
II. Physikalisches Institut, Gießen

Detecting Clusters in
Highdimensional Data

Study Project
as part of the masters program in physics

by

Johannes Bilk and Johannes Budak
Johannes.Bilk@physik.uni-giessen.de, Johannes.Budak@physik.uni-giessen.de

Supervisor
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Abstract

In this work we talk about classifying clusters within data from the pixel
detector of the Belle II experiment. Recent works on this [[1],[2]] using Self-
organizing-maps were not able to differentiate more than one particle cluster
from the background cluster, thus more straight forward and deterministic ap-
proaches using high dimensional voxels for covering the data clusters were ex-
amined. Two different methods are presented in this work. The first uses
spherical voxels with stochastic elements. The second uses a regualar grid in
the high-dimensional input space and traditional voxels. After covering the
data with voxels, neighborhood relations are used to determine the voxels that
form a cluster. We achieve classification efficiencies of up to 99% for test data
sets with clearly separated clusters up to six dimensions. The methods used
on the simulated pixel detector data are able to cover at least 70% with up to
100% of the data. However further modifications in the algorithms are needed
to differentiate between clusters, that are not sufficiently separated from each
other.
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1 Introduction

In the field of high energy physics a lot of data is produced with hundreds and
thousands of events.Because one does not know which events belong together,
one cannot simply pick out the events from the thing they are searching for in
the data. But this task gets worse, since every kind of measuring instrument
introduces some kind of background, which thankfully is very characteristic.

One of the most common and essential methods of handling with that big
amounts of data is data clustering. The main goal of data clustering is to
separate between different kind of entities based on their different features rep-
resented by the data [6]. The objective of the data clustering process is to
separate the data set into groups which are as similar as possible in their fea-
tures in the same group, while they are as different as possible from the other
groups.

Figure 1: Steps of the clustering process [3].

All steps of the clustering process are depicted in figure 1. In this work we are
not concerned with the clustering algorithm, but finding cluster in preprocessed
data from a particle detector. The clusters to find are different events in high
energy physics. The basic idea is, that certain objects produce a characteristic
signal within a measuring apparatus. It is not yet of importance which features
we are speaking of, but that these features cluster together.

It is our intention to develop an efficient and reliable method to find and
separate these data clusters within any data set. We implemented three different
methods with which we intend to find all data clusters.

While these methods aim to be as general as possible, they were specifically
developed for use with Belle 2 data from the pixel detector. We will briefly
introduce more general terms about Belle II in the coming subsections.
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1.1 Belle II at SuperKEKB

Figure 2: A schematic of the SuperKEKB collider facility [4].

The high energy physics research facility SuperKEKB, which is an upgrade to
KEKB, is located in Tsukuba, about 60km outside of Tokyo. KEK is an abbrevi-
ation of the japanese name of the facility ”Kō Eneruḡı Kasokuki Kenkyū Kikō”.
SuperKEKB is an Electron-Positron collider and Belle II is the second genera-
tion of a detector system built by an international collaboration. SuperKEKB
and every one of its predecessors are so called B-factories. This simply means
that KEK was built for the energy region in which B-mesons are produced.

Here is a list of all the sub-detectors [7]:

• pixelated silicon sensors (PXD)

• silicon strip sensors (SVD)

• central drift chamber (CDC)

• Time-Of-Propagation (TOP)

• another ring-imaging Cherenkov counters (ARICH)

• electromagnetic calorimeter (ECL)

• iron flux-return located outside of the coil (KLM)
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Figure 3: A 3D render of the Belle II detector with size indication and the Belle
II logo [4].

Important systems for starting the data readout and storing are the Trig-
ger and High Level Trigger system (TRG and HLT), the slow control and the
data acquisition system (DAQ). Various sub-trigger systems (CDC, ECL, TOP,
ARICH and KLM) send trigger information to a central trigger logic, often re-
ferred als Level 1 Trigger, where the decision is made whether to start data
taking. After the Level 1 Trigger decides to start data taking, the DAQ starts
over. The main purpose of the DAQ is to start the readout from the various
subdetectors, processing and writing in the storage system. The data from ev-
ery subsystem, except of the PXD, is sent to the Event Builder, where the data
belonging together is merged into one event. The full reconstruction of the event
including the PXD data is then performed by the HLT, which makes the final
decision of keeping the event. The PXD module has to be treated separately
due to his significantly higher data rate comparing to the other subdetectors,
which is about 10 times higher than the data rate of all other sub-detectors
combined. [8]

All of the information summarized in the following sections are taken from
the master thesis by Katharina Dort [1], the PhD thesis by Thomas Geßler [9]
and the techincal design report by the Belle II group [10].

1.1.1 The Pixel Sub-detector

The data processed for this work all are related to the PXD sub-detector. It
consists of two layers of 40 silicon pixel sensors aranged concentrically and is
not much larger than a soda can [5]. A schematic of it can be seen in figure
4. The PXD sub-detector is the closest detector to the beam. It is surrounded
by four more layers of silicon stripes, which make up the silicon vertex detector
(SVD).
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Figure 4: A 3D render of the PXD detector. One can see the two layer structure
of it [5].

1.1.2 The data

In this work we used different kinds of data files. Firstly we created simple data
files with clearly separated clusters. We started out with two dimensional data
to develop the methods discussed in sections 3. Than we verified the approaches
using the same sets, but with higher dimensions.

Since Belle II only just started taking data with the current detector setup,
the data we used were simulated data files for the PXD. We have four clus-
ters, labeled as PI, BG, T and DD and correspond respectively to pions, beam
background, tetra quacks and anti-deuterons.

The files combined have 252.773 six dimensional points. Every entry of every
point correspond to the number of pixels hit by a particle, the number of pixels
in horizontal (u-direction) and in vertical (v-direction), the charge deposited,
the minimum charge in an event and the maximal charge.

1.2 Software approach

Figure 5: The Python logo.

All methods of data analysis were developed using Python and the packages
NumPy and SciPy. This gave us great flexibility since there was no need to
compile and recompile the source code and NumPy and SciPy provided all
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necessary functions and methods. All plots were generated by using Matplotlib
and were printed directly after running the code.
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2 Self-organizing map

2.1 What is a self-organizing map?

This is a form of unsupervised learning with the help of a neural network. The
goal is to visualize high dimensional data in a two dimensional neuron grid and
sort the input by similarity. In the end one should be able to associate each
data point with one of the neurons and in turn know to which data cluster it
belongs.

In the beginning of the process there are point clouds and usually one hun-
dred randomly initialized vectors. Each of these vectors are associated with one
neuron on ten by ten grid. A three dimensional illustration of this first step can
be seen on the left side in figure 6. The choice of a ten by ten grid is rather
arbitrary and some variations of self-organizing maps use different amounts of
neurons, different shapes of grids (e.g. hexagonal) and even grow new neurons
if needed.

Figure 6: The first step of a self-organizing map. One can see the data clouds
in blue, the vectors of each neuron as black x’s and on the floor the U-matrix.

Every point of the data will be picked in random order and one calculates the
closest neuron(often referred as winning neuron) and nudges this neuron a bit
in the direction of the data point. But also every neighboring neuron is pushed
ever so slightly in the direction of the data point. Over time the strength of
the push decreases. The function of how much the nudge of the neuron in the
direction of the input vector decreases is called the learning rate, which is an
important property of the Self-organizing-map.

A common method to visualize the clusters in a self organizing map is the U-
matrix, which stands for unified distance matrix. For each neuron the affiliated
value in the U-matrix is the sum of the distance to its neighboring neurons
divided by the number of the neighbors [11]. Before the training process of the
map the U-matrix is in a random shape with no visible pattern. As each vector
moves in the direction of one of the clouds, a pattern begins to emerge from the
U-matrix. After looping through the data we expect the U-matrix to have areas
with neurons very close to each other, separated by areas of neurons being very
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far from each other. This can be seen in the x-y plane in figure 6, when one
compares the first and last step of the map.

In the end one should end up with something as it is depicted on the right
side in figure 6. One can clearly see that all but a few of the small x’s have moved
inside the clusters and that the rather random U-matrix from the illustration
has turned into a more regular shape. There are now three distinct areas in the
U-matrix, two with very low distance and one between them with a very high
distance.
As mentioned before, not only the winning node, but also the neighbors of
the winning node are modified to be more likely like the input vector. The
function regulating how the neighbors are changed is called the neighborhood
function. The most widely used neighborhood functions are the Bubble and the
Gaussian function. While the Bubble function only changes the neighboring
neurons around the winning neuron evenly, the Gaussian function decreases the
value v with increasing distance to the winning neuron exponentially. In our
implementation we tried a slightly different neighborhood function, defined in
(1).

vcij = α(t) · 2|i−ic|+|j−jc| (1)

Where α(t) is the learning rate in the timestep t, i and j the indices of
the neuron and c the winning neuron. We also implemented the possibility of
setting a cutoff radius, which determines the amount of neighbors that will be
considered.

Figure 7: Neighborhood for cutoff 1 (l), 2 (m) and no cutoff (r)

In figures 7 and 8 one can see the difference between different cutoff radii.
On the left in both figures we only change the direct neighbors of the winning
node, than in the middle we also change the next neighbors and finally on the
right one can see a smooth fall off, meaning that we take up to four neighbors
into account.
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Figure 8: The corresponding movement plot to figure 7

2.2 Our results

First we generated different kinds of trail data against we verified our method.
This consisted of two fairly wide separated point clouds and a series of different
sized cubes. Our results, meaning the U-matrix can be seen below. For higher
amounts of data it is advisable to use a higher amount of neurons.

2.2.1 Test Data

We generated different configurations of test data, which means varying data
densities and numbers of clusters. In this section follows the results of these
test runs.

Figure 9: U-matrix for a six dimensional test data and 10 × 10 neurons at
different steps.

In figures 9 and 10 one sees two tests with 10× 10 and 15× 15 respectively.
Both figures show the first time step on the left, 12.000 in the middle and
22.000 on the right. We see in both cases that at time step 12.000 the U-matrix
already shows the three clusters, but in figure 10 the clusters are more distinctly
separated. But we see a known effect at time step 22.000 where a fourth cluster
is beginning to develop. This effect is know as overtraining and it is visible in
figure 10 [12].
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Figure 10: U-matrix for a six dimensional test data and 15 × 15 neurons at
different steps.

2.2.2 Simulated Data

Further we tested different sets of the simulated PXD data. Theses simulated
data included pions (PI), anti-deutorons (DD), tetraquarks (T) and beam back-
ground (BG). We run tests with all combinations of each simulated data set.

Figure 11: The 15 × 15 U-matrix at time steps 50.000, 80.000 and 102.000 for
PI and DD.

Figure 11 shows the results for PI and DD. This data set consists of 103.429
points. In the plot on the left and right we clearly see a single cluster in the
lower right, stretching to the top right. Slight signs of a second cluster can be
seen on the left side in the lower half of the y-axis between 2 and 4. We would
need to adjust the learning rate or simply process more data point, as it seems
it did not finish its learning process.

9



Figure 12: The 15 × 15 U-matrix at time steps 50.000, 80.000 and 120.000 for
PI and T.

Figure 12 shows the results for PI and T. This data set is larger compared
to the one for PI and DD. We again see a clear cluster in the lower right corner
and we can make out a second cluster in the upper left corner. Maybe adjusting
the learning rate would improve the quality of the second cluster. This set has
120.671 data points and thus has 17.242 more data points.

Figure 13: The 15 × 15 U-matrix at time steps 30.000, 80.000 and 132.000 for
DD and beam background.

Figure 13 shows the results for DD and beam background data. The first
frame looks like it is just one large cluster with barely any structure. The plot
in the middle and on the right show a cluster in the upper right corner of the
U-matrix and one can make out three more clusters, even though we would
expect only two clusters. This data set consists of 132.102 data points and since
we see four clusters already at time step 80.000, we assume the network is not
overlearnt, but that we still did not have enough data points or have to tweak
the learningrate or the neighborhood function.
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Figure 14: The 15× 15 U-matrix at time steps 50.000, 140.000 and 252.000 for
all data sets.

Figure 14 shows the results if one uses the self organizing map on all data
sets. The first plot in the left shows one large cluster in the U-matrix, which
slowly shows some structure in the second plot in the middle. This structure
becomes more pronounced in the last frame on the right. We can see two
clusters, one right side and the second in the lower left. Within the lighter
structure one might be able to make out the beginnings of three more clusters.
Since we would expect four clusters and we have sufficient many data points,
we are assuming, that we not only would need to adjust the learning rate, but
also increase the number of neurons.

2.3 Conclusion

As it was said above, this method works reliably with clearly separated clusters,
as it was the case with our simple test data sets. But as soon as we used
the simulated training data sets, this Self-organizing map started to fail the
data separation. A simple reason for that could be the order in which the
data is processed. The simulated data is not as good separated as our test
data sets, with the clusters having common points and possibly even merging
into each other in some dimensions. There are settings as the neighborhood
function, learningrate and the amount of neurons that significantly influence
the functionality of the Self-organizing-map. One could make many test runs
using various combinations of these setting to maybe yield better results.
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3 High dimensional voxels

3.1 What is a voxel?

It is the easiest to understand what a voxel is, when one thinks of pixels. A pixel
is a color dot, which is sitting on a regular grid. It is a shortening of ’picture
element’. One can understand a voxel in the very same manner, the difference
being, that a pixel is two dimensional, while a voxel is three dimensional. Voxel
is short for ’volume element’. In this work we use it a bit more loose, we not
only mean three dimensional volumes, but up to six dimensions.

3.2 A stochastic approach

We tried a stochastic approach, where we picked random data points and grew
spherical voxels. The first problem we encountered was the question of how
large a voxel should be and until what point should we let it grow. This turned
into the question of how one should define the boundary and how to find the
boundary. Furthermore spheres do leave gaps in between them, no matter how
small or close they get to each other. How do we finally define what a cluster
is? These three points will be discussed in this section.

Figure 15: Unprocessed two dimensional data.

This method was developed using a two dimensional test data set, of which a
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plot can be seen in figure 15. This data consists of two point clouds with varying
density and an irregular shape.

3.2.1 Finding the boundary

Figure 16: Illustration of finding the boundary of data clouds. On the left: a
cloud with boundary points in red. On the right: the randomly grown voxels
for finding the boundary.

In figure 16 one can see an illustration on how the program tries to find the
boundary. We randomly place voxels in the whole space of the data set, than we
check within a certain radius, which is arbitrarily set by the user, if there are any
data points in the vicinity of that voxel. We call this radius the search radius.
In the case of there begin no data points, the program searches the nearest
neighbor and flags it as a boundary point. How many times the algorithm does
is also set by the user. The number of checks are called trails.

3.2.2 Growing Voxels

We want to illustrate how this algorithm works, for that one should have a look
at figures 16 and 17 and follow the steps along. First the algorithm is using a
stochastic approach at finding the boundary.

