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Abstract

In this work we talk about classifying clusters within data from the pixel
detector of the Belle II experiment. Recent works on this [[I],[2]] using Self-
organizing-maps were not able to differentiate more than one particle cluster
from the background cluster, thus more straight forward and deterministic ap-
proaches using high dimensional voxels for covering the data clusters were ex-
amined. Two different methods are presented in this work. The first uses
spherical voxels with stochastic elements. The second uses a regualar grid in
the high-dimensional input space and traditional voxels. After covering the
data with voxels, neighborhood relations are used to determine the voxels that
form a cluster. We achieve classification efficiencies of up to 99% for test data
sets with clearly separated clusters up to six dimensions. The methods used
on the simulated pixel detector data are able to cover at least 70% with up to
100% of the data. However further modifications in the algorithms are needed
to differentiate between clusters, that are not sufficiently separated from each
other.
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1 Introduction

In the field of high energy physics a lot of data is produced with hundreds and
thousands of events.Because one does not know which events belong together,
one cannot simply pick out the events from the thing they are searching for in
the data. But this task gets worse, since every kind of measuring instrument
introduces some kind of background, which thankfully is very characteristic.

One of the most common and essential methods of handling with that big
amounts of data is data clustering. The main goal of data clustering is to
separate between different kind of entities based on their different features rep-
resented by the data [6]. The objective of the data clustering process is to
separate the data set into groups which are as similar as possible in their fea-
tures in the same group, while they are as different as possible from the other
groups.

Interpretation

Validation of
results

Clustering Algorithm o >
Selection ALY Final
hAV'A Clusters
\ Algorithm

results

Data for
process

Figure 1: Steps of the clustering process [3].

All steps of the clustering process are depicted in figure[I] In this work we are
not concerned with the clustering algorithm, but finding cluster in preprocessed
data from a particle detector. The clusters to find are different events in high
energy physics. The basic idea is, that certain objects produce a characteristic
signal within a measuring apparatus. It is not yet of importance which features
we are speaking of, but that these features cluster together.

It is our intention to develop an efficient and reliable method to find and
separate these data clusters within any data set. We implemented three different
methods with which we intend to find all data clusters.

While these methods aim to be as general as possible, they were specifically
developed for use with Belle 2 data from the pixel detector. We will briefly
introduce more general terms about Belle II in the coming subsections.



1.1 Belle IT at SuperKEKB
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Figure 2: A schematic of the SuperKEKB collider facility [4].

The high energy physics research facility SuperKEKB, which is an upgrade to
KEKB, is located in Tsukuba, about 60km outside of Tokyo. KEK is an abbrevi-
ation of the japanese name of the facility " Ko Enerugt Kasokuki Kenkyt Kiko”.
SuperKEKB is an Electron-Positron collider and Belle II is the second genera-
tion of a detector system built by an international collaboration. SuperKEKB
and every one of its predecessors are so called B-factories. This simply means
that KEK was built for the energy region in which B-mesons are produced.
Here is a list of all the sub-detectors [7]:

e pixelated silicon sensors (PXD)

e silicon strip sensors (SVD)

e central drift chamber (CDC)

e Time-Of-Propagation (TOP)

e another ring-imaging Cherenkov counters (ARICH)
e clectromagnetic calorimeter (ECL)

e iron flux-return located outside of the coil (KLM)



Figure 3: A 3D render of the Belle II detector with size indication and the Belle
IT logo [4].

Important systems for starting the data readout and storing are the Trig-
ger and High Level Trigger system (TRG and HLT), the slow control and the
data acquisition system (DAQ). Various sub-trigger systems (CDC, ECL, TOP,
ARICH and KLM) send trigger information to a central trigger logic, often re-
ferred als Level 1 Trigger, where the decision is made whether to start data
taking. After the Level 1 Trigger decides to start data taking, the DAQ starts
over. The main purpose of the DAQ is to start the readout from the various
subdetectors, processing and writing in the storage system. The data from ev-
ery subsystem, except of the PXD, is sent to the Event Builder, where the data
belonging together is merged into one event. The full reconstruction of the event
including the PXD data is then performed by the HLT, which makes the final
decision of keeping the event. The PXD module has to be treated separately
due to his significantly higher data rate comparing to the other subdetectors,
which is about 10 times higher than the data rate of all other sub-detectors
combined. [§]

All of the information summarized in the following sections are taken from
the master thesis by Katharina Dort [1], the PhD thesis by Thomas Gefiler [9]
and the techincal design report by the Belle IT group [10].

1.1.1 The Pixel Sub-detector

The data processed for this work all are related to the PXD sub-detector. It
consists of two layers of 40 silicon pixel sensors aranged concentrically and is
not much larger than a soda can [5]. A schematic of it can be seen in figure
@Al The PXD sub-detector is the closest detector to the beam. It is surrounded
by four more layers of silicon stripes, which make up the silicon vertex detector
(SVD).



Figure 4: A 3D render of the PXD detector. One can see the two layer structure

of it [5].

1.1.2 The data

In this work we used different kinds of data files. Firstly we created simple data
files with clearly separated clusters. We started out with two dimensional data
to develop the methods discussed in sections|3}] Than we verified the approaches
using the same sets, but with higher dimensions.

Since Belle II only just started taking data with the current detector setup,
the data we used were simulated data files for the PXD. We have four clus-
ters, labeled as PI, BG, T and DD and correspond respectively to pions, beam
background, tetra quacks and anti-deuterons.

The files combined have 252.773 six dimensional points. Every entry of every
point correspond to the number of pixels hit by a particle, the number of pixels
in horizontal (u-direction) and in vertical (v-direction), the charge deposited,
the minimum charge in an event and the maximal charge.

1.2 Software approach

Figure 5: The Python logo.

All methods of data analysis were developed using Python and the packages
NumPy and SciPy. This gave us great flexibility since there was no need to
compile and recompile the source code and NumPy and SciPy provided all



necessary functions and methods. All plots were generated by using Matplotlib
and were printed directly after running the code.



2 Self-organizing map

2.1 What is a self-organizing map?

This is a form of unsupervised learning with the help of a neural network. The
goal is to visualize high dimensional data in a two dimensional neuron grid and
sort the input by similarity. In the end one should be able to associate each
data point with one of the neurons and in turn know to which data cluster it
belongs.

In the beginning of the process there are point clouds and usually one hun-
dred randomly initialized vectors. Each of these vectors are associated with one
neuron on ten by ten grid. A three dimensional illustration of this first step can
be seen on the left side in figure [f] The choice of a ten by ten grid is rather
arbitrary and some variations of self-organizing maps use different amounts of
neurons, different shapes of grids (e.g. hexagonal) and even grow new neurons
if needed.

testData - testData
neurons x  neurons
winning node x e winning node

o x -

Figure 6: The first step of a self-organizing map. One can see the data clouds
in blue, the vectors of each neuron as black x’s and on the floor the U-matrix.

Every point of the data will be picked in random order and one calculates the
closest neuron(often referred as winning neuron) and nudges this neuron a bit
in the direction of the data point. But also every neighboring neuron is pushed
ever so slightly in the direction of the data point. Over time the strength of
the push decreases. The function of how much the nudge of the neuron in the
direction of the input vector decreases is called the learning rate, which is an
important property of the Self-organizing-map.

A common method to visualize the clusters in a self organizing map is the U-
matrix, which stands for unified distance matrix. For each neuron the affiliated
value in the U-matrix is the sum of the distance to its neighboring neurons
divided by the number of the neighbors [I1]. Before the training process of the
map the U-matrix is in a random shape with no visible pattern. As each vector
moves in the direction of one of the clouds, a pattern begins to emerge from the
U-matrix. After looping through the data we expect the U-matrix to have areas
with neurons very close to each other, separated by areas of neurons being very



far from each other. This can be seen in the x-y plane in figure [6] when one
compares the first and last step of the map.

In the end one should end up with something as it is depicted on the right
side in figure[f] One can clearly see that all but a few of the small x’s have moved
inside the clusters and that the rather random U-matrix from the illustration
has turned into a more regular shape. There are now three distinct areas in the
U-matrix, two with very low distance and one between them with a very high
distance.

As mentioned before, not only the winning node, but also the neighbors of
the winning node are modified to be more likely like the input vector. The
function regulating how the neighbors are changed is called the neighborhood
function. The most widely used neighborhood functions are the Bubble and the
Gaussian function. While the Bubble function only changes the neighboring
neurons around the winning neuron evenly, the Gaussian function decreases the
value v with increasing distance to the winning neuron exponentially. In our
implementation we tried a slightly different neighborhood function, defined in
(1), o

Vg = at) - gli—icl+]i—jel (1)

Where «(t) is the learning rate in the timestep ¢, ¢ and j the indices of
the neuron and ¢ the winning neuron. We also implemented the possibility of
setting a cutoff radius, which determines the amount of neighbors that will be

considered.
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Figure 7: Neighborhood for cutoff 1 (1), 2 (m) and no cutoff (r)

In figures [7] and [§ one can see the difference between different cutoff radii.
On the left in both figures we only change the direct neighbors of the winning
node, than in the middle we also change the next neighbors and finally on the
right one can see a smooth fall off, meaning that we take up to four neighbors
into account.
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Figure 8: The corresponding movement plot to figure [7]

2.2 Our results

First we generated different kinds of trail data against we verified our method.
This consisted of two fairly wide separated point clouds and a series of different
sized cubes. Our results, meaning the U-matrix can be seen below. For higher
amounts of data it is advisable to use a higher amount of neurons.

2.2.1 Test Data

We generated different configurations of test data, which means varying data
densities and numbers of clusters. In this section follows the results of these
test runs.
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Figure 9: U-matrix for a six dimensional test data and 10 x 10 neurons at
different steps.

In figures [9] and [I0] one sees two tests with 10 x 10 and 15 x 15 respectively.
Both figures show the first time step on the left, 12.000 in the middle and
22.000 on the right. We see in both cases that at time step 12.000 the U-matrix
already shows the three clusters, but in figure[I0] the clusters are more distinctly
separated. But we see a known effect at time step 22.000 where a fourth cluster
is beginning to develop. This effect is know as overtraining and it is visible in

figure [10] [12].
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Figure 10: U-matrix for a six dimensional test data and 15 x 15 neurons at
different steps.

2.2.2 Simulated Data

Further we tested different sets of the simulated PXD data. Theses simulated
data included pions (PI), anti-deutorons (DD), tetraquarks (T) and beam back-
ground (BG). We run tests with all combinations of each simulated data set.
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60
8 8
s0
6 6
s ! a0 _
[ 3
g G s
4 4 &
30
2 2 20
0 ) 0
0 2 a 3 8 3 2 4 3 3

x-axis x-axis x-axis

Figure 11: The 15 x 15 U-matrix at time steps 50.000, 80.000 and 102.000 for
PI and DD.

Figure [T1] shows the results for PI and DD. This data set consists of 103.429
points. In the plot on the left and right we clearly see a single cluster in the
lower right, stretching to the top right. Slight signs of a second cluster can be
seen on the left side in the lower half of the y-axis between 2 and 4. We would
need to adjust the learning rate or simply process more data point, as it seems
it did not finish its learning process.
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Figure 12: The 15 x 15 U-matrix at time steps 50.000, 80.000 and 120.000 for
PI and T.

Figure [12| shows the results for PI and T. This data set is larger compared
to the one for PI and DD. We again see a clear cluster in the lower right corner
and we can make out a second cluster in the upper left corner. Maybe adjusting
the learning rate would improve the quality of the second cluster. This set has
120.671 data points and thus has 17.242 more data points.
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Figure 13: The 15 x 15 U-matrix at time steps 30.000, 80.000 and 132.000 for
DD and beam background.

Figure shows the results for DD and beam background data. The first
frame looks like it is just one large cluster with barely any structure. The plot
in the middle and on the right show a cluster in the upper right corner of the
U-matrix and one can make out three more clusters, even though we would
expect only two clusters. This data set consists of 132.102 data points and since
we see four clusters already at time step 80.000, we assume the network is not
overlearnt, but that we still did not have enough data points or have to tweak
the learningrate or the neighborhood function.
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Cluster Plot at 50000 Cluster Plot at 140000 Cluster Plot at 252000
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Figure 14: The 15 x 15 U-matrix at time steps 50.000, 140.000 and 252.000 for
all data sets.

Figure [14] shows the results if one uses the self organizing map on all data
sets. The first plot in the left shows one large cluster in the U-matrix, which
slowly shows some structure in the second plot in the middle. This structure
becomes more pronounced in the last frame on the right. We can see two
clusters, one right side and the second in the lower left. Within the lighter
structure one might be able to make out the beginnings of three more clusters.
Since we would expect four clusters and we have sufficient many data points,
we are assuming, that we not only would need to adjust the learning rate, but
also increase the number of neurons.

2.3 Conclusion

As it was said above, this method works reliably with clearly separated clusters,
as it was the case with our simple test data sets. But as soon as we used
the simulated training data sets, this Self-organizing map started to fail the
data separation. A simple reason for that could be the order in which the
data is processed. The simulated data is not as good separated as our test
data sets, with the clusters having common points and possibly even merging
into each other in some dimensions. There are settings as the neighborhood
function, learningrate and the amount of neurons that significantly influence
the functionality of the Self-organizing-map. One could make many test runs
using various combinations of these setting to maybe yield better results.
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3 High dimensional voxels

3.1 What is a voxel?

It is the easiest to understand what a voxel is, when one thinks of pixels. A pixel
is a color dot, which is sitting on a regular grid. It is a shortening of 'picture
element’. One can understand a voxel in the very same manner, the difference
being, that a pixel is two dimensional, while a voxel is three dimensional. Voxel
is short for ’volume element’. In this work we use it a bit more loose, we not
only mean three dimensional volumes, but up to six dimensions.

3.2 A stochastic approach

We tried a stochastic approach, where we picked random data points and grew
spherical voxels. The first problem we encountered was the question of how
large a voxel should be and until what point should we let it grow. This turned
into the question of how one should define the boundary and how to find the
boundary. Furthermore spheres do leave gaps in between them, no matter how
small or close they get to each other. How do we finally define what a cluster
is? These three points will be discussed in this section.

testData
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Figure 15: Unprocessed two dimensional data.

This method was developed using a two dimensional test data set, of which a
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plot can be seen in figure This data consists of two point clouds with varying
density and an irregular shape.

