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Abstract

The development of two-dimensional materials in order to realize certain valuable
electronic properties is a rapidly ongoing process. In this context, Dirac materials
which exhibit low-energy Dirac-like excitations are of special interest, with graphene
being the most famous representative. In order to understand existing phenomena
and to extend application possibilities, new phases are constantly considered, leading
to a rather rich phase diagram containing distinct ordered phases of matter. Here
the competition between those phases with regard to the most preferred realization
becomes important.

In this thesis we address the semimetal-insulator phase transition where the insu-
lating phase can either be realized in terms of an antiferromagnetic phase or a stag-
gered charge density configuration. To this end we establish the Dyson-Schwinger
formalism on the hexagonal lattice without the common low-energy approximations,
taking the whole band structure of graphene into account. These collective phenom-
ena are then studied under the influence of an extended Hubbard interaction within
several truncation schemes. Furthermore, the impact of varying temperature and
chemical potential on the phase transition is investigated. Additionally we also
address the corresponding critical exponents characterizing the phase transition in
terms of specific universality classes.

Zusammenfassung

Die Entwicklung zweidimensionaler Materialien, um bestimmte niitzliche elektro-
nische Eigenschaften zu realisieren, ist ein schnell voranschreitender Prozess. In
diesem Zusammenhang sind Dirac Materialien, die Dirac-dhnliche Anregungen im
Niederenergie-Bereich aufweisen, von besonderem Interesse, mit Graphen als den
bekanntesten Vertreter. Um existierende Phdnomene zu verstehen und Anwen-
dungsmoglichkeiten zu erweitern, werden stetig neue Phasen in Betracht gezogen,
was zu einem eher vielfaltigen Phasendiagramm fihrt, das unterschiedlich geord-
neten Phasen von Materie beinhaltet. Hier wird der Wettbewerb zwischen diesen
Phasen im Hinblick auf eine bevorzugte Realisierung wichtig.

In dieser Arbeit beschiftigen wir uns mit dem Semimetall-Isolator-Ubergang,
wobei die Isolator-Phase entweder durch eine antiferromagnetische Phase oder eine
alternierende Konfiguration der Ladungsdichte realisiert werden kann. Zu diesem
Zweck etablieren wir den Dyson-Schwinger Formalismus auf dem hexagonalen Gitter
ohne die iiblichen Niederenergie Ndaherungen, wobei die gesamte Bandstruktur von
Graphen beriicksichtigt wird. Diese kollektiven Phidnomene werden dann unter dem
Einfluss von erweiterten Hubbard Wechselwirkungen anhand mehrerer Trunkierun-
gen studiert. Auflerdem werden die Auswirkung von variierender Temperatur und
chemischen Potential auf den Phaseniibergang untersucht. Des Weiteren beschéfti-
gen wir uns mit den zugehodrigen kritischen Exponenten, die den Phaseniibergang
beziiglich bestimmter Universalitdtsklassen charakterisieren.
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INTRODUCTION

Before graphene was experimentally synthesized for the first time in 2004 [1], it was
theoretically [2,3] as well as experimentally [4] argued that two-dimensional crystals
might be thermodynamically unstable [2,3] and a magnetic long-range order in two
dimensions was even excluded [5,/6]. This discovery of graphene, which gave rise to
the nobel prize in 2010 awarded to Novoselov and Geim [1], was the starting point of
a rapidly proceeding development and investigation of technologically promising two-
dimensional materials. Graphene, consisting of an one atom thick layer of carbon
atoms arranged in a hexagonal lattice, turned out to be a surprisingly strong material
of high cristal quality [7] and with unique electronic and mechanical properties
[8-10].

Even before the experimental realization of monolayer graphene, it was theo-
retically introduced as a semimetal with an extraordinary band structure [11] and
density of states [12]. Suspended graphene was found to exhibit a Fermi surface con-
sisting of two independent points (K+ and K ™) of the Brioullin zone (BZ) where the
conically merging valence and conduction bands touch each other. This enables the
theoretical description of quasi-particles of the hexagonal lattice within a relativis-
tic theory of Dirac fermions [13] in the low-energy regime. These quasi-relativistic
particles, which were validated experimentally [14], move with an adapted Fermi
velocity vy instead of the speed of light. On this basis, graphene can be mapped
into quantum electrodynamics in two spatial dimensions and one time dimension,
QED,_ [8,/13/15]. Therefore graphene serves as a real probe of QED,_ ; for example
concerning the investigation of the QED analogy to an axial anomaly [13] or effects
like the Klein paradox [8}9,16./17].

The introduction of several symmetries on the hexagonal lattice in its contin-
uum description also provides the analogy to phenomena like spontaneous symmetry
breaking in QED. Here the sublattice-valley symmetry between the two independent



1 INTRODUCTION

Dirac points K and K~ represents an analogy of chiral symmetry in QED that can
be explicitly or spontaneously broken in relation to the generation of a mass gap,
pushing graphene into an insulating phase.

Due to the small Fermi-velocity, vs/c ~ 1/300, suspended graphene exhibits a
large effective fine structure constant,

e ¢ 300
Qg = e R e R
9" dmehc vy 137

2.2, (1.1)

expressing the ratio between Coulomb interaction and kinetic energy. Experimen-
tally, graphene was found to be a good conductor |18}/19] which first was in contra-
diction to theoretical findings predicting critical couplings for an antiferromagnetic
Mott insulator below ag. This puzzle could be resolved by the introduction of
screening effects [20/25] but the critical coupling still seems to be in the vicinity
of oy which gives reason to the assumption that graphene could undergo a phase
transition into an insulating phase by a small increase of the electronic interaction.

Based on the analogy to QED,,, various kinds of insulating phases like the
quantum spin or anomalous Hall insulator [26-28|, a charge density wave (CDW)
or spin density wave (SDW) insulating phase [27,29-31], or even a quantum spin
liquid phase [23],32,[33] have been suggested. Also magnetic instabilities and super-
conducting phases are investigated theoretically as well as experimentally [34H36]
and indeed, a superconducting phase has recently been found in twisted bilayer
graphene [37].

For instance, graphene can be produced by vapour deposition, micromechanical
cleavage or exfoliation [16] and provides the basis of bilayer graphene as well as of
all carbon like allotropes like buckyballs, nanotubes and of course graphite as the
probably most prominent example (see Fig. [11,38]. Graphene is a promising
candidate for various technological applications and can be easily modified chemi-
cally as well as mechanically [39]. These modifications could solve the lack of a band
gap and give rise to the application of graphene in the field of transistor physics or
e.g. as replacement for silicon in semiconductor based devices [40].

Another upcoming idea is the realization of composed two-dimensional layers in
order to modify optical as well as electronic properties within a kind of construc-
tion kit [41,/42]. Beside graphene, also other adequate two-dimensional components
can be gained from three-dimensional materials with weak van der Waals forces
between the single layers. Here a plenty amount of two-dimensional materials is
available [43]/44]. These materials are of high industrial interest regarding the field
of optoelectronics or spintronics with a wide range of application possibilities such
as new kinds of light sources, displays or foldable touchscreens [42].

In the following, we stick to the investigation of graphene as important basic ma-
terial. The large coupling constant of suspended graphene as given in Eq. re-
quires a non-perturbative treatment of the theory. Therefore functional methods like
the functional renormalization group [45-H48] or the formalism of Dyson-Schwinger
Equations (DSE’s) [49-53] can be utilized in order to describe non-perturbative
phenomena. Also models on the basis of Monte Carlo simulations provide an ap-
propriate approach [24,2531}/40,54]. In this work the Dyson-Schwinger equations
are chosen to study an emerging Mott insulating phase in regard to a possible CDW
or SDW realization [27,29-31]. The Dyson-Schwinger formalism on the hexagonal

10



Figure 1.1: Shown is graphene as basis of carbon allotropes like fullerenes (0d), nan-
otubes (1d) or graphite (3d). Taken from Ref. .

lattice is applied without low-energy approximation taking the whole band structure
of graphene into account.

This thesis is organized as follows. In Chap. [2] the lattice representation of
graphene in position space as well as the corresponding Brioullin zone (BZ) in mo-
mentum space will be introduced. On this basis, the formalism of second quanti-
zation is introduced and the free Hamiltonian within a tight-binding approach will
be constructed. In Sec. [2.3] the sublattice-valley symmetry of the hexagonal lattice
is established in analogy to chiral symmetry in continuous QED,, ;. The mecha-
nism of chiral symmetry breaking also provides the principle of a spontaneous gap
generation turning graphene into an insulating phase.

In Chap. [J] we start with the introduction of the free fermion propagator and
formulate an instantaneous interaction matrix in sublattice space. In App. [C| we
will derive the associated Dyson-Schwinger equations in order to describe the effects
of the interaction on graphenes band structure non-perturbatively. Subsequently,
different possibilities concerning a Mott insulating phase, namely the charge density
wave (CDW) and the spin-density wave (SDW) configuration, will be discussed. The
extended Hubbard model will be introduced in Sec. as an appropriate framework
to especially study the competition between the realization of an SDW or CDW
state, respectively. At the end of this chapter we will focus on the numerical setup,
which enables us to effectively solve the obtained Dyson-Schwinger equations within
the Hubbard model for huge lattice sizes.

In Chap. [4 we concentrate on the solution of the Dyson-Schwinger equations
within different mean field approaches. In particular, the resulting order parameter
identifying the band gap between the valence and conductor band of graphene, is
studied for various interaction strengths of the Hubbard model (U and V') serving as

11



1 INTRODUCTION

control parameter of the phase transition. In this context the corresponding critical
exponents and the influence of finite lattices regarding this phase transition will be
discussed. Then the mean field theory is extended by the renormalization effects
on the band structure within a so-called Hartree-Fock approximation. At the end
of this chapter we will apply the formalism of 2PI effective action to the considered
theory in order to determine the transition line between the CDW state and the
SDW phase in the U-V coupling plane.

Chap. [f] is based on the derivation of Dyson-Schwinger equations from App. [E
including a dressed photon propagator that takes mutual screening effects of the m
band electrons into account. The vacuum polarization is initially assumed to be
static by means of a static Lindhard approximation and the corresponding phase
transition is investigated, still for zero temperature and zero chemical potential.

Since the static approximation does not provide reasonable results, the assump-
tion of a frequency independent interaction is rejected in Chap. [6] where the full
frequency dependence of the photon and fermion propagator as well as a non-trivial
vertex function will be taken into account. The vertex dressing is modeled in terms
of a Ball Chiu ansatz including non-trivial wavefunction renormalizations. As we
will see, these corrections to the wavefunction renormalization are only marginally
relevant concerning the location of the considered semimetal insulator transition.
The wavefunction renormalization is thus again fixed to its trivial value. Afterwards
we will show results for the semimetal insulator transition including the SDW and
the CDW state. Moreover, a finite-size scaling method will be applied in order to
extract the critical exponents. Finally the temperature dependence as well as the
behavior for varying chemical potential u is discussed for the SDW phase.