Then the second step after the boundary was found, the algorithm loops
through all data points looking for the largest voxel possible. It does this by
checking against every boundary point and every other voxel. Now if the dis-
tance to the next voxel is smaller, than the preset search radius for finding the
boundary, this newly set voxel will grow until it hits its neighboring voxel. In fig-
ure 17 the voxels with numbers 0, 1, 2, 3 and 4 explain this process well. Voxel 0
stops growing at a boundary point, voxel 1 as well, since it grows inside another
cluster. Subsequently all following voxels align themselves with the preceding
voxels. This step is finished until a newly created voxel only contains a single
point.
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In the third step the algorithm picks random points from the data set and
places new voxels, growing and moving them until they connect two voxels with
each other.

The fourth and last step is finding the clusters and it will be explained in
the next subsection.

Figure 17: Process of placing the largest possible voxels on two dimensional
data clouds.

The full results of the test run in figure 17 is as follows. It consists of 41
voxels, the largest voxel has a radius of 4.56 units, while the smallest has a radius
of 0.04 units. The voxel with most counts has 2074 and the lowest count is 2.
Furthermore the algorithm covers about 5000 data points, which translates into
95.46% of the data. We found two clusters, with the first consisting 17 voxels
and covering 48% and the second 24 voxels and covering 47.5%.

3.2.3 Finding the voxels that belong together

In order to find which voxels build up a cluster, one has to find which voxels are
connected together by chains of neighbors. In figure 18 one can see two data
clouds and a few voxels, each with their respective voxel number.
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Figure 18: Explanation of the method to finding clusters with the help of voxels.

This method now writes a list for each voxel, containing itself and all other
voxels it touches. Than it compares these lists and combines them, if at least
one element is in common. The third and last step throws all non-unique lists
away. The number of resulting lists give us the number of data clusters, given
that the clusters are sufficiently far apart in at least one dimension. For the
example in figure 18 one gets the following:

[0, 7]

[1, 3, 6, 8, 9]

[2, 9]

[3, 1]

[4, 5, 7]

[5, 4]

[6, 1]

[7, 0, 4]

[8, 1]

[9, 1, 2]



=⇒

[0, 4, 5, 7]

[1, 2, 3, 6, 8, 9]

[1, 2, 3, 6, 8, 9]

[1, 2, 3, 6, 8, 9]

[0, 4, 5, 7]

[0, 4, 5, 7]

[1, 2, 3, 6, 8, 9]

[0, 4, 5, 7]

[1, 2, 3, 6, 8, 9]

[1, 2, 3, 6, 8, 9]



=⇒
[0, 4, 5, 7]

[1, 2, 3, 6, 8, 9]
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3.2.4 Testing on different test data sets

In order to get a better sense of this method and to find its weaknesses, we
tested it on different kinds of data. We varied the sizes, densities and distances
between the data clusters. In figures 19 and 20 are the plots for different test
data sets.

For the left and right plots in figure 19 we used the same data set, the
only difference was, that we changed the parameters for finding the boundary,
meaning we changed the search radius but kept the number of trails constant.
This resulted in vastly different interpretation of the data by the program.

Figure 19: Demonstrating what impact the input parameters have on finding
the boundary and thus on the end result.

The results are summarized in table 1. On the left side the largest voxel is
nearly fifty percent larger than the largest voxel on the right side, it contains
nearly sixty percent more data. The dominance of the one voxel on the left side
makes it impossible to differentiate between the three clusters, since the first
voxel sits firmly in the middle of all data points. The program can only barely
recognize the three clusters on the right side, after we lowered the search radius
from 7.75 down to 2.5.

Table 1: Comparing the results for different parameters in finding the boundary.

Search-

radius

Number

of voxels

Data

covered

Number

of clusters

Largest

radius

Highest

count

Left 7.75 21 92.38% 1 31.21 1630

Right 2.5 29 94.63% 3 20.04 992
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Figure 20: Testing the methde of different sized clouds, with differing densities.

The second data set we tested can be seen in figure 20 and the results are
listed in 2. It is a collection of three different clusters of different sizes and with
different densities. The whole data set consists of three clusters and 3355 data
points and found 52 boundary points. There are 11 voxels in total and 97.97% of
all data points where covered. The algorithm determined that there are three
clusters. In all three clusters, the largest voxels had the highest density and
these voxels were created back to back. Meaning before any voxels could touch
each other, all clusters were covered by one voxel each.

Table 2: The results of the algorithm on three different clusters.

Number

of voxels

Highest

density

Largest

radius

Smallest

radius

Highest

count

Lowest

count

Cluster 1 4 101.37 15.95 0.76 1617 2

Cluster 2 5 152.54 10.55 0.63 1609 2

Cluster 3 2 24.74 1.74 0.73 43 2
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3.2.5 Results for higher dimensions of test data

We generated data sets with two clearly separated clusters of almost circular
asymmetric shape at different dimensions. We kept the number of data points
constant at 5240 and we kept the shape of the clusters similar.

The amount of data that was covered by this method decreased with an
increase of dimensions. This was to be expected since the spaces in between
the spheres increases in size with every dimension. This effect is related to the
curse of dimensionality [13].

Figure 21: Data loss as a function of dimensionality.

Figure 21 shows how much data gets lost with an increasing dimensionality
of the problem. To get a better understanding of the loss, we fitted it using a
quadratic function and we can conclude that the loss is a quadratic function of
the dimension. The data is tabulated below 3.

Table 3: Results for different dimensions.

Dimensions Voxels Clusters Data Covered Data Points

2 29 2 98.26% 5149

3 36 2 92.90% 4868

4 76 2 81.03% 4246

5 25 2 72.39% 3793

6 41 2 55.88% 2928

As we can see in table 3 the method may have lost coverage, but it still could
figure out how many clusters there were. One curiosity is, that the number of
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voxels stays relatively constant, except in the four dimensional space. In this
case we have twice to thrice as many voxels as in the other cases. This might
be connected to the fact that IR4 is exotic.

Figure 22: The two dimensional data set, that was analyzed.

In figure 22 we plotted the two dimensional data sets. Every higher dimen-
sion was created in the same way, in order to know approximately what the
shape of theses clusters are.

The general findings of our algorithm can be found in table 3. Since the bar
charts for the two through six dimensions look similar, we will only look at the
second and sixth dimension.

It is very instructive to look at different statistics and visualize them. This
is especially necessary when one tries to analyze unknown data of higher dimen-
sions, since one cannot plot the data directly.

Figure 23 shows bar charts of the process. On the x-axis one sees the number
of the voxel and on the y-axis one sees different characteristics of the voxel. In
orange are the results after the first step of creating the largest possible voxels
and in blue we have the results after randomly creating voxels.
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Figure 23: The statistics bar plots for the analysis of the two dimensional data
set. On the left we can see the counts of data points per voxel and on the right
we see the radii.

In figure 23 we see on the left, that two voxels contain almost all of the data
points, meaning the first two voxels dominate. Looking than at the radii on the
right, we see something similar, the first two voxel are the largest voxels and
than the size tapers off until the second step, where we start growing stochasticly
placed voxels.

Figure 24: The statistics bar plots for the analysis of the two dimensional data
set. On the left we see the number of neighbors per voxel and on the right we
the the norms of the midpoints.

Figure 24 again gives some insights. On the left we see the number of
neighbors each voxel has and as expected the number of neighbors will increase
for every voxel created in the first step. The more interesting plot can be seen
on the right side. Here we plotted the norms of every midpoint of all voxels.
Norms meaning here the euclidean distance from the origin of the coordinate
system. This plot clearly reveals that there are two data clouds and that they
are quit far apart, meaning 30 units. This is also what the algorithm found,
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the distance between the weighted midpoints of each cluster is, according to the
algorithm, 30.76 units.

We can correlate that finding with the plot in figure 22, where we can see,
that the clouds are centered around zero and thirty on the x-axis and have a
width of about ten units, meaning the stretch five in each directions. The right
plot in figure 24 reveals that the two largest voxels have radii between six and
seven units.

Figure 25: The statistics bar plots for the analysis of the six dimensional data
set. On the left we can see the counts of data points per voxel and on the right
we see the radii.

Now for the six dimensional case it looks akin to what we have in all other
cases. In figure 25 we again see, that two voxels dominate. The biggest difference
here is, that the radii are more evenly distributed.

Figure 26: The statistics bar plots for the analysis of the six dimensional data
set. On the left we see the number of neighbors per voxel and on the right we
the the norms of the midpoints.

As for the numbers of neighboring voxels and the norms of the midpoints, fig-
ure 26 paints a nearly identical picture, the difference begin, that the neighbors
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for the first two voxels increased four fold and not two fold.
These results were to be expected, because the data clouds for all test data

were of the same shape. The increase in neighbors also makes sense, since we
have twelve more voxels and with higher dimensions the surface of each voxels
increases, meaning we have more possibilities for more neighbors. The more
evenly distributed radii in the six dimensional case is a bit off.

3.2.6 Limits in distance differentiation

We also tested what the limits of this method are, by using the same data set,
but moving the clouds closer together. We started with the midpoints of the
clouds are twenty units apart in the beginning and each cloud having a mean
diameter of 10 units. Then moved them closer together, without changing the
diameter. In figure 27 are the results for 17 and 16 units in the two dimensional
space.

Figure 27: Varying the distance between clusters in two dimension.

What we see is, that at 17 units we can still recognize the two clouds, but at
16 this method fails. We also observed, that in higher dimensions, the clusters
needed to be further apart in order to tell them apart with this method. In a
three and four dimensional space we lost the ability to differentiate at 16 units.
In a five dimensional space we needed 17 units, while a six dimensional space
required 24 units to tell them apart.

If we evaluate the norms of the midpoints, we can conclude, that there
are different data clouds. This approach of considering the norms only works
properly, if the norms are evenly distributed. For this we just have a look at the
norms bar chart for six dimensions, which can be seen on the left in figure 28.
As stated above, the clustering algorithm of looking at neighbors fails, while we
clearly see two clusters, when we just take the norms into account. One possible
conclusion is, that the main voxels have grown too large. But we cannot say
that conclusively if we correlate this with the radiuses for voxel zero and one,
which can be seen on the right side in figure 28.
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Figure 28: The statistics bar plots for the analysis of the six dimensional data
set. On the left we see the norms of the midpoints of each voxel and on the
right we see the radii per voxel.

3.2.7 Analyzing the simulated PXD data

In this section we go over the results for the analysis of the simulated PXD data.
We have four sets, pions (PI), anti-deuterons (DD), tetraquarks (T) and beam
background (BG). The PI set consists of 74,756 data points, the DD of 28,673,
the T of 45,915 and the BG file of 103,429.

A brief summary of the results of all combinations can be seen in table 4.
We analyzed the the combinations PI with DD, PI with BG and PI with T.

Table 4: The results of the spherical voxel method for different combinations of
the simulated PXD data.

Data

points

Border-

points

Voxels

step 1

Coverage

step 1

Voxels

step 2

Coverage

step 2

PI+DD 103,429 600 19 46.99% 77 71.28%

PI+BG 178,185 673 11 5.50% 45 93.72%

PI+T 120,671 678 18 33.17% 73 62.79%

DD+T 74,588 1042 31 62.97% 125 72.30%

DD+BG 132,102 1785 6 2.95% 25 92.38%

T+BG 149,344 1531 20 15.46% 81 83.68%

The algorithm found for combinations but the beam background ones only a
single cluster. The second cluster found in theses cases consisted only of single
digits numbers of voxels and contained less than one percent of data data. This
is why we will just neglect them.
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Example: (Pions and anti-deuterons)
Now we will review the three cases where PI are combined with the other cluster
files. The results of the other variations follow a very similar structure, which
is why it is not too instructive to look at every single case in detail. The first
example is PI+DD. This combination contains 103,429 data points in total.

Figure 29: The statistics bar plots for the analysis of the simulated data sets
for PI+DD. On the left we can see the counts of data points per voxel and on
the right we see the radii.

The algorithm created 19 voxels in the first step and covered 46.99% of the
data. In the second step it created 58 more voxels totalling at 77 and covering
71.28% of the data. The largest radius is 214 units and the mean radius is at
15 units. The highest count for data points is 38,121 with an average of 958.
The clustering algorithm recognized the whole set as only one cluster.

In figures 29 and 30 we see the results for the Pion anti-deuteron data set.
Again the radii decrease, after an initial peak. This effect is due to the the fact,
that from the second voxel onward, voxels can grow beyond the boundary as
long as the growth rate states below a certain threshold. The second voxel is by
far the largest and also contains the most data points. Which could indicate,
that it might be covering one cluster almost by itself. Since we allow voxels
to grow beyond the border under certain conditions, we can conclude, that the
second voxel overgrew, touching the first voxel.
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Figure 30: The statistics bar plots for the analysis of the simulated data sets
for PI+DD. On the left we see the number of neighbors per voxel and on the
right we see the norms of the midpoints.

Figure 30 shows some interesting facts about the process. Firstly we see,
that the largest voxels also have the most neighbors. It is a indication, that
thises voxels are central or at least a lot of voxels were created around them.

The norms, meaning the euclidean distance to the origin of the coordinate
system, of the midpoints show something interesting. Even though the algo-
rithm found only one cluster, meaning all voxel could be connected via a chain
of voxels, the norm plot in figure 30 has very distinct values. Meaning one would
be able to find two clusters and tell them clearly apart. The second voxel sits
right in the middle of the two values for all other voxels. So we are assuming,
that this voxel is connecting the two clouds.

Example: (Pions and beam background)
For the PI+BG analysis we found two clusters, yet one of them had less than
one percent of all the data. This was a characteristic that all beam background
analysis yielded. The first step created 11 voxels and covered only 5.5% of the
data. After the second step 45 voxels were created in total, covering 93.77%. In
the end we had only four times as many voxels than in the first step, but 18 times
as many counts. This was repeated for the DD+BG and T+BG combinations,
as can be seen in table 4.
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Figure 31: The statistics bar plots for the analysis of the simulated data sets
for PI+BG. On the left we can see the counts of data points per voxel and on
the right we see the radii.

Figure 31 shows a characteristic result for beam background analysis. In all
cases, where we combined beam background with another cluster, the first step
created few voxels, covering only a low amount of data points. The second step
creates a lot of voxels, covering way more of the data. All of them had a peak
in counts on the first randomly created voxel, covering most of the data.

Figure 32: The statistics bar plots for the analysis of the simulated data sets
for PI+BG. On the left we see the number of neighbors per voxel and on the
right we see the norms of the midpoints.

Figure 32 shows the numbers of neighbors and the norms. Neither of them
reveal anything deeper about the process, since the number of neighbors is
mostly between six and one, dominated by just two neighbors. There are peaks
at eight, nine and fifteen neighbors. The norms do not show any pattern, unlike
what we have seen in the previous analysis.

Example: (Pions and tetra quarks)
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Finally we will have a more detailed look at PI+T. This set has 120,671 data
points for which 678 boundary points were found. After the first step 18 voxels
were created and 33.17% of the whole set was covered with voxels. The second
step created 55 voxels totalling in 73 voxels and covering 62.79% of the data.
As we can see in table 4 the two data sets were recognized just one cluster.

More detailed information from the program output tells us that the highest
count is 29,088 and the average count is 1037.88. The largest radius is 118 and
the mean radius is 19.5 units.

Figure 33: The statistics bar plots for the analysis of the simulated data sets
for PI+T. On the left we can see the counts of data points per voxel and on the
right we see the radii.