3.2.1 Finding the boundary
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Figure 16: Illustration of finding the boundary of data clouds. On the left: a
cloud with boundary points in red. On the right: the randomly grown voxels
for finding the boundary.

In figure one can see an illustration on how the program tries to find the
boundary. We randomly place voxels in the whole space of the data set, than we
check within a certain radius, which is arbitrarily set by the user, if there are any
data points in the vicinity of that voxel. We call this radius the search radius.
In the case of there begin no data points, the program searches the nearest
neighbor and flags it as a boundary point. How many times the algorithm does
is also set by the user. The number of checks are called trails.

3.2.2 Growing Voxels

We want to illustrate how this algorithm works, for that one should have a look
at figures [16] and [I7] and follow the steps along. First the algorithm is using a
stochastic approach at finding the boundary.

Then the second step after the boundary was found, the algorithm loops
through all data points looking for the largest voxel possible. It does this by
checking against every boundary point and every other voxel. Now if the dis-
tance to the next voxel is smaller, than the preset search radius for finding the
boundary, this newly set voxel will grow until it hits its neighboring voxel. In fig-
ure |17) the voxels with numbers 0, 1, 2,3 and 4 explain this process well. Voxel 0
stops growing at a boundary point, voxel 1 as well, since it grows inside another
cluster. Subsequently all following voxels align themselves with the preceding
voxels. This step is finished until a newly created voxel only contains a single
point.

13



In the third step the algorithm picks random points from the data set and
places new voxels, growing and moving them until they connect two voxels with
each other.

The fourth and last step is finding the clusters and it will be explained in
the next subsection.

e covered data
204 e not covered
e boundData
15 A
o 10 A
Q0
©
-
>
5 -
0 4
_5 -
-10 -5 0 5 10 15 20 25
X Label

Figure 17: Process of placing the largest possible voxels on two dimensional
data clouds.

The full results of the test run in figure is as follows. It consists of 41
voxels, the largest voxel has a radius of 4.56 units, while the smallest has a radius
of 0.04 units. The voxel with most counts has 2074 and the lowest count is 2.
Furthermore the algorithm covers about 5000 data points, which translates into
95.46% of the data. We found two clusters, with the first consisting 17 voxels
and covering 48% and the second 24 voxels and covering 47.5%.

3.2.3 Finding the voxels that belong together

In order to find which voxels build up a cluster, one has to find which voxels are
connected together by chains of neighbors. In figure [I§] one can see two data
clouds and a few voxels, each with their respective voxel number.

14
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Figure 18: Explanation of the method to finding clusters with the help of voxels.

This method now writes a list for each voxel, containing itself and all other
voxels it touches. Than it compares these lists and combines them, if at least
one element is in common. The third and last step throws all non-unique lists
away. The number of resulting lists give us the number of data clusters, given
that the clusters are sufficiently far apart in at least one dimension. For the
example in figure [I§ one gets the following:

[O, 7] [O, 4,5, 7]

[1,3,6,8,9] [1,2,3,6,8,9]

[2,9] [1,2,3,6,8,9]

[3, 1] [1,2,3,6,8,9]

[4,5,7] [0,4,5,7] [0,4,5, 7]

5, 4] =7 [0,4,5,7] = 11,2,3,6,8,9]
[6, 1] [1,2,3,678,9]

[7,0,4] [0,4,5,7]

[8, 1] [1,2,3,6,8,9]

[9,1,2] [1,2,3,6,8,9]
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3.2.4 Testing on different test data sets

In order to get a better sense of this method and to find its weaknesses, we
tested it on different kinds of data. We varied the sizes, densities and distances
between the data clusters. In figures [19] and [20] are the plots for different test
data sets.

For the left and right plots in figure we used the same data set, the
only difference was, that we changed the parameters for finding the boundary,
meaning we changed the search radius but kept the number of trails constant.
This resulted in vastly different interpretation of the data by the program.

80 . * covered data . * covered data
* not covered * not covered
« boundData « boundData

60

60

40
40

Y Label
Y Label
N
S

0
X Label X Label

Figure 19: Demonstrating what impact the input parameters have on finding
the boundary and thus on the end result.

The results are summarized in table [I] On the left side the largest voxel is
nearly fifty percent larger than the largest voxel on the right side, it contains
nearly sixty percent more data. The dominance of the one voxel on the left side
makes it impossible to differentiate between the three clusters, since the first
voxel sits firmly in the middle of all data points. The program can only barely
recognize the three clusters on the right side, after we lowered the search radius
from 7.75 down to 2.5.

Table 1: Comparing the results for different parameters in finding the boundary.

Search- Number Data Number Largest Highest

radius  of voxels covered of clusters radius  count
Left 7.75 21 92.38% 1 31.21 1630
Right 2.5 29 94.63% 3 20.04 992
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Figure 20: Testing the methde of different sized clouds, with differing densities.

The second data set we tested can be seen in figure 20] and the results are
listed in[2l It is a collection of three different clusters of different sizes and with
different densities. The whole data set consists of three clusters and 3355 data
points and found 52 boundary points. There are 11 voxels in total and 97.97% of
all data points where covered. The algorithm determined that there are three
clusters. In all three clusters, the largest voxels had the highest density and
these voxels were created back to back. Meaning before any voxels could touch
each other, all clusters were covered by one voxel each.

Table 2: The results of the algorithm on three different clusters.
Number Highest Largest Smallest Highest Lowest

of voxels density radius radius count count
Cluster 1 4 101.37 15.95 0.76 1617 2
Cluster 2 5 152.54 10.55 0.63 1609 2
Cluster 3 2 24.74 1.74 0.73 43 2
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3.2.5 Results for higher dimensions of test data

We generated data sets with two clearly separated clusters of almost circular
asymmetric shape at different dimensions. We kept the number of data points
constant at 5240 and we kept the shape of the clusters similar.

The amount of data that was covered by this method decreased with an
increase of dimensions. This was to be expected since the spaces in between
the spheres increases in size with every dimension. This effect is related to the

curse of dimensionality [13].

100

ntage ct

Data

Each runs result &
Fit to data

Figure 21: Data loss as a function of dimensionality.

Figure [2I] shows how much data gets lost with an increasing dimensionality
of the problem. To get a better understanding of the loss, we fitted it using a
quadratic function and we can conclude that the loss is a quadratic function of

the dimension. The data is tabulated below [

Table 3: Results for different dimensions.

Dimensions Voxels Clusters Data Covered Data Points
2 29 2 98.26% 5149
3 36 2 92.90% 4868
4 76 2 81.03% 4246
5 25 2 72.39% 3793
6 41 2 55.88% 2028

As we can see in table[3]the method may have lost coverage, but it still could
figure out how many clusters there were. One curiosity is, that the number of
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voxels stays relatively constant, except in the four dimensional space. In this
case we have twice to thrice as many voxels as in the other cases. This might
be connected to the fact that IR* is exotic.

e covered data
15 e not covered
e boundData

Y Label

-10 0 10 20 30 40
X Label

Figure 22: The two dimensional data set, that was analyzed.

In figure 22| we plotted the two dimensional data sets. Every higher dimen-
sion was created in the same way, in order to know approximately what the
shape of theses clusters are.

The general findings of our algorithm can be found in table[3] Since the bar
charts for the two through six dimensions look similar, we will only look at the
second and sixth dimension.

It is very instructive to look at different statistics and visualize them. This
is especially necessary when one tries to analyze unknown data of higher dimen-
sions, since one cannot plot the data directly.

Figure[23]shows bar charts of the process. On the x-axis one sees the number
of the voxel and on the y-axis one sees different characteristics of the voxel. In
orange are the results after the first step of creating the largest possible voxels
and in blue we have the results after randomly creating voxels.
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Figure 23: The statistics bar plots for the analysis of the two dimensional data
set. On the left we can see the counts of data points per voxel and on the right
we see the radii.

In figure 23| we see on the left, that two voxels contain almost all of the data
points, meaning the first two voxels dominate. Looking than at the radii on the
right, we see something similar, the first two voxel are the largest voxels and
than the size tapers off until the second step, where we start growing stochasticly
placed voxels.

plot for neighbors plot for norms

mmm neighbors after all steps mm norms after all steps
e neighbors before all steps = norms before all steps

neighbors
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Figure 24: The statistics bar plots for the analysis of the two dimensional data
set. On the left we see the number of neighbors per voxel and on the right we
the the norms of the midpoints.

Figure again gives some insights. On the left we see the number of
neighbors each voxel has and as expected the number of neighbors will increase
for every voxel created in the first step. The more interesting plot can be seen
on the right side. Here we plotted the norms of every midpoint of all voxels.
Norms meaning here the euclidean distance from the origin of the coordinate
system. This plot clearly reveals that there are two data clouds and that they
are quit far apart, meaning 30 units. This is also what the algorithm found,
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the distance between the weighted midpoints of each cluster is, according to the
algorithm, 30.76 units.

We can correlate that finding with the plot in figure 22 where we can see,
that the clouds are centered around zero and thirty on the x-axis and have a
width of about ten units, meaning the stretch five in each directions. The right
plot in figure [24] reveals that the two largest voxels have radii between six and
seven units.

plot for counts plot for radius
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Figure 25: The statistics bar plots for the analysis of the six dimensional data
set. On the left we can see the counts of data points per voxel and on the right
we see the radii.

Now for the six dimensional case it looks akin to what we have in all other
cases. In figure[25 we again see, that two voxels dominate. The biggest difference
here is, that the radii are more evenly distributed.
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Figure 26: The statistics bar plots for the analysis of the six dimensional data
set. On the left we see the number of neighbors per voxel and on the right we
the the norms of the midpoints.

As for the numbers of neighboring voxels and the norms of the midpoints, fig-
ure [20] paints a nearly identical picture, the difference begin, that the neighbors
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for the first two voxels increased four fold and not two fold.

These results were to be expected, because the data clouds for all test data
were of the same shape. The increase in neighbors also makes sense, since we
have twelve more voxels and with higher dimensions the surface of each voxels
increases, meaning we have more possibilities for more neighbors. The more
evenly distributed radii in the six dimensional case is a bit off.

3.2.6 Limits in distance differentiation

We also tested what the limits of this method are, by using the same data set,
but moving the clouds closer together. We started with the midpoints of the
clouds are twenty units apart in the beginning and each cloud having a mean
diameter of 10 units. Then moved them closer together, without changing the
diameter. In figure |27 are the results for 17 and 16 units in the two dimensional
space.
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Figure 27: Varying the distance between clusters in two dimension.

What we see is, that at 17 units we can still recognize the two clouds, but at
16 this method fails. We also observed, that in higher dimensions, the clusters
needed to be further apart in order to tell them apart with this method. In a
three and four dimensional space we lost the ability to differentiate at 16 units.
In a five dimensional space we needed 17 units, while a six dimensional space
required 24 units to tell them apart.

If we evaluate the norms of the midpoints, we can conclude, that there
are different data clouds. This approach of considering the norms only works
properly, if the norms are evenly distributed. For this we just have a look at the
norms bar chart for six dimensions, which can be seen on the left in figure
As stated above, the clustering algorithm of looking at neighbors fails, while we
clearly see two clusters, when we just take the norms into account. One possible
conclusion is, that the main voxels have grown too large. But we cannot say
that conclusively if we correlate this with the radiuses for voxel zero and one,
which can be seen on the right side in figure
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plot for norms plot for radius
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Figure 28: The statistics bar plots for the analysis of the six dimensional data
set. On the left we see the norms of the midpoints of each voxel and on the
right we see the radii per voxel.

3.2.7 Analyzing the simulated PXD data

In this section we go over the results for the analysis of the simulated PXD data.
We have four sets, pions (PI), anti-deuterons (DD), tetraquarks (T) and beam
background (BG). The PI set consists of 74,756 data points, the DD of 28,673,
the T of 45,915 and the BG file of 103,429.

A brief summary of the results of all combinations can be seen in table [4]
We analyzed the the combinations PI with DD, PI with BG and PI with T.

Table 4: The results of the spherical voxel method for different combinations of
the simulated PXD data.
Data  Border- Voxels Coverage Voxels Coverage

points points  step 1 step 1 step 2 step 2
PI+DD 103,429 600 19 46.99% 7 71.28%
PI+BG 178,185 673 11 5.50% 45 93.72%
PI+T 120,671 678 18 33.17% 73 62.79%
DD+T 74,588 1042 31 62.97% 125 72.30%
DD+BG 132,102 1785 6 2.95% 25 92.38%
T+BG 149,344 1531 20 15.46% 81 83.68%

The algorithm found for combinations but the beam background ones only a
single cluster. The second cluster found in theses cases consisted only of single
digits numbers of voxels and contained less than one percent of data data. This
is why we will just neglect them.
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Example: (Pions and anti-deuterons)

Now we will review the three cases where PI are combined with the other cluster
files. The results of the other variations follow a very similar structure, which
is why it is not too instructive to look at every single case in detail. The first
example is PI4+-DD. This combination contains 103,429 data points in total.
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Figure 29: The statistics bar plots for the analysis of the simulated data sets
for PI4+DD. On the left we can see the counts of data points per voxel and on
the right we see the radii.

The algorithm created 19 voxels in the first step and covered 46.99% of the
data. In the second step it created 58 more voxels totalling at 77 and covering
71.28% of the data. The largest radius is 214 units and the mean radius is at
15 units. The highest count for data points is 38,121 with an average of 958.
The clustering algorithm recognized the whole set as only one cluster.

In figures [29| and [30] we see the results for the Pion anti-deuteron data set.
Again the radii decrease, after an initial peak. This effect is due to the the fact,
that from the second voxel onward, voxels can grow beyond the boundary as
long as the growth rate states below a certain threshold. The second voxel is by
far the largest and also contains the most data points. Which could indicate,
that it might be covering one cluster almost by itself. Since we allow voxels
to grow beyond the border under certain conditions, we can conclude, that the
second voxel overgrew, touching the first voxel.
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Figure 30: The statistics bar plots for the analysis of the simulated data sets
for PI+DD. On the left we see the number of neighbors per voxel and on the
right we see the norms of the midpoints.

Figure shows some interesting facts about the process. Firstly we see,
that the largest voxels also have the most neighbors. It is a indication, that
thises voxels are central or at least a lot of voxels were created around them.

The norms, meaning the euclidean distance to the origin of the coordinate
system, of the midpoints show something interesting. Even though the algo-
rithm found only one cluster, meaning all voxel could be connected via a chain
of voxels, the norm plot in figure [30] has very distinct values. Meaning one would
be able to find two clusters and tell them clearly apart. The second voxel sits
right in the middle of the two values for all other voxels. So we are assuming,
that this voxel is connecting the two clouds.