12



STRUCTURE AND PROPERTIES OF GRAPHENE

Graphene is a monolayer of carbon atoms arranged in a hexagonal lattice with
an interatomic distance of a ~ 1.42A. Every carbon atom counts four valence
electrons, three of them form covalent o-bonds in terms of an sp?-hybridization of
the atomic orbitals (2s,2p,,2p,) [8]. These are flexible bonds between the carbon
atoms forming the hexagonal lattice. The remaining p.-electrons are forming two
additional 7w-bands, 7 and 7*, and are assumed to be primarily responsible for the
electronic properties of graphene. These electrons are in rather good approximation
assumed to be strongly bound to their atomic kernel [8}9,/58] which motivates the
treatment within a tight-binding model being the basis of all considerations within
this work.

2.1 Lattice Representation of Graphene

The honeycomb lattice of graphene can be described by a two-component unit cell
with the corresponding basis vectors

a) = a4 <\/§> , and ah = a <\/§> , (2.1)

2\3 2\-3

as depicted in Fig. This certainly represents the standard choice of basis vectors.
However, in order to resolve the interatomic distance a between two carbon atoms
a smaller unit cell has to be introduced. For that reason, essentially the following
basis vectors were used within this work

a;) =a (?) s as = % <\_/:1):> . (22)

13



2 STRUCTURE AND PROPERTIES OF GRAPHENE

Figure 2.1: The nearest-neighbor vectors § and two different choices of basis vectors
for the representation of the honeycomb lattice are shown [59].

The nearest-neighbor vectors, each linking to an adjacent carbon atom, are accord-
ingly given by
01 =a, 02 = ay, 93 = —(a1 +as), (2.3)

as represented in Fig. For clarity, the characteristic quantities for both basis
representations are summarized in App. @
Consequently, an arbitrary discrete vector in position space on this finer triangular
lattice can be expressed as
r=ia;+jay. (2.4)

A distinct disadvantage in comparison to the description in terms of a composition of
two independent sublattices and the basis vectors from Eq. , is the necessity to
distinguish between three types of lattice points included by a lattice discretization
specified by the basis vectors from Eq. . The discrete lattice vector of Eq.
includes sites from sublattice A (blue sites), sites from sublattice B (red sites) as well
as empty sites (referred to as sublattice C' in the following). Since all carbon core
atoms are assumed to be fixed within the framework, C' sites are never occupied by
a carbon atom. Mathematically this can be expressed in terms of the corresponding

14



2.1 LATTICE REPRESENTATION OF GRAPHENE

combinations of coefficients ¢ and j as follows,

i+j mod3=0: sublattice A, (2.5)
i+j mod3=1: sublattice B, (2.6)
i+j mod3=2: unoccupied. (2.7)

The associated reciprocal basis vectors are illustrated in Fig. 2.2

Figure 2.2: The corresponding reciprocal bases for the lattice representations from
Fig. are represented [59]. In this work mainly the momentum space
vectors by and by are used in order to resolve nearest-neighbor distances
while maintaining the periodicity of all correlation functions in momen-
tum space. The BZ spanned by b} and b, belongs to the commonly used
two-component unit cell description.

Due to the finer triangular lattice in position space one has to deal with a three
times larger Brillouin zone (BZ) spanned by

by = :272 (?) , by — % (?) . (2.8)

In Fig. additionally the high symmetry points K and I' of the honeycomb
lattice were sketched. The so-called Dirac points denoted by K, or by KT and K~
respectively within the two-component lattice representation, are of special interest
regarding the investigation of the electronic properties as elaborated in the next
chapter. In the three times larger Brioullin zone one principally counts six K points,
two for each sublattice (A4, B, C) similar to the representation within the smaller BZ.
For convenience all Dirac points are denoted by K.

In order to define momentum modes on sublattices A and B we therefore use
Fourier transforms on the fine triangular lattice with constraints

1 omi (i - 1, i+ mod3=s
e T R A AU J ’ 2.9
3 Py c 0, otherwise . (2:9)

15



2 STRUCTURE AND PROPERTIES OF GRAPHENE

Moreover we apply Born-von Karman boundary conditions on the fine lattice (see
e.g. Ref. [60]) for a properly defined discrete Fourier transform on likewise discrete

momentum vectors

m n
k=—b+—0b 2.10
N 1+N 2, ( )

where the considered graphene sheet consists of N x N unit cells in real space. As
already assumed, the number of lattice points in both momentum directions are
chosen to be equal throughout the whole work. Furthermore, N is always taken to
be even and a multiple of 3 in order to precisely match the high-symmetry points
(denoted by K and I' in Fig. within the presented lattice discretization.

The Born-von Karman type of boundary conditions require the relevant functions
(denoted by 1) to be invariant under a shift of NV times the basis vectors,

¢(r) =¢(r+ni Nay +nz2 Naz)  ni,n €Z, (2.11)
in momentum space one therefore finds
(k) =¢(k+nibi+n2by)  mi,ni €Z. (2.12)

This corresponds to a spatial deformation of the rhombic BZ into a twisted torus
by closing opposite edges in agreement with Eq. .

In order to apply the formalism of second quantization, arguably providing the
most intuitive access to solid state problems, we define creation and annihilation
operators for electrons on both sublattices A and B of the fine triangular lattice as
follows,

1 e ¢r, 7 on sublattice A
= — ! = ’ ’ 2.13
= N2 Xk: Ok { 0, otherwise, (2.13)

1 : c r on sublattice B
by = — tkrp. =3 ’ 2.14
" N2 Xk: ¢ k { 0, otherwise, (2.14)

with the creation operators being the hermitian conjugated. For now the spin index
o is suppressed and will be introduced later as a trivial extension of the index space.
Sometimes also the shorthand notation

ar, 7 on sublattice A,
¢r =< by, 7 onsublattice B, (2.15)
0, otherwise.

is used, which can be neatly defined by multiplication of the appropriate constraint
from Eq. (2.9). A summary of the conventions regarding the Fourier transform can
be found in App. [B] note that all annihilation and creation operators of course are
time-dependent operators due to the Heisenberg picture [61].

Momentum modes on sublattices A and B are then created and annihilated by
applying az, ag and bL, by, with

1 2 i . .
o= L3S e ) 210
T =0
1 2 2mi 2Tri( NIy, NI )
b = g ZZe Tle™ N (m+53" )i+ (n+57)J cr
T =0

16



2.1 LATTICE REPRESENTATION OF GRAPHENE

respectively. The nature of a function to exist either on sublattice A or B itself
provides a shift symmetry in momentum-space. In general one finds the relation

_ 2m7i

55 f (k) newz, (2.17)

fs(k+n-A)=e

with A = (b1 + b2)/3 and s defining the sublattice via ¢ + j mod 3 = s. This
symmetry is illustrated in Fig. where the red-, blue- and green-colored areas are
completely independent from each other but all parts with the same color are related

to each other by Eq. (2.17).

a -

Figure 2.3: Shown is the decomposition of the Brioullin zone into several symmetry
contributions. The different colored areas are independent from each
other but the same-colored parts can be converted into each other by
certain symmetry transformations (see Eq. ) if the function only
exist on one lattice type in position space.

For instance, assuming N to be a multiple of three, the creation operators a; and
b;, are periodic under shifts along the diagonal in momentum space by A,

Ak = Q4+ A = Ak42A (2.18)

and periodic up to a third root of unity,

27i 4mi

bk =e€ 3 bk+A =e€ 3 bk+2A . (2.19)

They are related to the Fourier modes on the fine lattice by

2

27i
d e lepua, (2.20)
1=0

Wl

1 2
ak =3 ch-i-lA ; and by =
1=0

which can be obtained by the more general relation

2

Y etk % S e (k-1 A) (2.21)

(¢+j) mod 3=s =0

17



2 STRUCTURE AND PROPERTIES OF GRAPHENE

for the Fourier transform on a single sublattice. The equal-time canonical anti-
commutator relations then become

N2 2
[ak,aa CLL/,U’]"‘ = (5070’? Z 5k+lA,k:’ , (222)
=0

2mi

N2 2
[bk,g, b;rc/,a/]Jr = 50,0’? Z e s l5k:+lA,k’ )
=0

[ak,tﬂ bL/J/]-F = [bk,07 aJ}L/p/]-‘y- = [ak,0'7 bk/,o’]—l- = [GLUa bJ}L’jg/]-&- = Oa

(ko Wk 07+ = b b o) = [l o aly i = ], 5 B )4 = 0.

2.2 The Hamiltonian Formulation

2.2.1 Tight-Binding Model

As mentioned above, graphene is a two-dimensional layer of carbon atoms arranged
on a honeycomb lattice and is firmly bound to one and another by strong covalent
o-bonds in terms of an sp?-hybridization of the atomic orbitals. The remaining
valence electrons of the p,-orbitals are predominantly responsible for the electronic
properties of graphene since they are not involved in the structural composition of
the honeycomb lattice and are therefore available for the electronic transport [8].
These p,-orbitals are arranged perpendicularly to the graphene plane forming a -
orbital with weak overlap and could therefore be treated in a tight-binding approach
(see Ref. [58]). In the simplest form with only nearest-neighbor hopping, the kinetic
part of the Hamiltonian is given by

Hiy=—r Y (c] ,Cjo+ch Cia), (2.23)
<i7j>’o.

where k is referred to as the hopping parameter which is given by the orbital overlap
of two adjacent wavefunctions under the influence of interaction [11}{16./58]. In other
words, the hopping parameter determines the probability for an electron to hop from
one carbon atom to an adjacent one. It is experimentally fixed to approximately
k ~ 2.8 ¢V [9] and provides a natural unit of energy here. Strictly speaking, the
annihilation and creation operators from Eq. and Eq. exactly describe
excitations of these p,-electrons forming the m-electron systems.