Figure 33 shows the counts on the left and we can conclude that one of the
first-step voxels and one of the second step voxels contain most of the covered
data. This is not an indication that we have just two cluster, it would have
been, if two of the first-step voxels had covered most of the data. On the right
we see the radii, which start out large and temper down and the second step
voxels are pretty small in comparison.

27



Figure 34: The statistics bar plots for the analysis of the simulated data sets for
PI+T. On the left we see the number of neighbors per voxel and on the right
we see the norms of the midpoints.

Figure 34 shows the number of neighbors on the left and the norms of the
midpoints of each voxel. One interesting observation is, that some of the ran-
domly grown voxels from step two have quit a lot more neighbors, than the
first-step voxels.

In the norm plot we see the same thing we already saw in with PI+DD. There
are two centers. We can only reiterate that this is a pretty good indication that
there are two clusters and not just one and that the cluster algorithm failed.

28



3.3 A systematical approach

With the problems mentioned in the above paragraph we tried a systematical
approach and used cubical voxels, which we arranged on a regular grid. The
main benefit of cubical over spherical voxels is that there are no interspaces and
overlaps. In case we have a grid that covers the whole data cloud, we can as-
sume that all of the data is inside any voxel. The easiest and most effective way
would be to discretize the space and place a voxel in evenly defined distances
between the maximum and minimum of the coordinates in each dimension. Af-
terwards check if the placed voxels contain any data and delete them if not.
Since we are working with multidimensional data in a wide range, a discretiza-
tion over the whole data range in every dimension is not realizable due to the
big computing effort. By increasing the dimension the discretization gets com-
binatorial explosive. So we need a method to find a grid that only covers the
data points without the need of checking the empty spaces around the data
clouds. Therefore, after choosing a step size, we loop through every coordinate
in every dimension of of the data points and use the position that is closest to a
multiple of the step size from the coordinate. In that way we get a grid that is
approximately only covering the data cloud. Like before, for visualization and
testing the method we used the two-dimensional test data set. The figure 35
shows the two-dimensional data plotted with red dots as the midpoints of the
squares created in the next step. For comparsion figure 36 shows the midpoints
of the potential voxels with the discretization of the whole space.

Figure 35: Midpoints and the squares created in the next step by looping over
the data.
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Figure 36: Midpoints and the squares created in the next step by discretization
of the space.

Since we are rounding the coordinates to the next multiple of the step size to
find the midpoints of the squares, it is possible to miss data points, because the
square is created shifted to them. Various testing with this methods including
higher dimensional data sets showed that most of the data is covered by the
voxels using this method. In the two-dimensional case shown in figure 35 100
% of the data was inside any voxel.

3.3.1 Detecting the voxels that form a cluster

For finding the the voxels that form a cluster we use the same algorithm de-
scribed in chapter 3.2.3. In this case we considered cubes as neighbors if their
midpoints are half of the step size apart from each other. As it is observable
in the figures 35 and 36, it is possible that detached voxels only containing one
data point without having any neighbor are created. This occurs more often
the smaller the step size is. These can be ignored and considered as loss of data
for this method, as we cannot assign them to a bigger cluster. In the following
we only take clusters consisting of at least two voxels or containing more than
0.1% of the complete data into account.

3.3.2 Choosing the step size

The main problem with this method is to find a suitable step size, which is
equivalent to the edge of the cube. It is not only a matter of the computing
effort, but also crtitical to the success of this method. Choosing a value for the
step size that is too big or small leads to data loss as previously described. On
the other hand it is not possible to separate the clusters if the step size is too
big for the voxels from different clusters not to build neighborhood relationships
and therefore separate them with the method introduced in chapter 3.2.3. To
demonstrate this issue, we created a two-dimensional test data set with three
clusters and ran the program with three different step sizes for the same data.
Figure 37 shows an example for a step size that is compatible for this data
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set. The squares are big enough to cover the whole data and not that big for
voxels from different clusters touching each other. In this case three clusters
were identified.

Figure 37: Example for separating three clusters with a suitable step size.

The step size chosen in figure 38 is just small enough for the algorithm to
separate the cluster and can be viewed as a borderline case. Although the
corners from voxels out of the two separate lower clusters are touching, they
are not considered as neighbors, which is why the algorithm still detects three
different clusters.

Figure 38: Borderline case with a step size just small enough to detect three
clusters
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By going further and increasing the step size even more, we observe the
voxels from the lower clusters growing into each other, thus the algorithm can
only detect two clusters. This illustration is shown in figure 39.

Figure 39: Example for a step size too big for detecting the three clusters

Approaches for finding an adequate step size for any data set, like considering
the middle distance between neighboring data points as guideline for the edge
length yield to too big step sizes, since non-optimal data sets usually include
many loose points, which are increasing the step size too far. From here on we
tried out different step sizes until we achieved the best coverage, since we did
not find a generally applicable criterion.

3.3.3 Using the algorithm on high-dimensional test data

Analogously to chapter 3.2.5, this method also has to be tested in higher di-
mensions to verify its functionality. For that matter we used the same data sets
containing two equally big clusters as in chapter 3.2.5. As mentioned above, for
each case we have to try out different step sizes and use the one that has the
most amount of data covered and is able to find two approximately equally big
clusters.
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Table 5: Results for different dimensions.

Dimension Step size Voxels Clusters Data Covered

2 2 136 2 100%

3 2 565 2 100%

4 3 807 2 100%

5 5 484 2 100%

6 6 633 2 100%

The results are listed in Table 5. We can see, that the algorithm works well
on this optimal data set. There is no loss of data in higher dimension as it
was the case using spherical voxels, since we covered 100% of the data in every
dimension. However, using the clustering process as described in chapter 3.3.1
leads to small losses of the resulting clusters owing to not considering detached
voxels without any neighbors. In any case the both detected clusters contained
at least 49.7% of the data.

3.3.4 Analyzing the simulated PXD data

In this section we use the algortihm on selected clusters of the simulated PXD
data. For the first tries we chose the clusters for pions (PI), anti-deuterons (DD)
and tetra quarks (T). The results of the DD and PI cluster are listed in table
6.

Table 6: The results for the PI+DD Cluster

Step size Clusters
Main

Cluster

Biggest secondary

Cluster

Total Data

covered

10 470
3293 Voxels

59.0% total data

1 Voxel

7.3% total data
77%

15 45
2349 Voxels

90.0% total data

1 Voxel

3.2% total data
100%

20 23
1270 Voxels

79.7% total data

1 Voxels

1.4% total data
86%

For each run we listed the clusters detected by this method, the proportion
of total data in the biggest and second biggest cluster and the number of voxels
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they consist of aswell as the total data covered. We tried three different step
sizes for every combination of two out of the three clusters. As we can see in
table 6 the method detects 23 clusters by using a relatively big step size of 20
units. The amount of clusters detected increases the smaller the step size is
and is getting up to 430 clusters using the smallest step size of 10 units. As
mentioned before, our algorithm only ignores clusters that consist of less than
two voxels and contain less than 0.1% of the total data. However there are
still many clusters that either consist of two to five voxels only containing a
few data points, which causes this big number. These can be ignored aswell
and we only pay attention to the clusters containing a perceptible amount of
data or voxels. In every case the biggest cluster detected, the main cluster,
contains a huge proportion of the total data covered and consists of the most
voxels by far. The second biggest cluster only consists of one voxel for every
step size, but contains up to 7.3% of the total data, which is about 7540 data
points. By decreasing the step size the ratio of total data and data in the main
cluster shifts, causing the second biggest cluster containing a bigger proportion
of the total data. This could be a hint, that there is a second big accumulation
of data besides the main cluster in our data set. Since the computing effort
increases exponentially by lowering the step size even more, smaller step sizes
could not be tested. Additionally we notice, that we achieved an optimal data
coverage using a stepize of 15 units, with having every data point in a voxel.
Decreasing or increasing the step size from this value led to a loss of data points.
By decreasing the step size even further we assume that the loss of data will
get bigger. We repeated the same process on the other two combinations of the
data sets, which is DD+T aswell as PI+T. The results are shown in the tables
7 and 8.

Table 7: The results for the DD+T Cluster

Step size Clusters
Main

Cluster

Biggest secondary

Cluster

Total Data

covered

10 39
3373 Voxels

57.0% total data

1 Voxel

1.3% total data
68.9%

15 23
2239 Voxels

86.1% total data

1 Voxel

2.2% total data
100%

20 14
1580 Voxels

73.4% total data

1 Voxels

2.8% total data
85.0%
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Table 8: The results for the PI+T Cluster

Step size Clusters
Main

Cluster

Biggest secondary

Cluster

Total Data

covered

10 87
4610 Voxels

59.9% total data

1 Voxel

6.3% total data
75.9%

15 45
2349 Voxels

89.99% total data

1 Voxel

3.2% total data
100%

20 23
1494 Voxels

79.5% total data

1 Voxels

1.2% total data
86%

Comparing the results of the algorithm on the different sets of the cluster
data, we can see some similarities. For every combination, the step size of 15
units achieved 100% coverage of the total data. The biggest secondary cluster
only consists of 1 voxel in every case and contains 7.3% of the total data at
most, which means that we can not separate any of the two clusters from each
other for sure. It is notable, that the algorithm can find one accumulation of
data consisting of a large amount of voxel for every case. The only noteworthy
difference between the results of different combinations is the number of clusters
deteceted. While the algorithm finds up to 470 clusters for the DD+PI cluster,
it only finds 39 clusters for the DD+T clusters. This could be a measure of
how tight the data points are, which shows how similar they are to one another.
Applying the algorithm to a data set with points very similar to each other would
probably lead to less clusters detected by this method, since the voxels created
are more likely to be next to each other. To get an idea about how many of the
voxels are directly connected to each other, we looked at how many neighbors
each voxel have and counted them. The histogram of that for PI+T with a step
size of 15 units can bee seen in figure 40. For each dimension one voxel can
have two neighbors at most, which would be 12 neighbors for this 6-dimensional
data set. As we can see in that histogram, there is no voxel that has a neighbor
in every direction. There are only a very few voxels having 8 neighbors, while
no voxel has 9 or more. This means, that in at least one direction, every voxel
building the main cluster of about 2350 voxels is the border of the detected
cluster. Considering voxels that have the highest number of neighbors could
help to identify the innermost voxels and therefore the centre of the cluster.
We assume that the step sizes used on this data set are too rough to edge
the cluster accurately enough, since every voxel borders the cluster. On the
other hand there is also a relatively high amount of voxels with no neighbors,
which indicates the large spread of the data points in this set. The amounts
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Figure 40: Histogram of the number of neighbors for PI+T

of neighbors, with exception of 4 neighbors, increases steadily and peakes at a
voxel having 6 neighbors.

3.4 Conclusion

In this chapter we discussed two approaches in finding the geometry of data
sets. Firstly we had used an semi stochastic system of determining the shape
of data sets. This was done by placing spheres in a random manner outside of
the data set and finding the borders of the data clouds. Than we looked for
the larges possible spheres and build up neighbor chains. The second step is
the least problematic, but it greatly depends on the first one. The issues with
finding the border is two fold, first we need to figure out how many trails we
want to run. More trails is always better and we do not run into problems if
we increase the number of trails, but time will increase linearly with number of
trails. The second problem is, that we need to provide a suitable search radius
within which there are no data points before we can start looking for border
points. The underlying problem here is, that we do not know which size is
appropriate, since the density of data points can vary greatly.

The previously introduced method of using cubical voxels to enclose a data
set is only to some extend capable of finding clusters. In contrast of conventional
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methods like the Self-organizing-map, this method uses a purely geomtrical
approach to find clusters. Therefore the clusters in the given data sets have to
be clearly separated without growing into each other at any point. As discussed
before, another issue of this method is finding the correct value of the step size.
The edges of the clusters to be detected in the data set have to be at least one
unit of the step size apart from each other in order to be separated correctly.
Choosing smaller step sizes than presented could not be tested in this work,
since the computing effort increases dramatically with lowering the step size
and we lack of computing capacity to do that.

For the cluster data created by python used to test our method, the algorithm
achieved nearly perfect results up to 6 dimensions. Considering that the clusters
of the simulated PXD data have a large spread and even common data points,
this purely geometrical approach like this method will not work and it will be
necessary to find a dynamic approach in determining which voxels are connected
than it was laid out in section 3.2.3.
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4 Finishing remarks

4.1 Conclusion

This work discussed three different approaches for detecting different point cloud
clusters for applying them on the simulated PXD data of the Belle II experi-
ment. The Masters’s Thesis from Katharina Dort [1] concerned with this topic,
tried to seperate different clusters with Self-organizing-maps, so we started our
work with a brief introduction and an own implementation of this form of unsu-
pervised machine learning. Since the previous work was not able to differentiate
accurately between more than two clusters of the PXD data, we mainly focussed
on geometrical approaches to detect distinct clusters in the PXD data sets. First
tests with the Self-organizing-map in this work showed the principle function-
ality on different test data sets, but also her limits on the PXD data.
The main goal of this work was to investigate the possibility of using voxels to
cover the data clusters and use geometrical approaches to differentiate between
distinct clusters in the given data set. Two different methods were presented and
tested in this work. The first method presented was stochastic and used spher-
ical voxels, while the other one was more systematical and used cubical voxels.
It was shown, that both algorithms were able to differentiate between clearly
separated clusters in low- and highdimensional test data sets. The stochastic
approach however misses data points with increasing the dimensionality, while
the systematical approach using cubical voxels did not endure any data losses
for higher dimensions. By applying the methods to the simulated PXD data
the weaknesses of these methods were shown clearly. Both our two approaches
relied strongly on an input parameter that was related to the cloud density or
the mean distance between two points. Furthermore the data clouds of PI, DD,
T and BG from the simulated data sets are partially overlapping, which means
that this purely geometrical methods will not work without further modifica-
tion. The current methods however are already applicable and functional for
detecting clearly separated clusters and can act as an assistance or alternative
for unsupervised learning methods, since it is able to identify the correct amount
of clusters and the data they consist of without any information of the data set.