Example: (Pions and beam background)

For the PI4+BG analysis we found two clusters, yet one of them had less than
one percent of all the data. This was a characteristic that all beam background
analysis yielded. The first step created 11 voxels and covered only 5.5% of the
data. After the second step 45 voxels were created in total, covering 93.77%. In
the end we had only four times as many voxels than in the first step, but 18 times
as many counts. This was repeated for the DD+BG and T+BG combinations,
as can be seen in table [
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Figure 31: The statistics bar plots for the analysis of the simulated data sets
for PI+BG. On the left we can see the counts of data points per voxel and on
the right we see the radii.

Figure [31] shows a characteristic result for beam background analysis. In all
cases, where we combined beam background with another cluster, the first step
created few voxels, covering only a low amount of data points. The second step
creates a lot of voxels, covering way more of the data. All of them had a peak
in counts on the first randomly created voxel, covering most of the data.
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Figure 32: The statistics bar plots for the analysis of the simulated data sets
for PI+BG. On the left we see the number of neighbors per voxel and on the
right we see the norms of the midpoints.

Figure [32 shows the numbers of neighbors and the norms. Neither of them
reveal anything deeper about the process, since the number of neighbors is
mostly between six and one, dominated by just two neighbors. There are peaks
at eight, nine and fifteen neighbors. The norms do not show any pattern, unlike
what we have seen in the previous analysis.

Example: (Pions and tetra quarks)

26



Finally we will have a more detailed look at PI+T. This set has 120,671 data
points for which 678 boundary points were found. After the first step 18 voxels
were created and 33.17% of the whole set was covered with voxels. The second
step created 55 voxels totalling in 73 voxels and covering 62.79% of the data.
As we can see in table [f] the two data sets were recognized just one cluster.

More detailed information from the program output tells us that the highest
count is 29,088 and the average count is 1037.88. The largest radius is 118 and
the mean radius is 19.5 units.
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Figure 33: The statistics bar plots for the analysis of the simulated data sets
for PI+T. On the left we can see the counts of data points per voxel and on the
right we see the radii.

Figure |33| shows the counts on the left and we can conclude that one of the
first-step voxels and one of the second step voxels contain most of the covered
data. This is not an indication that we have just two cluster, it would have
been, if two of the first-step voxels had covered most of the data. On the right
we see the radii, which start out large and temper down and the second step
voxels are pretty small in comparison.
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Figure 34: The statistics bar plots for the analysis of the simulated data sets for
PI+T. On the left we see the number of neighbors per voxel and on the right
we see the norms of the midpoints.

Figure [34] shows the number of neighbors on the left and the norms of the
midpoints of each voxel. One interesting observation is, that some of the ran-
domly grown voxels from step two have quit a lot more neighbors, than the
first-step voxels.

In the norm plot we see the same thing we already saw in with PI+DD. There
are two centers. We can only reiterate that this is a pretty good indication that
there are two clusters and not just one and that the cluster algorithm failed.
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3.3 A systematical approach

With the problems mentioned in the above paragraph we tried a systematical
approach and used cubical voxels, which we arranged on a regular grid. The
main benefit of cubical over spherical voxels is that there are no interspaces and
overlaps. In case we have a grid that covers the whole data cloud, we can as-
sume that all of the data is inside any voxel. The easiest and most effective way
would be to discretize the space and place a voxel in evenly defined distances
between the maximum and minimum of the coordinates in each dimension. Af-
terwards check if the placed voxels contain any data and delete them if not.
Since we are working with multidimensional data in a wide range, a discretiza-
tion over the whole data range in every dimension is not realizable due to the
big computing effort. By increasing the dimension the discretization gets com-
binatorial explosive. So we need a method to find a grid that only covers the
data points without the need of checking the empty spaces around the data
clouds. Therefore, after choosing a step size, we loop through every coordinate
in every dimension of of the data points and use the position that is closest to a
multiple of the step size from the coordinate. In that way we get a grid that is
approximately only covering the data cloud. Like before, for visualization and
testing the method we used the two-dimensional test data set. The figure [35]
shows the two-dimensional data plotted with red dots as the midpoints of the
squares created in the next step. For comparsion figure [36| shows the midpoints
of the potential voxels with the discretization of the whole space.
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Figure 35: Midpoints and the squares created in the next step by looping over
the data.
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Figure 36: Midpoints and the squares created in the next step by discretization
of the space.

Since we are rounding the coordinates to the next multiple of the step size to
find the midpoints of the squares, it is possible to miss data points, because the
square is created shifted to them. Various testing with this methods including
higher dimensional data sets showed that most of the data is covered by the
voxels using this method. In the two-dimensional case shown in figure 100
% of the data was inside any voxel.

3.3.1 Detecting the voxels that form a cluster

For finding the the voxels that form a cluster we use the same algorithm de-
scribed in chapter In this case we considered cubes as neighbors if their
midpoints are half of the step size apart from each other. As it is observable
in the figures [35| and it is possible that detached voxels only containing one
data point without having any neighbor are created. This occurs more often
the smaller the step size is. These can be ignored and considered as loss of data
for this method, as we cannot assign them to a bigger cluster. In the following
we only take clusters consisting of at least two voxels or containing more than
0.1% of the complete data into account.

3.3.2 Choosing the step size

The main problem with this method is to find a suitable step size, which is
equivalent to the edge of the cube. It is not only a matter of the computing
effort, but also crtitical to the success of this method. Choosing a value for the
step size that is too big or small leads to data loss as previously described. On
the other hand it is not possible to separate the clusters if the step size is too
big for the voxels from different clusters not to build neighborhood relationships
and therefore separate them with the method introduced in chapter [3.2.3] To
demonstrate this issue, we created a two-dimensional test data set with three
clusters and ran the program with three different step sizes for the same data.
Figure [37] shows an example for a step size that is compatible for this data
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set. The squares are big enough to cover the whole data and not that big for
voxels from different clusters touching each other. In this case three clusters
were identified.
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Figure 37: Example for separating three clusters with a suitable step size.

The step size chosen in figure [3§] is just small enough for the algorithm to
separate the cluster and can be viewed as a borderline case. Although the
corners from voxels out of the two separate lower clusters are touching, they
are not considered as neighbors, which is why the algorithm still detects three
different clusters.
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Figure 38: Borderline case with a step size just small enough to detect three
clusters
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By going further and increasing the step size even more, we observe the
voxels from the lower clusters growing into each other, thus the algorithm can
only detect two clusters. This illustration is shown in figure [39]
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Figure 39: Example for a step size too big for detecting the three clusters

Approaches for finding an adequate step size for any data set, like considering
the middle distance between neighboring data points as guideline for the edge
length yield to too big step sizes, since non-optimal data sets usually include
many loose points, which are increasing the step size too far. From here on we
tried out different step sizes until we achieved the best coverage, since we did
not find a generally applicable criterion.

3.3.3 Using the algorithm on high-dimensional test data

Analogously to chapter this method also has to be tested in higher di-
mensions to verify its functionality. For that matter we used the same data sets
containing two equally big clusters as in chapter [3.2.5] As mentioned above, for
each case we have to try out different step sizes and use the one that has the
most amount of data covered and is able to find two approximately equally big
clusters.
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Table 5: Results for different dimensions.

Dimension Step size  Voxels Clusters Data Covered
2 2 136 2 100%
3 2 565 2 100%
4 3 807 2 100%
5 5 484 2 100%
6 6 633 2 100%

The results are listed in Table 5] We can see, that the algorithm works well
on this optimal data set. There is no loss of data in higher dimension as it
was the case using spherical voxels, since we covered 100% of the data in every
dimension. However, using the clustering process as described in chapter [3.3.1
leads to small losses of the resulting clusters owing to not considering detached
voxels without any neighbors. In any case the both detected clusters contained
at least 49.7% of the data.

3.3.4 Analyzing the simulated PXD data

In this section we use the algortihm on selected clusters of the simulated PXD
data. For the first tries we chose the clusters for pions (PI), anti-deuterons (DD)
and tetra quarks (T). The results of the DD and PI cluster are listed in table
ol

Table 6: The results for the PI4+DD Cluster

Main Biggest secondary Total Data
Step size Clusters
Cluster Cluster covered
3293 Voxels 1 Voxel
10 470 7%

59.0% total data  7.3% total data

2349 Voxels 1 Voxel
15 45 100%

90.0% total data  3.2% total data

1270 Voxels 1 Voxels
20 23 86%

79.7% total data 1.4% total data

For each run we listed the clusters detected by this method, the proportion
of total data in the biggest and second biggest cluster and the number of voxels
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they consist of aswell as the total data covered. We tried three different step
sizes for every combination of two out of the three clusters. As we can see in
table [6] the method detects 23 clusters by using a relatively big step size of 20
units. The amount of clusters detected increases the smaller the step size is
and is getting up to 430 clusters using the smallest step size of 10 units. As
mentioned before, our algorithm only ignores clusters that consist of less than
two voxels and contain less than 0.1% of the total data. However there are
still many clusters that either consist of two to five voxels only containing a
few data points, which causes this big number. These can be ignored aswell
and we only pay attention to the clusters containing a perceptible amount of
data or voxels. In every case the biggest cluster detected, the main cluster,
contains a huge proportion of the total data covered and consists of the most
voxels by far. The second biggest cluster only consists of one voxel for every
step size, but contains up to 7.3% of the total data, which is about 7540 data
points. By decreasing the step size the ratio of total data and data in the main
cluster shifts, causing the second biggest cluster containing a bigger proportion
of the total data. This could be a hint, that there is a second big accumulation
of data besides the main cluster in our data set. Since the computing effort
increases exponentially by lowering the step size even more, smaller step sizes
could not be tested. Additionally we notice, that we achieved an optimal data
coverage using a stepize of 15 units, with having every data point in a voxel.
Decreasing or increasing the step size from this value led to a loss of data points.
By decreasing the step size even further we assume that the loss of data will
get bigger. We repeated the same process on the other two combinations of the
data sets, which is DD+T aswell as PI4+T. The results are shown in the tables
[ and

Table 7: The results for the DD+T Cluster

Main Biggest secondary Total Data
Step size Clusters
Cluster Cluster covered
3373 Voxels 1 Voxel
10 39 68.9%

57.0% total data 1.3% total data

2239 Voxels 1 Voxel
15 23 100%

86.1% total data  2.2% total data

1580 Voxels 1 Voxels
20 14 85.0%

73.4% total data  2.8% total data
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Table 8: The results for the PI+T Cluster

Main Biggest secondary Total Data
Step size Clusters
Cluster Cluster covered
4610 Voxels 1 Voxel
10 87 75.9%

59.9% total data 6.3% total data

2349 Voxels 1 Voxel
15 45 100%

89.99% total data  3.2% total data

1494 Voxels 1 Voxels
20 23 86%

79.5% total data 1.2% total data

Comparing the results of the algorithm on the different sets of the cluster
data, we can see some similarities. For every combination, the step size of 15
units achieved 100% coverage of the total data. The biggest secondary cluster
only consists of 1 voxel in every case and contains 7.3% of the total data at
most, which means that we can not separate any of the two clusters from each
other for sure. It is notable, that the algorithm can find one accumulation of
data consisting of a large amount of voxel for every case. The only noteworthy
difference between the results of different combinations is the number of clusters
deteceted. While the algorithm finds up to 470 clusters for the DD+PI cluster,
it only finds 39 clusters for the DD+T clusters. This could be a measure of
how tight the data points are, which shows how similar they are to one another.
Applying the algorithm to a data set with points very similar to each other would
probably lead to less clusters detected by this method, since the voxels created
are more likely to be next to each other. To get an idea about how many of the
voxels are directly connected to each other, we looked at how many neighbors
each voxel have and counted them. The histogram of that for PI+T with a step
size of 15 units can bee seen in figure [f0] For each dimension one voxel can
have two neighbors at most, which would be 12 neighbors for this 6-dimensional
data set. As we can see in that histogram, there is no voxel that has a neighbor
in every direction. There are only a very few voxels having 8 neighbors, while
no voxel has 9 or more. This means, that in at least one direction, every voxel
building the main cluster of about 2350 voxels is the border of the detected
cluster. Considering voxels that have the highest number of neighbors could
help to identify the innermost voxels and therefore the centre of the cluster.
We assume that the step sizes used on this data set are too rough to edge
the cluster accurately enough, since every voxel borders the cluster. On the
other hand there is also a relatively high amount of voxels with no neighbors,
which indicates the large spread of the data points in this set. The amounts
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Figure 40: Histogram of the number of neighbors for PI+T

of neighbors, with exception of 4 neighbors, increases steadily and peakes at a
voxel having 6 neighbors.

3.4 Conclusion

In this chapter we discussed two approaches in finding the geometry of data
sets. Firstly we had used an semi stochastic system of determining the shape
of data sets. This was done by placing spheres in a random manner outside of
the data set and finding the borders of the data clouds. Than we looked for
the larges possible spheres and build up neighbor chains. The second step is
the least problematic, but it greatly depends on the first one. The issues with
finding the border is two fold, first we need to figure out how many trails we
want to run. More trails is always better and we do not run into problems if
we increase the number of trails, but time will increase linearly with number of
trails. The second problem is, that we need to provide a suitable search radius
within which there are no data points before we can start looking for border
points. The underlying problem here is, that we do not know which size is
appropriate, since the density of data points can vary greatly.

The previously introduced method of using cubical voxels to enclose a data
set is only to some extend capable of finding clusters. In contrast of conventional
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methods like the Self-organizing-map, this method uses a purely geomtrical
approach to find clusters. Therefore the clusters in the given data sets have to
be clearly separated without growing into each other at any point. As discussed
before, another issue of this method is finding the correct value of the step size.
The edges of the clusters to be detected in the data set have to be at least one
unit of the step size apart from each other in order to be separated correctly.
Choosing smaller step sizes than presented could not be tested in this work,
since the computing effort increases dramatically with lowering the step size
and we lack of computing capacity to do that.

