large negative value in the chirally broken
phase and goes to zero from below during the crossover to the (partially) chirally restored
phase. Thus, below 7, (blue, solid line), d (/¥ )me.ny /0T has a nonzero value and tends
monotonously to zero with increasing mass because the quark gets less and less affected by
this (small) temperature T < T, the heavier it becomes. Consequently, at a temperature
T > T, (red, dashed line), for small quark masses we are already (well) beyond the
crossover and 0 (YY) mengL /0T is small. As the mass increases, the fixed temperature,
which is originally above T for the physical quark, becomes the critical one for some
heavier quark. Thus, (¥ )meni /7 increases significantly, develops a peak, and finally
drops to zero if the mass is increased further. We find the very same qualitative behavior in
our DSE setup, see the right diagram of Fig. 5.2, though on a different mass scale. This is
most likely due to the explicit inclusion of the YM sector since the gluon—more precisely,
the quark loop—is sensitive to the masses of the quarks.

Finally, in Fig. 5.3, we show the relative error
between the NJL entropy density obtained from
the quark condensate by means of Eq. (5.10)
and directly from the thermodynamic potential
through s = —9dQueNy/07. We find that
both results cannot be distinguished by the eye,
and the relative error is smaller than 0.05%
across the whole covered temperature range. In
summary, our method to compute the entropy 0
density from its relation to the quark condensate
as described in Section 5.1 works very well
and produces reliable results. We are therefore gjgyre 5.3 Relative error between the NJL
confident that this is the case within our DSE  entropy density obtained from the quark con-
framework, too. densate (s ) and directly from Qpenyr (5Q).

~
1

[\)
1

|1 — sy /sq| x 10*

100 150 200 250
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5.3 Equation of state from DSEs

Now, we proceed with the thermodynamic results obtained with the method described in
Section 5.1 using condensate data obtained from our (2 4 1)-flavor DSE framework. The
starting point is the entropy density that is obtained via Eq. (5.15). Lattice simulations of
pure YM theory show that there is no sizable contribution to s,/ T3 for T <250 MeV,
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Figure 5.4 EoS at vanishing chemical potential: dimensionless entropy density (upper left),
pressure (upper right), and energy density (lower center). For comparison, we also show continuum-
extrapolated lattice results [360, 361].

see Refs. [370, 371], which can be safely neglected. Thus, in view of the temperature range
covered in this work, we set, to a very good approximation, sy, = 0 in the following. We
begin with the EoS at vanishing chemical potential, followed by results at nonvanishing
us, and close with a discussion regarding the first-order phase boundary.

Vanishing chemical potential

Our result for the dimensionless entropy density, i.e., scaled to 73, at vanishing chemical
potential is shown in the upper left diagram of Fig. 5.4 (black, solid line) compared to
continuum-extrapolated lattice-QCD results [360, 361] (symbols). Upto T ~ 175 MeV, it
is a monotonically increasing function of temperature, and the agreement with the lattice
data is satisfying, though with a slight overshoot. Beyond that temperature, the entropy
density shows an unphysical decrease. This is the second place where the weakness
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5 Thermodynamics from the quark condensate

of our ansatz for the quark-gluon vertex surfaces—the first place was Chapter 4 where
we computed quark and baryon number fluctuations. The reason for the unphysical
high-temperature behavior of the entropy density is the same as for the saturation of
X;’d well below the Stefan—Boltzmann limit: our vertex ansatz does not contain tensor
structures that react strongly to the restoration of chiral symmetry. Their inclusion would
cause a continuous weakening of the quark-gluon interaction at temperatures 7' = T,
thereby resolving the issue of a decreasing entropy density at high temperatures.>® We
note, however, that our DSE setup yields satisfying results in the range 7" = 100-160 MeV
below and around the pseudocritical chiral transition temperature.

From the entropy density, we obtain the pressure by integration according to Eq. (5.13)
and use P(Tp)/T# = 0.242 at Ty = 110MeV [360]. The result depicted in the upper
right diagram of Fig. 5.4 is in good agreement with the lattice but starts to deviate for
T =z 185MeV. This deviation is inherited from the erroneous high-temperature behavior
of the entropy density, which is used to compute P. At high temperatures, the pressure
saturates at P/ Psg ~ 0.3, where

Py 1972 1 (ug)\> 1 (us)*
= £ — 5.19
T4 36 + O\T + 16272 \ T (>.19)
is the Stefan—Boltzmann pressure of an ideal gas of massless quarks and gluons (for
Nt = 2 + 1). Finally, combining the entropy density and pressure we obtain the energy
density by means of a Legendre transform, Eq. (5.5), which is shown in the lower central
diagram of Fig. 5.4. Since it is a combination of s and P, the agreement with lattice results

is reasonable below and around 7. while a decreasing behavior stemming from the entropy
density is found at high temperatures.

Nonvanishing chemical potential

Now, we turn to nonzero chemical potential and show our result for the EoS in Fig. 5.5.
The entropy density is displayed in the upper left diagram as a function of temperature for
different chemical potentials starting from zero up to the CEP value /LEEP =495MeV. A
bulge develops around the pseudocritical chiral transition temperature, which becomes more
pronounced with increasing chemical potential. Close to and across the CEP, we observe a
strong increase of the entropy density, and the slope becomes maximal at T = T cgp. The
erroneous high-temperature behavior found at vanishing chemical potential persists and

38 This effect could be mimicked by making the infrared strength d of our vertex ansatz (3.8) temperature
dependent. An analogous modification is needed in rainbow-ladder truncations with a gluon model, too, in
order to obtain proper results for fluctuations and thermodynamics at high temperatures [245, 338].
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Figure 5.5 EoS at nonvanishing chemical potential: dimensionless entropy density (upper left),
pressure (upper right), energy density (lower left), and interaction measure (lower right) as functions
of temperature for selected chemical potentials up to the CEP.

becomes nonmonotonic. Again, as discussed earlier in the course of our results for the EoS
at vanishing chemical potential, we expect that these artifacts disappear with an improved
quark-gluon vertex that provides the correct weakening of the quark-gluon interaction at
high temperatures and/or chemical potential.

The pressure follows again from the entropy density via integration according to Eq. (5.14)
while the quark number density is obtained as explained in the previous chapter. As seen
in the upper right diagram of Fig. 5.5, the pressure gets larger with increasing chemical
potential across the whole temperature range, though the changes are less noticeable at
low temperatures. For chemical potentials close to the CEP, a kink starts to form at the
corresponding transition temperature 7.. Beyond that point, the pressure rises stronger
with a steeper slope as a function of temperature, which is most prominent and noticeable
at the CEP. The pressure is, however, a smooth function of temperature for all g up to
MgEP . These results are consistent with corresponding ones obtained from an FRG study
of the Polyakov-loop enhanced quark-meson model [74].
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5 Thermodynamics from the quark condensate

The effect of a nonzero and increasing chemical potential is most prominent in the energy
density, lower left diagram of Fig. 5.5, caused by the additional quark number-density
term that stems from the Legendre transform [Eq. (5.5)]. Its steep rise close to and at the
CEP signals a rapid increase of degrees of freedom from hadrons to quarks and gluons.
This behavior carries over to the interaction measure, lower right diagram, which reacts
strongly to increasing chemical potential. At vanishing chemical potential, I/ T# is shape
consistent with lattice-QCD results and experiences a strong increase from intermediate
chemical potentials onward to the CEP. There, at ug = MSEP , the slope with temperature
becomes infinite at the corresponding critical temperature 7 = T'cgp. Finally, the peaklike
structure of the interaction measure with a large magnitude close and at the CEP indicates

that nonperturbative effects are manifest in this region of the QCD phase diagram.

The first-order phase boundary

We conclude this chapter with a discussion about locating the phase boundary in the
first-order region of the phase diagram. This would be the next obvious step since we have
the pressure as a function of temperature and chemical potential at hand. Unfortunately, as
detailed in the following, at this point we hit a limitation of our method.

In order to locate the first-order phase boundary, one usually considers the pressure
difference

B(T, n) = Pn(T, ) — Pw(T, ) (5.20)

between the chirally broken Nambu phase (N) and the chirally symmetric Wigner phase
(W) as a function of the chemical potential for a fixed temperature T < Tcgp. Clearly,
B(T, ) is only defined up to the critical chemical potential u = pN(T'), above which
the Nambu solution does not exist anymore (i.e., is no solution of the quark DSE anymore)
and only the Wigner solution can be found. Phrased differently, uY as a function of
temperature defines the location of the upper spinodal in the phase diagram [see Figs. 3.9
and 3.10]. The physically realized phase/solution corresponds to the global minimum of
the thermodynamic potential, i.e., it maximizes the pressure: B(7, i) > 0 indicates that
the system is in the Nambu phase, i.e., the Nambu phase is more stable than the Wigner
phase, and vice versa. Therefore, B(T, 1) = O defines the phase boundary, and by finding
the root of B(T, i) with respect to the chemical potential for various 7" € [0, Tcgp), one
can draw the first-order phase boundary.

In our approach, the pressure difference (5.20) is explicitly given by

B(T. 1) = fu=0(T) = fuzo(T. 11) (.21
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with the functions

Ju=0(T) = Pn(To,0) — Pw(To,0)

T (5.22)
+/ dT’ [sn(T",0) — sw(T’,0)]
To
and "
Fruno(To 1) = /0 dpt’ [nw (T, 1) = nn(T, 1)) (5.23)

where nw and ny denote the quark number densities of the Wigner and Nambu phase,
respectively. The first term of the pressure difference, Eq. (5.22) is evaluated at vanishing
chemical potential only, i.e., it does not depend on chemical potential. Moreover, we
note that f,,—o(T") is positive for all 7" € [0, Tcgp) because this region of the phase
diagram is well below 7.(u = 0) where the Nambu phase is realized. Next, we find
both in the NJL model and in our DSE setup that the quark number density as a function
of the chemical potential (at fixed T < Tcgp) of the Wigner phase is generally larger
than the corresponding number density of the Nambu phase: nw(7T, u) — nn(T, n) > 0,
and therefore f,.o(7T, ) > 0 for all u € [0, uN]. Tt thus follows that there exists
wlst e [0, uN]—the location of the first-order line—where Juzo(T, wlsy = fu=o(T),
and consequently, B(7, u!) = 0.