4.2 Outlook

As mentioned before, the methods presentend in this work are purely geomet-
rical. So a simple check if two voxels touch each other fails at differentiating
between two clusters if the data clouds overlap. In section 3.2.7 we noticed that
taking the midpoint norms into account could help telling clusters apart. Be-
sides that further considerations could be taking in to account for the clustering
process. For the case that clusters overlap at some points, it could be instructive
to look at the density gradient of the voxels, meaning how many data points
are inside a voxel per volume. Thus one could make a decision based on a vary-
ing density, since we assume that the part where the clusters overlap are less
dense than their centers. Continuing improvements on that algorithm could not
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only consider direct, but also further neighbors. Central voxels are more likely
to have a constant quotient of direct-to-total number of neighbors, while we
that assume voxels connecting two clouds have a small quotient. Further works
on this matter could help detecting those kind of voxels that are less dense
and connect two different clusters and lead to a more sophisticated clustering
algorithm.
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5 Appendix

5.1 SOM Python Code

1 # Module importieren

2 import numpy as np

3 import matplotlib.pyplot as plt

4 import matplotlib

5 import math

6 import argparse

7 import random

8 import time

9 from progress.bar import ChargingBar

10 # selbst geschriebene Helfer importieren

11 # "helper" e n t h l t s m t l i c h e Funktionen die w h r e n d des Programm

gebraucht werden

12 # "plotter" wird gebraucht um die Graphen zu plotten

13 from helper import *

14 from plotter import *

15

16 # schaltet die Warnung aus , dass zu viele Graphen geplotet wurden

17 matplotlib.rc(’figure ’, max_open_warning = 0)

18

19 # input flags werde hier geparst

20 parser = argparse.ArgumentParser ()

21 parser.add_argument("-v", "--verbosity", help="output verbosity",

action="count")

22 parser.add_argument("-p", "--plots", help="output plots , {cluster ,

movement , norms , neighbor}", type = str)

23 parser.add_argument("-d", "--data", help="determines whicht data

set is beging used {dd, pi, t, test}", type = str)

24 parser.add_argument("-e", "--elements", help="the number of

datapoints to be processed", type = int)

25 parser.add_argument("-w", "--weight", help="sets the weight of node

adjustment", type = float)

26 parser.add_argument("-c", "--cutoff", help="sets the cutoff radius"

, type = int)

27 args = parser.parse_args ()

28

29 if args.data != None:

30 dataSplit = args.data.split(’+’)

31

32 if args.plots != None:

33 plotsSplit = args.plots.split(’+’)

34

35 # user bestimmter prefix f r plots

36 plotPrefix = input("Enter prefix for output files ")

37

38 # startup Parameter einstellen

39 # "gewicht" gibt die Gewichtung mit der Nachbarknoten angepasst

werden

40 # "cutoff" gibt die distance an bis zu welchem Nachbarn Knoten

angepasst werden

41 sigma= 0.5

42

43 # output f r die input flags

44 if args.weight == None:
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45 gewicht = 2

46 print("Using default weight of value 2")

47 else:

48 gewicht = args.weight

49 print("Using a weight of value {}".format(args.weight))

50 if args.cutoff == None:

51 cutoff = cutneighborhood (2)

52 args.cutoff =2

53 print("Using default cutoff radius of 2")

54 else:

55 cutoff = cutneighborhood(args.cutoff)

56 print("Using a cutoff radius of {}".format(cutoff))

57

58 # Daten einlesen und in Array konvertieren

59 setDD = False

60 setPI = False

61 setT = False

62 setBG = False

63

64 startReading = time.time()

65 if args.data != None:

66 dataSplit = args.data.split(’+’)

67 if ("test" in dataSplit):

68 #data = genData (6 ,3 ,24000)

69 #data = genDataNew (24000)

70 data = sixDData (24000 ,15)

71 else:

72 if ("bg" in dataSplit):

73 fileBG = "Traindata/Beam_BG_cluster_sim.txt"

74 dataBG = np.genfromtxt(fileBG , delimiter=’ ’)

75 setBG = True

76 if ("dd" in dataSplit):

77 fileDD = "Traindata/Beam_dd_cluster_sim.txt"

78 dataDD = np.genfromtxt(fileDD , delimiter=’ ’)

79 setDD = True

80 if ("pi" in dataSplit):

81 filePI = "Traindata/Beam_pi_cluster_sim.txt"

82 dataPI = np.genfromtxt(filePI , delimiter=’ ’)

83 setPI = True

84 if ("t" in dataSplit):

85 fileT = "Traindata/Beam_T_cluster_sim.txt"

86 dataT = np.genfromtxt(fileT , delimiter=’ ’)

87 setT = True

88

89 if setDD == True and setPI == True and setT == True and

setBG == True:

90 data = np.vstack ((dataDD , dataPI , dataT , dataBG))

91 elif setDD == False and setPI == True and setT == True and

setBG == True:

92 data = np.vstack ((dataPI , dataT , dataBG))

93 elif setDD == True and setPI == False and setT == True and

setBG == True:

94 data = np.vstack ((dataDD , dataT , dataBG))

95 elif setDD == True and setPI == True and setT == False and

setBG == True:

96 data = np.vstack ((dataDD , dataPI , dataBG))
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97 elif setDD == False and setPI == False and setT == True and

setBG == True:

98 data = np.vstack ((dataT , dataBG))

99 elif setDD == False and setPI == True and setT == False and

setBG == True:

100 data = np.vstack ((dataPI , dataBG))

101 elif setDD == True and setPI == False and setT == False and

setBG == True:

102 data = np.vstack ((dataDD , dataBG))

103 elif setDD == True and setPI == True and setT == True and

setBG == False:

104 data = np.vstack ((dataDD , dataPI , dataT))

105 elif setDD == False and setPI == True and setT == True and

setBG == False:

106 data = np.vstack ((dataPI , dataT))

107 elif setDD == True and setPI == False and setT == True and

setBG == False:

108 data = np.vstack ((dataDD , dataT))

109 elif setDD == True and setPI == True and setT == False and

setBG == False:

110 data = np.vstack ((dataDD , dataPI))

111 elif setDD == False and setPI == False and setT == True and

setBG == False:

112 data = dataT

113 elif setDD == False and setPI == True and setT == False and

setBG == False:

114 data = dataPI

115 elif setDD == True and setPI == False and setT == False and

setBG == False:

116 data = dataDD

117

118 if args.data == None:

119 fileBG = "Traindata/Beam_BG_cluster_sim.txt"

120 dataBG = np.genfromtxt(fileBG , delimiter=’ ’)

121 fileDD = "Traindata/Beam_dd_cluster_sim.txt"

122 dataDD = np.genfromtxt(fileDD , delimiter=’ ’)

123 data = np.vstack ((dataDD , dataBG))

124

125 np.random.shuffle(data)

126 endReading = time.time()

127

128

129 # Meta Daten bestimmen und Knoten generieren

130 # "getMetrics" gibt das g r t e & kleinste Element pro Dimension

aus

131 # "vecSize" ist die Dimension jedes Datenpunkts

132 # "numElements" ist die Anzahl an Datenpunkten

133 # "genNodes" generiert die Knoten , jedem Knoten werden z u f l l i g e

Wert in

134 # A b h n g i g k e i t der maximalen & minmalen Werte pro Dimension

generiert

135 # "nodes" ist ein [nx ny vecSize] Array

136 minElement , maxElement , vecSize , numElements = getMetrics(data)

137

138 if args.elements == None:

139 print("All {} data points will be processed".format(numElements

))
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140 elif args.elements > numElements:

141 print("Input is bigger than availible data points.")

142 print("This means all {} data points will be processed".format(

numElements))

143 else:

144 numElements = args.elements

145 print("{} elements will be processed".format(args.elements))

146

147 # Neuronenanzahl bestimmen

148 neurons = 15

149 print("{} times {}".format(neurons ,neurons))

150 nodes = genNodes(neurons , vecSize , minElement , maxElement , False)

151

152 outPutCollection = []

153 learningPlot = []

154 processedPoints = 0

155 startProcess = time.time()

156 # hier startet der Loop ber die Daten , "step" ist der Zeitschritt

in data

157 if args.verbosity == None:

158 bar = ChargingBar(" ", max=numElements)

159 for timeStep in range(0, numElements):

160 # normList ist eine Liste der Normen eines Datenpunkts gegen

jeden Knoten

161 normList = []

162 normList = normListe(nodes , data[timeStep], neurons)

163 # hier wird der Index des Knoten mit der kleinsten Norm

bestimmt

164 minIndex = winNode(normList)

165 outPut = [timeStep , minIndex [0], minIndex [1]]

166 outPut = np.append ([ outPut],[data[timeStep ]])

167 if timeStep != 0:

168 outPutCollection = np.vstack (( outPutCollection , outPut))

169 else:

170 outPutCollection = np.append(outPutCollection , outPut)

171 # anpassen des Vektors des Knotens der kleinsten Norm

172 # "adjustNode" nimmt einen Vektor , einen Datenpunkt und ein

Gewicht an

173 nodes[minIndex] = adjustNode(nodes[minIndex], data[timeStep],

timeStep , gewicht)

174 UMatrix=genUMatrix(nodes , neurons)

175 learnRate = learningRate(timeStep , gewicht)

176 learningPlot = np.append(learningPlot , learnRate)

177 if args.verbosity == 1:

178 print("Time Step:", timeStep , "\n", "Winning Node Index:",

minIndex , "\n")

179 elif args.verbosity == 2:

180 print("Time Step:", timeStep , "\n", "Winning Node Index:",

minIndex , "\n", "Learningrate:", learnRate , "\n")

181 else:

182 pass

183 #print("Time Step:", timeStep)

184 nodes , neighList = adjustNeighbor(nodes , data[timeStep],

minIndex , neurons , neurons , timeStep , gewicht , cutoff , args.

cutoff)

185 normListAfter = []

186 normListAfter = normListe(nodes , data[timeStep], neurons)
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187 # plotten der Daten

188 if processedPoints % 2000 == 0:

189 if args.plots == None:

190 startPlot = time.time()

191 plotNodes(timeStep , normList -normListAfter , "Movement",

plotPrefix)

192 plotNodes(timeStep , UMatrix , "Cluster", plotPrefix)

193 else:

194 startPlot = time.time()

195 if ("all" in plotsSplit) == True:

196 plotNormList(timeStep , minIndex , normList ,

normListAfter , plotPrefix)

197 plotNodes(timeStep , 1/neighList , "Neighborhood",

plotPrefix)

198 plotNodes(timeStep , normList -normListAfter , "

Movement", plotPrefix)

199 plotNodes(timeStep , UMatrix , "Cluster", plotPrefix)

200 if ("norm" in plotsSplit) == True:

201 plotNormList(timeStep , minIndex , normList ,

normListAfter , plotPrefix)

202 if ("movement" in plotsSplit) == True:

203 plotNodes(timeStep , normList -normListAfter , "

Movement", plotPrefix)

204 if ("cluster" in plotsSplit) == True:

205 plotNodes(timeStep , UMatrix , "Cluster", plotPrefix)

206 if ("neighbor" in plotsSplit) == True:

207 plotNodes(timeStep , 1/neighList , "Neighborhood",

plotPrefix)

208 if ("none" in plotsSplit) == True:

209 pass

210 processedPoints += 1

211 if ’bar’ in locals ():

212 bar.next()

213 if ’bar’ in locals ():

214 bar.finish ()

215 endPlot = time.time()

216 endProcess = time.time()

217

218 # learnRate plotten

219 fig = plt.figure ()

220 plt.plot(learningPlot)

221 plt.savefig("Output/learnRate_ {}.png".format(plotPrefix))

222

223 # Schreiben der output Daten

224 np.savetxt("Output/umatrix_ {}.txt".format(plotPrefix), UMatrix , fmt

="%f")

225 np.savetxt("Output/finalData_ {}. txt".format(plotPrefix),

outPutCollection , fmt="%f")

226

227 # Abschluss Kommentar

228 if processedPoints == numElements:

229 print("Run was successful")

230 print("Reading the data took {}".format(endReading -startReading

))

231 print("The main process took {}".format(endProcess -startProcess

))
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232 print("That is {} per data point".format (( endProcess -

startProcess)/numElements))

233 print("The plots took {}".format(abs((endPlot -startPlot) -(

endProcess -startProcess))*numElements))

234 else:

235 print("The programm crashed at data point {}".format(

processedPoints))

Listing 1: Main Program

1 # das ist die "helper" Datei , die s m t i c h e funktionen e n t h l t

2 import numpy as np

3 import math

4 import random

5

6 # diese Funktion generiert die Knoten und initialisiert z u f l l i g e

Neuronen

7 def genNodes(neurons: int , vecSize: int , min: int , max: int ,

randNodes = True):

8 if randNodes == True:

9 nodes = np.random.rand(neurons ,neurons ,vecSize) #

v o l l s t n d i g z u f l l i g

10 else:

11 nodes = np.random.randint(min ,max ,size=(neurons ,neurons ,

vecSize)) # basierend auf Input Datan

12 nodes = np.array(nodes , dtype=’float’)

13 return nodes

14

15 # schnelle Funktion zur Bestimmung der Norm

16 def fastNorm(vec):

17 return math.sqrt(np.dot(vec , vec.T))

18

19 # auslesen der Meta Datan des Inputs

20 def getMetrics(data: np.array):

21 maxData = data.max(axis =0) # g r t e Daten im Input

22 maxElement = np.ceil(maxData) # runden der max Werte des Inputs

23 minData = data.min(axis =0) # kleinste Daten im Input

24 minElement = np.floor(minData) # runden der minmal Werte des

Inputs

25 vecSize = np.size(data , axis =1) # G r e des Vektors

26 numElements = np.size(data , axis =0) # Anzahl an Elementen

27 return (minElement , maxElement , vecSize , numElements)

28

29 def numNeurons(numElements: int):

30 neurons = np.ceil(math.sqrt (5* math.sqrt(numElements)))

31 neurons = neurons.astype(int)

32 if neurons < 10:

33 neurons = 10

34 return neurons

35

36 # erstellen der A b s t n d e zwischen einem Datenpunkt und den

Neuronen

37 def normListe(nodes: np.array , data: np.array , neurons: int):

38 normList = []

39 for Elements in nodes:

40 for Element in Elements:

41 diff = fastNorm(data -Element)

42 normList = np.append(normList , diff)
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43 return normList.reshape(neurons ,neurons)

44

45 # findet heraus welcher Knoten den geringsten Abstand zum

Datanpunkt hat

46 def winNode(normList: np.array):

47 minIndex = np.where(normList == normList.min())

48 return (minIndex [0][0] , minIndex [1][0])

49

50 # wie schnell die Lernrate a b f l l t

51 def learningRate(timeStep: int , gewicht: int):

52 return 1/( math.log(timeStep +2)*gewicht)

53

54 # Funktion zum verschieben eines Neurons zum Datanpunkt hin

55 def adjustNode(node: np.array , data: np.array , timeStep: int ,

neighCoeff: int):

56 node += (data - node)*learningRate(timeStep , neighCoeff)

57 return node

58

59 # eine Funktion zum anpassen der Nachbarknoten des gewinnenden

Knotens

60 def adjustNeighbor(nodes: np.array , data , minIndex: tuple , nx: int ,

ny: int , timeStep: int , gewicht: float , cutoff: float ,

neighcut: int):

61 neighList =[]

62 for i in range(0,nx):

63 neighCoeff = gewicht

64 for j in range(0,ny):

65 if (math.sqrt((i-minIndex [0]) **2+(j-minIndex [1]) **2)) <=

cutoff and ((i-minIndex [0]) <= neighcut) and ((j-minIndex [1])

<= neighcut):

66 #print(i,j)

67 neighCoeff = gewicht

68 if (i != minIndex [0]) and (j != minIndex [1]):

69 neighCoeff=neighCoeff *2**( abs(i-minIndex [0])+abs(j-

minIndex [1]))

70 #print(" Neighborhood coeff:", neighCoeff , "\n")

71 neighList=np.append(neighList , neighCoeff)

72 nodes[i,j]= adjustNode(nodes[i,j], data , timeStep ,

neighCoeff)

73

74 if ((i != minIndex [0]) and (j == minIndex [1])) or (i ==

minIndex [0]) and (j != minIndex [1]) :

75 neighCoeff=neighCoeff *2**( abs(i-minIndex [0])+abs(j-

minIndex [1]))+abs(i-minIndex [0])+abs(j-minIndex [1])