The angle brackets denote the nearest-neighbor sum (7, j) and an additional index
o has been introduced to take account for a spin index which plays the role of a flavor
number. Generally o runs from 0 to Ny — 1, but Ny is fixed to Ny = 2 throughout
this work due to the two electronic spin states ¢ =1,/. Dividing the sum over the
sites ¢ of the bipartite honeycomb lattice into two triangular sublattices 5 with
s = 0,1 for sublattice A and B explicitly, we can write the symmetry breaking
staggered on-site potential as a mass term as follows

Hm = Y (—1)°me CLJCI-SJ . (2.24)

15,8,0

We additionally introduce a chemical potential p.. for all flavors to assure a finite-
charge carrier density. Accordingly, the free Hamiltonian can be written as

18



2.2 THE HAMILTONIAN FORMULATION

0= —kK Z clac]U—I—cJach + Z 2 oCiso Z,ug Ci oCio - (2.25)

(1,5),0 is,8,0

Next we define two-component fermion fields for properly normalized momentum
states on the two sublattices,

\/g (ak,a

wkp = A7
bk,a

N N

> , Yo = V" = \/g(ak o —bho) (2.26)
where we used 7 = 03 in the two-dimensional sublattice space (see App. so that
the staggered on-site potential can be written as a Dirac-mass term (cf. Eq.
below). Here the explicit factor of 1/3 takes formally care of the overcounting of
modes on the redundant small triangular lattice with nearest-neighbor base. With
the already established conventions in momentum space we obtain the free Hamil-
tonian, accordingly,

o=~ NQZ akawkbkg—i_bkasokako N2 ng akoakﬂ_b;rc,abk,o)

k,o k,o
Z . ak ok + bk o0k, ) (2.27)
N Zwkofy ) 1/11407 (228)
with
3 ik-o 27i 27i 2mi
pE = Z elk' L eTm + eTn + e_T(mJ’_n) , (229)
i=1

being the structure function of the tight-binding model. Note that the structure
function transforms like b! under shifts of A (see Eq. (2.19)), i.e.,

2mi 4mi

Pk =€ 3 PpiA=¢€ 3 PrioA, (2.30)

so that the tight-binding Hamiltonian is again invariant under such transformations.
The associated Hamilton matrix in sublattice space from Eq. (2.28) is given by

[e— / —
Hik)= ("7 "He TEVE ) (2.31)
—RP Mo — Hg

The corresponding Eigenvalues provide the free single-particle energies E(ﬁ )U(k:) for
the m-band excitations with

EQ) (k) = —p, ter,  and  exo = m2 +2|gk]?2. (2.32)

This dispersion relation for the non-interacting electron system is represented in
Fig. for vanishing chemical potential (u) = 0), e.g. for graphene at half filling.
The energy relation consists of two energy bands, interpreted as electron and hole

19



2 STRUCTURE AND PROPERTIES OF GRAPHENE

E [K]

Aok orEr Wik

Figure 2.4: The single-particle energies of the non-interacting tightly bound electron
system is plotted over the entire Brioullin zone (see Fig. . Repre-
sented are both bands 7 and 7* related to the electron and hole states of
the hexagonal graphene lattice at half filling. Both w-bands touch each
other at the Dirac points K indicating a semimetal with zero activation
energy.

states. The upper and lower band touch each other in six points at the Fermi level,
separating the valence (m) from the conduction band (7*). These points are the
Dirac points K (see also Fig. which are crucial for the definition of the order
parameter in the next chapter. As indicated in Eq. , the band gap for now is
exactly given m,, e.g. the explicitly symmetry breaking mass term.

As it is clear from the energy relation depicted in Fig. graphene is a semimetal
with zero activation energy, which has already been investigated in 1947 by P. R.
Wallace and indeed, experimentally it was found that graphene is a conductor
with unique properties.

In Fig. m (right) the energy-momentum relation from Fig. is shown along the
high symmetry points of the BZ which are marked in Fig. (left). One common
approach to handle complicated many-particle interactions on the honeycomb lattice
is to expand the structure function near the Dirac points as follows,

K leql ~ v q+ Ol(q/K)?, (2.33)

with the Fermi velocity vy = 3xa/2 and ¢ being the absolute value of the momentum
vector relatively to the Dirac point . This ansatz provides the basis for the so-
called Dirac-cone approximation, which works pretty well regarding the low-energy
momentum modes around the Dirac points.

In Fig. the arrangement of the high symmetry points are illustrated on the left
hand side. The I' point marks the center of the honeycomb, while M identifies the

20



2.3 SYMMETRY BREAKING PATTERNS ON THE HONEYCOMB LATTICE

m=0 K —+—
3.5 m=0.5 K —+— .

E [K]

Figure 2.5: On the left hand side the high symmetry points of the BZ are illustrated.
On the right hand side the quasi-particle energy relation along the high

symmetry points from Eq. (2.32)) is plotted.

van Hove singularity at the saddle points in the band structure, and K labels the
Dirac points. On the right hand side the energy dispersion function from Fig. for
the upper m-band is plotted against high symmetry points of the BZ for vanishing
chemical potential and varying constant explicit mass terms, as indicated by m, in
Eq. . For m = 0 the energy dispersion is just equal to the absolute value of
the structure factor |pg| specified by Eq. . For non-zero mass terms a band
gap emerges and the energy dispersion is slightly modified. In Ref. [36] it was even
shown that the singularity do not change its location in momentum space in the
present of interactions. The opening of a band gap indicates an insulator transition
which is caused by an explicit mass term in the example of Fig. Such a mass
term can be directly related to the sublattice symmetry, i.e. the symmetry between
sublattice A and B, as can be read off from Eq. and will be studied in the
following.

2.3 Symmetry Breaking Patterns on the Honeycomb Lattice

In this section the analogy between chiral symmetry breaking in QED,,; [62-66]
and the corresponding sublattice-valley symmetry on the hexagonal lattice will be
briefly discussed (see Ref. [8,/46,/67] for more details). For simplicity we consider
the smaller Brioullin zone containing two independent Dirac points K+ and K. In
the larger Brioullin zone we count 6 independent Dirac points, two per sublattice
similar to the formulation on the smaller Brioullin zone. The formulation on the
larger Brioullin zone additionally requires the inclusion of Eq. in order to
separate the momentum modes corresponding to one sublattice.
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2 STRUCTURE AND PROPERTIES OF GRAPHENE

The Lagrangian in Minkowski spacetime is given by

Ny
L= Z VoK) ['YOW + Rk + RE Y] Voo(k), (2.34)
o=1

derived in App.[E.I] The notation in frequency-momentum space is given in App.
Here, o labels the spin degree of freedom and the wavefunction ¥, (k) is given in
two-dimensional sublattice space with its conjugate ¥ = U'~,. The Dirac matrices
7o = 03 and ¥* = o30;, with i = 1,2, were introduced in sublattice space in App.
Furthermore we use the shorthand notation y* = (y'£i~?)/2 in order to resemble a
continuum Dirac theory as shown in the following. In the low-energy approximation
the Lagrangian can be expanded around the Dirac points K™ and K~ where the
band structure behave linearly, k ¢(K+ + k) = £vs(ky Fiky),

Ny

L~ Z [P0 (KT + K) [Pw 4+ v (7 s + 72Ey)] U o (KT + k) (2.35)
o=1
+ 0,0 (K™ 4+ k) [Yw +vp(— ke + 72k, Vo o (K™ + K)]. (2.36)

By the introduction of a wavefunction in sublattice-valley space,

ao(w, K4 + k)
Yo k. (k) by (w, K1 + k)
Toolk) = e = , 2.37
o (k) (Tw,K,g(k)> bowr K+ R) (237
ay(w, K_ + k)
the Lagrangian can be rewritten as
(2.38)
Ny
L~ Z Yoo (k) [1w + 057 ke + 0572ky)] Yuo (K) (2.39)
o=1

matching the Lagrangian of a Dirac theory where the Fermi velocity vr takes the role
of the velocity of light c. Note the interchange of annihilation operators concerning
the A and B sublattice in Eq. in order to deal with ordinary gamma matrices
in four-dimensional space (Weyl representation),

0 1 . 0 —ot
=0 ~t
v (1 0) an v (w 0 ) (2.40)

with ¢’ indicating the standard Pauli matrices as listed in App. m In complete
analogy to chirality in QEDoy; the theory described by equation (2.39)) would be
invariant under the following transformations,

Yo o(k) = OB, (K), Yo o(k) = €957, 4 (K), (2.41)
where the chiral matrix 7° is constructed as usual, 7° = i 7955233 [8]. Consequently,
there will be a U(2) symmetry generated by 1,7s3,75 and [¥3,75] for each fermion

flavor. We therefore remain with a U(2/Ny) symmetry. A mass term of the form

Mo Yoo (K)o (k) (2.42)
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2.3 SYMMETRY BREAKING PATTERNS ON THE HONEYCOMB LATTICE

would break this symmetry down to
U(2Ny) = SU(Ny) x SUNy) x U(1) x U(1). (2.43)

This subvalley-lattice symmetry, corresponding to an inversion symmetry on the
hexagonal lattice, within a low-energy description mimics a chiral symmetry in its
continuum representation. Indeed, the hexagonal lattice only exhibits a discrete ro-
tational invariance what is neglected in the Dirac cone approximation. The existence
of a mass term as given in Eq. (2.42)) exactly corresponds to the explicit mass of
the previous discussion (see Eq. ) The considered symmetry cannot only be
broken by an explicit mass term but also by spontaneous symmetry breaking which
is the object of our further considerations within the Dyson-Schwinger framework.
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THE FERMIONIC DYSON-SCHWINGER
EQUATIONS

In this chapter the fermion propagator and its Dyson-Schwinger equation will be
introduced, considering a bare Coulomb interaction between the fermions in the solid
state system. Moreover, the possibility of different electron configurations, namely
the spin density wave (SDW) and the charge density wave (CDW) configuration will
be discussed. In this context, the extended Hubbard model will be motivated as an
appropriate approach to study the competition concerning these phases. Finally, the
basis of the numerical solution procedure is presented in order to solve the obtained
DSE’s.

3.1 The Free Fermion Propagator

The fermionic Feynman propagator is defined as the usual time-ordered product of
the corresponding Heisenberg fields,

_ dw .
Gro(t:k) = (T (Yho (k0 (0)) = [ 5—e7 Gro(w,k), (3.1)
with spin index ¢ and thus one independent propagator per spin degree of freedom.
More precisely, the fermion propagator is given by the creation and annihilation

operators in sublattice space (cf. Eq. (2.26)),

3

Gro(t,k) = —(T <

NZ ko (t)ay, o ( _ak’a(t)bL’U(O)% (3.2)

0)
bo()ak 5 (0)  —br.o(£)bL ,(0)
_(GiALE) GEE(t k)
GEat k) GEB(tk)) "’
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3 THE FERMIONIC DYSON-SCHWINGER EQUATIONS

where the free fermion propagator, associated to the Hamiltonian from Eq. (2.28)),
is entailed by the Heisenberg equations (see App. and mathematically directly
given in terms of the corresponding resolvent,

. -1
Gho(w, k) =i (0 (w— HJ(K) ™, (3.4)
with the free momentum-space Hamiltonian from Eq. (2.31)).
By the introduction of Dirac matrices 79 = o3 and v = o030y, with i = 1,2,
fulfilling the Clifford algebra of the pseudospin-1/2 degree of freedom, {v,,7,} =
29, the free fermion propagator can be rewritten as

i(Y(w+ pl) + Koyt + KPRy 4 me)

GY k) =
o (. k) (w+pe)* —ef , + e

)

using the abbreviation y* = (y!+i~?)/2. With the infinitesimal shift into the com-
plex plane, Feynman boundary conditions are implemented in Minkowski spacetime,
which is indicated by the additional index F'. The conventions concerning the intro-
duced Dirac matrices are summarized in App.