For the cluster data created by python used to test our method, the algorithm
achieved nearly perfect results up to 6 dimensions. Considering that the clusters
of the simulated PXD data have a large spread and even common data points,
this purely geometrical approach like this method will not work and it will be
necessary to find a dynamic approach in determining which voxels are connected
than it was laid out in section
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4 Finishing remarks

4.1 Conclusion

This work discussed three different approaches for detecting different point cloud
clusters for applying them on the simulated PXD data of the Belle II experi-
ment. The Masters’s Thesis from Katharina Dort [I] concerned with this topic,
tried to seperate different clusters with Self-organizing-maps, so we started our
work with a brief introduction and an own implementation of this form of unsu-
pervised machine learning. Since the previous work was not able to differentiate
accurately between more than two clusters of the PXD data, we mainly focussed
on geometrical approaches to detect distinct clusters in the PXD data sets. First
tests with the Self-organizing-map in this work showed the principle function-
ality on different test data sets, but also her limits on the PXD data.

The main goal of this work was to investigate the possibility of using voxels to
cover the data clusters and use geometrical approaches to differentiate between
distinct clusters in the given data set. Two different methods were presented and
tested in this work. The first method presented was stochastic and used spher-
ical voxels, while the other one was more systematical and used cubical voxels.
It was shown, that both algorithms were able to differentiate between clearly
separated clusters in low- and highdimensional test data sets. The stochastic
approach however misses data points with increasing the dimensionality, while
the systematical approach using cubical voxels did not endure any data losses
for higher dimensions. By applying the methods to the simulated PXD data
the weaknesses of these methods were shown clearly. Both our two approaches
relied strongly on an input parameter that was related to the cloud density or
the mean distance between two points. Furthermore the data clouds of PI, DD,
T and BG from the simulated data sets are partially overlapping, which means
that this purely geometrical methods will not work without further modifica-
tion. The current methods however are already applicable and functional for
detecting clearly separated clusters and can act as an assistance or alternative
for unsupervised learning methods, since it is able to identify the correct amount
of clusters and the data they consist of without any information of the data set.

4.2 QOutlook

As mentioned before, the methods presentend in this work are purely geomet-
rical. So a simple check if two voxels touch each other fails at differentiating
between two clusters if the data clouds overlap. In section [3.2.7] we noticed that
taking the midpoint norms into account could help telling clusters apart. Be-
sides that further considerations could be taking in to account for the clustering
process. For the case that clusters overlap at some points, it could be instructive
to look at the density gradient of the voxels, meaning how many data points
are inside a voxel per volume. Thus one could make a decision based on a vary-
ing density, since we assume that the part where the clusters overlap are less
dense than their centers. Continuing improvements on that algorithm could not
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only consider direct, but also further neighbors. Central voxels are more likely
to have a constant quotient of direct-to-total number of neighbors, while we
that assume voxels connecting two clouds have a small quotient. Further works
on this matter could help detecting those kind of voxels that are less dense
and connect two different clusters and lead to a more sophisticated clustering
algorithm.
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5 Appendix
5.1 SOM Python Code

# Module importieren

import numpy as np

import matplotlib.pyplot as plt

import matplotlib

import math

import argparse

import random

import time

from progress.bar import ChargingBar

# selbst geschriebene Helfer importieren

# "helper" enth 1t s mtliche Funktionen die w hrend des Programm
gebraucht werden

# "plotter" wird gebraucht um die Graphen zu plotten

from helper import *

from plotter import *

# schaltet die Warnung aus, dass zu viele Graphen geplotet wurden
matplotlib.rc(’figure’, max_open_warning = 0)

# input flags werde hier geparst

parser = argparse.ArgumentParser ()

parser .add_argument ("-v", "--verbosity", help="output verbosity",
action="count")

parser.add_argument ("-p", "--plots", help="output plots, {cluster,
movement , norms, neighbor}", type = str)

parser.add_argument ("-d", "--data", help="determines whicht data
set is beging used {dd, pi, t, test}", type = str)

parser.add_argument ("-e", "--elements", help="the number of
datapoints to be processed", type = int)

parser.add_argument ("-w", "--weight", help="sets the weight of node
adjustment", type = float)

parser.add_argument ("-c", "--cutoff", help="sets the cutoff radius"
, type = int)

args = parser.parse_args ()

if args.data != None:
dataSplit = args.data.split(’+’)

if args.plots != None:
plotsSplit = args.plots.split(’+’)

# user bestimmter prefix f r plots
plotPrefix = input("Enter prefix for output files ")

# startup Parameter einstellen

# "gewicht" gibt die Gewichtung mit der Nachbarknoten angepasst
werden

# "cutoff" gibt die distance an bis zu welchem Nachbarn Knoten
angepasst werden

sigma= 0.5

# output f r die input flags
if args.weight == None:
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gewicht = 2

print ("Using default weight of value 2")
else:

gewicht args.weight

print ("Using a weight of value {}".format (args.weight
if args.cutoff None:

cutoff = cutneighborhood (2)

args.cutoff=2

print ("Using default cutoff radius of 2")
else:

cutoff = cutneighborhood(args.cutoff)

print ("Using a cutoff radius of {}".format (cutoff))

# Daten einlesen und in Array konvertieren
setDD = False
setPI = False
setT = False
setBG = False
startReading = time.time ()
if args.data != None:
dataSplit = args.data.split(’+’)
if ("test" in dataSplit):
#data = genData(6,3,24000)
#data = genDataNew (24000)
data = sixDData (24000 ,15)
else:
if ("bg" in dataSplit):
fileBG = "Traindata/Beam_BG_cluster_sim.txt"
dataBG = np.genfromtxt (fileBG, delimiter=’ ’)
setBG = True
if ("dd" in dataSplit):
fileDD = "Traindata/Beam_dd_cluster_sim.txt"
dataDD = np.genfromtxt(fileDD, delimiter=’ ’)
setDD = True
if ("pi" in dataSplit):
filePI = "Traindata/Beam_pi_cluster_sim.txt"
dataPI = np.genfromtxt(filePI, delimiter=’ ’)
setPI = True
if ("t" in dataSplit):
fileT = "Traindata/Beam_T_cluster_sim.txt"
dataT = np.genfromtxt(fileT, delimiter=’ ’)
setT = True
if setDD == True and setPI == True and setT ==
setBG == True:
data = np.vstack((dataDD, dataPI, dataT,
elif setDD == False and setPI == True and setT ==
setBG == True:
data = np.vstack((dataPI, dataT, dataBG))
elif setDD == True and setPI == False and setT ==
setBG == True:
data = np.vstack((dataDD, dataT, dataBG))
elif setDD == True and setPI == True and setT ==
setBG == True:
data = np.vstack((dataDD, dataPI, dataBG))
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99

106

107
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109

elif setDD

False and setPI == False and setT == True and

setBG == True:
data = np.vstack((dataT, dataBG))
elif setDD == False and setPI == True and setT == False and
setBG == True:
data = np.vstack((dataPI, dataBG))
elif setDD == True and setPI == False and setT == False and
setBG == True:
data = np.vstack((dataDD, dataBG))
elif setDD == True and setPI == True and setT == True and
setBG == False:
data = np.vstack((dataDD, dataPI, dataT))
elif setDD == False and setPI == True and setT == True and
setBG == False:
data = np.vstack((dataPI, dataT))
elif setDD == True and setPI == False and setT == True and
setBG == False:
data = np.vstack((dataDD, dataT))
elif setDD == True and setPI == True and setT == False and
setBG == False:
data = np.vstack((dataDD, dataPI))
elif setDD == False and setPI == False and setT == True and
setBG == False:
data = dataT
elif setDD == False and setPI == True and setT == False and
setBG == False:
data = dataPI
elif setDD == True and setPI == False and setT == False and
setBG == False:

data = dataDD

if args.data == None:
fileBG = "Traindata/Beam_BG_cluster_sim.txt"
dataBG = np.genfromtxt(fileBG, delimiter=’ ’)
fileDD = "Traindata/Beam_dd_cluster_sim.txt"
dataDD = np.genfromtxt (fileDD, delimiter=’ )
data = np.vstack((dataDD, dataBG))
np.random.shuffle (data)
endReading = time.time ()
# Meta Daten bestimmen und Knoten generieren
# "getMetrics" gibt das gr te & kleinste Element pro Dimension
aus
# "vecSize" ist die Dimension jedes Datenpunkts
# "numElements" ist die Anzahl an Datenpunkten
# "genNodes" generiert die Knoten, jedem Knoten werden zuf 1llige
Wert in
# Abh ngigkeit der maximalen & minmalen Werte pro Dimension
generiert
# "nodes" ist ein [nx ny vecSize] Array
minElement , maxElement, vecSize, numElements = getMetrics (data)
if args.elements == None:

print ("All {} data points will be processed".format(numElements

)
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elif args.elements > numElements:
print ("Input is bigger than availible data points.")

print ("This means all {} data points will be processed".format (

numElements))

else:
numElements = args.elements
print ("{} elements will be processed".format (args.elements))

neurons = 15

print ("{} times {}".format (neurons,neurons))

nodes = genNodes (neurons, vecSize, minElement, maxElement, False)

outPutCollection = []

learningPlot = []

processedPoints = 0

startProcess = time.time ()

# hier startet der Loop ber die Daten, "step" ist der Zeitschritt
in data

if args.verbosity == None:

for

7 # Neuronenanzahl bestimmen

bar = ChargingBar(" ",
timeStep in range (0,numElements):
# normList ist eine Liste der Normen eines Datenpunkts gegen

jeden Knoten
normList = []

max=numElements)

normList = normListe(nodes, datal[timeStep], neurons)
# hier wird der Index des Knoten mit der kleinsten Norm

bestimmt

minIndex = winNode (normList)
outPut = [timeStep, minIndex[0], minIndex[1]]
outPut = np.append([outPut],[dataltimeStepl])

if timeStep != O:
outPutCollection

else:
outPutCollection

np.vstack ((outPutCollection,

np.append (outPutCollection,

outPut))

outPut)

# anpassen des Vektors des Knotens der kleinsten Norm

# "adjustNode" nimmt einen Vektor,

Gewicht an

nodes[minIndex] = adjustNode (nodes[minIndex],

timeStep, gewicht)

UMatrix=genUMatrix (nodes, neurons)

learnRate = learningRate(timeStep, gewicht)
learningPlot = np.append(learningPlot, learnRate)
i 3

if args.verbosity ==
print ("Time Step:
minIndex, "\n")

"
>

elif args.verbosity ==

print ("Time Step:

2.

einen Datenpunkt und ein

data[timeStep],

timeStep, "\n", "Winning Node Index:",

, timeStep, "\n", "Winning Node Index:",

minIndex, "\n", "Learningrate:", learnRate, "\n")
else:
pass
#print ("Time Step:", timeStep)
nodes, neighList = adjustNeighbor (nodes, data[timeStepl],
minIndex, neurons, neurons, timeStep, gewicht, cutoff, args.
cutoff)
normListAfter = []
normListAfter = normListe(nodes, datal[timeStep], neurons)
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198

231

# plotten der Daten
if processedPoints % 2000 == O:
if args.plots == None:
startPlot = time.time ()
plotNodes (timeStep, normList-normListAfter, "Movement",

plotPrefix)
plotNodes (timeStep, UMatrix, "Cluster", plotPrefix)
else:
startPlot = time.time ()
if ("all" in plotsSplit) == True:

plotNormList (timeStep, minIndex, normList,
normListAfter, plotPrefix)
plotNodes (timeStep, 1/neighlList, "Neighborhood",
plotPrefix)
plotNodes (timeStep, normList-normListAfter, "
Movement", plotPrefix)
plotNodes (timeStep, UMatrix, "Cluster", plotPrefix)
if ("norm" in plotsSplit) == True:
plotNormList (timeStep, minIndex, normList,
normListAfter, plotPrefix)
if ("movement" in plotsSplit) == True:
plotNodes (timeStep, normList-normListAfter, "
Movement", plotPrefix)

if ("cluster" in plotsSplit) == True:
plotNodes (timeStep, UMatrix, "Cluster", plotPrefix)
if ("neighbor" in plotsSplit) == True:
plotNodes (timeStep, 1/neighlList, "Neighborhood",
plotPrefix)
if ("none" in plotsSplit) == True:

pass
processedPoints += 1
if ’bar’ in locals():

bar .next ()

if ’bar’ in locals():
bar.finish ()

endPlot = time.time ()

endProcess = time.time ()

# learnRate plotten

fig = plt.figure()

plt.plot(learningPlot)
plt.savefig("Output/learnRate_{}.png".format (plotPrefix))

# Schreiben der output Daten

np.savetxt ("Output/umatrix_{}.txt".format(plotPrefix), UMatrix, fmt
="%f")

np.savetxt ("Output/finalData_{}.txt".format (plotPrefix),
outPutCollection, fmt="%f")

# Abschluss Kommentar
if processedPoints == numElements:
print ("Run was successful")
print ("Reading the data took {}".format(endReading-startReading
))
print ("The main process took {}".format(endProcess-startProcess

))
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232 print ("That is {} per data point".format ((endProcess-
startProcess)/numElements))

233 print ("The plots took {}".format (abs((endPlot-startPlot) -(
endProcess-startProcess))*numElements))

234 else:

235 print ("The programm crashed at data point {}".format(

processedPoints))

Listing 1: Main Program

1 # das ist die "helper" Datei, die s mtiche funktionen enth 1t
2 import numpy as np

3 import math

1 import random

5

6 # diese Funktion generiert die Knoten und initialisiert zuf 1llige

Neuronen

7 def genNodes (neurons: int, vecSize: int, min: int, max: int,
randNodes = True):

8 if randNodes == True:

9 nodes = np.random.rand(neurons ,neurons,vecSize) #
vollst ndig zuf llig

10 else:

11 nodes = np.random.randint(min,max,size=(neurons,neurons,

vecSize)) # basierend auf Input Datan
12 nodes = np.array(nodes, dtype=’float’)
13 return nodes

15 # schnelle Funktion zur Bestimmung der Norm
16 def fastNorm(vec):
17 return math.sqrt(np.dot(vec, vec.T))

19 # auslesen der Meta Datan des Inputs
20 def getMetrics(data: np.array):

21 maxData = data.max(axis=0) # gr te Daten im Input

22 maxElement = np.ceil(maxData) # runden der max Werte des Inputs

23 minData = data.min(axis=0) # kleinste Daten im Input

24 minElement = np.floor(minData) # runden der minmal Werte des
Inputs

25 vecSize = np.size(data, axis=1) # Gr e des Vektors

26 numElements = np.size(data, axis=0) # Anzahl an Elementen

27 return (minElement, maxElement, vecSize, numElements)

20 def numNeurons (numElements: int):

30 neurons = np.ceil(math.sqrt (5*math.sqrt(numElements)))
31 neurons = neurons.astype(int)