76 #print(" Neighborhood coeff:", neighCoeff , "\n")

77 neighList=np.append(neighList , neighCoeff)

78 nodes[i,j]= adjustNode(nodes[i,j], data , timeStep ,

neighCoeff)

79

80 if (j == minIndex [1]) and (i == minIndex [0]):

81 neighList=np.append(neighList , gewicht)

82 else:

83 neighList=np.append(neighList , 9999)

84

85 neighList = np.reshape(neighList ,(nx ,ny))

86 #print(neighList)

87
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88 return (nodes , neighList)

89

90 def GaussNeighbor(nodes: np.array , data , minIndex: tuple , nx: int ,

ny: int , timeStep: int , gewicht: float , cutoff: float , neighcut

: int , sigma: float):

91 neighList =[]

92 for i in range(0,nx):

93 for j in range(0,ny):

94 if (math.sqrt((i-minIndex [0]) **2+(j-minIndex [1]) **2)) <=

cutoff and (math.sqrt((i-minIndex [0]) **2) <= neighcut) and (

math.sqrt((j-minIndex [1]) **2) <= neighcut):

95 if (j!= minIndex [1]) or (i!= minIndex [0]):

96 neighCoeff = math.exp((i-minIndex [0]) **2+(j-

minIndex [1]) **2/(2* sigma))

97 neighList=np.append(neighList , neighCoeff)

98 nodes[i,j]= adjustNode(nodes[i,j], data , timeStep ,

neighCoeff)

99

100 else:

101 neighCoeff= gewicht

102 neighList=np.append(neighList , neighCoeff)

103

104 else:

105 neighList=np.append(neighList , 9999)

106

107

108

109 neighList = np.reshape(neighList ,(nx ,ny))

110 #print(neighList)

111

112 return (nodes , neighList)

113

114

115 # generiert z u f l l i g e , nicht zusammenh ngende Daten zum testen

des Programms

116 def genData(vecDim: int , numCubes: int , numElements: int):

117 testData = []

118 for cubeNumber in range(0,numCubes):

119 if cubeNumber % 2 == 0:

120 max = 100* cubeNumber +95

121 min = 100* cubeNumber +5

122 else:

123 max = 100* cubeNumber +90

124 min = 100* cubeNumber +10

125 elPerCube = np.round(numElements/numCubes ,0).astype(int)

126 dataPoint = np.random.randint(min ,max ,size=(elPerCube ,

vecDim))

127 dataPoint = np.array(dataPoint /10, dtype=’float’)

128 testData = np.append(testData , dataPoint)

129 testData = testData.reshape(numElements ,vecDim)

130 np.random.shuffle(testData)

131 return testData

132

133 def genDataNew(number):

134 n = np.round(number /6,0).astype(int)

135 a = np.random.multivariate_normal ([0, 5], [[2, 1], [1, 1.5]],

size=n)
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136 b = np.random.multivariate_normal ([2, 0], [[1, -1], [-1, 3]],

size=n)

137 c = np.random.multivariate_normal ([5, 4], [[5, 0], [0, 1.2]],

size=n)

138 d = np.random.multivariate_normal ([14, 18], [[5, 2], [2, 4]],

size=n)

139 e = np.random.multivariate_normal ([19, 15], [[2, -2], [-2, 6]],

size=n)

140 f = np.random.multivariate_normal ([19, 18], [[4, 0], [0, 1]],

size=n)

141 z = np.concatenate ((a, b, c, d, e, f))

142 return z

143

144 # die UMatrix aus den vorliegenden daten bestimmen , sie zeigt

s p t e r cluster

145 def genUMatrix(nodes: np.array , neurons: int) :

146 UMatrix =[]

147 for i in range(0, neurons):

148 for j in range(0,neurons):

149 distance =0

150 nrneighbour =0

151 if (j+1 % neurons != 0) and (j != neurons -1):

152 distance += fastNorm(nodes[i][j+1]-nodes[i][j])

153 nrneighbour +=1

154 if j % neurons != 0:

155 distance += fastNorm(nodes[i][j-1]-nodes[i][j])

156 nrneighbour +=1

157 if i+1 < neurons:

158 distance += fastNorm(nodes[i+1][j]-nodes[i][j])

159 nrneighbour +=1

160 if i-1 >= 0:

161 distance += fastNorm(nodes[i-1][j]-nodes[i][j])

162 nrneighbour +=1

163 Udistance=distance/nrneighbour

164 UMatrix=np.append(UMatrix ,Udistance)

165 UMatrix = UMatrix.reshape(neurons ,neurons)

166 return UMatrix

167

168 # eine Funktion zur Bestimmung des "cutoff" Radius ’

169 def cutneighborhood(cutoff: int):

170 return math.sqrt (2* cutoff **2)

171

172 # S p h r e n werden hier definiert , sie besitzen einen Radius , einen

Mittelpunkt

173 # dieser wird durch die dimensionalit t der Daten bestimmt , nicht

hier , aber in einer Funktion

174 # "number" soll die S p h r e n d u r c h z h l e n und "counter" die

Datenpunkte , die innerhalb der S p h r e liegen

175 # S p h r e n k n n e n wachsen und man kann die Z h l e r heraufsetzen

176 class sphere:

177 def __init__(self , number: int , radius: float , midPoint: np.

array , counter: int):

178 self.number = number

179 self.radius = radius

180 self.midPoint = np.array ([ midPoint ])

181 self.counter = counter

182 def getRadius(self):
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183 return self.radius

184 def grow(self , speed: float):

185 self.radius = self.radius*speed

186 def addCounter(self):

187 self.counter += 1

188 def moveMidPoint(self , speed: float , direction: np.array):

189 self.midPoint += speed*direction

190

191 # nimmt einen Vektor entgegen und berprft ob dessen Norm

g r e r oder kleiner ist als eine vorgegeben Zahl

192 def checkCollision(distanceVec: np.array , radius: float):

193 if fastNorm(distanceVec) > radius:

194 return False

195 return True

196

197 # generiert S p h r e n aus einem Datensatz , als Mittelpunkt wird ein

z u f l l i g e r Messwert genommen

198 def createCloud(number:int , radius: float , data: np.array , counter:

int):

199 midPoint = random.choice(data)

200 cloud = sphere(number , radius , midPoint , counter)

201 return cloud

202

203 class clusters:

204 def __init__(self , point: np.array , timeStep: int , index: tuple

):

205 self.point = np.array([point])

206 self.timeStep = timeStep

207 self.index = index

208

209

210 def sixDData(number = 1800, spread = 50):

211 n = np.round(number /2,0).astype(int)

212 a = np.random.multivariate_normal ([24, 0, 0, 0, 0, 0], [[spread

, 0, 0, 0, 0, 0], [0, 1.95* spread , 0, 0, 0, 0], [0, 0, spread ,

0, 0, 0], [0, 0 ,0, 1.95* spread , 0, 0], [0, 0, 0, 0, spread ,

0], [0, 0 ,0, 0, 0, 1.95* spread]], size=n)

213 b = np.random.multivariate_normal ([0, 0, 0, 0, 0, 0], [[spread ,

0, 0, 0, 0, 0], [0, spread , 0, 0, 0, 0], [0, 0, 1.95* spread ,

0, 0, 0], [0, 0 ,0, 1.95* spread , 0, 0], [0, 0, 0, 0, spread ,

0], [0, 0 ,0, 0, 0, 1.95* spread]], size=n)

214 z = np.concatenate ((a, b))

215 return z

Listing 2: Code including the functions used in the main Program

1 # hier sind alle Plot -Funktionen

2 import numpy as np

3 import matplotlib.pyplot as plt

4 from numpy import linalg as la

5

6 # plottet die A b s t n d e zwischen einem Datenpunkt und den Neuronen ,

vor und nach Anpassung eines Knotens und nach der

Nachbarschaftsanpassung

7 def plotNormList(timeStep: int , minIndex: tuple , normList: np.array

, normListAfter: np.array , prefix: str):

8 fig = plt.figure(figsize =(6,9))

9 # Plot vor Anpassung
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10 plt.subplot (2,1,1)

11 plt.imshow(normList.T, origin=’lower’, interpolation=’nearest ’)

12 plt.scatter(minIndex [0], minIndex [1], color="red", marker=".")

13 plt.ylabel("y-axis", fontsize =12)

14 cbar = plt.colorbar ()

15 cbar.ax.get_yaxis ().labelpad = 15

16 cbar.ax.set_ylabel(’distance ’, rotation =270, fontsize = 12)

17

18 # Plot nach Anpassung

19 plt.subplot (2,1,2)

20 plt.imshow(normListAfter.T, origin=’lower’, interpolation=’

nearest ’)

21 plt.scatter(minIndex [0], minIndex [1], color="red", marker=".")

22 title = "norm plot of {} at time step: {}".format(minIndex ,

timeStep)

23 fig.suptitle(title , fontsize =16)

24 plt.xlabel("x-axis", fontsize =12)

25 plt.ylabel("y-axis", fontsize =12)

26 cbar = plt.colorbar ()

27 cbar.ax.get_yaxis ().labelpad = 15

28 cbar.ax.set_ylabel(’distance ’, rotation =270, fontsize = 12)

29

30 plt.savefig("Norms/plot_{} _timeStep_ {}.png".format(prefix ,

timeStep), dpi =300)

31

32 def plotNodes(timeStep: int , array: np.array , name: str , prefix = ’

’):

33 fig = plt.figure ()

34 plt.imshow(array , origin=’lower’, interpolation=’nearest ’)

35 title = "{} Plot at {}".format(name ,timeStep)

36 fig.suptitle(title , fontsize =16)

37 plt.xlabel("x-axis", fontsize =12)

38 plt.ylabel("y-axis", fontsize =12)

39 axes = plt.gca()

40 cbar = plt.colorbar ()

41 cbar.ax.get_yaxis ().labelpad = 15

42 cbar.ax.set_ylabel(’value’, rotation =270, fontsize = 12)

43 plt.savefig("{}/ plot_ {} _timeStep_ {}. png".format(name , prefix ,

timeStep), dpi =300)

Listing 3: Plot functions for the SOM

5.2 Stochastic approach

1 import numpy as np

2 from mpl_toolkits.mplot3d import Axes3D

3 import matplotlib.pyplot as plt

4 import random

5 import math

6 import copy

7 import time

8 import itertools

9 from progress.bar import ChargingBar

10 from scipy.spatial.distance import pdist

11 from scipy.spatial.distance import cdist

12 from VoxStochHelper import *

13 from clusterGenerator import *
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14 from extraHelper import *

15 #np.random.seed (0)

16

17 whichData = "pi+dd+t"

18 startStart = time.time()

19 # daten erstellen

20 start = time.time()

21 testData = dataGenerator(whichData)

22 minElement , maxElement , meanElement , vecSize , numElements =

getMetrics(testData)

23 end = time.time()

24 readingData = end -start

25 print("generating data and metrics took {0:.4f} seconds.".format(

readingData))

26 print("")

27

28

29 # rand finden

30 start = time.time()

31 searchRadiusMax , searchRadiusMean , searchRadiusMin =

findSearchRadius(testData)

32 searchRadius = closestNumber (( searchRadiusMax + searchRadiusMean)

/2 ,0.25)

33 trailData = np.unique(testData , axis =0)

34 boundIndex = findBound(trailData , minElement , maxElement , trails =

120000 , searchRadius = searchRadius)

35 boundData , restData = splitData(trailData , boundIndex)

36 midPointPool = np.unique(restData , axis =0)

37 end = time.time()

38 findingBound = end -start

39 print("finding the boundary with a searchRadius of {0} took {1:.4}

seconds.".format(searchRadius ,findingBound))

40 print("")

41 print("there are {} data points of which {} belong to the boundary.

".format(len(testData),len(boundData)))

42 print("the largest element in each dimension is {} and the smallest

is {}.".format(maxElement , minElement))

43 print("the data set has a dimension of {}.".format(vecSize))

44 print("")

45

46

47 # voxel erstellen

48 print("creating voxels ...")

49 mainStart = time.time()

50 voxelNumber = 0

51 voxels = np.array ([])

52 counter = 0

53 stop = False

54 rejectedVoxels = 0

55 while stop == False:

56 oneNorm = np.array ([])

57 start = time.time()

58 length = len(midPointPool)

59 print("looking for the largest voxel possible ...")

60 bar = ChargingBar(" ", max=length)

61 for point in midPointPool:

62 _, normBound = closestDistance(point , boundData)
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63

64 if voxels.size != 0:

65 voxNorm = np.array ([])

66 for vox in voxels:

67 norm = fastDiff(point , vox.midPoint) - vox.radius

68 voxNorm = np.append(voxNorm , norm)

69 stepNorm = voxNorm.min()

70

71 if ’stepNorm ’ in locals ():

72 if stepNorm < normBound:

73 oneNorm = np.append(oneNorm , stepNorm)

74 else:

75 oneNorm = np.append(oneNorm , normBound)

76 else:

77 oneNorm = np.append(oneNorm , normBound)

78 bar.next()

79 bar.finish ()

80 end = time.time()

81 print("finding midPoint and radius took {:.4} seconds.".format(

end -start))

82

83 radius = oneNorm.max()

84 index = np.argmax(oneNorm)

85

86 midPoint = midPointPool[index]

87 print("creating a voxel number {} at {} with radius {}.".format

(counter ,midPoint , radius))

88 voxel = spherus(counter , midPoint , radius)

89

90 if len(voxels) > 0:

91 voxIndex = findNextVoxel(voxel.midPoint , voxels ,len(voxels)

)[0]

92 distanceToNextVoxel = fastNorm(voxel.midPoint -voxels[

voxIndex ]. midPoint) - voxels[voxIndex ]. radius

93 voxNorm = fastNorm(voxel.midPoint -voxels[voxIndex ]. midPoint

) - (voxels[voxIndex ]. radius + voxel.radius)

94 if voxNorm < searchRadius:

95 voxel.radius = distanceToNextVoxel

96

97 #indices = voxel.appendData(restData , vecSize)

98 #boundIndices = voxel.appendData(boundData , vecSize)

99 norms = cdist ([voxel.midPoint],midPointPool).ravel () - voxel.

radius

100 indices = np.where(norms <=0)

101 #print(np.shape(indices)[1])

102 #print("it contains {0} data points and has a desnsity of {1:.4

f}.". format(len(voxel.contData),voxel.density))

103 if (np.shape(indices)[1] > 1):

104 print("")

105 voxels = np.append(voxels , voxel)

106 counter += 1

107 #restData = np.delete(restData , indices , axis =0)

108 #boundData = np.delete(boundData , boundIndices , axis =0)

109 midPointPool = np.delete(midPointPool , indices , axis =0)

110 print("")

111 if np.shape(indices)[1] == 1:

112 stop = True
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113 rejectedVoxels += 1

114 print("voxel rejected and stopping routine.")