From these considerations, it becomes apparent that the correct location of the first-order
phase boundary depends crucially on the value of f;,—o(7"). In particular, we need the
pressure difference Pn(Typ,0) — Pw(Tp, 0) at a reference temperature Ty and vanishing
chemical potential as input while all other quantities in Eqgs. (5.22) and (5.23) are computed
from DSEs. Alas, lattice QCD provides to our knowledge only the physical Nambu pressure
Pn(Tp, 0) but not the unphysical Wigner pressure Pw (7o, 0). Thus, we are unfortunately
not able to obtain a reliable location of the phase boundary in the first-order region of the
phase diagram. We emphasize, however, that this is not an inherent flaw of our method but
more that we hinge on the availability of an external input parameter.

5.4 Summary

In this chapter, we have studied thermodynamic quantities obtained from our DSE setup.
To this end, we discussed a novel method that allows to compute the entropy density
solely from the quark condensate. The method is exact and independent of the employed
truncation. Furthermore, it is applicable as soon as the quark condensate is available
and not limited to the DSE approach, though most useful for the latter because accessing
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thermodynamic quantities using DSEs is extremely difficult and was achieved so far
only within simple models of the rainbow-ladder type. After having demonstrated its
effectiveness using a NJL model in mean-field approximation, we used the method with
condensate data obtained from our DSE framework and computed the pressure, entropy
density, energy density, and interaction measure across the QCD phase diagram. These
result are, to our knowledge, the first ones obtained within a DSE truncation beyond rainbow
ladder. On the other hand, we were unfortunately not able to determine the first-order
phase boundary below the CEP. Again, we stress that this is not an inherent deficiency of
our method—we suffer from the lack of availability of an external input parameter. Finally,
it became clear, in agreement with the results for fluctuations, that our tensor basis for the
quark-gluon vertex needs to be enlarged in order to achieve proper thermodynamics at high
temperatures and/or chemical potentials.
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In this last chapter before the epilogue, we study finite-volume effects on the phase structure
of QCD with an emphasis on the location of our CEP. Generally, there are various reasons
for such a study. First, the initial fireball created in a heavy-ion collision is of finite spatial
extent, which depends on the collision energy, centrality, and the size of the colliding
nuclei. For example, the pion freeze-out volume in Pb-Au collisions can be estimated
to about 1000-3000 fm? over a large collision-energy range [375], and from transport
models [376, 377], one can infer freeze-out volumes in Au-Au and Pb-Pb collision of
about 40-300 fm? [378]. Volume effects on fluctuations of conserved charges, which are
auspicious candidates for locating the (putative) CEP experimentally, may be considerable
and thus need to be thoroughly understood [97, 379, 380]. Second, the whole structure
of the QCD phase diagram becomes volume dependent for small enough volumes. At
zero and small chemical potential, lattice calculations provide ab-initio insights into
QCD. The corresponding simulations, however, are necessarily carried out in a finite
volume with (anti)periodic boundary conditions, and a thorough understanding of the
volume dependence of the results is mandatory. Finally, effects due to volume changes are
interesting for their own sake because they reflect the reaction of a system on one of its
external parameters.

In the following, we use the same DSE setup to determine the nonperturbative quark
and gluon propagators as in the preceding chapters, but we change the structure of the
underlying three-dimensional space: the up to now infinite three-dimensional volume is
made finite.?” In particular, we confine the system to a cubic volume and employ periodic
as well as antiperiodic boundary conditions. Even though there are no (anti)periodic
boundary conditions in a heavy-ion collision and the geometry is not cubic but rather
spheric (large centrality) or almond shaped (small centrality), we are confident to cover the
relevant physics resulting from a finite volume. Using DSEs for finite-volume studies has
two main advantages. First, one is able to study volume effects continuous from very small
to very large volumes, and at the same time, infinite-volume results are available without
the need of extrapolations. Second, the implementation of different boundary conditions

39 As we do not discuss vacuum results in this chapter, the term “finite volume” is always understood as
three-dimensional finite volume.
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is possible without great effort. The first DSE results in a finite volume were presented
in Refs. [216, 381] and led to several other works [254, 255, 382—-387]. By investigating
the truncation described in Section 3.1 in a finite volume, we continue previous studies
where the quenched version of our truncation scheme was employed [254, 255]. Other
DSE studies, albeit using simpler truncations, can be found in Refs. [339, 388-391], while
Refs. [392-399] discuss finite volume from an FRG point of view. The results presented
here are published in Ref. [100] and will also be discussed elsewhere in the future [270].

6.1 DSEs in a finite volume

The introduction of a finite, uniform, three-dimensional volume is analogous to the transition
from a theory formulated in vacuum to the corresponding one at nonzero temperature. As
discussed in Section 2.4, starting with the QCD action in vacuum, nonzero temperature 7
is introduced by compactifying the imaginary-time integration to the interval [0, 1/ T],

1/T
/cfQCD—>/ dX4/ ccﬁQCD- (61)
X 0 X

Finite volume is introduced by constraining the spatial integration to a proper subset of R3.
We use a cube of edge length L, which amounts to the replacement

/ iQCD_>/ iQCD- (62)
x xe[0,L]3

A more general formulation can be obtained by choosing different lengths in each direction,
i.e., the integration volume is the cuboid [0, Lyx] x [0, Ly] x [0, L;].** However, our
truncation has not been studied before in a finite volume, and we thus choose the cube,
Ly =Ly = L; = L, for the sake of simplicity. Since the integration domain is compact,
the three-momentum becomes discrete, too, in addition to the already discrete temporal
Matsubara frequencies in imaginary-time direction. Therefore, a generic momentum
integral with kernel K is replaced by sums over spatial modes:

fro- 5 Y ka ©3)
q

z€Z3

with ¢, = Z;;l “)le e;, where the integer vector z € Z3 labels the spatial modes, and
the Cartesian basis {e1, €2, e3} spans the three-dimensional Euclidean momentum space.
At this point, a simple yet crude approximation is to keep the continuous integration but

40 Other geometries are possible as well: see, e.g., Refs. [391, 400], where a spherical volume is used.
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endowed with an infrared cutoff, |g| > m/L; see, e.g., Refs. [388, 390, 401-403]. We,
however, strictly implement (6.3) and sum explicitly over all discrete momenta. While
the temporal Matsubara frequencies are fixed by the spin-statistics theorem—odd (even)
multiples of T for quarks (gluons)—there are no similar constraints for the spatial
directions. Although the kinematics of the quark self-energy implies periodic spatial
boundary conditions for the gluon, quarks are completely unconstrained. We choose either
periodic spatial boundary conditions (PBC) or antiperiodic spatial boundary conditions
(ABC). The corresponding spatial Matsubara modes read

2 Zi for PBC,
L_ -t {’ 6.4)

zi +1/2 for ABC.

Using the replacement (6.3) and discrete three-momenta throughout, it is in principle
straightforward to rewrite our DSEs for the quark and gluon propagators to account for
finite volume. However, before doing so, it is numerically beneficial to rearrange the
three summations in Eq. (6.3) such that they resemble a spherical coordinate system [381].
This is motivated by the fact that the quark and gluon dressing functions depend only on
the O(3)-invariant squared three-momentum, i.e., they are independent of directions in
momentum space. We thus write

1 1
3 Y Kigo) = I3 > K(gjm) (6.5)
Jj,m

z€Z3

where j labels the spheres with constant radius |g;|, and m = m( j ) denotes the multiplicity
of the individual momentum vectors on a given sphere j. The corresponding vectors are
denoted by ¢;,. A two-dimensional sketch for ABC is shown in Fig. 6.1, where spheres
correspond to circles and the vectors are indicated by black dots.

Analogous to the continuum, we have to introduce an ultraviolet cutoff Ayy to arrive at
a momentum grid of finite extent. Naively, one imposes the same cutoff in each Cartesian
momentum direction and sums over all spheres that are obtained after the rearrangement
according to Eq. (6.5). However, it turns out that this leads to so-called cubic artifacts
that affect the ultraviolet behavior of the dressing functions. These are caused by the
mismatch between the cubic geometry of the regularized (i.e., finite) momentum grid and
the O(3)-symmetric continuum at large momenta. We account for that by taking only
complete spheres in our summations into account and discard incomplete ones. A sphere
is complete if it does not receive additional vectors if the Cartesian cutoff is increased.
Thus, it follows that on each (sufficiently large) grid we have a large number of complete
spheres in the innermost region, while a rather large number of the outermost spheres
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6 Finite-volume effects on the phase diagram

Figure 6.1 Two-dimensional ABC momentum grid. Red, solid circles represent complete spheres
that are fully taken into account, while the blue, dashed one is incomplete and discarded in our
summations (see text for details). Figure adapted from Ref. [386].

are necessarily incomplete. As apparent from Fig. 6.1, taking only complete spheres
into account corresponds to “cutting the edges” of our momentum grid. This procedure
was used in earlier studies, too, and reduces the effect of cubic artifacts. Unsurprisingly,
(hyper)cubic artifacts are an issue on the lattice as well and several methods were developed
to eliminate them [404—407], where our edge cutting is similar to one of them.

Having the above considerations in mind, it is straightforward to present the quark and
gluon DSEs in a finite volume. Since the latter affects only the structure of the momentum
space, the structure of the propagators in the other spaces (Dirac, Lorentz, color, and flavor)
remains unchanged and is given as discussed in Section 2.3. With the external quark and
gluon momenta p = (wp, p;;) and k = (wg, k;;), respectively, the DSEs for the quark
and gluon propagators in a finite volume read

S:Hp) = So s (p) +Zr(p), (6.6)
Dyg (k) = Z3 Dg g (k) + T (K) + oo (k) . 6.7)
in complete analogy to infinite volume. The quark self-energy is given by
¥ _ o2 fund Z_zf T _ f
7(p) =¢°Cy PE ;ejz ]Xm: Due(p =@ Sr(@)T3(q.p),  (6.8)
a )

where ¢ = (wq. ¢jm), while the quark loop reads

Z4

2T
Mo(k) = =525 3 = 2 X TnSr@rd@ nsia-Hl. 69
f

3 ez j,m
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6.1 DSEs in a finite volume

The next steps to arrive at a closed system of equations are the very same as in infinite
volume, see Chapter 3, i.e., we do not change our truncation scheme and parameters for
the finite-volume calculations.

The changes due to finite volume naturally carry over to quantities that are obtained
from the propagators. For example, the quark condensate is given by

F0)r = ~NeZoZm, 75 Y0 3 T8, @)]. (6.10)

Ly€Z j,m

As in infinite volume, we use the inflection point of the subtracted quark condensate A ¢
[Eq. (2.69)] with respect to the temperature to define the pseudocritical chiral transition
temperature 7,(up). Some details about our finite-volume calculations are collected in
Appendix D.