3.2 Instantaneously Interacting Fermions

In the following, we introduce an interaction between the fermionic quasi-particles
in terms of a Coulomb interaction. For the sake of generality we want to retain the
long-range terms although we will focus on the extended Hubbard-model in the next
section. The generalized Coulomb interaction is of the form

1
He =3 > aVias, (3.5)
i?j
where ¢; denotes the charge operator at lattice site 7,
qi = Z Nio —Q with Nig = c;-rﬂ Cio (3.6)
(o2

and o labels the sum over all fermion flavors. For the considered case of two fermion
flavors, the constant parameter Q is set to Q = 1 in order to account for the
positive charged cores (1 per carbon site), providing a neutral graphene sheet. The
Hamiltonian can be rewritten as

1 1 1
He = —5 Z Vii Njo — Z Vij Njo + 9 Z Vij Ni,01,07 +§ Z Vij ’ (3'7)
1,0 ,J

T 5 ,
Z#]?"' Z7J7U7o-

Hip

here the constant term can be neglected in the following since it merely represents
a shift in the energy distribution and does not contribute to the Dyson-Schwinger
equations at all. Additionally the contributions proportional to n;, are absorbed
within the chemical potential p, which is therefore relabeled by fi,.

In App. it is explicitly shown that the demand for fermion number conserva-
tion entails 4 = 0. Generally, a contribution from g # 0 causes an effective electric
field that tends to push fermions out of the solid-state body. Experimentally, this
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3.2 INSTANTANEOUSLY INTERACTING FERMIONS

can be realized for instance by chemical doping, the application of a back voltage
or the application on an additional substrate [9]. As starting point, we first of all
investigate the case of suspended graphene for zero temperature.

For the interacting case we then formally set ' — pu = 0 to keep the system at
half filling. The normal ordered two-particle operator reads

1
Hyp=5 > V5" oot cvjot) esiolt (3.8)

s?sl7i7j7a-70-

1 AA gt ot AB T i

:i ) Z (V;J zaag o"ajuff/aivo' V;J ngJ o'95,0'i o

%,3,0,07
VEA al ajq0bi 0+ VEP D] bL bi b 3.9

+ 1,0 ]O'Ia.jvo'l Z,O’+ 1,0 ]0’ J?OJ 270 ’ ( ° )

where s and s’ include sublattice degrees of freedom and o and o’ refer to spin
indices. Note the independence of the interaction from the spin degree of freedom in
contrast to the dependence from the sublattice degree of freedom, which is actually
called the pseudospin degree of freedom since it is treated like a flavor index in
common theories.

The time dependence of the operators is suppressed in the following due to a
shorter notation, but it should be mentioned that Eq. represents an instan-
taneous interaction. Since the Fermi velocity is about three hundred times smaller
than the speed of light, vs/c =~ 1/300 [16], the approach of an instantaneous bare
interaction neglecting retardation effects throughout this work is expected to be a
very good approximation.

With the Fourier transform of the translationally invariant interaction potential
on the fine triangular lattice (see also App. ,

1 o .
Vii = N2 DDV Vy=3" eV, (3.10)
q i
we can also extract the single sublattice components via

VAt =VEE = ZVHA, (3.11)

and

Vq VBA>k Ze Sy, Vat+ia (3.12)

as stated out in the last chapter (Eq. (2.21] m . The Coulomb interaction can therefore
be written as

1 AA T T AB T 1
Htp - 2N6 Z (V Up+q,0Vk—q,0' Wk.0' Ap,o + V Up+tq, Ubk: q, a’bkﬁ’apyo
k.p,q,0,0’
VP g0l orOeobpe + VEE UYL Ok bkyglbp,g) . (3.13)
1 - _ ,
=anE 2 Va 1Uprao? T Upo Ykqon T U i, (3.14)
k.p,q,0,0’
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3 THE FERMIONIC DYSON-SCHWINGER EQUATIONS

in momentum space, where we have introduced the following sublattice projectors,

= (; 8) , and e = (8 ?) : (3.15)

Here it should be mentioned that the Hamiltonian is again invariant under momen-
tum shifts by A since the third roots of unity from the shift within the interaction
exactly cancel with those from the creation (annihilation) operators. So obviously
the momentum-space Hamiltonian is periodic on the three-times smaller commonly
used BZ (Fig. , but the structure factor and the interaction between different
sublattices are not.

Next, the corresponding fermionic equations of motion for the fermion propaga-
tor, namely the Dyson-Schwinger Equations (DSE’s), are derived by means of the
Heisenberg Equation, see App. [C] This is probably a rather unusual approach to
obtain the DSE’s but very useful and reasonable, particularly with regard to the
formalism of second quantization. In this context several approximations were used
in order to end up with a simplified and truncated form of the Dyson-Schwinger
equations, the so-called Hartree-Fock equations involving only the renormalization
of the fermion propagator. For now we stick to an instantaneous bare interaction
neglecting renormalization effects to the photon propagator. More generally even
a static Coulomb interaction has the nice feature that it provides Dyson-Schwinger
equations that close upon theirselves. Due to the mentioned difference in the order
of magnitude between Fermi velocity and speed of light only the zeroth component
of the photon field is taken into account. Therefore we only have to deal with the
zeroth vertex component, here Ward-Takahashi identities require the vertex to be
bare for a bare wavefunction renormalization, which is definitely true for a static
interaction at zero temperature and zero chemical potential. The resulting DSE’s
are therefore given in terms of the Hartree-Fock equations and read (see App. |C| for
more details)

Fock—term

1 dq® , ,
Gro(k' k) = Gy (K. k) + % > DO (ke — q) T Gro(q°, g) 7T
q,uu’
_ L odd S (=l g (D (g = 0) T Gror(¢®, @) T*) TV
N2 ) 27 i ! ' ’ ’

Hartree—term

(3.16)

where the bare photon propagator denoted by DY(q) can be simply connected to
the instantaneous interaction matrix V(q) via

D% (q) =iV"(q). (3.17)

Note that we have V““/(q =0) = V“/“(q = () for zero momentum transfer.
Altogether we have to take two contributions into account, see Fig. the Fock

contribution which is very similar to the fermion self-energy in QED, except the

sublattice dependence, and the Hartree contribution. The Hartree term generally
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3.2 INSTANTANEOUSLY INTERACTING FERMIONS

1 -1 DY,
U —GP—— o — u u + w 4& o +
Gy

Figure 3.1: Shown is a diagrammatic sketch of the DSE from Eq. 1} Within the
present truncation scheme only fermion propagators are dressed, which
is indicated by the black dot. The last term represents the Hartree-
contribution, whereas the term next to it illustrates the Fock-term.

accounts for the interaction of an electron with all charges considered as one back-
ground field [68]. Without the distinction between interactions on like sites and
different sites, the Hartree-term would naturally cancel as for usual QED studies,
where the negative background from all electrons exactly cancel with the positive
background from the carbon cores. This will especially depend on the considered
charge distribution as we will see in the next chapter.

With an ansatz for the dressed inverse propagator of the same structure as the
free propagator, fulfilling the required symmetries, with renormalization functions
Ma,ky d)a,k: and Za,ka

KO+ t16) Zo g — Mo K Go

Cro(h k) =i B
Fo(k”, k) ( —K Lk —(K* + pio) Zog — Mg,k> (3.18)

the DSE’s can be simplified. The corresponding Feynman propagator is given by

i 0 Z M,
G (K, k) = 1 (Uf 1) Zok + Mo K bok

(KO + g )? Z2, - Q%) Fie
(3.19)

where Q,, = \/ M2, + K?|¢ok|? is the dressed quasi-particle energy function. The

matrix equation from Eq. (3.16) can be decoupled in terms of the single renormal-
ization functions via

1
Mo = otr Gy (K0, K], (3.20)
— 1 0 ~—1 /7.0

Zg’k B —92 (kO + M) tr [’Y GF,U(k 7k)] ) (321)
1 _

bok = trly” Grg (K, k)], (3.22)
* 1 —

s = ctr [V G (K, k)] (3.23)

This yields the following system of coupled equations in terms of the introduced
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3 THE FERMIONIC DYSON-SCHWINGER EQUATIONS

renormalization functions,

1 dq AA MO’ k+
M k=m / DO, q .
7 R (; T )22 g — gy TE

M.
+ (D4 - DAt —* ic | 524
( g=0 q=0 ); (qo —+ M)QZg/J] — Qg./’p +1€ ( )
1 dqo (qo + M)Za k+
Zoge - (K + p) =(k° + —7/7 Dyt P
ok ( ) =( K N2 2w zq: 7 (¢"+ M)ZZg k+q Qg,lﬁq Tie
(¢° + ) Zy P
(DO AB DO Ad) S - 1 — ], (3.25)
2 T 1027, — O, e

1 [dd° 0,BA Do k+q

¢ ’k :spk + 7/7 D ) . 9 (3'26)
4 N2 J orn Zq: 7 (¢"+ N)2ZE k+q Q?T,k-i-q T 1€

1 dq 0.AB ok+q
¢)* SD + D ) 2 - . 3.27
o,k LT N2 ) on Z 7 (¢"+ /’L)ng,k-i-q - chr,kJrq T 1€ | )

All renormalization functions remain frequency independent for frequency inde-
pendent interactions, e.g. if the photon propagator is meant to be static. Con-
sequently, within the approximation of an instantaneous Coulomb potential, the
frequency integrals can be solved analytically, also for finite temperature and finite
chemical potential. The solution of the required frequency integrals is extensively
described in App.

As can now be clearly seen from the mass renormalization function, the emergence
of an effective band gap (M,(K) # 0), indicating an insulating phase, can either
be induced by an explicitly symmetry breaking mass term (m, # 0) or also by
dynamical mass generation in the limit (m, — 0), equivalently to the chiral limit in
QED.

Another interesting point that can be read off from Eq. —Eq. is that the
interaction between like sites do not contribute to the Fermi velocity renormalization
within this truncation.

3.3 Competing Order - CDW vs. SDW Excitations

Throughout this work we follow the most common assumption of two fermion fla-
vors Ny = 2 with ¢ =1, ], due to spin up and spin down fermions. Of particular
interest concerning such a configuration is the preferred constellation of electrons
with increasing interaction. In this context we investigate the two possibilities of
sublattice breaking, either by equally distributed charges (mqy = m,) forming a spin
density wave state (SDW) or by equally distributed spins (my = —my), where a
charge density wave is formed (CDW). These two possibilities can be understood
as two different realizations of breaking the same symmetry, namely the sublattice
symmetry [8]

U(4) = SU(2) x SU(2) xU(1) x U(1), (3.28)
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3.3 COMPETING ORDER - CDW vs. SDW EXCITATIONS

as introduced in Sec.