115

116 end = time.time()

117 creatingVoxel = end -mainStart

118 print("")

119 print("creating voxels took {0:.4} seconds.".format(creatingVoxel))

120 voxelCount = len(voxels)

121 print("there are {} voxels.".format(voxelCount))

122

123 radiusesOne = np.array ([])

124 densitiesOne = np.array ([])

125 countsOne = np.array ([])

126 normsOne = np.array ([])

127 numOfNeighborsOne = np.array ([])

128

129 for i in range(0,len(voxels)):

130 voxels[i]. neighbors = np.append(voxels[i].neighbors , voxels[i].

voxelNumber)

131 for j in range(0,len(voxels)):

132 if i != j:

133 voxels[i]. findNeighbors(voxels[j].midPoint , voxels[j].

radius , voxels[j]. voxelNumber , searchRadius)

134

135 for voxel in voxels:

136 indices = voxel.appendData(testData , vecSize)

137 testData = np.delete(testData , indices , axis =0)

138 radiusesOne = np.append(radiusesOne , voxel.radius)

139 densitiesOne = np.append(densitiesOne , voxel.density)

140 countsOne = np.append(countsOne , len(voxel.contData)).astype(

int)

141 normsOne = np.append(normsOne , fastNorm(voxel.midPoint))

142 numOfNeighborsOne = np.append(numOfNeighborsOne , len(voxel.

neighbors)).astype(int)

143

144 voxelsUptoNow = len(voxels)

145 meanRadius = radiusesOne.mean()

146

147 print("{} data points have been covered".format(countsOne.sum()))

148 print("{0:.2f}% of the data have been covered".format( (countsOne.

sum()/numElements)*100 ))

149 print("")

150

151

152 # neue Voxel erstellen

153 print("growing new voxels ...")

154 stop = False

155 mainStart = time.time()

156 lenVox = len(voxels)

157 coveragePoint = np.round(lenVox*vecSize ,0).astype(int)

158 counterNewVoxels = 0

159 bar = ChargingBar(" ", max=coveragePoint)

160 while stop == False:

161 pickIndex = np.random.choice(len(midPointPool) ,1)[0]

162 pick = midPointPool[pickIndex]

163 pickCopy = copy.copy(pick)

164 voxIndex = findNextVoxel(pick , voxels ,len(voxels))[0]
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165 nextVoxIndex = findNextVoxel(pick , voxels ,len(voxels))[1]

166 distance = fastNorm(pick -voxels[voxIndex ]. midPoint) - voxels[

voxIndex ]. radius

167 distanceCopy = copy.copy(distance)

168 nextDistance = fastNorm(pickCopy -voxels[nextVoxIndex ]. midPoint)

- (voxels[nextVoxIndex ]. radius+distanceCopy)

169 voxel = spherus(counter , pick , distance)

170

171 speed = 0.001

172 grownUp = False

173 while grownUp == False:

174 # solange wachsen lassen , bis der mittelpunkt und der

n c h s t e randpunkt g r e r wird

175 # wachsen lassen , solange das neue voxel dem nextVoxIndex

n h e r kommt?

176 voxel.moveMidPoint(speed , voxels[voxIndex ]. midPoint)

177 voxel.growRadius(voxels[voxIndex ].midPoint , voxels[voxIndex

]. radius)

178 speed += 0.001

179 newDistance = fastNorm(voxel.midPoint -voxels[nextVoxIndex ].

midPoint) - (voxels[nextVoxIndex ]. radius+voxel.radius)

180 nextVoxIndex = findNextVoxel(voxel.midPoint , voxels ,len(

voxels))[1]

181 index , boundNorm = closestDistance(voxel.midPoint ,

boundData)

182 if newDistance > nextDistance or boundNorm <= voxel.radius:

183 grownUp = True

184 if checkCollision(voxel.midPoint -voxels[nextVoxIndex ].

midPoint , voxel.radius+voxels[nextVoxIndex ]. radius) or voxel.

radius > meanRadius:

185 grownUp = True

186 #indices = voxel.appendData(restData , vecSize)

187 #boundIndices = voxel.appendData(boundData , vecSize)

188 norms = cdist ([voxel.midPoint],midPointPool).ravel () - voxel.

radius

189 indices = np.where(norms <=0)

190

191 if (np.shape(indices)[1] > 1):

192 voxels = np.append(voxels , voxel)

193 counter += 1

194 counterNewVoxels += 1

195 #restData = np.delete(restData , indices , axis =0)

196 #boundData = np.delete(boundData , boundIndices , axis =0)

197 midPointPool = np.delete(midPointPool , indices , axis =0)

198 bar.next()

199 else:

200 rejectedVoxels += 1

201 if counterNewVoxels == coveragePoint:

202 stop = True

203 print("")

204 print("reached coverage point and stopping routine.")

205 bar.finish ()

206 if counterNewVoxels > coveragePoint /2:

207 if np.array_equal(voxels [-1]. midPoint , voxel.midPoint):

208 stop = True

209

210 bar.finish ()
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211

212 for voxel in voxels:

213 if len(voxel.contData) == 0:

214 indices = voxel.appendData(testData , vecSize)

215 testData = np.delete(testData , indices , axis =0)

216

217 end = time.time()

218 newVoxels = end -mainStart

219 print("creating new voxels took {0:.4} seconds.".format(newVoxels))

220 print("{} new voxels were created.".format(counterNewVoxels))

221 print("")

222

223

224 # cluster finden

225 start = time.time()

226 print("looking for clusters ...")

227 bar = ChargingBar(" ", max =7)

228 clusters = []

229 for i in range(0,len(voxels)):

230 for j in range(0,len(voxels)):

231 if i != j:

232 voxels[i]. findNeighbors(voxels[j].midPoint , voxels[j].

radius , voxels[j]. voxelNumber , searchRadius)

233 voxels[i]. neighbors = np.unique(voxels[i]. neighbors)

234 voxels[i]. neighbors = np.sort(voxels[i].neighbors , kind=’

mergesort ’)

235 clusters.append(voxels[i]. neighbors)

236 clusters = np.array(clusters)

237 bar.next()

238

239 tuples = list(itertools.permutations(range(len(clusters)), 2))

240 for i,j in tuples:

241 if len(set(clusters[i]).intersection(clusters[j])) != 0:

242 clusters[i] = np.append(clusters[i], clusters[j])

243 clusters[i] = np.unique(clusters[i])

244 clusters[i] = np.sort(clusters[i], kind=’mergesort ’)

245 bar.next()

246

247 indices = np.array ([])

248 for i,j in tuples:

249 if np.array_equal(clusters[i],clusters[j]) == True and i not in

indices:

250 if len(clusters[i]) >= len(clusters[j]):

251 indices = np.append(indices , j).astype(int)

252 if len(clusters[i]) < len(clusters[j]):

253 indices = np.append(indices , i).astype(int)

254 indices = np.unique(indices)

255 hope = np.delete(clusters , indices)

256 bar.next()

257

258 clustersData = {}

259 for i in range(0,len(hope)):

260 iClusterData = np.array ([])

261 for j in range(0,len(hope[i])):

262 iClusterData = np.append(iClusterData , voxels[hope[i][j]].

contData)

263 vertSize = np.round(len(iClusterData)/vecSize ,0).astype(int
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)

264 iClusterData = iClusterData.reshape(vertSize ,vecSize)

265 clustersData[i] = iClusterData

266 bar.next()

267

268 clusterMidPoints = {}

269 largestCount = {}

270 smallestCount = {}

271 maxCountIndex = {}

272 for i in range(0,len(hope)):

273 clusterMidPoint = np.zeros(vecSize)

274 dataClusterCount = np.array ([])

275 for j in range(0,len(hope[i])):

276 clusterMidPoint += len(voxels[hope[i][j]]. contData)*voxels[

hope[i][j]]. midPoint

277 dataClusterCount = np.append(dataClusterCount , len(voxels[

hope[i][j]]. contData))

278 largestCount[i] = dataClusterCount.max()

279 maxCountIndex[i] = np.argmax(dataClusterCount)

280 smallestCount[i] = dataClusterCount.min()

281 clusterMidPoint = clusterMidPoint/len(clustersData[i])

282 clusterMidPoints[i] = clusterMidPoint

283 bar.next()

284

285 length = (len(hope))

286 clustersMidPoints = np.zeros((length ,vecSize))

287 for i in range(0,length):

288 clustersMidPoints[i] = clusterMidPoints[i]

289 bar.next()

290

291 clusterDistances = pdist(clustersMidPoints)

292 bar.next()

293 bar.finish ()

294 end = time.time()

295 findingClusters = end -start

296 print("finding the clusters took {0:.4} seconds.".format(

findingClusters))

297

298

299 # metrik daten ber die routine sammeln

300 radiuses = np.array ([])

301 densities = np.array ([])

302 counts = np.array ([])

303 midPointNorms = np.array ([])

304 numOfNeighbors = np.array ([])

305 counter = 0

306

307 for voxel in voxels:

308 radiuses = np.append(radiuses , voxel.radius)

309 densities = np.append(densities , voxel.density)

310 counts = np.append(counts , len(voxel.contData)).astype(int)

311 midPointNorms = np.append(midPointNorms , fastNorm(voxel.

midPoint))

312 numOfNeighbors = np.append(numOfNeighbors , len(voxel.neighbors)

).astype(int)

313 if len(voxel.contData) == 1:

314 counter += 1
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315

316 # statistiken ber den prozess ausgeben

317 print("")

318 endEnd = time.time()

319 fullTime = endEnd -startStart

320 printStats(voxels , radiuses , counts , counter , densities ,

numElements , hope , clustersData , maxCountIndex ,

clustersMidPoints , clusterDistances , fullTime)

321

322

323 # Plots starten

324 plotVoxels(vecSize , testData , restData , boundData , voxels ,

whichData)

325

326 # historamme plotten

327 plotBar(densities , "density", densitiesOne , whichData)

328 plotBar(radiuses , "radius", radiusesOne , whichData)

329 plotBar(counts , "counts", countsOne , whichData)

330 plotBar(midPointNorms , "norms", normsOne , whichData)

331 plotBar(numOfNeighbors , "neighbors", numOfNeighborsOne , whichData)

332

333

334 # output datei f r menschen schreiben

335 file = open("output -{}".format(whichData), "w")

336 file.write("---------- this is the output for dataSet {} ----------

\n".format(whichData))

337 file.write("---------- Here follow some metrics ---------- \n")

338 file.write("the searchRadius for the boundary was {}. \n".format(

searchRadius))

339 file.write("there are {} data points of which {} belong to the

boundary. \n".format(numElements ,len(boundData)))

340 file.write("the largest element in each dimension is {} and the

smallest is {}. \n".format(maxElement , minElement))

341 file.write("the data set has a dimension of {}. \n".format(vecSize)

)

342 file.write(’\n \n’)

343

344 file.write("---------- After creating voxels ---------- \n")

345 file.write("there are {} voxels. \n".format(voxelsUptoNow))

346 file.write("{} data points have been covered \n".format(countsOne.

sum()))

347 file.write("{0:.2f}% of the data have been covered \n".format( (

countsOne.sum()/numElements)*100 ))

348 file.write("\n")

349

350 file.write("---------- After randomly creating new voxels

---------- \n")

351 file.write("creating new voxels took {0:.4} seconds. \n".format(

newVoxels))

352 file.write("{} new voxels were created. \n".format(counterNewVoxels

))

353 file.write("\n \n")

354

355 file.write("---------- Statistics about the full process ----------

\n")

356 file.write("there are {} voxels \n".format(len(voxels)))

357 file.write("max radius is {0:.4f} and min radius is {1:.4f} \n".
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format(radiuses.max(),radiuses.min()))

358 file.write("mean radius is {0:.2f} \n".format(radiuses.mean()))

359 file.write("max counts is {} and min counts is {} \n".format(counts

.max(),counts.min()))

360 file.write("and {} contain only one element \n".format(counter))

361 file.write("mean counts is {0:.2f} \n".format(counts.mean()))

362 file.write("max density is {0:.4f} and min density is {1:.4f} \n".

format(densities.max(),densities.min()))

363 file.write("mean density is {0:.2f} \n".format(densities.mean()))

364 file.write("\n")

365 file.write("{} data points have been covered \n".format(counts.sum

()))

366 file.write("{0:.2f}% of the data have been covered \n".format( (

counts.sum()/numElements)*100 ))

367 file.write("\n")

368 file.write("there are {} clusters. \n".format(len(hope)))

369 for i in clustersData:

370 numberDataPoints = len(clustersData[i])

371 maxCount = len(voxels[hope[i][ maxCountIndex[i]]]. contData)

372 file.write("there are {} data points in cluster {}. \n".format(

numberDataPoints , i))

373 file.write("its weighted midPoint is at {}. \n".format(

clustersMidPoints[i]))

374 file.write("voxel with most counts midPoint is at {}. \n".

format(voxels[hope[i][ maxCountIndex[i]]]. midPoint))

375 file.write("it contains {0} data points , which it {1:.2f}% of

the cluster ’s data. \n".format(maxCount , (maxCount/

numberDataPoints)*100))

376 file.write("it consists of {} voxels. \n".format(len(hope[i])))

377 file.write("the voxel numbers are {}. \n".format(hope[i]))

378 file.write("that is {:.2f}% of data. \n".format ((

numberDataPoints/numElements)*100))

379 file.write("\n")

380

381 file.write("the pair wise distance between the clusters is {}. \n".

format(clusterDistances))

382 file.write("\n \n")

383

384 file.write("---------- Process/step times ---------- \n")

385 file.write("reading the data and generating the metrics took {0:.4f

} seconds. \n".format(readingData))

386 file.write("finding the boundary took {0:.4} seconds. \n".format(

findingBound))

387 file.write("creating voxels took {0:.4} seconds .\n".format(

creatingVoxel))

388 file.write("creating new voxels took {0:.4} seconds .\n".format(

newVoxels))

389 file.write("finding the clusters took {0:.4} seconds .\n".format(

findingClusters))

390 file.write("the whole process took {:.4} seconds. \n".format(

fullTime))

391 file.write("\n \n")

392

393 file.write("---------- Here follow the first voxels ---------- \n")

394 for i in range(0,len(voxels)):

395 file.write("voxelNumber: {}, midPoint: {}, radius: {} \n".

format(voxels[i]. voxelNumber , voxels[i].midPoint , voxels[i].
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radius))

396 file.write("counts: {}, density: {}, midPointNorm: {} \n".

format(counts[i], densities[i], midPointNorms[i]))

397 file.write("its direct neighbors are: {} \n".format(voxels[i].

neighbors [1:]))

398 file.write(’\n’)

399 if len(voxels) > voxelsUptoNow:

400 if voxels[i]. voxelNumber == voxelsUptoNow -1:

401 file.write("---------- Here follow the new voxels

---------- \n")

402

403 file.write("\n")

404 file.write("---------- A sorted list with all data per voxel per

cluster ---------- \n")

405 for i in range(0,len(hope)):

406 file.write("---------- cluster {} ---------- \n".format(i))

407 for j in range(0,len(hope[i])):

408 file.write("voxel number {} at {} with radius {}:\n".format

(voxels[hope[i][j]]. voxelNumber , voxels[hope[i][j]]. midPoint ,

voxels[hope[i][j]]. radius))

409 file.write("it contains the points :\n")

410 for point in voxels[hope[i][j]]. contData:

411 file.write("{}\n".format(point))

412 file.write("\n\n")

413 file.write("\n\n")

414 file.close()

415

416 # output datei f r computer schreiben

417 file = open("readout -{}".format(whichData), "w")