Before we present our results for the propagators the phase diagram of QCD in a finite
volume, we discuss the finite-volume renormalization procedure because it is different
than in infinite volume. Since we take all discrete momentum vectors up to the ultraviolet
cutoff explicitly into account, large cutoff values like in the infinite-volume calculations
are numerically unfeasible, and we choose Ayy = 10GeV in a finite volume. As a
consequence of this necessarily rather small cutoff, we have to renormalize in a region that
is much closer to the nonperturbative infrared than to the perturbative ultraviolet. Since
box sizes of about 8 fm and larger have only a negligible effect on our results, L = 8 fm
can be regarded as infinite volume, and we proceed as follows. We renormalize our
dressed propagators at . = 8 fm and at the renormalization point { = (wyg, &) } T—50MeV?
|¢| = 8 GeV, to the corresponding dressed infinite-volume propagators:

F(& L =8fm) = F(&; L — o0), 6.11)

where Fe{Z,,Z I Cy, Ay, ... }. In other words, we fix the renormalization constants in
a large volume and keep them unchanged in order to study variations in L consistently.

Last, we would like to comment briefly on a technical detail. The momentum grid
corresponding to PBC contains the zero mode ¢ = 0. Because its inclusion leads to
obstacles in the self-energies and its proper implementation is a nontrivial task, we omit
the zero mode in this work, i.e., all PBC results are understood without the zero mode.
However, we have preliminary evidence that (the omission of) the zero-mode contribution
affects our results for L = 4 fm below the ten-percent level, and it seems that PBC results
with the zero mode closely resemble the ones for ABC [408]. The corresponding supportive
(but preliminary) results for 7. (L) can be found in Appendix D, and more details will be
discussed elsewhere in the future [270].
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Figure 6.2 Up-quark dressing functions 4, and B, with PBC (left) and the electric gluon dressing
function Z (right), all at L = 8 fm, compared to the infinite-volume results at 7 = 130 MeV and
vanishing chemical potential. We show only the zeroth Matsubara frequency.

6.2 Quark and gluon propagators

In the following, we present our results for the quark and gluon propagators in a finite
volume and begin with their large-volume behavior.*' As already mentioned above, we
find that a box size of about 8 fm and larger leaves our results qualitatively unchanged.
Thus, we regard L = 8 fm as infinite volume, and this size is the largest considered here.
In Fig. 6.2, we show the up-quark dressing functions A, and By (left diagram; blue circles
and red squares) with PBC together with the electric gluon dressing function Z) (right
diagram; green diamonds) at L = 8fm, T = 130 MeV, and ug = 0 as functions of the
three-momentum for the zeroth Matsubara frequency. Additionally, the corresponding
infinite-volume results are shown for comparison. We find that the infinite-volume limit,
which should be reached for a sufficiently large L, is satisfactorily fulfilled. However, if one
takes a closer look, the infinite-volume limit of our finite-volume calculation is not reached
perfectly. While the vector dressing function A, agrees well with the infinite-volume
result (the same holds for C, which is not shown), the scalar dressing function By does
not: it overshoots its infinite-volume counterpart in the infrared. A similar issue can be
observed with the electric gluon dressing function, where the infinite-volume counterpart
is underestimated in the mid-momentum region. The same holds for the magnetic gluon

41 Recall that we use a Pauli—Villars regulator in the infinite-volume quark DSE. However, in a finite volume
without any improvement, the small ultraviolet cutoff prevents the use of such a regulator. Thus, the
results presented in Section 6.2 are obtained with a quark DSE that is regularized with a sharp O(4)
regularization scale, q2 < (Areg)z, which is simply given by the ultraviolet cutoff, Areg = Ayy. Since
dy is regularization dependent, see Section 3.1, we use an adapted value of d; = 8.26 GeV? for all
calculations with a hard O(4) regularization scale.
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6.2 Quark and gluon propagators
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Figure 6.3 Up-quark dressing functions Cy, Ay, and B, (upper left, upper right, and lower center,
respectively) with PBC for different box sizes at 7 = 130 MeV and ug = 0. We show only the
zeroth Matsubara frequency, and data points are connected by lines to guide the eye.

dressing function Z . We find that these behaviors are caused by the rather small ultraviolet
cutoff, i.e., they are finite-size artifacts. Besides that these spoil a clean infinite-volume
limit, finite-size effects are particularly noticeable in the quark condensate, resulting in
pronounced numerical noise; see Fig. D.1 and the corresponding discussion on how we
determine 7 in a finite volume. Similar cutoft effects were already noted in calculations
with the quenched version of our truncation scheme [255]. However, since their influence
seems not overly severe at first sight, we keep our setup unchanged for now but discuss a
proper treatment soon in the upcoming Section 6.3. All these observations are qualitatively
similar at other temperatures and chemical potentials, too.

After the large-volume results, we proceed with the impact of a varying box size on
the dressing functions. In Fig. 6.3, we display the up-quark dressing functions Cy, Ay,
and B, (upper left, upper right, and lower center, respectively) for different box sizes at
T = 130 MeV and vanishing chemical potential. Generally, we observe large volume
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Figure 6.4 Gluon dressing functions Z, and Z (left and right, respectively) for different box
sizesat T = 130 MeV and up = 0. We show only the zeroth Matsubara frequency, and data points
are connected by lines to guide the eye.

effects in the infrared, while the finite-volume results agree with the infinite-volume ones at
large momenta p2 > 10 GeV? for all considered box sizes. This is no surprise because the
momentum spheres of our spherical momentum summation [Eq. (6.5)] become (extremely)
dense as their radii increase, i.e., the discrete momentum vectors are virtually continuous
for sufficiently large magnitudes, and the results thus should agree with the infinite-volume
calculation. On the other hand in the infrared, at small L the dressing functions are
significantly smaller than their L — oo counterparts and approach the infinite-volume
limit from below as the box size increases. Furthermore, this nicely illustrates the close
relationship between nonzero temperature and finite volume: to wit, the former can be seen
as an inverse length, and both determine the extent of the four-volume [0, 1/ 7] x [0, L]3.
From the behavior of the scalar dressing function By, we see that the amount of chiral
symmetry breaking decreases with decreasing box size. Phrased differently, a decreasing
finite volume acts chirally restoring.

This behavior transfers onto the gluon, which is shown for different box sizes at
T = 130 MeV and vanishing chemical potential in Fig. 6.4. In our truncation scheme,
its volume dependence is solely triggered by the quark loop since we have only the
continuum-extrapolated quenched gluon from the lattice at our disposal. This is of course
an approximation. However, lattice results suggest that it is an acceptable one for the
volumes covered in this work [256, 409—411]. We observe that both the magnetic and
electric gluon dressing functions are less affected by finite volume as compared to the
quark dressing functions. As the box size decreases, the quarks in the quark loop become
lighter and lighter, and the resulting effect on the gluon dressing functions is similar as for
increasing temperature in infinite volume, i.e., a reduction of both Z and Z) at infrared
momenta k2 < 5GeV?.
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6.3 Taming the finite-size effects

6.3 Taming the finite-size effects

As mentioned in the previous section, finite-size artifacts prevent a clean infinite-volume
limit of the dressing functions. In order to obtain consistent results for and be able to make
reliable statements about the phase structure of QCD in a finite volume, we have to treat
(and hence remove) them properly.

In general, the spherical momentum summation according to Eq. (6.5) has two major
drawbacks:

(i) the larger the grid the more dense are the complete outer spheres and the more
points are on every one of these. Since the dressing functions run logarithmically as
functions of large squared momenta in the ultraviolet, they do not change much from
outer sphere to outer sphere. Thus, a lot of numerical effort is spent to integrate/sum
over an almost constant function;

(ii) the necessarily small ultraviolet cutoff in order to keep the numerical effort feasible
results in cubic artifacts, which should not be neglected. Furthermore, the renormal-
ization point, which is even smaller than the already small ultraviolet cutoff, is too
close to the nonperturbative infrared where medium and finite-volume effects are
important. As a consequence, the renormalization constants are contaminated by
medium and finite-volume artifacts.

These drawbacks and the related issues are drastically mitigated by means of the following
procedure. We consider discrete momenta with the spherical summation up to some
matching cutoff Ay and replace the spheres with radii between Ay, < |g| < Ayy with
a continuous momentum integral. Consequently, the original replacement, Eq. (6.3), is
modified according to

|qz|<Avol
1
][K(q)—>—L3 > K(qz)+][ K(9)O(g| — Avol) - (6.12)
q z€Z3 q

This modification, called “ultraviolet improvement” or simply “improvement” in the
following, allows for a much larger ultraviolet cutoff that should alleviate finite-size
artifacts caused by a potentially too small cutoff. In addition, the improvement enables
us to renormalize exactly as in the continuum, i.e., with a Pauli—Villars regulator in the
quark DSE and a renormalization point located deep in the perturbative ultraviolet where
medium and finite-volume effects are minute. Our results are independent of A as long
it is larger than any other typical scale of the system like temperature, chemical potential,
and quark masses. Recently, a similar treatment has been used in Ref. [391] within a
simpler truncation of the DSEs.
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6 Finite-volume effects on the phase diagram

With both the unimproved, Eq. (6.3), and the improved finite-volume setup as described
above, Eq. (6.12), at hand, we now discuss our results for the QCD phase diagram from
both approaches and compare them systematically.

6.4 Results for the phase structure of QCD

T, at vanishing chemical potential

In Fig. 6.5, we display the pseudocritical chiral transition temperature at vanishing chemical
potential for ABC and PBC for the quarks obtained from the unimproved (left) and improved
(right) framework. For comparison, the infinite-volume result is indicated by a black, dotted
line in both plots. Comparing both diagrams, we clearly see the effect of the ultraviolet
improvement at large volumes. In the unimproved case, our results for both ABC and
PBC suffer from cubic artifacts and overshoot the infinite-volume line. In contrast, the
improved results approach the infinite-volume results smoothly from below, and we infer
that volumes L3 > (8 fm)?> are very close to infinite volume. In order to validate that, we
also performed calculations at even larger box sizes. The results are indeed very similar
to the infinite-volume ones and agree on the permille level. Thus, we did not include
them in the plot. At smaller box sizes, T, decreases monotonously. While the decrease
is rather moderate down to L =~ 5 fm, volume effects become much more pronounced
for even smaller volumes. For example, at L. = 3 fm and PBC we find that 7 is almost
halved as compared to infinite volume. Furthermore, while the relative difference between
improved and unimproved results for ABC and PBC is almost the same down to L = 4 fm,
the improved 7, at L = 3fm is more than ten percent smaller than the unimproved
one. Therefore, the proper removal of cubic artifacts is important for both small and
large volumes. In general, we observe that quarks with PBC are much more sensitive to
finite-volume effects across all investigated box sizes. This is most likely caused by the
lower infrared cutoff introduced by the discrete momentum grid. From Eq. (6.4), the ratio
of the smallest possible magnitude g, of the discretized momentum vectors between
ABC and PBC (recall, without the zero mode) is given by qrﬁ‘ﬁc/ anﬁc = \/3/_4 ~ 0.87.