32 if neurons < 10:

33 neurons = 10

34 return neurons

36 # erstellen der Abst nde zwischen einem Datenpunkt und den
Neuronen

37 def normListe(nodes: np.array, data: np.array, neurons: int):

38 normList = []

39 for Elements in nodes:

40 for Element in Elements:

11 diff = fastNorm(data-Element)

12 normList = np.append(normList, diff)
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60

return normList.reshape (neurons,neurons)

# findet heraus welcher Knoten den geringsten Abstand zum
Datanpunkt hat

def winNode (normList: np.array):
minIndex = np.where(normList == normList.min())
return (minIndex [0] [0] ,minIndex [1][0])

# wie schnell die Lernrate abf 11t
def learningRate(timeStep: int, gewicht: int):
return 1/(math.log(timeStep+2)*gewicht)

# Funktion zum verschieben eines Neurons zum Datanpunkt hin
def adjustNode (node: np.array, data: np.array, timeStep: int,
neighCoeff: int):
node += (data - node)*learningRate(timeStep, neighCoeff)
return node

# eine Funktion zum anpassen der Nachbarknoten des gewinnenden
Knotens
def adjustNeighbor (nodes: np.array, data, minIndex: tuple, nx: int,
ny: int, timeStep: int, gewicht: float, cutoff: float,
neighcut: int):
neighList=[]
for i in range (0,nx):
neighCoeff = gewicht
for j in range(0,ny):
if (math.sqrt((i-minIndex [0]) **2+(j-minIndex [1])**2)) <=
cutoff and ((i-minIndex [0]) <= neighcut) and ((j-minIndex[1])
<= neighcut):
#print (i,j)
neighCoeff = gewicht
if (i != minIndex[0]) and (j != minIndex[1]):
neighCoeff=neighCoeff *2**(abs(i-minIndex [0]) +abs (j-
minIndex [1]))
#print ("Neighborhood coeff:", neighCoeff, "\n")
neighList=np.append(neighlist, neighCoeff)
nodes[i,jl=adjustNode (nodes[i,j], data, timeStep,
neighCoeff)

if ((i != minIndex[0]) and (j == minIndex[1])) or (i ==

minIndex [0]) and (j '= minIndex[1])

neighCoeff=neighCoeff *2**(abs (i-minIndex [0]) +abs (j-
minIndex [1]))+abs(i-minIndex [0]) +abs (j-minIndex [1])

#print ("Neighborhood coeff:", neighCoeff, "\n")

neighlList=np.append(neighlist, neighCoeff)

nodes[i,jl=adjustNode (nodes[i,j], data, timeStep,
neighCoeff)

if (j == minIndex[1]) and (i == minIndex [0]):
neighlList=np.append(neighlist, gewicht)
else:
neighlist=np.append(neighList, 9999)

neighlList = np.reshape(neighlist ,(nx,ny))
#print (neighList)

46



132

133

134

135

def

return (nodes, neighList)

GaussNeighbor (nodes: np.array, data, minIndex: tuple, nx: int,
ny: int, timeStep: int, gewicht: float, cutoff: float, neighcut
: int, sigma: float):
neighList=[]
for i in range(0,nx):
for j in range(0,ny):
if (math.sqrt((i-minIndex [0]) **2+(j-minIndex [1]) *x*2)) <=
cutoff and (math.sqrt((i-minIndex [0])**2) <= neighcut) and (
math.sqrt ((j-minIndex [1]) **2) <= neighcut):
if (j!=minIndex[1]) or (i!'=minIndex[0]):
neighCoeff = math.exp((i-minIndex [0]) **2+(j-
minIndex [1]) **2/(2*sigma))
neighList=np.append(neighlist, neighCoeff)
nodes[i,jl=adjustNode (nodes[i,j], data, timeStep,
neighCoeff)

else:
neighCoeff= gewicht
neighList=np.append(neighlist, neighCoeff)

else:
neighlist=np.append (neighList, 9999)

neighlist = np.reshape(neighList,(nx,ny))
#print (neighList)

return (nodes, neighList)

# generiert zuf llige , nicht zusammenh ngende Daten zum testen

def

def

des Programms

genData(vecDim: int, numCubes: int, numElements: int):
testData = []

for cubeNumber in range (0,numCubes):

if cubeNumber % 2 == 0:
max = 100*cubeNumber+95
min = 100*cubeNumber+5
else:
max = 100*cubeNumber+90
min = 100*cubeNumber+10
elPerCube = np.round(numElements/numCubes ,0) .astype(int)
dataPoint = np.random.randint (min,max,size=(elPerCube,
vecDim))

dataPoint = np.array(dataPoint/10, dtype=’float’)
testData = np.append(testData, dataPoint)
testData = testData.reshape(numElements,vecDim)
np.random.shuffle (testData)
return testData

genDataNew (number) :

n = np.round(number/6,0) .astype(int)

a = np.random.multivariate_normal ([0, 5], [[2, 1], [1, 1.5]1],
size=n)
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136 b = np.random.multivariate_normal ([2, 0], [[1, -1], [-1, 311,

size=n)

137 ¢ = np.random.multivariate_normal ([5, 4], [[5, 0], [0, 1.2]],
size=n)

138 d = np.random.multivariate_normal ([14, 18], [[5, 21, [2, 411,
size=n)

139 e = np.random.multivariate_normal ([19, 151, [[2, -2]1, [-2, 611,

size=n)

140 f = np.random.multivariate_normal ([19, 18], [[4, 0], [0, 111,
size=n)

141 z = np.concatenate((a, b, c, d, e, £f))

142 return z

144 # die UMatrix aus den vorliegenden daten bestimmen, sie zeigt
sp ter cluster
145 def genUMatrix(nodes: np.array, neurons: int)

146 UMatrix=[]

147 for i in range (0, neurons):

148 for j in range(0,neurons):

149 distance=0

150 nrneighbour=0

151 if (j+1 % neuromns != 0) and (j !'= neuromns-1):

152 distance+=fastNorm(nodes[i][j+1]-nodes[i][j])
153 nrneighbour+=1

154 if j % neuromns != O0:

155 distance+=fastNorm(nodes[i][j-1]-nodes[i]l[j])
156 nrneighbour+=1

157 if i+1 < neurons:

158 distance+=fastNorm(nodes[i+1][j]l-nodes[i][j])

159 nrneighbour+=1

160 if i-1 >= 0:

161 distance+=fastNorm(nodes[i-1][j]l-nodes[i][j])
162 nrneighbour+=1

163 Udistance=distance/nrneighbour

164 UMatrix=np.append (UMatrix ,Udistance)

165 UMatrix = UMatrix.reshape (neurons,neurons)

166 return UMatrix

167

16s # eine Funktion zur Bestimmung des "cutoff" Radius’

160 def cutneighborhood (cutoff: int):

170 return math.sqrt (2*cutoff *x*2)

1

~

1

> # Sph ren werden hier definiert, sie besitzen einen Radius, einen
Mittelpunkt

# dieser wird durch die dimensionalit t der Daten bestimmt, nicht
hier, aber in einer Funktion

174 # "number" soll die Sp hren durchz hlen und "counter" die

Datenpunkte, die innerhalb der Sph re liegen
175 # Sph ren k nnen wachsen und man kann die Z hler heraufsetzen
176 class sphere:

1

~

~

177 def __init__(self, number: int, radius: float, midPoint: np.
array, counter: int):

178 self .number = number

179 self . radius = radius

180 self .midPoint = np.array([midPoint])

181 self.counter = counter

182 def getRadius(self):
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185
186
187
188
189
190

191

192
193
194
195

196

198

return self.radius
def grow(self, speed: float):
self.radius = self.radius*speed
def addCounter (self):
self.counter += 1
def moveMidPoint (self, speed: float, direction: np.array):
self .midPoint += speed*direction

# nimmt einen Vektor entgegen und berprft ob dessen Norm
gr er oder kleiner ist als eine vorgegeben Zahl
def checkCollision(distanceVec: np.array, radius: float):
if fastNorm(distanceVec) > radius:
return False
return True

# generiert Sph ren aus einem Datensatz, als Mittelpunkt wird ein
zuf lliger Messwert genommen
def createCloud (number:int, radius: float, data: np.array, counter:

int):
midPoint = random.choice(data)
cloud = sphere (number, radius, midPoint, counter)

return cloud

class clusters:
def __init__(self, point: np.array, timeStep: int, index: tuple
):
self .point = np.array([point])
self.timeStep = timeStep
self.index = index

def sixDData(number = 1800, spread = 50):
n = np.round(number/2,0).astype(int)
a = np.random.multivariate_normal ([24, O, O, 0, O, 0], [[spread
, 0, 0, 0, 0, 0], [0, 1.95*spread, O, O, O, 0], [0, O, spread,
o, o, ol], [0, O ,0, 1.95%spread, O, O], [0, O, O, O, spread,
o], [0, O ,0, O, O, 1.95*spreadl]], size=n)
b = np.random.multivariate_normal ([0, 0, O, O, O, 0], [[spread,
o, o, o, o, o], [0, spread, O, O, O, 0], [0, O, 1.95%*spread,

o, o, ol, [0, O ,0, 1.95*spread, O, 0], [0, O, O, O, spread,
o], [0, O ,0, O, O, 1.95*spreadl]], size=n)

z = np.concatenate((a, b))

return z

Listing 2: Code including the functions used in the main Program

# hier sind alle Plot-Funktionen
import numpy as np

import matplotlib.pyplot as plt
from numpy import linalg as 1la

# plottet die Abst nde zwischen einem Datenpunkt und den Neuronen,
vor und nach Anpassung eines Knotens und nach der
Nachbarschaftsanpassung
def plotNormList(timeStep: int, minIndex: tuple, normList: np.array
, normListAfter: np.array, prefix: str):
fig = plt.figure(figsize=(6,9))
# Plot vor Anpassung
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10 plt.subplot(2,1,1)

11 plt.imshow(normList.T, origin=’lower’, interpolation=’nearest’)

12 plt.scatter (minIndex [0] ,minIndex [1], color="red", marker=".")

13 plt.ylabel("y-axis", fontsize=12)

14 cbar = plt.colorbar ()

15 cbar.ax.get_yaxis () .labelpad = 15

16 cbar.ax.set_ylabel(’distance’, rotation=270, fontsize = 12)

17

18 # Plot nach Anpassung

19 plt.subplot(2,1,2)

20 plt.imshow(normListAfter.T, origin=’lower’, interpolation=’
nearest’)

21 plt.scatter (minIndex [0] ,minIndex [1], color="red", marker=".")

22 title = "norm plot of {} at time step: {}".format(minIndex,
timeStep)

23 fig.suptitle(title, fontsize=16)
24 plt.xlabel("x-axis", fontsize=12)

25 plt.ylabel("y-axis", fontsize=12)

26 cbar = plt.colorbar ()

27 cbar.ax.get_yaxis () .labelpad = 15

28 cbar.ax.set_ylabel(’distance’, rotation=270, fontsize = 12)

30 plt.savefig("Norms/plot_{}_timeStep_{}.png".format (prefix,
timeStep), dpi=300)

32 def plotNodes(timeStep: int, array: np.array, name: str, prefix = ’
J):

33 fig = plt.figure ()

34 plt.imshow(array, origin=’lower’, interpolation=’nearest’)

35 title = "{} Plot at {}".format(name,timeStep)

36 fig.suptitle(title, fontsize=16)

37 plt.xlabel("x-axis", fontsize=12)

38 plt.ylabel("y-axis", fontsize=12)

39 axes = plt.gca()

40 cbar = plt.colorbar ()

11 cbar.ax.get_yaxis().labelpad = 15

42 cbar.ax.set_ylabel (’value’, rotation=270, fontsize = 12)

13 plt.savefig("{}/plot_{}_timeStep_{}.png".format (name, prefix,
timeStep), dpi=300)

Listing 3: Plot functions for the SOM
5.2 Stochastic approach

1 import numpy as np

> from mpl_toolkits.mplot3d import Axes3D
3 import matplotlib.pyplot as plt

4 import random

5 import math

6 import copy

7 import time

8 import itertools

o from progress.bar import ChargingBar

10 from scipy.spatial.distance import pdist
11 from scipy.spatial.distance import cdist
12 from VoxStochHelper import *

13 from clusterGenerator import *
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from extraHelper import *
#np.random.seed (0)

whichData = "pi+dd+t"

startStart = time.time ()

# daten erstellen

start = time.time ()

testData = dataGenerator (whichData)

minElement , maxElement, meanElement, vecSize, numElements =
getMetrics (testData)

end = time.time ()

readingData = end-start

print ("generating data and metrics took {0:.4f} seconds.".format(
readingData))

print ("")

# rand finden

start = time.time ()

searchRadiusMax, searchRadiusMean, searchRadiusMin =
findSearchRadius (testData)

searchRadius = closestNumber ((searchRadiusMax + searchRadiusMean)
/2,0.25)

trailData = np.unique(testData, axis=0)

boundIndex = findBound(trailData, minElement, maxElement, trails =

120000, searchRadius = searchRadius)
boundData, restData = splitData(trailData, boundIndex)

midPointPool = np.unique(restData, axis=0)

end = time.time ()

findingBound = end-start

print ("finding the boundary with a searchRadius of {0} took {1:.4}
seconds.".format (searchRadius ,findingBound))

print ("")

print ("there are {} data points of which {} belong to the boundary.
".format(len(testData),len(boundData)))
print ("the largest element in each dimension is {} and the smallest

is {}.".format (maxElement, minElement))
print ("the data set has a dimension of {}.".format(vecSize))
print (n n)