418 file.write("# this is the computer readable output for {}\n".format

(whichData))

419 file.write("# it contains an unprocessed list of all voxels\n")

420 file.write("# lines beginning with ’v’ are a voxel\n")

421 file.write("# the first two columns are the number and radius\n")

422 file.write("# the rest are each dimension of the mid points\n")

423 file.write("# lines beginning with ’|’ are the points contained in

that voxel\n")

424 file.write("\n")

425 for voxel in voxels:

426 file.write("v {} ".format(voxel.voxelNumber))

427 file.write("{}".format(voxel.radius))

428 for x in voxel.midPoint:

429 file.write(" {}".format(x))

430 file.write("\n")

431 for point in voxel.contData:

432 file.write("|")

433 for x in point:

434 file.write(" {}".format(x))

435 file.write("\n")

436 file.write("\n")

437 file.close()

Listing 4: Main Program

1 import numpy as np

2 import random

3 import math

4 import copy
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5 from progress.bar import ChargingBar

6 from scipy.spatial.distance import pdist

7 from scipy.spatial.distance import cdist

8

9 def fastNorm(vec):

10 return math.sqrt(np.dot(vec , vec.T))

11

12 def fastDiff(vec , uec):

13 return math.sqrt(np.dot((vec -uec), (vec -uec).T))

14

15 class spherus:

16 def __init__(self , voxelNumber: int , midPoint: np.array , radius

: float , contData = np.array ([]), density = 0.0, neighbors = np

.array ([])):

17 self.voxelNumber = voxelNumber

18 self.midPoint = midPoint

19 self.radius = radius

20 self.contData = contData

21 self.density = density

22 self.neighbors = neighbors

23 def moveMidPoint(self , speed: float , ankerPoint: np.array):

24 self.midPoint += speed*(self.midPoint - ankerPoint)

25 def growRadius(self , point: np.array , distance: float):

26 self.radius = fastDiff(self.midPoint , point) - distance

27 def appendData(self , dataSet: np.array , vecSize: int):

28 norms = cdist ([self.midPoint],dataSet).ravel() - self.

radius

29 indices = np.where(norms <=0)

30 self.contData = np.append(self.contData , dataSet[indices ])

31 vertSize = np.round(len(self.contData)/vecSize ,0).astype(

int)

32 self.contData = self.contData.reshape(vertSize ,vecSize)

33 self.density = len(self.contData)/self.radius

34 return indices

35 def findNeighbors(self , point: np.array , distance: float ,

number: int , searchRadius: float):

36 if fastDiff(self.midPoint , point) - (self.radius+distance)

<= 0:

37 self.neighbors = np.append(self.neighbors , number).

astype(int)

38 def checkCollision(self , compareVoxel):

39 if fastNorm(self.midPoint -compareVoxel.midPoint) > (

compareVoxel.radius + self.radius):

40 return False

41 return True

42 def findNextVoxel(self , compareVoxels , k = 1):

43 normList = np.array ([])

44 for vox in compareVoxels:

45 norm = fastNorm(vox.midPoint -self.midPoint) - vox.

radius

46 normList = np.append(normList , norm)

47 closest = np.argsort(normList)

48 return closest [:k]

49

50 class cubus:

51 def __init__(self , voxelNumber: int , midPoint: np.array , edge:

float , contData = np.array ([]), boundData = np.array ([]),
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borderData = np.array ([]), density = 0.0, neighbors = np.array

([])):

52 self.voxelNumber = voxelNumber

53 self.midPoint = midPoint

54 self.edge = edge

55 self.contData = contData

56 self.boundData = boundData

57 self.borderData = borderData

58 self.density = density

59 self.neighbors = neighbors

60 def appendData(self , dataSet: np.array , vecSize: int):

61 for testPoint in dataSet:

62 counter =0

63 for dim in range(0,vecSize):

64 if (testPoint[dim] > self.midPoint[dim]-self.edge

/2) and (testPoint[dim] < self.midPoint[dim]+self.edge /2):

65 counter += 1

66 if counter == vecSize:

67 self.contData=np.append(self.contData , testPoint)

68 verticalSize = np.round(len(self.contData)/vecSize

,0).astype(int)

69 self.contData=np.reshape(self.contData ,(

verticalSize ,vecSize))

70 return self.contData

71 def checkCollision(self , compareVoxel):

72 # das funktioniert nur , weil die voxel auf einem gitter

sitzen und gleich gross sind

73 if fastNorm(self.midPoint -compareVoxel.midPoint) == self.

edge:

74 return True

75 return False

76

77 def getMetrics(dataSet: np.array):

78 maxData = dataSet.max(axis =0) # g r t e Daten im Input

79 maxElement = np.ceil(maxData) # runden der max Werte des Inputs

80 minData = dataSet.min(axis =0) # kleinste Daten im Input

81 minElement = np.floor(minData) # runden der minmal Werte des

Inputs

82 meanElement = dataSet.mean(axis =0) # g r t e Daten im Input

83 vecSize = np.size(dataSet , axis =1) # G r e des Vektors

84 numElements = np.size(dataSet , axis =0) # Anzahl an Elementen

85 return (minElement , maxElement , meanElement , vecSize ,

numElements)

86

87 def findNextNeighbor(dataPoint: np.array , dataSet: np.array , k = 1)

:

88 normList = np.array ([])

89 for element in dataSet:

90 norm = fastNorm(element -dataPoint)

91 normList = np.append(normList , norm)

92 closest = np.argsort(normList)

93 return closest [:k]

94

95 def findNextVoxel(testPoint: np.array , compareVoxels: spherus , k =

1):

96 normList = np.array ([])

97 for vox in compareVoxels:
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98 norm = fastNorm(vox.midPoint -testPoint) - vox.radius

99 normList = np.append(normList , norm)

100 closest = np.argsort(normList)

101 return closest [:k]

102

103 def closestDistance(dataPoint: np.array , dataSet: np.array):

104 norms = cdist ([ dataPoint],dataSet).ravel ()

105 index = norms.argmin ()

106 return index , norms[index]

107

108 def findSearchRadius(dataSet: np.array):

109 searchData = np.unique(dataSet , axis =0)

110 numOfSelection = np.round(len(searchData)/4,0).astype(int)

111 randData = searchData[np.random.randint(0,len(searchData),

numOfSelection)]

112 norms = np.array ([])

113 length = len(randData)

114 print("calculating searchRadius for boundary ...")

115 bar = ChargingBar(" ", max=length)

116 for point in randData:

117 distance = cdist([ point],randData)

118 norm = distance[np.nonzero(distance)].min()

119 norms = np.append(norms ,norm)

120 bar.next()

121 bar.finish ()

122 searchRadiusMax = norms.max()

123 searchRadiusMean = norms.mean()

124 searchRadiusMin = norms.min()

125 return searchRadiusMax , searchRadiusMean , searchRadiusMin

126

127 def findBound(dataSet: np.array , minElement: np.array , maxElement:

np.array , trails = 1000, searchRadius = 1.0):

128 boundIndex = np.array ([])

129 overShot = np.ceil((maxElement -minElement)*0.65) + searchRadius

130 print("searching for boundary ...")

131 bar = ChargingBar(" ", max=trails)

132 for i in range(0,trails):

133 midPoint = np.random.randint(minElement -overShot ,maxElement

+overShot)

134 index , distance = closestDistance(midPoint , dataSet)

135 if distance > searchRadius:

136 boundIndex = np.append(boundIndex , index)

137 bar.next()

138 bar.finish ()

139 return np.unique(boundIndex.astype(int))

140

141 def splitData(dataSet: np.array , boundIndex: np.array):

142 boundData = dataSet[boundIndex]

143 restData = copy.copy(dataSet)

144 restData = np.delete(restData ,boundIndex ,axis =0)

145 return boundData , restData

146

147 def pickMidPoint(dataSet: np.array , vecSize: int , k = 18):

148 index = np.random.choice(len(dataSet) ,1)[0]

149 pick = dataSet[index]

150 neighborsIndex = findNextNeighbor(pick , dataSet , k)

151 neighbors = dataSet[neighborsIndex]
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152 allNeighbors = copy.copy(neighbors)

153 norms = np.array ([])

154 for point in neighbors:

155 norms = np.append(norms ,fastNorm(pick -point))

156 meanNorm = np.mean(norms)

157 stepArray = np.array ([])

158 for point in neighbors:

159 if fastNorm(pick -point)<meanNorm:

160 stepArray = np.append(stepArray , point)

161 vertSize = np.round(len(stepArray)/vecSize ,0).astype(

int)

162 stepArray = stepArray.reshape(vertSize ,vecSize)

163 neighbors = stepArray

164 return np.mean(neighbors ,axis =0), neighbors , allNeighbors

165

166 def meanPoint(pick: np.array , dataSet: np.array , vecSize: int , k =

18):

167 norms = cdist ([pick],dataSet).ravel()

168 neighborsIndex = norms.argsort ()[1:k+1]

169 neighbors = dataSet[neighborsIndex]

170 allNeighbors = copy.copy(neighbors)

171 norms = np.array ([])

172 for point in neighbors:

173 norms = np.append(norms ,fastNorm(pick -point))

174 meanNorm = np.mean(norms)

175 stepArray = np.array ([])

176 for point in neighbors:

177 if fastNorm(pick -point)<meanNorm:

178 stepArray = np.append(stepArray , point)

179 vertSize = np.round(len(stepArray)/vecSize ,0).astype(

int)

180 stepArray = stepArray.reshape(vertSize ,vecSize)

181 neighbors = stepArray

182 return np.mean(neighbors ,axis =0), neighbors , allNeighbors

183

184 def checkCollision(distanceVec: np.array , radius: float):

185 if fastNorm(distanceVec) > radius:

186 return False

187 return True

188

189 def closestNumber(inputNumber , baseNumber) :

190 quotient = int(inputNumber / baseNumber)

191 numberOne = baseNumber * quotient

192

193 if(( inputNumber * baseNumber) > 0) :

194 numberTwo = (baseNumber * (quotient + 1))

195 else :

196 numberTwo = (baseNumber * (quotient - 1))

197

198 if (abs(inputNumber - numberOne) < abs(inputNumber - numberTwo)

) :

199 return numberOne

200 else:

201 return numberTwo

202

203 def creatMidPoints(dataSet: np.array , vecSize: int , stepSize: float

):
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204 midPoints = np.array ([])

205 length = len(dataSet)

206 print("creating midPoints ...")

207 bar = ChargingBar(" ", max=length)

208 for point in dataSet:

209 midPoint = np.zeros(vecSize)

210 for dim in range(0,vecSize):

211 midPoint[dim] = closestNumber(point[dim], stepSize)

212 midPoints = np.append(midPoints ,midPoint)

213 vertSize = np.round(len(midPoints)/vecSize ,0).astype(int)

214 midPoints = midPoints.reshape(vertSize ,vecSize)

215 bar.next()

216 bar.finish ()

217 return np.unique(midPoints , axis =0)

Listing 5: Code including the functions used in the main Program

1 import numpy as np

2 from mpl_toolkits.mplot3d import Axes3D

3 import matplotlib.pyplot as plt

4

5 def printStats(voxels , radiuses , counts , counter , densities ,

numElements , hope , clustersData , maxCountIndex ,

clustersMidPoints , clusterDistances , fullTime):

6 print("there are {} voxels".format(len(voxels)))

7 print("max radius is {0:.4f} and min radius is {1:.4f}".format(

radiuses.max(),radiuses.min()))

8 print("mean radius is {0:.2f}".format(radiuses.mean()))

9 print("max counts is {} and min counts is {}".format(counts.max

(),counts.min()))

10 print("and {} countain only one element".format(counter))

11 print("mean counts is {0:.2f}".format(counts.mean()))

12 print("max density is {0:.4f} and min density is {1:.4f}".

format(densities.max(),densities.min()))

13 print("mean density is {0:.2f}".format(densities.mean()))

14 print("")

15 print("{} data points have been covered".format(counts.sum()))

16 print("{0:.2f}% of the data have been covered".format( (counts.

sum()/numElements)*100 ))

17 print("")

18 print("there are {} clusters.".format(len(hope)))

19 for i in clustersData:

20 numberDataPoints = len(clustersData[i])

21 maxCount = len(voxels[hope[i][ maxCountIndex[i]]]. contData)

22 print("there are {} data points in cluster {}.".format(

numberDataPoints , i))

23 print("its weighted midPoint is at {}.".format(

clustersMidPoints[i]))

24 print("voxel with most counts midPoint is at {}.".format(

voxels[hope[i][ maxCountIndex[i]]]. midPoint))

25 print("it contains {0} data points , which it {1:.2f}% of

the cluster ’s data.".format(maxCount , (maxCount/

numberDataPoints)*100))

26 print("it consists of {} voxels.".format(len(hope[i])))

27 print("the voxel numbers are {}.".format(hope[i]))

28 print("that is {:.2f}% of data.".format (( numberDataPoints/

numElements)*100))

29 print("")
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30

31 print("the pair wise distance between the clusters is {}.".

format(clusterDistances))

32 print("")

33 print("everything together took {:.4} seconds.".format(fullTime

))

34 print("")

35

36 def plotVoxels(vecSize , testData , restData , boundData , voxels ,

whichData):

37 if vecSize == 2:

38 fig , ax = plt.subplots ()

39

40 plt.scatter(testData [:,0], testData [:,1], marker=’.’, c=’

#007700 ’, label=’covered data’)

41 plt.scatter(restData [:,0], restData [:,1], marker=’.’, label=

’not covered ’)

42 plt.scatter(boundData [:,0], boundData [:,1], marker=’.’,

label=’boundData ’)

43

44 for voxel in voxels:

45 plt.scatter(voxel.midPoint [0], voxel.midPoint [1],

marker=’.’, c=’#000000 ’)

46 circ = plt.Circle ((voxel.midPoint [0], voxel.midPoint

[1]), voxel.radius , fill=False)

47 plt.annotate(voxel.voxelNumber , (voxel.midPoint [0],

voxel.midPoint [1]), c=’#000000 ’)

48 ax.add_artist(circ)

49

50 plt.axis(’equal’)

51 ax.set_xlabel(’X Label’)

52 ax.set_ylabel(’Y Label’)

53 ax.legend ()

54 plt.savefig("voxelstochs -{}. png".format(whichData), dpi

=300)

55 plt.show()

56

57 if vecSize == 3:

58 fig = plt.figure ()

59 ax = fig.add_subplot (111, projection=’3d’)

60

61 u = np.linspace(0, 2 * np.pi , 100)

62 v = np.linspace(0, np.pi, 100)

63

64 x = np.outer(np.cos(u), np.sin(v))

65 y = np.outer(np.sin(u), np.sin(v))

66 z = np.outer(np.ones(np.size(u)), np.cos(v))

67 for voxel in voxels:

68 ax.scatter(voxel.midPoint [0],voxel.midPoint [1], voxel.

midPoint [2], marker=’x’, color=’k’)

69 ax.plot_surface(voxel.radius*x+voxel.midPoint [0], voxel

.radius*y+voxel.midPoint [1], voxel.radius*z+voxel.midPoint [2],

rstride=4, cstride=4, alpha =0.25, color=’b’)