Crossover line and CEP

The impact of a finite volume on the phase structure of QCD is summarized in Fig. 6.6. In
the upper (lower) row, we show the phase diagrams for ABC (PBC) for the quarks, and the
infinite-volume crossover line including the CEP is added, too. The diagrams on the left
hand side correspond to results without ultraviolet improvement while the diagrams on
the right hand side are obtained with ultraviolet improvement. Similar to the results for
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Figure 6.5 Finite-volume effects without (left) and with improvement (right): box-size depen-
dence of the pseudocritical chiral transition temperature for ABC and PBC at ug = 0. The black,
dotted line is the infinite-volume result. Data points are connected to guide the eye.

T. at zero chemical potential, we note the drastic effects of the improvement. Whereas
the CEPs of the series of larger and larger box sizes do not approach the infinite-volume
CEP without improvement, they do so after the improvement is implemented. Both the
crossover line and the CEP at L = 8 fm using the improved setup are very close to the
infinite-volume limit, and the remaining discrepancy is within the numerical error of the
L — oo calculation. Furthermore, the volume-dependent shift of the crossover line and
CEP for increasing box size approach the infinite-volume result uniformly. Thus, while
the overall qualitative behavior with and without improvement is the same, quantitative
aspects can only be discussed in the improved framework.

For ABC and PBC, both phase diagrams show a similar trend when the box size is
decreased: the CEP moves toward smaller temperatures and larger chemical potentials.
More precisely, we find that the increase of its location in pp direction is larger than the
decrease in T direction, leading to a smaller curvature of the crossover line. Overall,
the temperature dependence of the crossover line and CEP is analogous to that of the
pseudocritical chiral transition temperature at vanishing chemical potential. Results for
box sizes L Z 5 fm are quite similar to one another, while those for smaller volumes differ
more and more as L becomes smaller. Again, finite-volume effects are significantly more
distinct for PBC. In particular, the improved result for L = 3 fm shows a very flat crossover
line with a CEP at (ug, T') ~ (1070, 40) MeV.

The volume dependence of the location of the CEP was investigated also in an FRG
treatment within a two-flavor quark-meson model [397]. In that work, the location of the
CEP and its shift with L has been calculated for PBC in the range L = 4—-10 fm. Compared
to our DSE calculation, the infinite-volume CEP of the FRG analysis is generally located at
much higher chemical potential and lower temperature. However, a qualitative comparison
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Figure 6.6 Finite-volume effects without (left) and with improvement (right): crossover lines and
CEPs (symbols) for different box sizes. The upper (lower) phase diagrams are with ABC (PBC) for
the quarks. The improved results for L € {3 fm, 4 fm, 5 fm} were calculated by J. Bernhardt during
the final assembling of this work.

of the results of Ref. [397] with the ones presented here yields a satisfying agreement
between the present DSE and the FRG findings. Specifically, both the L-dependent relative
shift of the CEP and the onset of finite-volume effects below L = 8 fm coincide well.
However, below L = 4 fm, the CEP disappeared completely in the FRG framework while
we are still able to find one.

Curvature of the crossover line

Finally, we discuss the volume dependence of the curvature «» of the crossover line, which
is obtained as in infinite volume [see Eq. (3.20)]. Our results obtained with the improved
framework are shown in Fig. 6.7. As already apparent from the phase diagrams, see
Fig. 6.6, the curvature is smaller than the infinite-volume result and decreases for smaller
box sizes. Overall, this flattening resembles the volume dependence of the pseudocritical
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Figure 6.7 Improved finite volume: L dependence of the curvature of the crossover line for ABC
and PBC for the quarks. Data points are connected by lines to guide the eye. Again, the results for
L € {3fm, 4fm, 5 fm} were calculated by J. Bernhardt during the final assembling of this work.

chiral transition temperature: the results for L = 8§ fm are closest to the infinite-volume
value and drop monotonously with decreasing box size for both boundary conditions.
Compared to the pseudocritical chiral transition temperatures shown in Fig. 6.5, we find
that the curvature displays a somewhat stronger reaction to finite volume. Whereas the
T.’s are already quite close to the infinite-volume result for L 2 6 fm, the curvature for
both ABC and PBC is still off by more than ten percent. Only for very large box sizes of
L =z 8fm, we observe agreement with the infinite-volume limit within errors. Here, it is
important to note that the fit is quite sensitive to details in the input data and choices of fit
intervals, such that «, can only be extracted within a margin of several percent.

The curvature for PBC for the quarks between L = 2fm and L = 5fm was studied
with FRG techniques in Ref. [396], again within a two-flavor quark-meson model. Above
L =~ 3fm, there is qualitative agreement with our results: the curvature increases with
L. However, for smaller box sizes an interesting discrepancy occurs. In our case, we
find a monotonic decrease for smaller and smaller box sizes, whereas the FRG results at
physical pion masses show an increase of the curvature when L gets smaller than L &~ 3 fm,
resulting in a nonmonotonic behavior with L. Even though this increase occurs for box
sizes lower than we have investigated here, the sharp drop of x, for L = 3 fm appears
to contradict such a scenario in our calculations. The reason for this deviation might be
rooted in the PBC zero mode that is attributed to be the driving force in the small-volume
limit of Ref. [396] but is discarded in our case. However, our preliminary PBC results
with the zero mode (see the comment on the bottom of page 91), which seem to closely
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resemble ABC results, suggest that even the inclusion of the PBC zero mode would not
result in a nonmonotonic behavior of the curvature with decreasing box size. One has to
keep in mind, though, that Ref. [396] employs a two-flavor quark-meson model in local
potential approximation, and the nonmonotonous behavior of x, for small L might be an
approximation artifact. This is subject of further investigations [412], but at present, our
results for the small-L behavior of the curvature presumably disagree with the FRG results
of Ref. [396].

6.5 Summary

In this last chapter before the epilogue, we investigated the effects of a finite, uniform,
three-dimensional cubic volume with edge length L and (anti) periodic boundary conditions
on the phase structure of QCD. To this end, we formulated and solved the DSE setup
presented in Section 3.1 in that finite cubic volume. This is a major step forward since
finite-volume studies of our truncation scheme were so far performed only in its quenched
version. We found that finite volume acts chirally restoring as L decreases. Generally,
significant volume effects have been observed for box sizes L < 5fm, where sizable
shifts of the crossover line and CEP occurred: the smaller the volume the smaller the
pseudocritical chiral transition temperature in conjunction with a shift of the CEP toward
larger chemical potential. Volumes as large as L3 > (8 fm)3 are very close to infinite
volume. Furthermore, we demonstrated that the naive implementation of finite volume is
plagued by finite-size artifacts that spoil a clean infinite-volume limit. Therefore, it is vital
to properly remove these artifacts, which we did by means of a continuous-momentum
approximation for large momentum magnitudes, in order to make reliable statements about
finite-volume effects.
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7 Epilogue

In this thesis, we investigated QCD at nonzero temperature and chemical potential using the
nonperturbative functional framework of DSEs. We employed a sophisticated combination
of lattice results for pure YM theory and a truncated set of DSEs for the quark and gluon
propagators of (2 + 1)-flavor QCD, which has been studied extensively in the past [79]. In
particular, we used an ansatz for the quark-gluon vertex that is inspired by the STI for the
full vertex and provides the correct logarithmic running of the propagators in the ultraviolet
momentum region. Furthermore, the gluonic sector and the backcoupling of the quarks
onto same has been taken explicitly into account by using fits to temperature-dependent
lattice data for the quenched gluon propagator supplemented with an explicit calculation of
the quark-loop contribution to the gluon self-energy, thereby unquenching the gluon. As a
result, we got access to the fully nonperturbative quark and unquenched gluon propagators
at (in principle) arbitrary temperature and chemical potential. The free parameters of our
truncation scheme, the infrared strength of the vertex and the quark masses, have been
fitted to reproduce the pseudocritical chiral transition temperature at vanishing chemical
potential as obtained in recent lattice-QCD calculations.

First, we studied the phase structure of QCD by monitoring the order parameter for
chiral symmetry restoration, the subtracted quark condensate, as a function of temperature
and chemical potential. Along the temperature axis at vanishing chemical potential, our
results for the subtracted condensate as a function of temperature agreed quantitatively with
corresponding lattice results, and displayed the typical behavior of an analytic crossover
from the hadronic phase to the quark-gluon plasma. This has been a nontrivial output
of our calculation because we only fixed the value of the transition temperature but not
the steepness of the chiral transition. At nonvanishing chemical potential, the crossover
transition became steeper with increasing chemical potential and eventually terminated in
a second-order CEP at (ug, T) ~ (495, 119) MeV. In light of the current state-of-the-art
functional calculations of this work, the FRG-assisted DSE framework of Refs. [248, 249],
and the FRG study of Ref. [247], we are inclined to assume a systematic error of (at least)
around twenty percent for the CEP results. In order to properly quantify and reduce this
error, extended DSE studies and systematic in-depth comparisons with other truncations
within DSEs and the FRG are necessary tasks for future works, in particular to pave the
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way for a quantitative prediction from functional methods regarding the location of the
CEP. Excitingly, heavy-ion collision experiments at RHIC, FAIR, and NICA will be able
to probe the corresponding region of the QCD phase diagram—making reliable theoretical
predictions vital.

Second, in order to make contact with these experiments, we computed quark and baryon
number fluctuations and ratios of the latter across the QCD phase diagram. We found
that the nonperturbative evaluation of the quark number density, our starting point for
the fluctuations, was initially not well-defined, i.e., divergent, necessitating a subtraction
scheme to remove the divergence. With a regularized quark number density at hand, we
computed the quark number susceptibility and found satisfying agreement with results
from the lattice. In particular, we calculated the skewness and kurtosis ratios, which
are a direct link to experiment, along our crossover line up to the CEP. Furthermore, we
scanned lines of equal temperature distance below the crossover. For chemical potentials
us < 250MeV, our results agreed with recent data from the STAR collaboration, which
was taken during the first phase of the Beam Energy Scan program at RHIC. For larger
values of the chemical potential, we obtained qualitative and quantitative differences when
we approached the CEP on our crossover line. However, qualitative agreement (at least to
some extent) has been obtained assuming that the crossover transition and the freeze-out
line separate at larger chemical potential. A major caveat in this interpretation is the wrong
universality class of our CEP—we found mean-field scaling, while the CEP is expected to
be in the Z, universality class. A task for future work is to validate our expectation that
the inclusion of explicit pion and sigma-meson contributions to the quark-gluon vertex,
which has been achieved recently in an exploratory fashion [102, 263], put our CEP in
the correct universality class of the three-dimensional Ising model. Furthermore, at high
temperatures, our fluctuations saturate well below the Stefan—Boltzmann limit. This issue
can be traced back to missing tensor structures in our vertex ansatz which react strongly to
the restoration of chiral symmetry around and above the pseudocritical chiral transition
temperature. In the long term, the inclusion of these are inevitable.