# voxel erstellen
print("creating voxels...")
mainStart = time.time ()
voxelNumber = 0
voxels = np.array ([])
counter = 0
stop = False
rejectedVoxels = 0
while stop == False:
oneNorm = np.array ([])
start = time.time ()
length = len(midPointPool)
print ("looking for the largest voxel possible...")
bar = ChargingBar (" ", max=length)
for point in midPointPool:
_, normBound = closestDistance (point, boundData)
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if voxels.size != 0:
voxNorm = np.array ([])

for vox in voxels:
norm = fastDiff (point, vox.midPoint) - vox.radius
voxNorm = np.append(voxNorm, norm)

stepNorm = voxNorm.min ()

if ’stepNorm’ in locals():
if stepNorm < normBound:

oneNorm = np.append(oneNorm, stepNorm)
else:
oneNorm = np.append(oneNorm, normBound)
else:
oneNorm = np.append(oneNorm, normBound)

bar.next ()
bar.finish ()
end = time.time ()
print ("finding midPoint and radius took {:.4} seconds.".format(
end-start))

radius = oneNorm.max ()
index = np.argmax (oneNorm)

midPoint = midPointPool [index]

print ("creating a voxel number {} at {} with radius {}.".format
(counter ,midPoint, radius))

voxel = spherus(counter, midPoint, radius)

if len(voxels) > O:

voxIndex = findNextVoxel (voxel.midPoint, voxels,len(voxels)
) [o]

distanceToNextVoxel = fastNorm(voxel.midPoint-voxels/[
voxIndex].midPoint) - voxels[voxIndex].radius

voxNorm = fastNorm(voxel.midPoint-voxels[voxIndex].midPoint
) - (voxels[voxIndex].radius + voxel.radius)

if voxNorm < searchRadius:

voxel .radius = distanceToNextVoxel

#indices = voxel.appendData(restData, vecSize)
#boundIndices = voxel.appendData(boundData, vecSize)
norms = cdist([voxel.midPoint],midPointPool).ravel() - voxel.
radius
indices = np.where (norms<=0)

#print (np.shape (indices) [1])
#print ("it contains {0} data points and has a desnsity of {1:.4

f}.".format (len(voxel.contData) ,voxel.density))

if (np.shape(indices) [1] > 1):
print ("")
voxels = np.append(voxels, voxel)
counter += 1
#restData = np.delete(restData, indices, axis=0)
#boundData = np.delete(boundData, boundIndices, axis=0)
midPointPool = np.delete(midPointPool, indices, axis=0)
print(" u)

if np.shape(indices) [1] == 1:
stop = True
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rejectedVoxels += 1
print ("voxel rejected and stopping routine.")

end = time.time ()
creatingVoxel = end-mainStart
print ("")

print ("creating voxels took {0:.4} seconds.".format(creatingVoxel))

voxelCount = len(voxels)
print ("there are {} voxels.".format(voxelCount))

radiusesOne = np.array([])
densitiesOne = np.array([])
countsOne = np.array ([])
normsOne = np.array([])
numOfNeighborsOne = np.array([])

for i in range(0,len(voxels)):

voxels[i].neighbors = np.append(voxels[i].neighbors, voxels[i].

voxelNumber)
for j in range(0,len(voxels)):
if i 1= j:
voxels[i].findNeighbors (voxels[j].midPoint, voxels[j].
radius, voxels[j].voxelNumber, searchRadius)

for voxel in voxels:

indices = voxel.appendData(testData, vecSize)

testData = np.delete(testData, indices, axis=0)

radiusesOne = np.append(radiusesOne, voxel.radius)
densitiesOne = np.append(densitiesOne, voxel.density)
countsOne = np.append(countsOne, len(voxel.contData)).astype(
int)

normsOne = np.append(normsOne, fastNorm(voxel.midPoint))

numOfNeighborsOne = np.append(numOfNeighborsOne, len(voxel.
neighbors)) .astype(int)

voxelsUptoNow = len(voxels)
meanRadius = radiusesOne.mean ()

print ("{} data points have been covered".format (countsOne.sum()))

print ("{0:.2f}), of the data have been covered".format( (countsOne.
sum () /numElements) *100 ))

print ("")

# neue Voxel erstellen

print ("growing new voxels...")

stop = False

mainStart = time.time ()

lenVox = len(voxels)

coveragePoint = np.round(lenVox*vecSize ,0) .astype (int)
counterNewVoxels = 0

bar = ChargingBar (" ", max=coveragePoint)

while stop == False:

pickIndex = np.random.choice(len(midPointPool) ,1) [0]
pick = midPointPool [pickIndex]

pickCopy = copy.copy(pick)

voxIndex = findNextVoxel (pick, voxels,len(voxels)) [0]
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nextVoxIndex = findNextVoxel(pick, voxels,len(voxels)) [1]
distance = fastNorm(pick-voxels[voxIndex].midPoint) - voxels|[
voxIndex].radius

distanceCopy = copy.copy(distance)

nextDistance = fastNorm(pickCopy-voxels[nextVoxIndex].midPoint)

- (voxels[nextVoxIndex].radius+distanceCopy)
voxel = spherus(counter, pick, distance)

speed = 0.001
grownUp = False

while grownUp == False:
# solange wachsen lassen, bis der mittelpunkt und der
n chste randpunkt gr er wird

# wachsen lassen, solange das neue voxel dem nextVoxIndex
n her kommt?
voxel .moveMidPoint (speed, voxels[voxIndex].midPoint)

voxel.growRadius (voxels [voxIndex].midPoint, voxels[voxIndex

].radius)
speed += 0.001

newDistance = fastNorm(voxel.midPoint-voxels[nextVoxIndex].
midPoint) - (voxels[nextVoxIndex].radius+voxel.radius)

nextVoxIndex = findNextVoxel(voxel.midPoint, voxels,len(
voxels)) [1]

index, boundNorm = closestDistance(voxel.midPoint,
boundData)

if newDistance > nextDistance or boundNorm <= voxel.radius:

grownUp = True
if checkCollision(voxel.midPoint-voxels[nextVoxIndex].

midPoint, voxel.radius+voxels[nextVoxIndex].radius) or voxel.
radius > meanRadius:

grownUp = True
#indices = voxel.appendData(restData, vecSize)
#boundIndices = voxel.appendData(boundData, vecSize)
norms = cdist([voxel.midPoint],midPointPool).ravel() - voxel.
radius
indices = np.where (norms<=0)

if (np.shape(indices) [1] > 1):
voxels = np.append(voxels, voxel)
counter += 1
counterNewVoxels += 1

#restData = np.delete(restData, indices, axis=0)
#boundData = np.delete(boundData, boundIndices, axis=0)
midPointPool = np.delete(midPointPool, indices, axis=0)
bar.next ()

else:
rejectedVoxels += 1

if counterNewVoxels == coveragePoint:
stop = True
print(" u)

print ("reached coverage point and stopping routine.")
bar.finish ()
if counterNewVoxels > coveragePoint/2:
if np.array_equal(voxels[-1].midPoint, voxel.midPoint):
stop = True

bar.finish ()
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for voxel in voxels:
if len(voxel.contData) == O0:

indices = voxel.appendData(testData, vecSize)

testData = np.delete(testData,

indices, axis=0)

end = time.time ()

newVoxels = end-mainStart

print ("creating new voxels took {0:.4} seconds.".format(newVoxels))
print ("{} new voxels were created.".format(counterNewVoxels))

print (n n)

# cluster finden

start = time.time ()

print ("looking for clusters...")
bar = ChargingBar(" ", max=7)
clusters = []

for i in range(0,len(voxels)):

for j in range(0,len(voxels)):

if i 1= j:

voxels[i].findNeighbors (voxels[j].midPoint,
searchRadius)

radius, voxels[j].voxelNumber,
voxels[i] .neighbors = np.unique(voxels[i].neighbors)

voxels[i].neighbors = np.sort(voxels[i].neighbors,

mergesort’)

clusters.append(voxels[i].neighbors)

clusters = np.array(clusters)
bar.next ()

kind="’

tuples = list(itertools.permutations(range(len(clusters)),
for i,j in tuples:
if len(set(clusters[i]).intersection(clusters[jl)) != 0:
clusters[i] = np.append(clusters[i], clusters[j])
clusters[i] = np.unique(clusters[i])
clusters[i] = np.sort(clusters[i], kind=’mergesort’)

bar.next ()

indices = np.array ([])
for i,j in tuples:

if np.array_equal(clusters[i],clusters[j]) == True and i not in

indices:

if len(clusters[i]) >= len(clusters[j]):

j) .astype(int)

i) .astype (int)

indices = np.append(indices,
if len(clusters[i]) < len(clusters[j]):
indices = np.append(indices,
indices = np.unique(indices)
hope = np.delete(clusters, indices)

bar.next ()

clustersData = {}
for i in range (0, len(hope)):
iClusterData = np.array ([])

for j in range (0,len(hopel[il)):

iClusterData = np.append(iClusterData,

contData)

vertSize = np.round(len(iClusterData)/vecSize ,0).astype(int
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iClusterData = iClusterData.reshape(vertSize,vecSize)
clustersData[i] = iClusterData
bar.next ()

clusterMidPoints = {}
largestCount = {}
smallestCount = {}

maxCountIndex = {}
for i in range(0,len(hope)):
clusterMidPoint = np.zeros(vecSize)

dataClusterCount = np.array ([])
for j in range(0,len(hope[i])):

clusterMidPoint += len(voxels[hope[i][j]].contData)*voxels]|[

hope[i][j]].midPoint

dataClusterCount = np.append(dataClusterCount, len(voxels[

hope[i][j]l].contData))

largestCount [i] = dataClusterCount.max ()
maxCountIndex [i] = np.argmax(dataClusterCount)
smallestCount [i] = dataClusterCount.min ()
clusterMidPoint = clusterMidPoint/len(clustersDatal[il])
clusterMidPoints [i] = clusterMidPoint

bar.next ()

length = (len(hope))

clustersMidPoints = np.zeros((length,vecSize))

for i in range(0,length):
clustersMidPoints [i] = clusterMidPoints[il]

bar.next ()

clusterDistances = pdist(clustersMidPoints)

bar.next ()

bar.finish ()

end = time.time ()

findingClusters = end-start

print ("finding the clusters took {0:.4} seconds.".format (

findingClusters))

# metrik daten ber die routine sammeln
radiuses = np.array ([])

densities = np.array ([])

counts = np.array ([])

midPointNorms = np.array ([])
numOfNeighbors = np.array ([])

counter = 0

for voxel in voxels:

radiuses = np.append(radiuses, voxel.radius)

densities = np.append(densities, voxel.density)

counts = np.append(counts, len(voxel.contData)).astype(int)
midPointNorms = np.append(midPointNorms, fastNorm(voxel.

midPoint))

numOfNeighbors = np.append(numOfNeighbors, len(voxel.neighbors)

) .astype (int)
if len(voxel.contData) == 1:
counter += 1
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341

# statistiken Dber den prozess ausgeben

print ("")

endEnd = time.time ()

fullTime = endEnd-startStart

printStats (voxels, radiuses, counts, counter, densities,
numElements, hope, clustersData, maxCountIndex,
clustersMidPoints, clusterDistances, fullTime)

# Plots starten
plotVoxels(vecSize, testData, restData, boundData, voxels,
whichData)

# historamme plotten

plotBar (densities, "density", densitiesOne, whichData)

plotBar (radiuses, "radius", radiusesOne, whichData)

plotBar (counts, "counts", countsOne, whichData)

plotBar (midPointNorms, "norms", normsOne, whichData)

plotBar (numOfNeighbors, "neighbors", numOfNeighborsOne, whichData)

# output datei f r menschen schreiben
file = open("output-{}".format(whichData), "w")

file.write("---------- this is the output for dataSet {} ----------
\n".format (whichData))
file.write("---------- Here follow some metrics ---------- \n")

file.write("the searchRadius for the boundary was {}. \n".format(
searchRadius))

file.write("there are {} data points of which {} belong to the
boundary. \n".format (numElements,len(boundData)))

file.write("the largest element in each dimension is {} and the
smallest is {}. \n".format(maxElement, minElement))

file.write("the data set has a dimension of {}. \n".format(vecSize)
)

file.write(’\n \n’)

file.write("---------- After creating voxels ---------- \n")

file.write("there are {} voxels. \n".format (voxelsUptoNow))

file.write("{} data points have been covered \n".format(countsOne.
sum () ))

file.write("{0:.2f}% of the data have been covered \n".format( (
countsOne.sum() /numElements) *100 ))

file.write("\n")

file.write("---------- After randomly creating new voxels
—————————— \n")

file.write("creating new voxels took {0:.4} seconds. \n".format(
newVoxels))

file.write("{} new voxels were created. \n".format (counterNewVoxels
))

file.write("\n \n")

file.write("---------- Statistics about the full process ----------
\n")

file.write("there are {} voxels \n".format(len(voxels)))

file.write("max radius is {0:.4f} and min radius is {1:.4f} \n".
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386

389

390

format (radiuses.max () ,radiuses.min()))

file.write("mean radius is {0:.2f} \n".format(radiuses.mean()))

file.write("max counts is {} and min counts is {} \n".format (counts
.max () ,counts.min()))

file.write("and {} contain only one element \n".format (counter))

file.write("mean counts is {0:.2f} \n".format (counts.mean()))

file.write("max density is {0:.4f} and min density is {1:.4f} \n".
format (densities.max () ,densities.min()))

file.write("mean density is {0:.2f} \n".format(densities.mean()))

file.write("\n")

file.write("{} data points have been covered \n".format (counts.sum
(ODD)]

file.write("{0:.2f}% of the data have been covered \n".format( (
counts.sum() /numElements) *100 ))

file.write("\n")

file.write("there are {} clusters. \n".format (len(hope)))

for i in clustersData:
numberDataPoints = len(clustersDatalil)
maxCount = len(voxels[hope[il[maxCountIndex[i]]].contData)
file.write("there are {} data points in cluster {}. \n".format (
numberDataPoints, i))
file.write("its weighted midPoint is at {}. \n".format(
clustersMidPoints [i]))
file.write("voxel with most counts midPoint is at {}. \n".
format (voxels [hope[i] [maxCountIndex[i]]].midPoint))
file.write("it contains {0} data points, which it {1:.2f}% of
the cluster’s data. \n".format (maxCount, (maxCount/
numberDataPoints)*100))
file.write("it consists of {} voxels. \n".format (len(hopel[il)))
file.write("the voxel numbers are {}. \n".format (hopel[il]))
file.write("that is {:.2f}% of data. \n".format ((
numberDataPoints/numElements) *100))
file.write("\n")

file.write("the pair wise distance between the clusters is {}. \n".
format (clusterDistances))
file.write("\n \n")

file.write("---------- Process/step times ---------- \n")

file.write("reading the data and generating the metrics took {0:.4f
} seconds. \n".format(readingData))

file.write("finding the boundary took {0:.4} seconds. \n".format (
findingBound))

file.write("creating voxels took {0:.4} seconds.\n".format(
creatingVoxel))

file.write("creating new voxels took {0:.4} seconds.\n".format (
newVoxels))

file.write("finding the clusters took {0:.4} seconds.\n".format(
findingClusters))

file.write("the whole process took {:.4} seconds. \n".format(
fullTime))

file.write("\n \n")

file.write("---------- Here follow the first voxels ---------- \n")
for i in range(0,len(voxels)):
file.write("voxelNumber: {}, midPoint: {}, radius: {} \n".
format (voxels[i].voxelNumber , voxels[i].midPoint, voxels[i].
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397