70 ax.plot_wireframe(voxel.radius*x+voxel.midPoint [0],

voxel.radius*y+voxel.midPoint [1], voxel.radius*z+voxel.midPoint

[2], rstride =12, cstride =12, color=’k’)

71
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72 ax.scatter(restData [:,0], restData [:,1], restData [:,2],

marker=’o’, label=’not covered ’)

73 ax.scatter(boundData [:,0], boundData [:,1], boundData [:,2],

marker=’o’, label=’boundData ’)

74 ax.scatter(testData [:,0], testData [:,1], testData [:,2],

marker=’.’, color=’#777777 ’, label=’covered data’)

75

76 ax.set_xlabel(’X Label’)

77 ax.set_ylabel(’Y Label’)

78 ax.set_zlabel(’Z Label’)

79 plt.savefig("voxelstochs -{}. png".format(whichData), dpi

=300)

80 plt.show()

81

82 def plotBar(dataSet: np.array , ylabel: str , dataSetOne = np.array

([]), prefix = ’’):

83 fig , ax = plt.subplots ()

84 plt.title("plot for {}".format(ylabel))

85 ax.set_xlabel(’voxel number ’)

86 ax.set_ylabel(ylabel)

87 x = np.arange(len(dataSet))

88 plt.bar(x, dataSet , label=’{} after all steps’.format(ylabel))

89 if len(dataSetOne) > 0:

90 x1 = np.arange(len(dataSetOne))

91 plt.bar(x1 , dataSetOne , label=’{} before all steps’.format(

ylabel))

92 ax.legend ()

93 plt.savefig("histogram -for -{} -{}. png".format(ylabel , prefix),

dpi =300)

Listing 6: Extra Functions

5.3 Systematical approach

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import math

4 import copy

5 import itertools

6 import time

7 import random

8 from tqdm import tqdm

9 from scipy.spatial import distance

10 from scipy.spatial.distance import pdist

11 from scipy.spatial.distance import cdist

12 from Voxmidhelp import *

13

14

15

16 #testData = genData (18000)

17

18

19

20 fileDD = "Traindata/Beam_dd_cluster_sim.txt"

21 dataDD = np.genfromtxt(fileDD , delimiter=’ ’)

22 filePI = "Traindata/Beam_pi_cluster_sim.txt"

23 dataPI = np.genfromtxt(filePI , delimiter=’ ’)
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24 fileT = "Traindata/Beam_T_cluster_sim.txt"

25 dataT = np.genfromtxt(fileT , delimiter=’ ’)

26 #fileBG = "Traindata/Beam_BG_cluster_sim.txt"

27 #dataBG = np.genfromtxt(fileBG , delimiter=’ ’)

28 testData = np.vstack ((dataT , dataPI))

29 #np.random.shuffle(testData)

30

31

32 print(len(testData))

33

34 minElement , maxElement , vecSize , numElements = getMetrics(testData)

35

36 stepSize =15

37

38 print("Creating anchorPoints")

39 anchorPoints= createCornerPoints2(stepSize ,testData ,vecSize)

40 datasincubes =[]

41 middlePoints =[]

42 cubes = {}

43 emptycubes ={}

44 anchorPointsLen=len(anchorPoints)

45

46

47

48 print("Creating Cubes ")

49 for i in tqdm(range(0, anchorPointsLen)):

50 cubes[i]=Cubus(i,stepSize ,( anchorPoints[i]))

51 cubes[i]. cubusData(testData ,vecSize)

52 if len(cubes[i]. cubeData) == 0:

53 del cubes[i]

54 emptycubes[i]=Cubus(i,stepSize ,( anchorPoints[i]))

55

56 for i in cubes:

57 datasincubes=np.append(datasincubes , cubes[i]. cubeData)

58

59

60 datasincubes=np.reshape(datasincubes , (int(len(datasincubes)/

vecSize), vecSize))

61

62

63

64 fig , ax = plt.subplots ()

65 plt.scatter(testData [:,0], testData [:,1], marker=’o’, label=’data

points ’, color=’b’)

66 plt.scatter(datasincubes [:,0], datasincubes [:,1], marker=’o’, label=

’datas in voxels ’, color=’g’)

67

68

69

70

71 for i in cubes:

72 smallrects=plt.Rectangle (( cubes[i]. middlePoint -cubes[i].Edge /2)

, cubes[i].Edge , cubes[i].Edge , fill=False)

73 ax.add_patch(smallrects)

74

75 plt.axis(’equal’)

76
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77 ax.legend ()

78 plt.savefig("density.png", dpi =300)

79

80

81 densities = np.array ([])

82 counts = np.array ([])

83 midPointNorms=np.array ([])

84 counter = 0

85 for index in tqdm(cubes):

86 densities = np.append(densities , len(cubes[index]. cubeData)/

cubes[index ].Edge)

87 counts = np.append(counts , len(cubes[index ]. cubeData)).astype(

int)

88 midPointNorms = np.append(midPointNorms , fastNorm(cubes[index].

middlePoint))

89 if len(cubes[index]. cubeData) == 1:

90 counter += 1

91

92

93

94 print("Daten in W r f e l n : ", len(datasincubes), "\n")

95 print("Prozentualer Anteil von Daten in W r f e l n : ", (len(

datasincubes)/len(testData)*100) , "%", "\n")

96 print("Maximale Counts: {} Minimale Counts {}".format(counts.max(),

counts.min()))

97 print("Mittlere Counts {0:.2f}".format(counts.mean()))

98 print("Anzahl an Voxel: {}".format(len(cubes)))

99 print("Leere Voxel {}".format(len(emptycubes)))

100 print("{} Voxel enthalten nur ein Element".format(counter))

101 print("Maximale Dichte {0:.3f} Minimale Dichte {1:.3f}".format(

densities.max(),densities.min()))

102 print("Mittlere Dichte {0:.2f}".format(densities.mean()))

103

104

105 clustering(cubes , vecSize , testData , numElements)

106

107

108 for i in tqdm(cubes):

109 neighbors = np.array([cubes[i]. number ])

110 for dim in range(0,vecSize):

111 cubes[i]. middlePoint[dim]+= cubes[i].Edge

112 for j in cubes:

113 if i != j:

114 if all(cubes[i]. middlePoint ==cubes[j]. middlePoint):

115 neighbors = np.append(neighbors , cubes[j].

number).astype(int)

116 cubes[i]. neighbors=np.append(cubes[i].neighbors

, cubes[j]. number)

117 cubes[i]. middlePoint[dim]-=2* cubes[i].Edge

118 for j in cubes:

119 if i != j:

120 if all(cubes[i]. middlePoint ==cubes[j]. middlePoint):

121 neighbors = np.append(neighbors , cubes[j].

number).astype(int)

122 cubes[i]. neighbors=np.append(cubes[i].neighbors

, cubes[j]. number)

123 cubes[i]. middlePoint[dim]+= cubes[i].Edge
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124

125 countsun=np.unique(counts)

126 countnrs=np.zeros(len(countsun), dtype=int)

127 neighs=np.arange (2* vecSize +1)

128 neighcounts=np.zeros (2* vecSize+1, dtype=int)

129

130 for index in cubes:

131 for i in range (0,2* vecSize +1):

132 if len(cubes[index]. neighbors)==i:

133 neighcounts[i]+=1

134

135

136

137 for i in range(0,len(countsun)):

138 for index in cubes:

139 if len(cubes[index]. cubeData)== countsun[i]:

140 countnrs[i]+=1

141

142 plotBar(counts , "counts")

143 plotBar2(countsun , countnrs , "Number of counts")

144 plotBar2(neighs , neighcounts , "Number of neighbors")

145 plotBar(midPointNorms , "norms")

146

147

148

149 plt.show()

Listing 7: Main Program

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import math

4 import copy

5 import itertools as itt

6 import itertools

7 import time

8 import random

9 from tqdm import tqdm

10 from scipy.spatial import distance

11 from scipy.spatial.distance import pdist

12 from scipy.spatial.distance import cdist

13

14

15 class Cubus :

16 def __init__(self , number: int , Edge: float , middlePoint: np.

array , cubeData=np.array ([]), neighbors=np.array ([])):

17 self.number = number

18 self.Edge = Edge

19 self.middlePoint = middlePoint

20 self.cubeData=cubeData

21 self.neighbors=neighbors

22

23 def cubusData(self , data: np.array , vecSize: int):

24 for Element in data:

25 counter =0

26 for dim in range(0,vecSize):

27 if (self.middlePoint[dim]-self.Edge/2 < Element[dim

]) and (Element[dim] < self.middlePoint[dim]+self.Edge /2):
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28 counter += 1

29 if counter == vecSize:

30 self.cubeData=np.append(self.cubeData , Element)

31 verticalSize = np.round(len(self.cubeData)/vecSize ,0).

astype(int)

32 self.cubeData=np.reshape(self.cubeData ,( verticalSize ,

vecSize))

33 return self.cubeData

34

35 def genData(number):

36 n = np.round(number /3,0).astype(int)

37 a = np.random.multivariate_normal ([5, -5], [[2, 1], [1, 1.5]] ,

size=n)

38 b = np.random.multivariate_normal ([5, 5], [[2, 1], [1, 1.5]],

size=n)

39 c = np.random.multivariate_normal ([-5, -5], [[2, 1], [1, 1.5]] ,

size=n)

40 z = np.concatenate ((a, b, c))

41 return z

42

43

44 def getMetrics(data: np.array):

45 maxData = data.max(axis =0) # g r t e Daten im Input

46 maxElement = np.ceil(maxData).astype(int) # runden der max

Werte des Inputs

47 minData = data.min(axis =0) # kleinste Daten im Input

48 minElement = np.floor(minData).astype(int) # runden der minmal

Werte des Inputs

49 vecSize = np.size(data , axis =1) # G r e des Vektors

50 numElements = np.size(data , axis =0) # Anzahl an Elementen

51 return (minElement , maxElement , vecSize , numElements)

52

53

54 def createCornerPoints2(stepSize: float , data: np.array , vecSize:

int):

55 midPoints =[]

56 for Elements in tqdm(data):

57 for dim in range(0,vecSize):

58 midPoints=np.append(midPoints ,closestNumber(Elements[

dim],stepSize))

59 midPoints=np.reshape(midPoints ,(int(len(midPoints)/vecSize),

vecSize))

60 midPoints=np.unique(midPoints , axis =0)

61 return midPoints

62

63

64 def closestNumber(n, m) :

65 # Find the quotient

66 q = int(n / m)

67

68 # 1st possible closest number

69 n1 = m * q

70

71 # 2nd possible closest number

72 if((n * m) > 0) :

73 n2 = (m * (q + 1))

74 else :
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75 n2 = (m * (q - 1))

76

77 # if true , then n1 is the required closest number

78 if (abs(n - n1) < abs(n - n2)) :

79 return n1

80

81 # else n2 is the required closest number

82 return n2

83

84 def fastNorm(vec):

85 return math.sqrt(np.dot(vec , vec.T))

86

87

88

89 def plotBar(dataSet: np.array , ylabel: str , dataSetOne = np.array

([]), prefix = ’’):

90 fig , ax = plt.subplots ()

91 plt.title("plot for {}".format(ylabel))

92 ax.set_xlabel(’voxel number ’)

93 ax.set_ylabel(ylabel)

94 x = np.arange(len(dataSet))

95 plt.bar(x, dataSet , label=’{}’.format(ylabel))

96 ax.legend ()

97 plt.savefig("histogram -for -{} -{}. png".format(ylabel , prefix),

dpi =300)

98

99 def plotBar2(x: np.array , dataSet: np.array , ylabel: str ,

dataSetOne = np.array ([]), prefix = ’’):

100 fig , ax = plt.subplots ()

101 plt.title("plot for {}".format(ylabel))

102 ax.set_xlabel(’counts ’)

103 ax.set_ylabel("# Voxel")

104 plt.bar(x, dataSet , label=’{}’.format(ylabel))

105 ax.legend ()

106 plt.savefig("histogram -for -{} -{}. png".format(ylabel , prefix),

dpi =300)

107

108

109

110

111 def clustering(cubes: dict , vecSize: int , testData: np.array ,

numElements: int):

112 start = time.time()

113 print("looking for neighbors ...")

114 clusters = []

115 for i in tqdm(cubes):

116 neighbors = np.array([cubes[i]. number ])

117 for dim in range(0,vecSize):

118 cubes[i]. middlePoint[dim]+= cubes[i].Edge

119 for j in cubes:

120 if i != j:

121 if all(cubes[i]. middlePoint ==cubes[j].

middlePoint):

122 neighbors = np.append(neighbors , cubes[j].

number).astype(int)

123 cubes[i]. neighbors=np.append(cubes[i].

neighbors , cubes[j]. number)
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124 cubes[i]. middlePoint[dim]-=2* cubes[i].Edge

125 for j in cubes:

126 if i != j:

127 if all(cubes[i]. middlePoint ==cubes[j].

middlePoint):

128 neighbors = np.append(neighbors , cubes[j].

number).astype(int)

129 cubes[i]. neighbors=np.append(cubes[i].

neighbors , cubes[j]. number)

130 cubes[i]. middlePoint[dim]+= cubes[i].Edge

131 #print(neighbors)

132 if(len(neighbors) > 1) or (len(cubes[i]. cubeData)/len(

testData) > 0.001):

133 clusters.append(neighbors)

134 clusters = np.array(clusters)

135 tuples = list(itertools.permutations(range(len(clusters)), 2))

136 print("Appending neighborlists ...")

137 for i,j in tqdm(tuples):

138 if len(set(clusters[i]).intersection(clusters[j])) != 0:

139 clusters[i] = np.append(clusters[i], clusters[j])

140 clusters[i] = np.unique(clusters[i])

141 clusters[i] = np.sort(clusters[i], kind=’mergesort ’)

142 print("Deleting doubles ...")

143 indices = np.array ([])

144 for i,j in tqdm(tuples):

145 if (len(set(clusters[i]).intersection(clusters[j])) != 0)

and (i not in indices):

146 if len(clusters[i]) >= len(clusters[j]):

147 indices = np.append(indices , j).astype(int)

148 if len(clusters[j]) > len(clusters[i]):

149 indices = np.append(indices , i).astype(int)

150 indices = np.unique(indices)

151 hope = np.delete(clusters , indices)

152

153 clustersData = {}

154 for i in range(0,len(hope)):

155 iClusterData = np.array ([])

156 for j in range(0,len(hope[i])):

157 iClusterData = np.append(iClusterData , cubes[hope[i][j

]]. cubeData)

158 vertSize = np.round(len(iClusterData)/vecSize ,0).astype

(int)

159 iClusterData = iClusterData.reshape(vertSize ,vecSize)

160 clustersData[i] = iClusterData

161

162 end = time.time()

163 print("there are {} clusters.".format(len(hope)))

164

165

166 for i in clustersData:

167 numberDataPoints = len(clustersData[i])

168 print("there are {} data points in cluster {}.".format(

numberDataPoints , i))

169 print("it consists of {} voxels.".format(len(hope[i])))

170 print("that is {:.2f}% of data.".format (( numberDataPoints/

numElements)*100))

171
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172 print("finding the clusters took {0:.4} seconds.".format(end -

start))

Listing 8: Code including the functions used in the main Program
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