Third, we studied thermodynamics with our DSE framework. We proposed a method to
compute the entropy density solely from the quark condensate; a subsequent integration
yields the pressure. The key feature of the method is that no approximation is used during
its derivation, and only the quark condensate is needed as input. This is particularly
useful for DSEs, where accessing the thermodynamic potential is extremely difficult and
has been achieved so far only within simple truncations. Even then, the proper removal
of the quartic divergence contained in the potential is a nontrivial task. Our proposed
method provides a truncation-independent way to compute thermodynamic quantities
as soon as one gets hold of the quark condensate. That the method works effectively
and yields reliable results was shown using a NJL model. Then, we used condensate
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data obtained from our DSE setup and computed the pressure, entropy density, energy
density, and interaction measure from zero chemical potential up to the CEP as functions
of temperature. These thermodynamic results are, to our knowledge, the first ones obtained
from DSEs with a beyond-rainbow-ladder truncation—emphasizing the usefulness of the
presented method. At vanishing chemical potential, our thermodynamic results agreed well
with lattice QCD for temperatures below and around the pseudocritical chiral transition
temperature. However, at high temperatures, we observed an unphysical decrease of
the entropy density with temperature. This erroneous behavior is again rooted in the
vertex ansatz. Together with the high-temperature artifacts seen in the fluctuations, this
emphasizes that an elaborate quark-gluon vertex is needed for proper thermodynamics
at high temperatures and/or densities. In particular, tensor structures that react strongly
to the restoration of chiral symmetry are of crucial importance. Here, we stress that
our proposed method is independent of such details and applicable to any truncation
regardless how complicated the vertex may look like. Boldly said, our method significantly
extends the boundaries of what the DSE approach is generally capable of in terms of
thermodynamics.

Finally, we also studied the impact of a finite, uniform, three-dimensional cubic volume
with equal edge lengths L and (anti)periodic boundary conditions for the quarks on
the phase diagram of QCD. We extracted the volume dependence of the chiral order
parameter and found only moderate effects of the order of ten MeV and smaller for box
sizes L 2 5fm. Only for very small volumes sizable shifts of the CEP and the associated
crossover line occurred. These shifts were monotonous: smaller volumes corresponded
to smaller transition temperatures and the CEP shifted toward larger chemical potential.
At least two extensions of the current framework are necessary in the future. First, one
needs to adapt the implementation of the finite-volume boundary conditions to the actual
physics case—there are no (anti) periodic boundary conditions when two nuclei collide.
The situation rather resembles the one of a sphere (large centrality) or an almond-shaped
volume (small centrality) with a fuzzy boundary. For example, this situation may be
better represented in a calculation in a spherical volume rather than a cube. Second, one
needs to address the volume dependence of quantities such as fluctuations of conserved
charges. The implicit volume dependence of ratios of fluctuations, which we can study
continuously from small to large volumes, and the phenomenological implications are
particularly interesting. Work in this direction within our framework is in progress.
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A Notation and conventions

A.1 Natural units

Throughout this work, we use natural units:

where %, ¢, and kg denote Planck’s reduced constant, the speed of light, and the Boltzmann
constant, respectively. The only remaining unit is energy given in electron volts (eV). For
example, the SI units meter (m) and kelvin (K) for length and temperature are related to
the energy via I m & 5.1 x 106eV ! and 1 K ~ 8.6 x 1075 &V.

A.2 Euclidean space-time

We work in four-dimensional Euclidean space-time. The metric is given by

8vo — Svo (A.2)
with the Kronecker delta
0 ifv#o,
Sve = _ (A.3)
1 ifv=o.

The scalar product of two four-vectors a and b thus reads
a-b=%6saybs =ayb, =asbs +a-b. (A.4)

A distinction between co- and contravariant indices is not necessary, a,, = a". In terms
of its components, a four-vector is written as @ = (a4, a) emphasizing the Euclidean
space-time by using the index 4 for the first component. Boldface letters denote usual
three-vectors in R3. Furthermore, as already employed in (A.4), we use the Einstein
summation convention: one has to sum over repeated free indices (with appropriate limits).

For example, the expression &, ay, by is to be understood as Zﬁ =1 0voavbg.
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A Notation and conventions

The gamma matrices obey

s Vel = Yw¥o + YoVv = 28v0 - (A.5)

It follows that y2 = 1, and we can choose the gamma matrices to be Hermitian, y, = )/,jr .
Furthermore, the Feynman slash notation is used: p = y, p.

For the sake of brevity, integrals in coordinate and momentum space are written in an

abbreviated form, viz.,
4 d*p
[ =[x =52 (A6)
x D (2m)

and analogously in three dimensions,

d3
L:/@L ﬁ: o (A7)

One-dimensional integrations and path integrals, however, are unaffected. Their measure
and possible limits are always written explicitly.

From Minkowski to Euclidean space-time

In the following, we briefly sketch how to get from Minkowski to Euclidean space-time.
For the former we use the metric gy = diag(1, —1, —1, —1) such that x§4 = x(z) — x?2 for
a spatial four-vector xy; = (xo, x), where the subscript M indicates Minkowski space-time.
At heart of the transition to Euclidean space-time lies the imaginary-time formalism, where
one analytically continues from real to imaginary times. This is the well-known Wick
rotation performed already on the level of the Lagrangian and generating functional rather
than for single Feynman diagrams [413—-415]. We would like to emphasize that it is not just
a simple substitution of integration variables but an actual deformation of the integration

contour in the complex x¢ plane.

For the imaginary-time formalism, we consider a function /(xg) and the contours shown
in Fig. A.1. Assuming % can be analytically continued to complex times and is free of
singularities in the covered region of the complex xo-plane,

o=¢ h (A8)
Ci+..+¢€,4

holds due to Cauchy’s theorem. In the limit R — oo and given that / falls off sufficiently
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A.2 Euclidean space-time

Im xo

- iR
&

16,
T } Re X()

—R €4
y
—iR Cs

Figure A.1 Integration contours €; (blue) for the imaginary-time formalism.

fast for large |x¢|, the contributions from the arcs €; and €3 vanish and we arrive at

o o0
/ dX() ]’l(JC()) =—i / dX4 h(—iX4) , (A.9)
—00 —0Q0
where the analytic continuation x9 = —ix4 with x4 € R becomes apparent. It follows
that
X = x5 —x% = —(x7 +x?), (A.10)

where the right-hand side is the negative norm of the four-vector x; = (x4, x) in Euclidean
space-time (hence the subscript E) with metric g¢% = §,5. As a consequence, we have to
define suitable continuations for general four-vectors ay;, gamma matrices yy;, and tensors
Ty° . We follow Ref. [84] and use*?

0 _ . 4 VN | 0 _ Jo_ .0
ay = —ldag, ay = dg s YM = VE M= 1Vg >
. . (A.11)
00 __ 44 0j _  .4j Jjo _  .oj4 jk _ 7Jj
Ty =-Tg", TM ——1TE , TM ——1TE , TM —TE .

The choice for the gamma matrices preserves the meaning of the Feynman slash as an
inner product of a vector containing gamma matrices with an ordinary four-vector. These

rules imply
aM-sz—aE'bE, 8M-aM= BE-aE (A.lZ)

42 Note that we have some freedom to choose signs here. Therefore, Euclidean conventions tend to differ
from author to author and one can find several version in the literature.
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and
{ve.v2} = 28ve gy = —idg v =idg. (A.13)

Thus, if we start in Minkowski space with the QCD action

— 1
Iocpm = / (Wf/‘[ (iPm — m)ap Wﬁ - ZFK/ZI,W Fﬁw) , (A.14)
XM
where DYy = dy, —igAfy @ and F{"? = oy, A3Y — o0y Av + gf“bcAllz,I” AP, we find

. . — 1
IQCD,M = IIQCD,E =1 / (W}(Ex (lpE + m)aﬂ wg + ZF}?VGFF?VU) (AIS)

XE
with DY = 0} +igAg"t% and F#V7 = 0L AR° — 0 ALY — gf“bCAg"AE”. It follows that
the exponential in the partition function becomes damping:

eiIQCD,M — e—IQCD,E . (A16)

Since we work exclusively in Euclidean space-time throughout this thesis, the subscript
E is only used in this subsection and omitted everywhere else. Finally, we would like to
mention that for a rigorous mathematical treatment one has to resort to axiomatic quantum
field theory. Starting in Euclidean space, the questions whether (i) the analytic continuation
back to real times is well-defined; (ii) the Euclidean formulation is uniquely related to the
theory in Minkowski space are both governed by the Osterwalder—Schrader axioms [416].
A detailed discussion about Wick rotation of spinors and its subtleties can be found in
Ref. [417] and references therein.

A.3 Fourier transform

The transition from Euclidean coordinate to momentum space is accomplished by the
Fourier transform. We use

h(p) :/ e P h(x), h(x) :][ e'?* h(p). (A.17)
X p

From these conventions, it follows that the integral representations of the delta function in
coordinate and momentum space are given by

§®(x) = ][ P 2n)*s@(p) = / e TP (A.18)
p X
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A.3 Fourier transform

Lk

q% \\p

Figure A.2 Momentum routing for the dressed quark-gluon vertex: k and g are incoming, while
p is outgoing. Momentum conservation implies that k = p — g.

As usual, we distinguish a function from its Fourier transform solely by the appearing
argument rather than introducing a special notation. Note that the signs of the exponents
in Eq. (A.17) are subject to change, especially for multidimensional Fourier transforms,
depending on the choice whether a momentum is incoming or outgoing.

In particular, for propagators we choose one momentum incoming and the other one

outgoing. Thus, with p incoming, p’ outgoing, and G any of the QCD propagators, the
Fourier transform of the latter is given by

G(p.p') 2/ e P P Y G(x,x'), (A.19)
x,x’
which implies the Fourier representation
Glx,x') = ][ P e P G(p, p') (A.20)
p,p’

of the coordinate-space propagator. In homogeneous matter, the propagators depend only
on relative distances, G(x, x’) = G(x — x’), and are thus diagonal in momentum space:

G(p.p') = / e T P G(x —x')
x,x/ (A21)

= 2n)*sP(p-pHG(p').