The semi-metal insulator transition can therefore be induced by an alternating
charge density (CDW) as well as by an alternating spin density (SDW), correspond-
ing to the same symmetry breaking pattern with different vacuum alignments. These
two electronic configurations can be thought of as illustrated in Fig. for a strictly
localized realization. For a charge-staggered and spin-staggered ground state respec-

N

(g

Figure 3.2: On the left hand site a strictly localized SDW distribution is represented.
On the right hand side the corresponding counterpart of a CDW state
is shown.

tively, we generally define

1

Medw = 5 (mT + mi) , (3.29)
1

Msdw = (my —my).

We adopt this ansatz to the dressed mass functions and assume all other renormal-
ization functions to be equal for different spin states. The resulting mass renormal-
ization function apparently distinguishes between SDW and CDW excitations,

1 dqo AA Miaw k+
Mgy ke =Msdw + ~5 | =—— > DY ann — 3.30
° v N2 27 ; 1 (qO + N)QZI%-&-q - dew,k-l-q t1e ( )
1 [dg" 0.AA4 M. aw k+
Md,k:mder/( D, s -
amreTEN N2 on zq: T @+ )22~ Qg TiE
M.q
+2(D%AB _ p0AA cdw,p — . 3.31
( 7=0 a=0 ) ; (¢° + u)2Z12, — dew’p +ie ( )

while the Fermi velocity renormalization and the wave-function renormalization are
expected to be equal for both spin states,

Zy="1Z1k =2k, and ¢k =1k = Ok, (3.32)

determined by the integral equations from Eq. and Eq. . Now it becomes
clear why we emphasize the decisive difference between spin and pseudospin degree
of freedom, the Hartree-term exactly makes the difference between CDW and SDW
excitations.
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3 THE FERMIONIC DYSON-SCHWINGER EQUATIONS

Of course one also has to take a stable mixed phase into consideration, this is
why we did not only examine to solve Eq. (3.30)-Eq. for the SDW and CDW
case separately, but we also solve the whole coupled system by doubling the number
of renormalization functions without fixing the system either to an SDW or CDW
state (see Sec. for details).

3.4 Extended Hubbard Model

In order to particularly investigate the competition between the CDW and SDW
phase, the bare electron-electron interaction has been reduced to its on-site potential
U (Vii = U = const.) and its nearest-neighbor interaction V' (Vj;45, = V = const.)
within the so called extended Hubbard model. The considered interaction (Eq. (3.10))
hence simplifies to

3
Vio=U-6@)+V > 86— (i+6)). (3.33)
=1

In momentum space the following sublattice contributions are obtained,

VAY=U, and VP =V, (3.34)
with ¢4 being the bare structure function from Eq. and VqBA = (VqAB )"

Evidently, a fermionic many particle system which is dominated by the on-site
repulsion is preferably arranged in an SDW formation, whereas the arrangement
within a CDW state would be favored if the nearest-neighbor repulsion clearly dom-
inates. Therefore U and V provide excellent control parameters to investigate these
competing semi-metal insulator transitions with Mg, x and M4, ik as order pa-
rameters.

The associated ansatz for the bare bosonic propagator can be summarized in

sublattice space as
U V-p
DY =i 7). 3.35

g~ <V " Pg U ) ( )

Throughout this work we want to consider a repulsive interaction with U > 0 and
V' > 0. Note that the prefactor of the Hartree term, which only appears for the
CDW case, is just given by

0,AB 0,AA
DYAP — DYt =3V —U, (3.36)

within the extended Hubbard model. For this reason, exactly the same DSE’s are
obtained for U = 3V, for both, the SDW and the CDW case, where the factor of
three represents the coordination number of the two-dimensional hexagonal lattice.
In graphene the effective on-site interaction is about Uy = 9.3eV ~ 3.32x [69], a
varying on-site interaction can be simply related to a general Coulomb coupling
strength «, identifying the interaction strength in the long-range consideration

U="210,. (3.37)
Qg
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The nearest-neighbor coupling of graphene was also determined in Ref. [69] to ap-
proximately Vy = 5.5eV & 1.96 s from first principles within a constrained Random
Phase Approximation (cRPA).

Indeed, in HMC studies it turns out that the long-range tail of the Coulomb
interaction is not decisively important for the location of the phase transition as
pointed out in Ref. [25] in comparison to the outcome of Ref. [24]. A different
question is the corresponding kind of phase transition and the related universality
class, which depends on the range of the interaction and is still a rather open question
[40].

3.5 Numerical Techniques

In principal, the DSE’s form an infinite tower of coupled differential equations,
namely the equations of motion for Green functions of the considered theory [70].
Since the DSE’s resum loop contributions up to infinite order, the Dyson-Schwinger
formalism is one of a few suitable tools, among e.g. FRG or Monte-Carlo methods,
to overcome non-perturbative phenomena.

With the on-site coupling U and the hopping parameter k£ we face a theory with
similar orders in the kinetic as well as in the interaction energy, which both can
not be handled perturbatively. Therefore the Dyson-Schwinger formalism seems to
provide an adequate framework to investigate the phenomena of this theory. In this
context the infinite resummation, also contained in Eq. —Eq. , is hidden

in a geometric series,

Gro(K' k) = G, (K, K) i (14 (—2(k% k) G, (K, k))™) (3.38)
n=0
=GR, (K% k) (1 + S(k% k) G, (K, k)~ (3.39)

Nevertheless, in order to obtain a numerical accessible set of equations, several
truncation schemes are needed. Within the truncation schemes of this work, the
infinite set of DSE’s closes upon itself for all considered approximations. With
Eq. —Eq. the fermion DSE results in a closed system of non-linear integral
equations for 6 unknown static functions on the Brioullin zone (M, , Zs k, P k)-

As explained above, the number of equations can be halved by fixing the system
to one phase (CDW or SDW) beforehand, whereas the system can make its choice by
doubling the degrees of freedom at the expense of a much higher numerical effort.
We have tested both methods for various truncation schemes but never found a
stable phase of coexistence and therefore no deviation from the solutions that were
extracted from the first method was found (see also Sec. [3.5)).

Unfortunately, the determination of initial values for all renormalization functions
and especially for those of M;, and M| causes a preference for either the CDW
or SDW state. Maybe this problem can be solved by the introduction of randomly
distributed initial values on the momentum lattice, but this has not been pursued
within this work. In the following we therefore focus on the solution of the restricted
system as discussed in Sec.

Generally, also the renormalization functions M, and Z,j are complex valued
functions, but in simple truncation schemes they remain real valued. This is of
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3 THE FERMIONIC DYSON-SCHWINGER EQUATIONS

special importance regarding calculations at finite temperature 7" and finite chemical
potential u. However, the system of coupled equations which need to be solved
throughout this work is mostly similar to the form of the basic system of equations
from Eq. (3.24)-Eq. (3.27). This kind of equations are solved by a fixed point
iteration [71].

Iteration Procedure

The iteration is typically started with the bare counterparts of the corresponding
renormalization functions, ¢, 1 = ¢ and Z, j, = 1, and a constant value for the mass
renormalization function, M, 3 = I, which is usually chosen to be I =1 or I = 10.
Since we are mainly interested in the bifurcation point of our theory where one
solution bifurcates away from the other, we commonly have to deal with more than
one possible solution. In general the solution should not depend on the choice of I,
but we might find the trivial solution instead of an existing non-trivial, therefore the
starting value should not be too small. Another exception is the case of a first-order
transition, where the solution of the system of equations depends on I due to the
effect of hysteresis, as discussed in Chap. [5]

The frequency integrals can either be solved analytically or are approximated by a
discrete sum within the formalism of Matsubara sums in Euclidean space-time (see
App. . Additionally the sum over all discrete momentum modes of the Brioullin
zone can be executed on the momentum lattice as introduced in the last chapter.
All involved renormalization functions are updated after each iteration step until
a certain relative precision p is achieved to which the considered functions do not
change anymore. This stop criterion can be expressed as

FORS ki) — F (KD, kij)
Fold(k9, kij)

<p, (3.40)

where n denotes the frequency index containing Ny lattice points, and i and j refer
to the indices on the momentum lattice. Furthermore, 7"V indicates the solution
from the actual iteration step and F° that of the previous one. If this condition
is fulfilled for each renormalization function, for the real and the imaginary part, as
well as for every lattice point in frequency-momentum space, the system is assumed
to be converged.

The precision p is usually fixed to 10™° and provides insight up to which relative
order the function should not change any more in the following iterations. The
error estimated on the basis of this convergence precision is absolutely negligible in
comparison to finite volume effects for instance. In order to minimize these effects
caused by finite lattice sizes N2 and N, which is probably the main numerical source
of errors, the lattice sizes have to be as large as possible. Although N? is directly
connected to the spatial size of the considered graphene sheet, a real graphene sheet
e.g. with the size of 1mm? would correspond to a number of unit cells in one
direction of the order of N ~ 107. This explains why huge lattice sizes are of general
interest.

The iteration procedure was therefore accelerated with several techniques. One
simple approach is to start the iteration for a certain coupling value with the already
obtained result for a little higher coupling parameter. In practice this procedure
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saves a lot of iteration steps. Especially in the regime near the critical coupling it
can be quite difficult to obtain a converged solution from the iteration method, this
certainly depends on the considered truncation scheme. In some cases it can also be
useful to not completely update all renormalization functions in every iteration step,
but to perform the next iteration step on the basis of a weighted average, determined
by a factor A,

F (kY kij) = NFV (KD Keyj) + (1 — \) FOYRD ki), (3.41)

of the new and the old values for the considered renormalization function. The
application of such techniques is additionally specified for the individual calculation.

Parallelization with OpenCL

In order to achieve a maximized code performance we take advantage of the possibil-
ities of parallel programming and we exploit a couple of numerical properties. In this
context, code parallelization was realized by using OpenCL (Open Computing Lan-
guage) |72/73] which enables a programmer to utilize various kind of devices, such
as Central Processing Units (CPU’s), Graphics Processing Units (GPU’s), Field-
Programmable Gate Arrays (FPGA’S) or other hardware accelerators within one
heterogeneous system [74]. The Application Programming Interface (API) OpenCL
gives access to a wide range of hardware, the calculations within this work, however,
were either made on GPU’s or on CPU cluster systems which provides a valuable
flexibility and the opportunity of real runtime optimization. In the sense of parallel
programming a lot of computer time is saved by executing code parts concurrently,
called General Purpose Computation on Graphics Processing Unit (GPGPU).