398
399
400
401

402
403

404

405
406
407

408

409

410

radius))

file.write("counts: {}, demnsity: {}, midPointNorm: {} \n".
format (counts[i], densities[i], midPointNorms[i]))
file.write("its direct neighbors are: {} \n".format (voxels[i].
neighbors[1:1))

file.write(’\n’)

if len(voxels) > voxelsUptoNow:

if voxels[i].voxelNumber == voxelsUptoNow-1:
file.write("---------- Here follow the new voxels

__________ \nn)

file.write("\n")

file.write("---------- A sorted 1list with all data per voxel per
CLEBBER —sosmoo=os \n")

for i in range (0,len(hope)):
file.write("-------—--- cluster {} -----———--- \n".format (i))

for j in range(0,len(hopel[il)):
file.write("voxel number {} at {} with radius {}:\n".format
(voxels [hope[i]l[j]].voxelNumber, voxels[hopel[il[j]].midPoint,
voxels [hope[i][j]].radius))
file.write("it contains the points:\n")
for point in voxels[hopel[i]l[j]].contData:
file.write("{}\n".format (point))
file.write("\n\n")
file.write ("\n\n")
file.close ()

# output datei f r computer schreiben
file = open("readout-{}".format (whichData), "w")
file.write("# this is the computer readable output for {}\n".format
(whichData))
file.write("# it contains an unprocessed list of all voxels\n")
file.write("# lines beginning with ’v’ are a voxel\n")
file.write("# the first two columns are the number and radius\n")
file.write("# the rest are each dimension of the mid points\n")
file.write("# lines beginning with ’|’ are the points contained in
that voxel\n")
file.write("\n")
for voxel in voxels:
file.write("v {} ".format(voxel.voxelNumber))
file.write("{}".format (voxel.radius))
for x in voxel.midPoint:
file.write(" {}".format(x))
file.write("\n")
for point in voxel.contData:
file.write("|")
for x in point:
file.write(" {}".format(x))
file.write("\n")
file.write("\n")
file.close ()

Listing 4: Main Program
import numpy as np
import random

import math
import copy
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from progress.bar import ChargingBar
from scipy.spatial.distance import pdist
from scipy.spatial.distance import cdist

def

def

fastNorm(vec) :
return math.sqrt(np.dot(vec, vec.T))

fastDiff (vec, uec):
return math.sqrt(np.dot((vec-uec), (vec-uec).T))

class spherus:

def __init__(self, voxelNumber: int, midPoint: np.array, radius
float, contData = np.array([]), density = 0.0, neighbors = np

.array ([1)):

self.voxelNumber = voxelNumber

self .midPoint = midPoint

self.radius = radius

self.contData = contData

self.density = density

self .neighbors = neighbors
def moveMidPoint (self, speed: float, ankerPoint: np.array):

self .midPoint += speed*(self.midPoint - ankerPoint)
def growRadius(self, point: np.array, distance: float):

self.radius = fastDiff (self.midPoint, point) - distance
def appendData(self, dataSet: np.array, vecSize: int):

norms = cdist([self.midPoint],dataSet).ravel() - self.
radius

indices = np.where (norms<=0)

self.contData = np.append(self.contData, dataSet[indices])

vertSize = np.round(len(self.contData)/vecSize ,0).astype(
int)

self.contData = self.contData.reshape(vertSize,bvecSize)

self.density = len(self.contData)/self.radius

return indices
def findNeighbors(self, point: np.array, distance: float,
number: int, searchRadius: float):

if fastDiff (self.midPoint, point) - (self.radius+distance)
<= 0:

self .neighbors = np.append(self.neighbors, number).
astype (int)
def checkCollision(self, compareVoxel):

if fastNorm(self.midPoint-compareVoxel.midPoint) > (
compareVoxel .radius + self.radius):

return False

return True

def findNextVoxel(self, compareVoxels, k = 1):

normList = np.array ([])
for vox in compareVoxels:
norm = fastNorm(vox.midPoint-self.midPoint) - vox.
radius
normList = np.append(normList, norm)
closest = np.argsort(normList)

return closest [:k]

class cubus:

def __init__(self, voxelNumber: int, midPoint: np.array, edge:
float, contData = np.array([]), boundData = np.array([]),
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borderData = np.array([]), density = 0.0, neighbors = np.array
(1))
self.voxelNumber = voxelNumber
self .midPoint = midPoint
self .edge = edge
self.contData = contData
self .boundData = boundData
self.borderData = borderData
self.density = demnsity
self .neighbors = neighbors
def appendData(self, dataSet: np.array, vecSize: int):
for testPoint in dataSet:
counter=0
for dim in range(0,vecSize):
if (testPoint[dim] > self.midPoint[dim]-self.edge
/2) and (testPoint[dim] < self.midPoint[dim]+self.edge/2):
counter += 1

if counter == vecSize:
self.contData=np.append(self.contData, testPoint)
verticalSize = np.round(len(self.contData)/vecSize

,0) .astype (int)
self.contData=np.reshape (self.contData, (

verticalSize ,vecSize))

return self.contData
def checkCollision(self, compareVoxel):

# das funktioniert nur, weil die voxel auf einem gitter
sitzen und gleich gross sind

if fastNorm(self.midPoint-compareVoxel.midPoint) == self.
edge:

return True
return False

getMetrics (dataSet: np.array):

maxData = dataSet.max(axis=0) # gr te Daten im Input
maxElement = np.ceil(maxData) # runden der max Werte des Inputs
minData = dataSet.min(axis=0) # kleinste Daten im Input
minElement = np.floor (minData) # runden der minmal Werte des
Inputs

meanElement = dataSet.mean(axis=0) # gr te Daten im Input
vecSize = np.size(dataSet, axis=1) # Gr e des Vektors
numElements = np.size(dataSet, axis=0) # Anzahl an Elementen

return (minElement, maxElement, meanElement, vecSize,
numElements)

findNextNeighbor (dataPoint: np.array, dataSet: np.array, k = 1)

normList = np.array([])
for element in dataSet:
norm = fastNorm(element-dataPoint)
normList = np.append(normList, norm)
closest = np.argsort (normList)

return closest [:k]

findNextVoxel (testPoint: np.array, compareVoxels: spherus, k =
1):

normList = np.array([])

for vox in compareVoxels:
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norm = fastNorm(vox.midPoint-testPoint) - vox.radius
normList = np.append(normList, norm)

closest = np.argsort (normList)

return closest [:k]

closestDistance (dataPoint: np.array, dataSet: np.array):
norms = cdist([dataPoint],dataSet).ravel ()

index = norms.argmin ()

return index, norms[index]

findSearchRadius (dataSet: np.array):

searchData = np.unique(dataSet, axis=0)

numOfSelection = np.round(len(searchData)/4,0).astype(int)
randData = searchData[np.random.randint(0,len(searchData),
numOfSelection)]

norms = np.array ([])

length = len(randData)

print("calculating searchRadius for boundary...")

"

bar = ChargingBar ("
for point in randData:

max=length)

distance = cdist([point],randData)
norm = distance[np.nonzero(distance)].min ()
norms = np.append(norms,norm)

bar.next ()
bar.finish ()

searchRadiusMax = norms.max ()
searchRadiusMean = norms.mean ()
searchRadiusMin = norms.min ()

return searchRadiusMax, searchRadiusMean, searchRadiusMin

findBound (dataSet: np.array, minElement: np.array, maxElement:

np.array, trails = 1000, searchRadius = 1.0):
boundIndex = np.array([])
overShot = np.ceil ((maxElement-minElement)*0.65) + searchRadius
print ("searching for boundary...")
bar = ChargingBar (" ", max=trails)
for i in range(0,trails):
midPoint = np.random.randint (minElement -overShot ,maxElement
+overShot)
index, distance = closestDistance (midPoint, dataSet)

if distance > searchRadius:
boundIndex = np.append(boundIndex, index)
bar.next ()
bar.finish ()
return np.unique(boundIndex.astype(int))

splitData(dataSet: np.array, boundIndex: np.array):
boundData = dataSet [boundIndex]

restData = copy.copy(dataSet)

restData = np.delete(restData,boundIndex,axis=0)
return boundData, restData

pickMidPoint (dataSet: np.array, vecSize: int, k = 18):
index = np.random.choice(len(dataSet) ,1) [0]

pick = dataSet[index]

neighborsIndex = findNextNeighbor (pick, dataSet, k)
neighbors = dataSet[neighborsIndex]
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allNeighbors = copy.copy(neighbors)
norms = np.array ([])
for point in neighbors:

norms = np.append(norms,fastNorm(pick-point))

meanNorm = np.mean(norms)
stepArray = np.array([])
for point in neighbors:
if fastNorm(pick-point)<meanNorm:
stepArray = np.append(stepArray,

int)

point)
vertSize = np.round(len(stepArray)/vecSize ,0).astype(

stepArray = stepArray.reshape(vertSize ,hvecSize)

neighbors = stepArray

return np.mean(neighbors,axis=0), neighbors,

meanPoint (pick: np.array, dataSet: np.array,

18):

norms = cdist ([pick],dataSet).ravel ()
neighborsIndex = norms.argsort() [1:k+1]
neighbors = dataSet[neighborsIndex]
allNeighbors = copy.copy(neighbors)
norms = np.array ([])

for point in neighbors:

allNeighbors

vecSize:

norms = np.append(norms,fastNorm(pick-point))

meanNorm = np.mean(norms)
stepArray = np.array([])
for point in neighbors:
if fastNorm(pick-point)<meanNorm:
stepArray = np.append(stepArray,

int)

point)
vertSize = np.round(len(stepArray)/vecSize ,0).astype(

int,

stepArray = stepArray.reshape(vertSize,vecSize)

neighbors = stepArray

return np.mean(neighbors,axis=0), neighbors,

checkCollision(distanceVec: np.array, radius:

if fastNorm(distanceVec) > radius:
return False
return True

closestNumber (inputNumber , baseNumber)
quotient = int(inputNumber / baseNumber)

numberOne = baseNumber * quotient

if ((inputNumber * baseNumber) > 0)

numberTwo = (baseNumber * (quotient + 1))

else
numberTwo = (baseNumber * (quotient

return numberOne
else:
return numberTwo

creatMidPoints (dataSet: np.array, vecSize:

DE:
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float):

stepSize:

k

if (abs(inputNumber - numberOne) < abs(inputNumber - numberTwo)
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midPoints = np.array([])

length = len(dataSet)

print ("creating midPoints...")

bar = ChargingBar (" ", max=length)
for point in dataSet:

midPoint = np.zeros(vecSize)
for dim in range(0,vecSize):

midPoint [dim] = closestNumber (point[dim], stepSize)
midPoints = np.append(midPoints ,midPoint)
vertSize = np.round(len(midPoints)/vecSize ,0).astype(int)
midPoints = midPoints.reshape(vertSize,vecSize)

bar.next ()
bar.finish ()
return np.unique (midPoints, axis=0)

Listing 5: Code including the functions used in the main Program

import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

def printStats(voxels, radiuses, counts, counter, densities,

numElements, hope, clustersData, maxCountIndex,
clustersMidPoints, clusterDistances, fullTime):

print ("there are {} voxels".format(len(voxels)))

print ("max radius is {0:.4f} and min radius is {1:.4f}".format(
radiuses.max () ,radiuses.min()))

print ("mean radius is {0:.2f}".format (radiuses.mean()))

print ("max counts is {} and min counts is {}".format (counts.max
(), counts.min()))

print ("and {} countain only one element".format (counter))

print ("mean counts is {0:.2f}".format (counts.mean()))

print ("max density is {0:.4f} and min density is {1:.4f}".
format (densities.max () ,densities.min()))

print ("mean density is {0:.2f}".format (densities.mean()))
print(““)

print ("{} data points have been covered".format(counts.sum()))
print ("{0:.2f}% of the data have been covered".format( (counts.
sum () /numElements) *100 ))

print(" ")

print ("there are {} clusters.".format (len(hope)))

for i in clustersData:

numberDataPoints = len(clustersDatal[il)
maxCount = len(voxels[hope[i] [maxCountIndex[i]]].contData)
print ("there are {} data points in cluster {}.".format (

numberDataPoints, i))

print ("its weighted midPoint is at {}.".format(
clustersMidPoints [i]))

print ("voxel with most counts midPoint is at {}.".format(
voxels [hope[i] [maxCountIndex[i]]].midPoint))

print ("it contains {0} data points, which it {1:.2f}), of

the cluster’s data.".format(maxCount, (maxCount/
numberDataPoints) *100) )
print ("it consists of {} voxels.".format (len(hopelil)))
print ("the voxel numbers are {}.".format (hopel[il]))

print ("that is {:.2f}), of data.".format ((numberDataPoints/
numElements) *100))
print("")
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print ("the pair wise distance between the clusters is {}.".
format (clusterDistances))

print(“ ||)

print("everything together took {:.4} seconds.".format(fullTime
))

print ("")

plotVoxels (vecSize, testData, restData, boundData, voxels,
whichData) :
if vecSize == 2:

fig, ax = plt.subplots()

plt.scatter (testDatal[:,0] ,testDatal[:,1], marker=’.’, c=’
#007700’, label=’covered data’)

plt.scatter (restDatal[:,0] ,restDatal:,1], marker=’.’, label=
’not covered’)

plt.scatter (boundDatal[:,0] ,boundDatal:,1], marker=’.’,
label=’boundData’)

for voxel in voxels:

plt.scatter (voxel.midPoint [0], voxel.midPoint[1],
marker=’.’, c=’#000000"7)

circ = plt.Circle((voxel.midPoint [0], voxel.midPoint
[1]), voxel.radius, fill=False)

plt.annotate(voxel.voxelNumber, (voxel.midPoint [0],
voxel .midPoint [1]), c=’#000000"’)

ax.add_artist (circ)

plt.axis(’equal’)

ax.set_xlabel(’X Label’)

ax.set_ylabel(’Y Label’)

ax.legend ()

plt.savefig("voxelstochs -{}.png".format (whichData), dpi
=300)

plt.show ()

if vecSize == 3:
fig = plt.figure ()
ax = fig.add_subplot (111, projection=’3d’)