For the quark-gluon vertex, we choose the gluon momentum k and the quark momentum g
incoming, while the other quark momentum p is outgoing (see Fig. A.2), i.e.,

gFf}’aﬂ (k,q,p) = / ] o—ikx o—igry iz grg,aﬂ (x,9,7). (A.22)
x’y!

Moreover, momentum conservation allows for a reduced vertex I'f 8 (¢, p) defined via

T ypk.q. p) =ig@n)*8W(k + g — p)TE 15(q. p) . (A.23)
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A Notation and conventions

As for the bare propagators, the bare quark-gluon vertex is obtained from Eq. (2.35) for

Iipp=1 SED and vanishing macroscopic fields:

82 180p @]
B (2)8Wa (1) 8AL(x) o0

=ig(Wt)apd@P(x — 18P (x —2),

gr Pk y,2) =

v,af

and for the reduced bare vertex, we get the expected result

r%4q. p) = (1T¥)ap

known from perturbation theory.
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B Path integral over a field derivative

Here, we prove Eq. (2.37) on which the DSE formalism is based. For simplicity, we
consider an uncharged scalar field ¢ with action / [¢] and partition function

2171 = [ Dyexp (—Iw] + / J(X)@(X)) | (B.1)

We have to show that

8
0= /i)(p 500) exp (—I[(p] +/x J(x)fp(x)) , (B.2)

and the necessary assumption to do so is that the path-integral measure is invariant under
infinitesimal translations ¢ — ¢ + nh, where & is an arbitrary function and n > 0. We
can therefore write

zs) = | o@<pe><p(—1[<0+nh]+ [ sewee+a |

X X

(*)

J(x)h(x)) . (B.3)

A Taylor expansion with respect to n yields
(= exp (=111 + [ Tw0)
X

8
+7 fy h(y) (—% + J(y)) exp (—1[(p] +/x J(x)(p(x)) (B.4)

+03%),

and from Eq. (B.3) thus follows

_ _bily) (.
0= [ 1) [ Do (=18 + 100 exo (<1101 + [ Iwp) o

+0().
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B Path integral over a field derivative

Since £ is arbitrary and 7 infinitesimal, we deduce

B 510¢]
0= [ 04 (_W T J(y)) exp (—fm i / J(x)«)(x))

8
= / Dy 500 exp (—I[QD] + /x J(x)(p(x)) )

which is the desired result.

(B.6)
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C Derivation of the quark DSE

Since the quark propagator is the central object in this work, we shall derive its DSE
using the recipe given below Eq. (2.38). The quark DSE is obtained by initially choosing
®; = Wy (x) and ¢; = Y (x), followed by a derivative with respect to Wg(y). Thus, we
find

STp[® 8

§Wg(y)8Wa(x)  8Wa(¥)

[(3 + m) g5 Ws(x)
(C.1)

. dWs(x)
a AL (X)W .
+ig(Ywt)as ( p () Ws(x) + 572 (x)
The derivative 8/3Wg(y) on the right-hand side is most conveniently carried out by
rewriting all macroscopic fields as derivatives of W [Eq. (2.27)] and using the functional
chain rule

8§ [ 8hiz) 8 [ SCm@ 8 )
8Up(y)  Jo 8Wp(1)8Ji(z)  Jz 8Wp(¥)8Pi(2) 8Ji(2) '
which yields the intermediate result
8Tipi[®] 82T pi[ D] @+ m) WJ]
B (1)8Wa(x)  Jz BWp()8%;i(2) “08J5(2) 875 (x)
, . W] SW[J]
T80T s (wi (8¢ () 575 () €3

SWIJ]  82W[J] SWI[J]
8j4(x) 8Ji(2)87s(x) ~ 8Ji(2)87M5(x) 85 (x) ) |
Now, since all necessary derivatives are carried out, we set the sources to zero in order

to get the physical correlation functions. The only nonvanishing contribution from the
chain rule is ®; = W,, which entails J; = .. Identifying the dressed and bare quark
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C Derivation of the quark DSE

propagators [Eqgs. (2.31) and (2.33)], we find

Sap (x.7) = Sy kg (o)) + 18 (1T as / S (2 ) (A4 Y (0) Tro(2) L2

(C4)

Next, we use the decomposition (2.36) of the connected two-quark-one-gluon correlation

function (Aﬁ (20) Vs () Vre (Z))(Ci; 0 into propagators and the quark-gluon vertex to arrive
at the quark DSE in coordinate space:

S (X 9) = Sg (%, ¥) + Zap(x, ), (C5)

where the self-energy is given by

Zapr.9) = —ig?(uias [ D) S5 )Ty 0. (€O
x/’ y/

The remaining tasks are to disentangle the index structure, Fourier transform the quark

DSE to get its momentum-space version, and introduce renormalization constants at the

appropriate places [see Eqs. (2.17) and (2.18)] to arrive at the DSE for the renormalized

quark propagator.

The index structure of Egs. (C.5) and (C.6) is resolved as follows. First, there is a
separate DSE for each quark flavor f. Second, the quark propagator is diagonal in color
space, i.e., the color structure of both the bare and dressed quark propagator is, in matrix
notation, lo1or. With Dﬁg = 84pDyo and FS, wp = (z%T'y)qp, the color structure of the
quark self-energy is given by t%t% = C;““d Leolor With sz”nd = (N2 —1)/2N, being the
second-order Casimir factor in the fundamental representation of SU(NC)COk,r.43 Third, the
structure in Dirac space is not resolved explicitly to avoid a cluttered notation. After taking
the color trace and performing the Fourier transform (see Section A.3 for our conventions),

the DSE for the renormalized dressed quark propagator in momentum space is given by

S (p.p') =S s (p. P+ 2r(p. D), (C.7)

which is now a Dirac-algebra valued equation only. The inverse bare quark propagator
reads

Sop(p.p') = 20)*8W(p—p") S5 (p) (C.8)
with
So(p') = Z4 (ip + Zm, my). (C.9)

43 This simple flavor and color structure is sufficient for most applications, including this work. For example,
color-superconducting phases exhibit a nontrivial flavor-color structure [238, 242].
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C Derivation of the quark DSE

where my is the renormalized current quark mass, and the self-energy reads
s (p.p) = ~ig? ;"™ 2} ][ Do (p = 4.7)yv Sy (@.)T (r.5.p") . (C.10)
q.1,s

The quark DSE given in Eq. (C.7) allows for different in- and outgoing momenta, p # p’,
and the momentum arguments of the dressed quark-gluon vertex in the self-energy are
unconstrained. In this work, however, we consider homogeneous, i.e., translationally
invariant matter where, in coordinate space, all propagators depend only on the relative
distance x — x’ but not on the two space-time points x and x’ independently.** As a
consequence, the propagators are diagonal in momentum space [Eq. (A.21)] and momentum
conservation holds at the vertices. This allows for the definition of a reduced vertex
Fg (s, p") according to Eq. (A.23), and we eventually find the homogeneous quark DSE in
momentum space:

S (p) = S5 s () + 5 (p) (C.11)

with the self-energy

f
7z
B () = £ CJ 2 ][ Doo ()7 Sy @) T (q. p). C.12)
3 q

where k = p — g denotes the gluon momentum, which follows from momentum conserva-
tion. Furthermore, we used Z lf; =7 { / Z3, which results from the nonrenormalization of
the ghost-gluon vertex in Landau gauge [103, 137] that allows us to choose Z; = 1.

44 A study of inhomogeneous phases within the DSE framework can be found in Ref. [243].
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D Explicit expressions and technical remarks

D.1 Infinite-volume calculations

Integral conventions

In vacuum, the integrands of the self-energies depend on the squared external momentum

p?, the squared loop momentum ¢?2, and the cosine of the angle between p and q.
Thus we use hyperspherical coordinates with z = cos £(p,q) = p-q/ 2 for the
four-dimensional loop integrations:

o0 1
f /(231)4 :8313/0 a0’ /_1dz o -

where the two trivial angular dependencies are already integrated out. The same is true
at nonzero temperature, where we use spherical coordinates with z = cos £L(p,q) =
P - q/+/ p?q? for the three-dimensional loop integrations:

d3q 1 o0 ) 5 1
1= s = o e o

where one trivial angular dependence is again already integrated out. As detailed later, the
integrals are evaluated using Gaussian quadrature rules in course of numerically solving
the DSEs.

Quark DSE in vacuum

The explicit form of the coupled equations for the vacuum dressing functions Ay and By
[Egs. (2.43) and (2.44)] within the truncation scheme outlined in Section 3.1 is given by

Ar(p?) =27 (1 + Ej(pz)) , (D.3)

Bs(p?) = 2z] (me my + Elj;(pz)) , (D.4)
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D Explicit expressions and technical remarks

where the projected self-energies read

wa U [ Ar(@®) Hie(p? g%
Ei(p2)=47ro¢sC2f d—2][ ;2 2BC 7 5. K4 (D.5)
p q 9 Af(q )+Bf(q )
wa [ Br@® Hie(p?¢?)
=1 (p?) = 1271a,C} d][ {2 B K (D.6)
q 9 Af(q )+Bf(q )

Here, HBfC(pZ, q%) = [Af (p?) + Ay (¢?)]/2, and the kernels are given by

k? k- p)(k -

ki =162 25 [p g+2 (’2#] , .7
k2

Kp = T'(k?) Z](Cz ) : (D.8)

where k = p — ¢. Furthermore, Z denotes the gluon dressing function, and I' is the
phenomenological vertex dressing [Eq. (3.8)].

The wave function and mass renormalization constants Z{ and Zy, ., respectively, are
determined using a momentum-subtraction scheme with the renormalization condition

S7 D) yomgz = (ip +my)| oo (D.9)

at the renormalization point {. In other words, we demand Az (¢ 2)y=1and B 7 (¢ 2Y=m 7.
It thus follows that the wave function renormalization constant is given by

z] = ;f (D.10)
1+ 3122

while the mass renormalization constant is obtained according to

(D.11)

In practice, we use {? = (80 GeV)?. Furthermore, we employ a Pauli—Villars regulator in
order to render the divergent loop integrals in the self-energies finite. This amounts to the

replacement (X = A4, B) |

1+ k2/A2

reg

Kx — Kx x (D.12)

in Egs. (D.5) and (D.6). We use Az = 200 GeV for the regularization scale.
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D.1 Infinite-volume calculations

Gluon DSE in vacuum

The full gluon DSE is given by [Eq. (2.47)]
-1 _ —1 YM
Dva (k) =273 Do,vo(k) + Hvo' (k) + Hva(k) ’ (D.13)

where TTYM (k) is the pure YM self-energy, i.e., all diagrams with no explicit quark content,
and I, (k) denotes the quark loop [Eq. (2.48)]. As already mentioned in the main text,
the quark loop develops a spurious quadratic divergence that is caused by the numerically
necessary introduction of a momentum cutoff. Furthermore, the quark loop contains a
nonvanishing longitudinal component, which seems to be at odds with the transversality of
the gluon propagator in Landau gauge. In principle, such nonvanishing longitudinal part
poses no problem as long as it is compensated by the pure YM self-energies. > However,
we do not compute ITYM(k) explicitly, and hence need a method that renders the quark
loop purely transversal and free of spurious quadratic divergences.