In order to even gain more flexibility, the existing source code can be executed
in double as well as single precision by making use of template classes, anyhow all
results shown in this work were calculated in double precision.

Convolution Method

In order to save even more computation time, another technique has proven itself to
be a very effective instrument. From a mathematical point of view, the integral parts
of Eq. -Eq. have the form of a convolution and even the Hartree term
for the CDW state can simply be transformed to comply with the representation of
a convolution (Eq. (3.31)).

Considering the two-dimensional sum in momentum space, N? complex multipli-
cation steps have to be executed due to a matrix vector multiplication. In terms of
the convolution theorem, the sum can rather be calculated by doing two Fast Fourier
Transforms (FFT) of the interaction matrix and the associated part of the fermion
propagator separately, performing a point multiplication for the same argument in
position space and a back-transform into momentum space afterwards.

The FFT, in comparison to the trivial matrix vector multiplication, merely needs
N -logy(N) operations |75,[76]. A usual discrete Fourier transform (DFT) would
require N? steps likewise. The same applies to calculations including the Matsubara
sum for N2 — N2 . N;. In order to verify the FFT method, all integral equations
that matches the form of Eq. (3.24)-Eq. (3.27)) are solved with both procedures, all
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3 THE FERMIONIC DYSON-SCHWINGER EQUATIONS

final results presented in this work were obtained by using the FFT method due
to large lattice sizes. This numerical advantage provides the possibility of reaching
sufficient large lattice sizes to reduce occurring finite volume effects and even give
access to quantities like critical exponents. Eventually, the limiting factor is not
given by runtime restrictions but rather by memory aspects.

The FFT is implemented by making use of recent software libraries, namely the
cIFFT or the FFTW for CPU routines [77]. In current software libraries the fast
Fourier transform can usually be calculated for an arbitrary number of lattice points
N in one dimension, but due to prime factorization for powers of 2,3 and 5, the
algorithm is optimized. Within the cIFF'T library only those kind of lattice sizes
N = 2k.3™m.5" with {k,m,n} € Ny are allowed, which gives reason to the sometimes
extraordinary choice of N or Ny similarly.
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ASPECTS OF MEAN FIELD APPROXIMATIONS

In this chapter we want to investigate the semimetal-insulator phase transition on
the hexagonal lattice within several mean field approaches. These kind of approxi-
mations represent the most simple but probably also most important access.

First, the critical exponent of the order parameter 8 will be derived within a simple
ansatz neglecting the band-structure renormalization. Then the idea of Finite Size
Scaling (FSS) will be introduced and applied in order to obtain the critical exponent
v corresponding to the correlation length. Subsequently the effects of a renormalized
band structure will be included within a so-called Hartree-Fock approximation and
the phase diagram will be represented within the coupling plane (U-V-plane) for
the CDW and the SDW state. Finally, the formalism of nPI effective action will
be introduced in order to analytically deduce the location of the first-order phase
transition between an SDW and CDW formation.

4.1 Mean-Field Approximation and Critical Exponents

In the first step we are interested in the behavior of the electron system at zero
temperature (7" = 0) and zero chemical potential yiy = py = 0, i.e. for a half filled
hexagonal lattice. In App. we have convinced ourselves that the assumption
of pp = p = 0 for the effective chemical potential (also containing terms from the
interaction Hamiltonian, see Eq. ) really provide the description of a neutral
graphene sheet with a preserved number of fermions.

For zero chemical potential Eq. immediately entails that the wavefunction
renormalizations remain trivial,

ZTJc = Z%k =1, (4.1)

due to the symmetric frequency integral over an anti-symmetric integrand. Moreover
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4 ASPECTS OF MEAN FIELD APPROXIMATIONS

we also assume the wave-function renormalizations to be bare,

Ptk = OLk = Pk » (4.2)

i.e. we can neglect renormalization effects on the band structure, which of course
includes the renormalization of the Fermi velocity with a more descriptive meaning.

The photon propagator from Eq. within the Hubbard approximation fur-
thermore is applied to Eq. , leading to a kind of mean field approximation
with actually very interesting and surprising outcomes. In the following we set the
explicitly symmetry breaking mass term to zero (msqw = Mcdw = 0) which equates
to a calculation in the chiral limit. The resulting mass renormalization functions is
then given by

1
M=9 — , 4.3
N2 ; 2/ M2 + 2| |2 (4.3)
or in terms of a continuous integral,
d’k
M=9AZ M (4.4)

Bz (2m)? 2/ M? + K[

with 0 = (2 Vq“‘:% - Vq’i‘%) =6V — U for the CDW case and © = U for the SDW case
respectively. Moreover, the sum is rewritten as a continuous integral in momentum
space (for N — 0o, see App. since the critical exponents that we are interested
in are determined via quantities defined in the infinite volume limit. As this equation
only depends on the absolute value of the structure function, it can be solved on the
small Brioullin-zone (Fig. which is denoted by BZ’ and contains two independent
Dirac points. Here the mass renormalization function in mean-field approximation
is denoted by M and does not depend on the momentum variable, due to the
momentum independent interaction. The generated mass gap is thus constant over
the whole Brioullin zone (M = const.) and therefore also agrees with the mass
function at the Dirac points serving as order parameter for the considered phase
transition.

Although we are not yet interested in a classical temperature driven phase tran-
sition, we can translate all general principles to the considered semimetal-insulator
phase transition where the strength of the interaction now serves as control pa-
rameter and the mass term M identifies the order parameter. For this kind of
approximation we expect to find a phase transition of second-order as usual for such
mean field calculations in two dimensions [78]. Of special interest in this context are
the critical exponents, which describe the phase transition, i.e. the behavior near the
corresponding singularity, in corresponding power laws. In general one distinguishes
between order parameters which describe singularities resulting from non-analycities
of the free energy («, 3,7, d, related by thermodynamic scaling laws), and those re-
sulting from non-analycities of the correlation function (v,7n), which are related to
the others via so called hyperscaling relations [79,80].

In the following we are merely interested in the critical exponent of the order
parameter 5 and the critical exponent v of the correlation length &,

Moc|tf?, and o |t|7Y, (4.5)
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4.1 MEAN-FIELD APPROXIMATION AND CRITICAL EXPONENTS

with the reduced parameter ¢t = (0 — 0.)/0.. Generally, the critical exponents are
determined by the corresponding universality class that is characterized by a few
basic quantities, just like the dimensionality of a system, its symmetry and the range
of interaction.

For now, we want to focus on the critical behavior of the mass renormalization
in this simple model. An usual procedure to find the critical point where the non-
trivial solutions arise (here always a pair consisting of M and —M) in addition
to the trivial solution and bifurcate away from each other, is to expand Eq.
in powers of M. This idea can not be straightforwardly performed here, due to
the singularity at the Dirac points pr+ = 0 for a zero mass value M = 0 at the
bifurcation point, or rather in the unbroken symmetry regime.

However, the singularity is removable and can be handled by exploiting the rela-
tivistic behavior of the structure function around the Dirac points with the expansion
from Eq. . In order to remove the singularity, the integral from Eq. is
considered at K* and a small sphere around the Dirac points with radius A,

A
qdq 1 _ 1 5 7 oA
/0 @m) M2y oig  vF () M +“fq]o

vy

_ %[mm— M. (4.6)

f

Note that the linear term in M results from the singular behavior around the Dirac
points, and is completely independent of the radius A. To account for the number of
singularities, the linear contribution enters with a factor of two. The integral from
Eq. can thus be split as follows,

1=4 / d2q2 = (4.7)
- (2m)% 9 /M2 + e

d%q 1 _ M|
=0 / 5 — U ,
Bz/\Ki(27T) 2\ /M2 + || g (2m)

where B2\ K* denotes the Brioullin zone without the singular Dirac points. Now
the required expansion around the bifurcation point M = 0 can be performed,

d?q 1 !MI
1 =0 / / , 4.9
CrP 2l W 0m) 4 @) |s0p13 (4.9

BZ/\K*

(4.8)

the critical coupling parameter . can now be identified by the inverse of the zeroth

order contribution,
1 d? 1
1_ / ¢ . (4.10)
De (27)% 2|ppl

Bz\K*

Dropping the second-order term yields
v — ﬁc (1 _ ’M’1~)C> _ ’M|7~)C

Ve 2w ’U]2c o UJ%

, (4.11)
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4 ASPECTS OF MEAN FIELD APPROXIMATIONS

so in leading order one finds
0 — V¢

M~

(4.12)

c

For the critical exponent of the semimetal-insulator transition we then obtain
p=1,

in mean-field approximation (Eq. )

Consequently, in contrary to a common mean-field critical exponent of 5§ = 0.5 in
two dimensions , that would of course also come from the second-order contribu-
tion in our calculation, we find a dissenting critical exponent due to the relativistic
behavior of the band structure, directly resulting from the hexagonal lattice itself.

The basic equation from Eq. was numerically solved by a fixed point iteration.
The obtained values for the mean-field mass M, here denoted by Mg as the standard
order parameter, and different coupling values ¥ is shown in Fig. Here the
volume dependence is demonstrated for a huge number of lattice sizes in the range
of N =30 to N = 3000. In order to resolve the high accuracy from this large lattice
sizes, the precision for the iteration process (Eq. ) was set to p = 1075,

(4.13)
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Figure 4.1: The mass renormalization, which has a constant value in momentum
space, is plotted for different coupling values ¢ and different lattice sizes
between N = 30 and N = 3000.

With the procedure from the next section the critical coupling was precisely fixed
to

T =2.231 k. (4.14)
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This value can even be extracted analytically with the help of the second of Watson’s
three triple integrals [81],

31°%(1/3)
with T'(z) being the gamma function. The critical coupling is exactly determined
by its inverse value [82] and nicely demonstrates the high precision of the previous

FSS considerations,
b = Iy k= 2.2310453 k. (4.16)

4.2 Finite Systems

In order to extract critical exponents out of our numerical results, we additionally
have to think about the impact of finite lattices within our considerations. The
partition function, connecting statistical mechanics to thermodynamics and of course
quantum field theory (the latter is particularly discussed in App. , is shortened
given by

Z =e P/ = tpe HIT, (4.17)

with the temperature 7', the Hamilton function H and tr denoting the trace over
all degrees of freedom in the system described by H. A closer look on the partition
function immediately reveals that a non-analyticity of the free energy, as described
by the power laws from above (Eq. ), can not arise from a finite sum over
exponentials of —H/T. The non-analytic behavior is only possible in relation to the
thermodynamic limit, where the volume V' and the number of particles N (or rather
the degrees of freedom) go to infinity, while the ratio remains constant, N/V — co.
From that point of view it seems to be quite clear that critical exponents are generally
hard to extract from numerical results. However, with the following procedure it is
at least optimized and systematic.