u = np.linspace(0, 2 * np.pi, 100)
v = np.linspace(0, np.pi, 100)

x = np.outer(np.cos(u), np.sin(v))
y = np.outer(np.sin(u), np.sin(v))
z = np.outer(np.ones(np.size(u)), np.cos(v))

for voxel in voxels:

ax.scatter (voxel .midPoint [0],voxel .midPoint[1], voxel.
midPoint [2], marker=’x’, color=’k’)

ax.plot_surface (voxel.radius*x+voxel.midPoint [0], voxel
.radius*y+voxel .midPoint [1], voxel.radius*z+voxel.midPoint [2],
rstride=4, cstride=4, alpha=0.25, color=’b’)

ax.plot_wireframe (voxel.radius*x+voxel.midPoint [0],
voxel .radius*y+voxel.midPoint [1], voxel.radius*z+voxel.midPoint
[2], rstride=12, cstride=12, color=’k’)
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ax.scatter(restDatal[:,0] ,restDatal[:,1], restDatal:,2],
marker=’o0’, label=’not covered’)

ax.scatter (boundDatal[:,0] ,boundDatal:,1], boundDatal:,2],
marker=’0’, label=’boundData’)

ax.scatter (testDatal[:,0],testDatal[:,1], testDatal:,2],
marker=’.’, color=’#777777°, label=’covered data’)

ax.set_xlabel (’X Label’)

ax.set_ylabel(’Y Label’)

ax.set_zlabel(’Z Label’)

plt.savefig("voxelstochs -{}.png".format (whichData), dpi
=300)

plt.show ()

plotBar (dataSet: np.array, ylabel: str, dataSetOne = np.array
([1), prefix = ’’):
fig, ax = plt.subplots()
plt.title("plot for {}".format(ylabel))
ax.set_xlabel (’voxel number’)
ax.set_ylabel (ylabel)
x = np.arange (len(dataSet))
plt.bar(x, dataSet, label=’{} after all steps’.format(ylabel))
if len(dataSetOne) > O:

x1 = np.arange(len(dataSetOne))

plt.bar(x1, dataSetOne, label=’{} before all steps’.format(
ylabel))
ax.legend ()
plt.savefig("histogram-for-{}-{}.png".format (ylabel, prefix),
dpi=300)

Listing 6: Extra Functions
Systematical approach

rt numpy as np

rt matplotlib.pyplot as plt

rt math

rt copy

rt itertools

rt time

rt random
tqdm import tqdm
scipy.spatial import distance
scipy.spatial.distance import pdist
scipy.spatial.distance import cdist
Voxmidhelp import =*

tData = genData (18000)

fileDD = "Traindata/Beam_dd_cluster_sim.txt"
dataDD = np.genfromtxt(fileDD, delimiter=’ ’)
filePI = "Traindata/Beam_pi_cluster_sim.txt"

dataPI = np.genfromtxt(filePI, delimiter=’ ’)
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fileT = "Traindata/Beam_T_cluster_sim.txt"

dataT = np.genfromtxt(fileT, delimiter=’ ’)
#fileBG = "Traindata/Beam_BG_cluster_sim.txt"
#dataBG = np.genfromtxt (fileBG, delimiter=’ ’)

testData = np.vstack((dataT, dataPI))
#np.random.shuffle(testData)

print (len(testData))
minElement , maxElement, vecSize, numElements = getMetrics(testData)
stepSize=15

print ("Creating anchorPoints")

anchorPoints= createCornerPoints2(stepSize,testData,vecSize)
datasincubes=[]

middlePoints=[]

cubes = {}

emptycubes={}

anchorPointsLen=len(anchorPoints)

print ("Creating Cubes ")
for i in tqdm(range(0,anchorPointsLen)):
cubes [i]=Cubus (i, stepSize, (anchorPoints[i]))
cubes[i] . cubusData(testData,vecSize)
if len(cubes[i].cubeData) == O:
del cubes[il
emptycubes [i]=Cubus (i, stepSize, (anchorPoints[i]))

for i in cubes:
datasincubes=np.append(datasincubes, cubes[i].cubeData)

datasincubes=np.reshape (datasincubes, (int(len(datasincubes)/
vecSize), vecSize))

fig, ax = plt.subplots()

plt.scatter (testDatal[:,0],testDatal:,1], marker=’o’, label=’data
points’, color=’b’)

plt.scatter (datasincubes[:,0] ,datasincubes[:,1], marker=’o0’, label=
>datas in voxels’, color=’g’)

for i in cubes:
smallrects=plt.Rectangle ((cubes[i].middlePoint -cubes[i].Edge/2)
, cubes[i].Edge, cubes[i].Edge, fill=False)
ax.add_patch(smallrects)

plt.axis(’equal’)
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ax.legend ()
plt.savefig("density.png", dpi=300)

densities = np.array ([])
counts = np.array ([])

; midPointNorms=np.array ([])

counter = 0
for index in tqdm(cubes):
densities = np.append(densities, len(cubes[index].cubeData)/
cubes [index].Edge)
counts = np.append(counts, len(cubes[index].cubeData)).astype(
int)
midPointNorms = np.append(midPointNorms, fastNorm(cubes[index].
middlePoint))
if len(cubes[index].cubeData) == 1:
counter += 1

print("Daten in W rfeln: ", 1len(datasincubes), "\n")

print ("Prozentualer Anteil von Daten in W rfeln: ", (len(
datasincubes)/len(testData)*100), "%", "\n")

print ("Maximale Counts: {} Minimale Counts {}".format (counts.max(),
counts.min()))

print ("Mittlere Counts {0:.2f}".format (counts.mean()))

print ("Anzahl an Voxel: {}".format(len(cubes)))

print ("Leere Voxel {}".format(len(emptycubes)))

print ("{} Voxel enthalten nur ein Element".format (counter))

print ("Maximale Dichte {0:.3f} Minimale Dichte {1:.3f}".format (
densities.max () ,densities.min()))

print ("Mittlere Dichte {0:.2f}".format(densities.mean()))

clustering(cubes, vecSize, testData, numElements)

for i in tqdm(cubes):
neighbors = np.array([cubes[i].number])
for dim in range(0,vecSize):
cubes[i] .middlePoint [dim]+=cubes[i].Edge
for j in cubes:
if i 1= j:
if all(cubes[i].middlePoint==cubes[j].middlePoint):
neighbors = np.append(neighbors, cubes[j].
number) .astype (int)
cubes[i].neighbors=np.append(cubes[i].neighbors
, cubes[j].number)
cubes[i].middlePoint [dim] -=2*cubes[i].Edge
for j in cubes:
if i 1= j:
if all(cubes[i].middlePoint==cubes[j].middlePoint):
neighbors = np.append(neighbors, cubes[j].
number) . astype (int)
cubes[i].neighbors=np.append (cubes[i].neighbors
, cubes[j].number)
cubes[i].middlePoint [dim]+=cubes[i].Edge
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countsun=np.unique (counts)

countnrs=np.zeros (len(countsun), dtype=int)
neighs=np.arange (2*vecSize+1)
neighcounts=np.zeros (2*vecSize+l, dtype=int)

for index in cubes:
for i in range(0,2*vecSize+1):
if len(cubes[index].neighbors)==1i:
neighcounts[i]+=1

for i in range(0,len(countsun)):
for index in cubes:
if len(cubes[index].cubeData)==countsunl[i]:
countnrs [i]+=1

plotBar (counts, "counts")

plotBar2 (countsun, countnrs, "Number of counts")
plotBar2(neighs, neighcounts, "Number of neighbors")
plotBar (midPointNorms , "norms")

plt.show ()

Listing 7: Main Program

import numpy as np

import matplotlib.pyplot as plt

import math

import copy

import itertools as itt

import itertools

import time

import random

from tqdm import tqdm

from scipy.spatial import distance

from scipy.spatial.distance import pdist
from scipy.spatial.distance import cdist

class Cubus
def __init__(self, number: int, Edge: float, middlePoint:
array, cubeData=np.array([]), neighbors=np.array([])):
self .number = number
self .Edge = Edge
self .middlePoint = middlePoint
self .cubeData=cubeData
self .neighbors=neighbors

def cubusData(self, data: np.array, vecSize: int):
for Element in data:
counter=0
for dim in range(0,vecSize):

if (self.middlePoint[dim]-self.Edge/2 < Element[dim

]) and (Element[dim] < self.middlePoint[dim]+self.Edge/2):
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counter += 1

if counter == vecSize:
self .cubeData=np.append(self.cubeData, Element)
verticalSize = np.round(len(self.cubeData)/vecSize ,0).

astype (int)
self.cubeData=np.reshape(self.cubeData,(verticalSize,
vecSize))
return self.cubeData

genData (number) :

n = np.round (number/3,0) .astype(int)

a = np.random.multivariate_normal ([5, -5], [[2, 1], [1, 1.5]11],
size=n)

b = np.random.multivariate_normal ([5, 5], [[2, 1], [1, 1.5]11,
size=n)

¢ = np.random.multivariate_normal ([-5, -5], [[2, 1], [1, 1.5]11,
size=n)

z = np.concatenate((a, b, c))

return z

getMetrics (data: np.array):

maxData = data.max(axis=0) # gr te Daten im Input
maxElement = np.ceil (maxData).astype(int) # runden der max
Werte des Imnputs

minData = data.min(axis=0) # kleinste Daten im Input
minElement = np.floor(minData).astype(int) # runden der minmal
Werte des Inputs

vecSize = np.size(data, axis=1) # Gr e des Vektors
numElements = np.size(data, axis=0) # Anzahl an Elementen
return (minElement, maxElement, vecSize, numElements)

createCornerPoints2(stepSize: float, data: np.array, vecSize:
int):
midPoints=1[]
for Elements in tqdm(data):
for dim in range (0,vecSize):

midPoints=np.append(midPoints,closestNumber (Elements [
dim] ,stepSize))
midPoints=np.reshape (midPoints ,(int(len(midPoints)/vecSize),
vecSize))
midPoints=np.unique (midPoints, axis=0)
return midPoints

closestNumber (n, m)
# Find the quotient
q = int(n / m)

# 1st possible closest number
nl = m * g

# 2nd possible closest number
if ((n * m) > 0)

n2 = (m * (q + 1))
else
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n2 = (m

# if true,
if (abs(n -
return

* (q - 1))

then nl is the required closest number

nl) < abs(n - n2)
nl

)

# else n2 is the required closest number

return n2

fastNorm(ve
return math

plotBar (dat

ax.set_xlab
ax.set_ylab

c):
.sqrt (np.dot (vec,

ve

c.T))

aSet: np.array, ylabel: str, dataSetOne =
([1), prefix = ’’):

fig, ax = plt.subplots()
plt.title("plot for {}".format(ylabel))

el (’voxel number’)
el (ylabel)

x = np.arange (len(dataSet))
dataSet, label=’{}’.format(ylabel))

plt.bar (x,
ax.legend ()

plt.savefig("histogram-for-{}-{}.png".format (ylabel,

dpi=300)

plotBar2 (x:
dataSetOne

ax.set_xlab
ax.set_ylab
plt.bar (x,

ax.legend ()

np.array, dataSet

np.array, ylabel: str,

= np.array([]), prefix = ’’):
fig, ax = plt.subplots ()
plt.title("plot for {}".format(ylabel))

el (’counts’)
el ("# Voxel")

dataSet, label=’{}’.format(ylabel))

plt.savefig("histogram-for-{}-{}.png".format (ylabel,

dpi=300)

clustering(
numElements

np.array

prefix),

prefix),

cubes: dict, vecSize: int, testData: np.array,

: int):

start = time.time ()

print ("looking for neighbors..

clusters =

[]

for i in tqdm(cubes):
neighbors = np.array([cubes[i].number])
for dim in range (0,vecSize):
cubes[i].middlePoint [dim]+=cubes[i].Edge
for j in cubes:

middlePoint
number) . ast

neighbors,

if i 1= j:

.n)

if all(cubes[i].middlePoint==cubes[j].

DE:
neighbors
ype (int)

np.append (neighbors,

cubes [j].

cubes [i].neighbors=np.append(cubes[i].

cubes [j].number)
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cubes[i] .middlePoint [dim] -=2*cubes[i].Edge
for j in cubes:
if i 1= j:
if all(cubes[i].middlePoint==cubes[j].
middlePoint) :
neighbors = np.append(neighbors, cubes[j].
number) .astype (int)
cubes [i].neighbors=np.append(cubes[i].
neighbors, cubes[j].number)
cubes[i].middlePoint [dim]+=cubes[i].Edge
#print (neighbors)
if (len(neighbors) > 1) or (len(cubes[i].cubeData)/len(
testData) > 0.001):
clusters.append(neighbors)

clusters = np.array(clusters)
tuples = list(itertools.permutations(range(len(clusters)), 2))
print ("Appending neighborlists...")
for i,j in tqdm(tuples):
if len(set(clusters[i]).intersection(clusters[jl)) != O:
clusters[i] = np.append(clusters[i], clusters[jl)
clusters[i] = np.unique(clusters[i])
clusters[i] = np.sort(clusters[i], kind=’mergesort’)
print ("Deleting doubles...")
indices = np.array ([])
for i,j in tqdm(tuples):
if (len(set(clusters[i]).intersection(clusters[jl)) != 0)

and (i not in indices):
if len(clusters[i]) >= len(clusters[jl):

indices = np.append(indices, j).astype(int)
if len(clusters[jl) > len(clusters[i]):
indices = np.append(indices, i).astype(int)
indices = np.unique(indices)
hope = np.delete(clusters, indices)

clustersData = {}
for i in range (0,len(hope)):
iClusterData = np.array ([])
for j in range (0,len(hopelil)):
iClusterData = np.append(iClusterData, cubes[hopel[i][j
]11.cubeData)

vertSize = np.round(len(iClusterData)/vecSize ,0).astype
(int)
iClusterData = iClusterData.reshape(vertSize,vecSize)
clustersData[i] = iClusterData
end = time.time ()

print ("there are {} clusters.".format (len(hope)))

for i in clustersData:

numberDataPoints = len(clustersDatal[il])

print ("there are {} data points in cluster {}.".format(
numberDataPoints, i))

print ("it consists of {} voxels.".format (len(hopelil)))

print ("that is {:.2f}/) of data.".format ((numberDataPoints/
numElements) *100))
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print ("finding the clusters took {0:.4} seconds.".format (end-
start))

Listing 8: Code including the functions used in the main Program
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