To this end, we decompose I1, (k) into its transversal and longitudinal components:
Moo (k) = Pyo (k) (k) + Py (k) L (k) . (D.14)

where {PVT (k) = 8vo — kvko/k? and PL (k) = kyky/k? are the transversal and

g Vo
longitudinal projectors, respectively. Since the longitudinal part contains the same quadratic
divergence as the transversal one, we define the regularized transversal component by

5 (k) = Or(k) — TL(k) . (D.15)

Using 8,4 5 (k) = 3, this expression can be written as follows:

Ie 1
HTg(k) = 5 c(P\;r/g/(k)Hv’(f’(k) — Py (k) Mo (k)

v'a’

1
5 c(Pl;ra(k) (va’ 866’ — Svo JP\E}U/(]C)) Iyer (k)

1 ky kg
=3 Py (k) (Hw(k) —8vo % Hv/g/(k)) : (D.16)

from which the regularized quark loop can be read off, viz.,

kv/ ko'/

Mye(k) = Mye (k) — Svo 7 Iy (k). (D.17)

45 1t might also be the case (in the full YM system) that longitudinal components in the gluon self-energies
bear a physical meaning. See Ref. [225] for a recent study in that direction.
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D Explicit expressions and technical remarks

This form of the regularized quark loop has already been used in previous works, see, e.g.,
Ref. [241], and is equivalent to contract the original quark loop I, (k) directly with the
Brown—Pennington projector 8,5 — 4k, ko /k? [418] to get the regularized transversal
component HrTeg (k). The regularized quark loop is purely transversal and free of quadratic
divergences [216, 291]; the remaining logarithmic divergence is removed analogous to the
quark by a subtraction.

Now, with the regularized quark loop at hand, we project the gluon DSE (D.13) onto the
gluon dressing function to arrive at

1 Z M (k) N 5 (k)

Z T TR 2 (D-18)

where H}{M(k) = PL (k) TIYM(k) /3. The renormalization constant Z3 is eliminated
by subtracting Eq. (D.18) from itself at the fixed subtraction point ¢’, and using the
renormalization condition Z (k)‘ k2eg2 = 1 leads to

BRI 1% GO £ (SO £ o GO 1 ()
Z(ky k2 ¢2 k2 P

(D.19)

The first three terms on the right hand side represent the pure YM part, which we do not
calculate explicitly, and is replaced by fits to results from quenched lattice calculations
[256,292], i.e., 1 + ITYM(k) / k% — TITM(¢”) /¢'? is replaced by the fit given in Eq. (3.9)
at T = 0. Thus, our truncated DSE for the unquenched vacuum gluon dressing function
reads

1 1 M%) Mpe(’
= — &) T € ), (D.20)
Zky  Z["(k:T =0) k2 {2
where the regularized quark-loop contribution is explicitly given by
4o Ar(g%) Ar(p?)
reg _ s f 4 P S22
1_[T (k) - T Z ZZ fq NvaC(qz) NvaC(pz) HBC(p q )
/ 4 4 (D.21)

xI‘(p2+q2) |:p.q_4w]

k2
where p =g —k and N f"ac (x) = xA} (x) + sz (x). The subtraction point ¢’ is inherited
from the quenched lattice input and given by ¢’2 = (10 GeV)?2.

Note that the quantity Iy,, called “vacuum quark loop,” that we show in Fig. 3.7

is actually TT3*(k)/k?, i.e., the unsubtracted quark-loop contribution to the (inverse)
unquenched gluon dressing function; see Eq. (D.20).
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Quark DSE in medium

The coupled equations for the three in-medium quark dressing functions Cr, Ay, and By
[Egs. (2.60)~2.62)] are given by

Cr(p) =2 (1 + Eé(p)) : (D.22)
Ar(p) =274 (1 + Ef(p)) , (D.23)
Br(p) = 7 (Zm,my + 5(1)). (D.24)

where p = (wp, p), and the projected self-energies read

~f f f
C K .-+ A K
E(];(p) — 4nascfund T Z f F(kz) Wq f(q) CmC;d f(q) CA , (D25)
~P L, Nf (@)
~f f f
C K A K
Ef(p) — 4nascfund T Z f F(kz) Wq f(q) Anid—i_ f(Q) AA ’ (D26)
I/ Nf (@)
S
u (@)K
=4 (p) = dmo M T Y ][ F(kz)#. (D.27)
L,e S @)

~ . me ~f\2
Here, q = (0g.q), @ = wg + iy, NF(q) = (@] ) C2(q) + 42 A%(@) + B2(q),

and

Kl =-H](p.q) }Lg )kz + HI (p, )[ Z;gk) + Z}'fz")‘;{’—f} (D.28)

Ky =[H](p.9) + H (p.9)] Z}'C(zk) %wk, (D.29)

Kle =[H](p.0) + H{ (p. D] Z (k) kkzp o | (D.30)
Kiq=H{(p.q) Z}'{(zk),;—zp g+ H{ (p.q) [2 Zigk) k- ngk )

+ Z}'ff)‘;{’_f ( kP ngk 'q))] , (D.31)

Kjp = H] (p.q) }lc(z )k2 + H (p, )[ Z;g") + Z}'c(zk)Z—’;z] (D.32)
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D Explicit expressions and technical remarks

where H (p.q) = [Cr(p) + Cr(@)]/2, H{ (p.q9) = [Af(p) + Ar(9)]/2, and k =
pP—q = (wp —wg, p—q) = (wk, k). Analogous to the vacuum, we use a Pauli—Villars
regulator for the in-medium quark DSE, i.e., the integrands of Egs. (D.25), (D.26), and
(D.27) are multiplied by 1/ (1 + k?/AZ, ), where again A = 200 GeV.

Since the medium does not introduces new, additional divergences, we renormalize in
vacuum and use the thereby obtained renormalization constants for the medium DSEs.
This is valid since we use the same regularization scheme (with the same regularization
scale) in both the vacuum and medium calculations.

Gluon DSE in medium

In medium, the gluon splits into a part transversal and longitudinal with respect to the
direction of the heat bath, see Eq. (2.63). The equations for the magnetic and electric
dressing functions read

1 1 e, (k) 2

ZJ_’” (k) Zjuil (k) k2 ;/2 )

(D.33)

where the last term stems from the fact that we renormalize in vacuum; recall that H?g is
the transversal component of the regularized vacuum quark loop. The regularized magnetic
and electric quark loops are obtained according to

(k) = S Poe () G(K), T E(k) = () T3 (k) (D.34)

where (k) and P (k) are the magnetic and electric projectors, respectively [Eqgs. (2.64)
and (2.65)]. For the special case of a vanishing external Matsubara frequency, i.e.,
k = (0, k), the magnetic quark loop is explicitly given by (p = g — k)

— 8w, S 2T Ar(q) Ar(p) 1l
( )lwk o Z (ng N}ned(q) N}ned(p) S (p Q)

(D.35)

k-p)(k-
XF(p2+q2)[p~q—3( p)( Q)]

k2
while the electric quark loop reads

reg k = s f F(pz +q2)
( )|0)k 0 =8nua Z Z T Z fq N}ned(Q)N}ned(p) X

LyeZ
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D.1 Infinite-volume calculations

X {(a?{)sz(q)Cf(p) [H] (p.9) + H (p.9)]

k- p) (k-
— A7 (@) Ar(p) [Hsf(p,q) (2 (p;# —p -q) +H] (p.q)p- q}
— By (@) Br (p) [H] (p.q) — H{ (p.9)] } . (D.36)

These expressions for wy = 0 are sufficient for this work because we access higher
Matsubara frequencies wg # 0 via Z | | (wk, k=27 1,110, a)i + k?) and consequently

nrj’j’" (wp. k?) = nrj%" 0, 0F + k?).

Note that the quantities IT, |, which appear in Section 3.2, are actually Hrig I (k) / k2,
i.e., the unsubtracted, regularized quark-loop contributions to the (inverse) magnetic/electric

gluon dressing functions; see Eq. (D.33).

Numerical details
Solving the DSEs in vacuum

The coupled, self-consistent equations (D.3), (D.4), and (D.20) are solved iteratively within
a macro-micro cycle. Initially, the gluon is evaluated with constant quarks, 4 ¢ ( ) =1
and By ( p?) = 1GeV, and subsequently used as input for the quark DSEs. These are
then solved by means of a fixed-point iteration (micro cycle) until the desired accuracy is
reached.*® At this point, we completed the first macro cycle. The resulting (now nontrivial)
quarks are then used to update the gluon, which is again fed into the quark DSEs, and
the second micro cycle—solving the quark DSEs with the updated gluon—starts. After
that, we completed the second macro cycle, and proceed with the third macro cycle, i.e.,
updating the gluon again. The macro cycle terminates, and with that the whole process of
solving the DSEs, if the micro cycle took only one iteration to finish.

In order to implement the iterative procedure, we discretize the quark dressing functions
on an external grid { pi2 : i =1,..., Np} that contains N, discrete squared-momentum
points. These are distributed between an infrared cutoff AIZR and an ultraviolet cutoff
A%V such that log( pi2 1/ piz) = const. Both cutoffs are chosen such that their effects
are negligible. In particular, the ultraviolet cutoff has to obey Ayy > Ay, Where
Areg = 200GeV is the Pauli-Villars regularization scale. Furthermore, we need an

46 The micro cycle terminates as soon as the relative error between the quark dressing functions of the current
and previous iteration step is less than 107,
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internal grid {qiz} that represents the loop integration with respect to ¢2. It consists of
N, — 1 Gauss—Legendre quadrature rules, each with N; nodes, that are placed between
the external grid points. That is, the upper and lower limits of the j™ Ng-point rule
are p]z and pjz_H, respectively, with j = 1,..., N, — 1. Thus, we have N; x (N, — 1)
loop-integration nodes in total. The angular integrals are carried out using an N;-point
Gauss—Chebyshev quadrature that is tailored for integrals of the form f _11 dz V1 —2z2. We
use Np =32, Ny =6, N; =128, Al = 1 MeV, and Ayv = 1.2 TeV.