4.2.1 Finite-Size Scaling

For finite systems one can extract so called finite-size scaling (FSS) laws, with the
help of renormalization group approaches |7§]. These FSS laws generalize the orig-
inal scaling laws to finite lattice sizes and make critical exponents accessible in a
systematic way. As a standard rule one can keep in mind to replace the reduced
order parameter ¢ by the length IV of the system and multiply the exponent with
—1/v to obtain FSS laws out of the scaling laws defined in the thermodynamic limit.
The scaling behavior should also be valid if the size of the system NV is much larger
than the characteristic length scale given by the correlation length £. The idea then
is that only these two quantities are important length scales for the macroscopic
behavior of the system. For an infinite volume we have £ ~ [t|7", so for N > ¢
we also expect M ~ [t|? ~ ¢78/Y and for N < &, where N represents the limiting
length scale one would expect M ~ N~8/¥. This motivates the ansatz [80,(83]

~z PV x>0,

(4.18)
const. , lx| > 1,

M =¢ Pl g(N/E),  with g(w)Z{
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4 ASPECTS OF MEAN FIELD APPROXIMATIONS

or in a more conventional way,

const. , z—0,
~ NBVEB x> 1.
(4.19)

In order to primarily extract the critical coupling and the scaling exponent /v,

we apply the so called crossing method . This method is based on the idea

that for all finite sizes N the calculated curves for the order parameter scaled by

NB/Y and plotted against the reduced control parameter, should intersect at the

critical point, where the correlation length diverges (x — 0).

M =NPVgeNY"),  with g(z) =27 fa*) = {

MK NB!\J

2.228 2.23 2.232 2.234 2.236 2.238
VK]

Figure 4.2: The on-site coupling in units of x is plotted against the scaled order
parameter, the critical coupling is extracted by means of the intersection
point of all curves for lattice sizes N = 30 — 1800.

So the quotient /v, that exponentially scales the volume, was fixed to obtain the
smallest crossing region for all volumes. For the mean-field approximation described
above, we obtain a nice coincidence (see Fig. of intersection points for 8/v = 1.0
and found the critical coupling to be ¥, = 2.231 k as already mentioned. Conse-
quently, within the mean-field approximation we found 9. = U, = 2.231 k in case of
a SDW state. For the CDW case we deduce a linear dependence V, = (U.+2.231k)/6
in the Hubbard space spanned by U and V.

By replacing the abscissa values by the reduced order parameter scaled with N1/”
all points should fall on one curve for the right choice of critical exponents (see
Eq. ) An optimal data collapse (see Fig. for this wide volume spectrum
was reached for v = 1, therefore we found § = v = 1 what of course confirms
the analytically obtained value of 5 = 1. The findings of this consideration or in

nice accordance to previous studies of Ref. , and Ref. were the

Hartree-Fock exponent § = 1 is validated numerically.
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Figure 4.3: The scaled order parameter My N?/¥ is shown as a function of the re-
duced control parameter which is scaled by N'/¥. An almost perfect
data collapse near the critical point was obtained for § =v = 1.

4.3 Hartree-Fock Approximation

In a next step, the renormalization of the band structure is taken into account within
the so called Hartree-Fock approximation for the case of zero temperature and zero
chemical potential (T = p = 0). The coupled system of equations, Eq. and
Eq. , is solved while the wave-function renormalization still remains trivial for
zero chemical potential (Z = 1). Of course, all renormalization functions are now
momentum dependent.

In Fig. [4.4] the order parameter My, indicating a band gap opening for My # 0,
is plotted against the on-site coupling U for an exemplary fixed nearest-neighbor
interaction of V' = 0.7 k. The number of lattice points is N = 3000 for the following
results. The emergence of both kinds of phase transitions (CDW and SDW) can be
observed for certain coupling regimes. For a dominant on-site repulsion, the SDW
phase is realized whereas the CDW state is favored for a comparatively strong nearest
neighbor interaction. In between there is a regime were the order parameter is zero
for both phases, representing the semimetal phase (SM). Furthermore, the fit to a
general power law is shown to motivate the expectation of a standard second-order
phase transition.

The critical coupling pairs (U./V.) were determined for both phases, the CDW
and SDW case, first for fixed values of the on-site coupling U and second for fixed
values of the nearest-neighbor coupling V. Here the critical value is estimated by
the middle of the bin in which the order parameter reaches zero. The error is
simply approximated by the discretization of the coupling parameter which was
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Figure 4.4: The mass renormalization function at the Dirac point K, representing
the order parameter, in units of the hopping parameter k is plotted
against the on-site repulsion U also given in units of kK. The nearest
neighbor interaction is fixed to V' = 0.7 x in this example.

used for the calculation. In the presented results, this discretization was chosen to
be AU = AV = 0.1 k. For the results represented in Fig. we would extract a
critical coupling pair of (U, V) = (2.65 £+ 0.05,0.7 £ 0.1) for the SDW case.

By representing the critical coupling pairs for both competing phases in the U-V-
plane, the corresponding phase diagram is obtained and is illustrated in Fig.

On the right hand side of the transition illustrated by blue points, an SDW state
becomes possible, above the violet line a CDW state is possible and in the low cou-
pling area indicated by SM we find the semimetal phase. The real phase transitions
for which one state becomes energetically preferred over another are indicated by
solid lines. The red lines are found to be second order phase transitions whereas
the black line (V' = U/3) represents the discrete transition from a CDW to an SDW
state and is analytically calculated by the consideration of the free energy in the
next section, Sec. [£.4] Due to the discrete redistribution of charge carriers involved
within the transition between this competing phases, we expect a first-order phase
transition here. The black dot therefore represents a tricrital point (TP) of the phase
diagram, where three phases coexist. Here two second-order transitions convert to
one first-order transition separating the two considered possibilities for an insulat-
ing phase (CDW, SDW) on the hexagonal lattice and determining the end of the
semimetal phase. The violet and blue points above the tricritical point represent
the spinodal lines. Here the associated phase transition becomes possible and both
states are minima of the free energy, but the competing phase is still energetically
preferred until the black solid line is reached.

Additionally, the results from the mean field consideration of the last chapter
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first order

VK

U/

Figure 4.5: The extracted critical coupling values (U./V.) are represented in the U-
V-plane, in blue for the SDW constellation and in violet for the CDW
constellation. Above the black tricritical point, the blue and violet lines
illustrate the spinodal line of the corresponding phase transition, while
the black line identifies the first-order transition between SDW and CDW
state. The gray lines illustrate the analytic result from the mean field
considerations of the last section.

are shown for comparison in gray. The TP is illustrated as a gray dot and the
spinodals are dashed. Together with the first-order transition (V' = U/3), this
phase diagram is an exact analytical result of mean field theory. The inclusion of
renormalization effects on the band structure are therefore rather small, especially
for the CDW case, as one can conclude from Fig. For the SDW case the
band-structure renormalization and likewise the renormalized Fermi velocity increase
with increasing nearest-neighbor interaction which causes a higher critical on-site
coupling. For the phase diagram in Fig. [{.5] we found excellent agreement with the
phase diagram by Araki and Semenoff [55] from 2012 calculated by using variational
techniques and with Ref. [48] using the approach of functional renormalization group.
Note that the calculation for V' = 0 is identical with the before discussed results
within the mean field approximation since the band structure is only dressed by at
least nearest-neighbor interactions.

We additionally investigate the phase transition of the CDW case for U = 0
with the FSS procedure from above and find also very nice results for § = v =1,
see Fig. So one can conclude that the influence of the renormalization of the

45



4 ASPECTS OF MEAN FIELD APPROXIMATIONS

structure function is not strong enough to change the critical exponents crucially.
The critical nearest-neighbor coupling was determined by the crossing method and
found to be V, = 0.412 within the Hartree-Fock approximation.
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Figure 4.6: On the left hand side the scaled order parameter is represented in
dependence of the nearest-neighbor coupling for various lattice sizes

N = 30 — 1800 in the CDW state. On the right hand side an excel-
lent data collapse is shown for 8 =v = 1.

By further investigations of the critical exponents in the whole U-V-plane we
ultimately have a good evidence to deduce a second-order phase transition with
8 =v =1 for both the CDW and SDW transition within the considered approxi-
mation.

4.4 Free Energy and nPIl Effective Action

In this section the free energy of the electronic many-body system, especially con-
cerning the difference for SDW and CDW configurations, will be investigated.

Finally, we will be able to analytically localize the first-order transition between
CDW and SDW state to the V = 1/3U-line as depicted in Fig. This result
is still valid for the case of higher truncation schemes including a dressed vertex
function as well as a dressed photon propagator and is therefore exact for y = 0.

The effective action I' in QFT provides an analog to the Gibbs free energy in
thermodynamics [70,85], where the most stable state is given by the absolute min-
imum of the free energy. Generally, the effective action can be gained from the
generating functional Z[J, R] for all correlation functions, building the equivalent to
the partition function of thermodynamics in Euclidean spacetime. Then, the gen-
erating functional for connected Green functions W[.J, R] can be extracted by the
linked-cluster theorem. Eventually they are connected via the exponential, which
effectively sums up all kind of combinations of the connected Feynman diagrams to
produce the set of general correlation functions, generated by Z[J, R],

Z|J, R] =exp(i W[J, R]) (4.20)
:/D(b exp (z [S[@] +/x Jo(2) () + = Rab(a:,y)%(x)%(y)D :

2 Jay
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4.4 FREE ENERGY AND NPI EFFECTIVE ACTION

Similar generating functionals Z[j] and W[j] are introduced in App. where
the complete set of Dyson-Schwinger equations is deduced from the path integral
formalism in Euclidean spacetime, therefore the calligraphic letters should remind
the reader to use associated Euclidean conventions. For simplicity ®,(z) is meant to
represent an arbitrary set of bosonic fields, the formalism can be straightforwardly
generalized to fermionic Grassman valued fields as it was done in App. by the
introduction of left and right derivatives.

Beside the standard source term, denoted by the source J,(z), a second source
term has been introduced in Eq. which is quadratic in the field variables
(compare also to Eq. ) This source term can be interpreted as a spacetime
dependent mass term and plays the crucial role in the derivation of the so-called 2P1
effective action in comparison to the 1PI theory.

In the following, the idea of the nPI formalism should be briefly introduced with
the aim of unifying the 2PI formalism and the already elaborated approach of DSE’s,
here we roughly follow the conventions from Ref. [86]. For a deeper understanding
we want to refer to the original publications in condensed matter physics, Ref. [87-
89] and the extension to relativistic QFT in Ref. |[90]. For a broad overview, we
recommend Ref. [86] and Ref. [91]. With the relations

W = (®a(2)) .5 = al@), (4.21)
and
(m = (a()Po(y)) 15 = %((I)Z(:E)(I)g(y) + Dap(2,9)) (4.22)

with ®¢(z) being the macroscopic or classical field and Dgp(z,y) the connected
two-point function, the 2PI effective action is derived as follows.