Since the external and internal grids are disjoint, { piz} N {qiz} = @, we interpolate
the dressing functions using natural cubic splines on {log( pl.z)} in order to have the
quark dressing functions available at arbitrary momenta. If a dressing function is probed
at momenta larger than the ultraviolet cutoff, we extrapolate linearly (on a logarithmic
abscissa) based on the last two grid points.

Though the description above has been given in terms of the quark dressing functions,
we treat the quark loop in the same manner (though without a Pauli—Villars regulator).

Solving the DSEs in medium

The iteration procedure for solving the in-medium DSEs is the same as for the vacuum
calculation. However, the separate dependence of the quark dressing functions on w, and
p? increases the complexity. For the sake of simplicity, in this subsection we write the

fermionic Matsubara frequencies as w, = 2n + 1)nT,n € Z.

We compute the quark dressing functions for the 2 N, external Matsubara frequencies
w_nN,,--.,®N,—1 explicitly, and higher Matsubara modes are access by exploiting O(4)
restoration in the ultraviolet, i.e.,

F(a)_Nw,a),f—a)ENw-l—pz) if n <—Ngy,
F(wn. p?) = { F(wn, p?) if —Ny <n<Ny—1, (D37)
F(wNw—l,wyzl —a)jsz_l + p2) ifn>Ny,—1,

where F € {Cr, Ay, Br}. This allows to implement the loop Matsubara sum with respect
to wy according to

lwe| < Auv w_ny,—nT dqa Ny—1
Ty heo~ [ L +T Y b
tez —Auvy (=,

(D.38)

Ayy d
q4
+ [ g
ONgy—1+TT 75
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D.1 Infinite-volume calculations

i.e., we sum explicitly over the external frequencies and approximate the remaining sum up
to the cutoff with a continuous momentum integration, which is numerically implemented
using a Gauss—Legendre quadrature. This approximation works extremely well because
the Matsubara frequencies wy become dense as £ increases. For the temperature ranges
covered in this work, N, = 8 and an NS°™-point Gauss-Legendre quadrature for the
continuous integrals in Eq. (D.38) with N5°™ = 16 are more than sufficient.

Furthermore, even though we use a Pauli—Villars regulator, we find it is vital that the
Matsubara sum and the three-momentum integration are performed in an O(4)-invariant
way, i.e., such that g2 = a)l? +4% < A%V. Thus,

lwe| < Auv 2 —
T d dz, D.39
Yo X / R IR
LeZ LeZ

where the Matsubara sum is understood with Eq. (D.38) in mind. It follows that the
internal integration grid becomes w, dependent through the varying upper limit AUV w(i ,
and we have in total 2 x (N, + N™) different internal grids, each depending on the
external grid analogous to the vacuum. Additionally, the external grid depends on the
external Matsubara frequency, too. In detail, for each external Matsubara frequency w;,,
where n = — Ny, ..., Ny — 1, the dressing functions are discretized on the external grid
{ pl2 : i =1,..., Ny} which points are distributed between 1\2R and A%V w? such
that log(pl 1 / D; 2) = const. Thus, we have Nw dlfferent external grids. The difference,
however, is extremely small because AUV > w? N, = w? Noy—1 and N, = O(1). For each
wp, the quark dressing functions are interpolated using natural cubic splines on {log( pl.z)}.
As in vacuum, we use N, = 32 points for the external grid and N; = 6 for the internal
grid. Due to the lack of a distinct weight function in the angular integral, we use a simple
Nz -point Gauss—Legendre quadrature rule for its numerical evaluation. Since quantities
like the quark condensate are rather sensitive to the precision of the angular integration,
we employ N, = 160 nodes.

The numerical treatment of the in-medium quark loops is slightly simpler than for the
quarks because we consider only one external Matsubara frequency, which is vanishing.
Most important, the approximation (D.38) cannot be used because otherwise the gluon
dressing functions develop a pole, and it is crucial that the summation and integration is
carried out in an O(4)-invariant manner. Thus, for the quark loops we use Eq. (D.39) but
without Eq. (D.38), i.e., the Matsubara sum is explicitly carried out all the way up to the
ultraviolet cutoff. Moreover, it is numerically convenient to subtract the electric thermal
screening mass

mﬁ = lim IT] g(k)‘
k2—0

(D.40)

wr=0
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D Explicit expressions and technical remarks

from the electric quark loop before interpolating, which is again accomplished by natural
cubic splines on a logarithmic scale, and adding it later to recover the full electric quark
loop again. The thermal mass is rather sensitive to numerical details. In particular, it is
necessary that the ultraviolet limit Cr(q) — Ar(q) as p? — oo is fulfilled. While in
principle true, for the thermal mass the limit must be reached to a high precision, which is
unfortunately not the case. In accordance with previous works, we remedy that by using

Cr(q) > 0N Cr(q) + (11— e70/A0) A7 (q) (D.41)
with AerliX = 40 GeV? in the calculation of mﬁ that is later added back to the subtracted

electric quark loop.

Last, we note that the two different solutions within the first-order coexistence region
are found by means of different initial conditions for the quark loop. An initial value of
By (p) = 1GeV usually drives the system toward the Nambu solution, while the Wigner
solution is found by using By (p) = 1 MeV for the initial quark-loop evaluation.

D.2 Finite-volume calculations

Determination of 7,

As in the infinite-volume case, we define the pseudocritical chiral transition temperature by
the inflection point of the subtracted quark condensate with respect to the temperature,

8AU,S(T, /’LB)

oT (D.42)

T.(uB) = argmax
T

In infinite volume, the subtracted quark condensate is sufficiently well-behaved in the sense
that the numerical noise is minimal, and a cubic spline interpolation of the data points
yields a sound location of the inflection point. However, the situation is different in finite
volume. We find that the quark condensate is susceptible to finite-size effects, resulting in
a shaky behavior, and an interpolation does not yield reliable results for 7. Thus, instead
of interpolating, we fit the function

T —
h(T) = a + btanh ¢

(D.43)
to the finite-volume condensate data. The hyperbolic tangent describes the temperature

dependence of the subtracted quark condensate accurately—even for higher chemical
potentials up to the CEP—and the transition temperature is readily read-off, 7. = c.
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Figure D.1 Subtracted condensate A, fit function 4 as given in Eq. (D.43), and 0k /0T at
L = 5fm (unimproved) with PBC at vanishing chemical potential. The derivative is scaled by
0.045 and shifted by —0.08 GeV? in y direction.

The result of this procedure is depicted in Fig. D.1, where we show the subtracted quark
condensate (blue dots), fit function 4 (red, solid line), and its temperature derivative (green,
dashed line) at vanishing chemical potential for a system size of L = 5fm with PBC. The
shaky behavior of the condensate is clearly visible, and the fit parameters are given by

a = (—0.0331 £ 0.0005) GeV? , b = (0.0326 £ 0.0007) GeV? ,
(D.44)
¢ = (0.1502 + 0.0005) GeV , d = (0.0209 & 0.0011) GeV .

Thus, we find 7.(up = 0) = (150.2 £ 0.5) MeV for the pseudocritical chiral transition
temperature at L = 5fm with PBC. The errors are purely numerical.

The condensate obtained with improvement is not shaky and is well-behaved as in
infinite volume. However, for the sake of consistency, we apply the hyperbolic tangent fit
to the unimproved finite-volume calculations, the improved finite-volume calculations, and
infinite-volume results to determine 7 in Section 6.4. For example, in infinite volume this
procedure yields T.(ug = 0) = 155MeV compared to Tc(ug = 0) = 156 MeV using
splines [Eq. (3.17)]. Thus, the difference is very small and purely technical in its origin.

Comment on the zero-mode contribution

On page 91, we stated that our PBC results with a proper inclusion of the zero mode
resemble closely ABC results. Here, we present preliminary evidence for that claim.
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160
140
= , o
Y 120~ / preliminary
= /
g J
100 - / o ABC
/ ®  PBC w/o zero mode
/ PBC w/ zero mode
804w e L — o0
3 4 5 6 7 8
L [fm]

Figure D.2 Improved finite volume: box-size dependence of 7.(up = 0) for ABC, PBC without
zero mode, and PBC with zero mode. The black, dotted line is the infinite-volume result, and data
points are connected by lines to guide the eye. The PBC results with zero mode are preliminary
and were provided by J. Bernhardt.

In Fig. D.2, we show the box-size dependence of the pseudocritical chiral transition
temperature (with improvement) for ABC, PBC without the zero mode, and PBC with
the zero mode at vanishing chemical potential. The former are the results displayed in
Fig. 6.5. Down to L = 4fm, the ABC results lie on top of the PBC results with zero
mode, and they differ only by around three percent at our smallest investigated box size of
L = 3fm. The difference between PBC results with and without the zero mode is below
the ten-percent level for L 2 4fm. However, the inclusion/omission of the PBC zero
mode yields significantly different results for small volumes L < 4fm. A more detailed
discussion will be presented elsewhere in the future [270].

Numerical remarks

The introduction of a finite volume does not change the iterative procedure that we use
to solve the DSEs. However, finite volume renders the loop integrations/summations
numerically much simpler because there is a fixed prescription how they have to be
carried out; see Eqs. (6.3) and (6.5). For the unimproved case, the external grid is
necessarily a subset of the internal grid, which consists of all g;,,. For the external grid
on which the dressing functions are discretized (for each external Matsubara frequency),
we pick a random representative*’ from the first twenty spheres. After that, we pick
random representatives from all spheres which radii are equidistantly distributed on a
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logarithmic scale. In terms of numbers of points, this procedure yields a rather small
external grid compared to the internal one and thus keeps the numerical effort feasible.
For the improved case, see Eq. (6.12), the external grid is enlarged by points that are
constructed as in infinite volume. Similar to the latter, it is furthermore necessary in both
the unimproved and the improved framework that the Matsubara sum and the spherical
momentum summation/continuous integration are carried out such that a)q2 +q jzm < A%V,
i.e., in an O(4)-invariant way.

In the improved framework, we observe that our results are independent of A as long
as it is much larger than any other characteristic scale in our system like temperature,
chemical potential, and quark masses. This allows us to choose different matching points
for different box sizes L and therefore to work with a fixed number of grid points (usually
between fifteen and twenty) in each Cartesian direction for the discrete momenta with
magnitudes below the matching point.

Our numerical methods are otherwise nearly identical to the ones employed in the
infinite-volume calculations.

47 This also serves as a numerical check because the dressing functions must depend on squared momenta
only, i.e., they are blind to directions in momentum space.
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