First, in order to obtain the one-particle irreducible effective action one has to per-
form a Legendre transformation with respect to the source J,(x), performing another
Legendre transform with respect to the source Rg,(z) the two-particle irreducible
(2P1) effective action is obtained. Hence, the effective action is not a functional only
depending on the classical field variables any more, but it also directly depends on
the connected two-point function,

SW[J,R] SW[J,R]

I'[®, D] = W[J,R] — ; Wja(x) -/, mRab(x,y)
= WULH] - [ @@ - 5 [ @@ Raten) - 5 [ Dafey)Rale.y)
= WA - [ @@ ) - 5 [ @505 Ra(e.y) - yTDR).

(4.23)

The fundamental idea is to rewrite higher order field dependencies within explicit
functional dependencies on proper n-point functions. Thus the presented 2PI effec-
tive action I'[®, G] can be generalized to the n-particle irreducible (nPI) effective
action I'|®, G, V3,V ..., V,] with an analog procedure. Here V3 denotes the proper
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three-vertex, Vy the proper four-vertex and so forth. In order to fulfill the so called
stationary conditions due to functional minimization of the effective energy [86],

ST[®°, D, V5, Vi ..., V) ST[®°, D, V3, Vi ..., V)

50° =0, 5D =0, (4.24)
OL[®¢, D, V3, V..., V,]

=0, ... 4.25

S S (4.25)

the equations of motion for all proper n-point functions ®¢, D, V3, V..., V, are

obtained. Of course, the effective action has to be truncated in a certain manner,
but the formalism itself provides a highly systematic procedure to solve problems of
non-perturbative and even far-from equilibrium dynamics.

For the theory that should be investigated in this work, a loop expansion seems to
be the most suitable approach. In this context, another great advantage of the 2PI
formalism is the existence of a certain equivalence scheme, what means that for a
certain degree in the loop expansion there exists a certain ny.x for the corresponding
nPI effective action which completely determines the dynamics of the system up to
the considered approximation level (characterized by n). This hierarchy can be
specified by

Plloop[(I)c] _ Plloop[q)c7 D] _ Flloop[(:[)c7 D, VE,’] =..., (4.26)
F2loop[q)c] # FQloop[q)c’ D] _ leOOp[(I)C, D, V3] =..., (4.27)
F3100p[q)6] 7& FSloOP[Q)C’ D] 7é ]_—\3100p[(1)c’ Da VY?)] = I\?)loop[q)C, D7 VE’M Vv4] B (428)

which is explicitly shown in Ref. [86]. Regarding our previous truncation scheme we
will concentrate on the 2-loop expansion of the 2PI effective action in the following,
Eq. of course tells us that the 3-vertex V3 remains bare within this consider-
ation and we only have to deal with classical vertex functions. Afterwards we will
also have a look on higher loop contributions within the 3PI effective action in order
to understand the next higher truncation approach.

The connection to the DSE’s considered until now is given by the stationary condi-
tion for the connected Green function, which should indeed generate the DSE’s. For
higher n-point functions the DSE’s and their equations of motion from nPI formal-
ism do not have to coincide since the nPI formalism often provides a symmetrized
version of DSE’s what might be an advantage. Considering the QED,, ;-like theory
on the hexagonal lattice, they are at least equal up to 2-loop order in which we are
mainly interested in (see Ref. [86]). Starting again from Eq. (4.23)), the stationary
conditions

or[®¢, D] or[®¢, D]
@8(1‘) Dab(m7y)
provide the equations of motion for ®¢ and D (x, y) for zero source terms, J = R = 0.

Conveniently the 1-loop contribution is separated from the rest term denoted by I'y
as first introduced in Ref. [90],

— Ju(x) — /y R (2, 1) 35 (y) — _Ruy(z.y),  (4.29)

T[®°, D] = S[&°] + %THnD_l + %T&"Dng + Ty[®°, D] + const. , (4.30)

where S[®°] is the classical action or the zeroth order that usually vanishes in case
of fermion fields. The third term results from the —%Tr[DR] contribution with
D1 = Dal — i R within the 1-loop approximation.
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4.4 FREE ENERGY AND NPI EFFECTIVE ACTION

In order to address the theory of interest, as described in the last chapters we
additionally introduce fermion fields and use the notation established in App. in
momentum space from now on. One main difference for the fermion effective action
already appears in the 1-loop contribution with the evaluation of the corresponding
Gaussian integrals (see App. , which are given by

—i ln/D¢ exp(iSt) = —i In(detDy) "2 = %Trln Dyt (4.31)

and
—iln / DYDY exp(iS]) = —i In(detGy ') = —iTrin Gy !, (4.32)

with the bare propagators Dy and Gj respectively, and the associated action in
momentum space,

ST = iz/_}(a;) 1Gy L (p)w(p), and S = i@(—p)iDo_l(p)(I)(p) . (4.33)
P P
So in total, for a system containing bosons and fermions one obtains

r[®°,D,G] = S[Cbc]—i—%Tr InD~ !+ %TrDO_lD —iTrinG™! —iTrGy G +T2[®°, G, D],

1—loop contributions

(4.34)
where a constant term was omitted and the trace includes the sum over all frequency
momentum variables as well as the trace in sublattice space usually denoted by small
letters ‘tr’. The stationary condition for G with

§(—iTr Gy Q)

e = -Gyt (4.35)
and 1 BB BA
(—iTrInG™) i G -G 1
5G det(@) ( GAB  gA4 ) —iG (4.36)
then entails the fermionic DSE,
@—IG _IGO +@—O <~ G _GO +lﬁ, (437)
which provides the fermionic self-energy ¥ as given in Eq. (3.16),
or
5—5 — iy =  G'=Gl+ (4.38)

In complete analogy, the equation of motion for the photon propagator is obtained
to be

oT i, i, oIy _ _ 0l
— =——D'4-Dil4+—==2=0 — D '=p;t—92i—= 4.39
5D 2”0 T3P T5p o ~Azp. (439
where the original DSE from Eq. (5.4) can be recovered with
5Ty i o
— = —II = D =D II. 4.4
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4 ASPECTS OF MEAN FIELD APPROXIMATIONS

To get the interesting point concerning the established theory of competing order
on the hexagonal lattice, two more thoughts are necessary. First, one has to check
that the effective action except the contribution from T'y only depends on M2 or
at least m, - M,, which means that the difference of the Gibbs free energy for the
SDW and CDW case merely results from higher loop contributions contained in I's.
This point can be easily verified for the 1-loop contribution, concerning the classical
action the field expectation values of the Hubbard fields have to be calculated (which
enter the classical action quadratically), done in App. Indeed, it turns out that
the deviation in the free energy for the CDW and SDW state can only result from
I'5. The second point is that the DSE’s should not be derived from the 2PI effective
action but vise versa, for that the 2-loop contribution of I'y is reversely engineered
from the known DSE’s, discussed in the following section.

4.4.1 2Pl Effective Action

From the fermion DSE, Eq. (3.16]), the following 2-loop contribution could be de-
duced,

ralD, G = - [Z L Gifola) D™ () ()Gl (k4 a) (4.41)

s,s 0

—Z(—U'H/'DQ“’@ZOE% F<k>yf %i,,(q)] . (442)

This can also be compared to the fermion (Eq. (E.79)) and photon (Eq. (5.5])) DSE’s
derived in App. [E] Diagrammatically, the 2-loop contribution for the 2PT effective
action is shown in Fig. where all possible sublattice combinations (sum over
s,s') and spin contributions (o,0’) have to be taken into account. Here we have
already introduced a dressed photon propagator, which will be the topic of the next

chapter.
OG0

Figure 4.7: Shown is a diagrammatic representation of the two loop contribution to
the 2PI effective action. The shaded dots represent dressed propagators,
while the vertices remain undressed within the two loop approach.

The first contribution from Eq. is exactly equal for the CDW and SDW
case if DA4(k) = DBB(k), what is certainly true for the mean field and Hartree-Fock
approximation. The fermionic self-energy can be obtained by the derivative of I'y
with respect to the particular fermion propagator. In terms of Feynman diagrams
this is realized by cutting the corresponding fermion line, as illustrated in Fig.
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4.4 FREE ENERGY AND NPI EFFECTIVE ACTION

e T
E«w@m +

Figure 4.8: The fermion self energy, obtained by cutting one fermion line of I'y, is
shown diagrammatically.

Similarly, the photon self-energy can be extracted and is illustrated in Fig.
The Hartree term indeed do not contribute to the photon self-energy since the deriva-
tive of I'y has to be performed with respect to the dressed Green function. Moreover,
disconnected diagrams do not contribute to the self-energy anyway.

r,
dD

~J

I ~

Figure 4.9: The vacuum polarization function is depicted as Feynman graph.

The fact that only the bare photon propagator enters the Hartree-term is consid-
ered in the next chapter in detail.

Furthermore, by using the symmetry requirements from Sec. [3.3|for the renormal-
ization functions of the different spin states (My = M| for CDW and My = —M
for SDW), the effective action in 2-loop approximation can be formally calculated
for both phases. Thereby, the difference is found to be

Ay, =T5PVID, G - 1SPVID, G| (4.43)
i M, iM,
_ DOflA o DOle i 1 Medw,k i cdw,q ’
1 ( p=0 p=0 ) . (ko Zk)Q _ Q(Q:dW,k +ie g (ko Zq)2 _ diqu +ie
(4.44)

for piy = py = 0. Here the symmetry of the potential for zero frequency and zero
momentum transfer,

0,AA 0,BB 0,AB 0,BA
DY =21 and DAY = DO, (4.45)

was additionally used. With the bare photon interaction within the extended Hub-
bard model from Eq. (3.35]) one finds

i Mcdw,k i i Mcdvv,q
22 Tie T (°Z)% - Q

AHubbard _ U—-3V i — , (4.46
2 ( ) k(K Zy) Zdwg T 1€ (4.46)
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4 ASPECTS OF MEAN FIELD APPROXIMATIONS

what means that the expected first-order transition between the SDW and the CDW
state in the coupling plane spanned by U and V' can be analytically determined to the
line V = 1/3U. This is also valid in the case of a screened or frequency-dependent
photon propagator, as long as DA4(k) = DBB(k) or equivalently IT44 (k) = TIBB (k),
as will be shown in the next chapter.

-+ OO

+®+@+@+...

Figure 4.10: Higher loop contributions to the effective action are shown. Due to a
better visibility dressed propagator and vertices are not indicated.

Higher contributions to the effective action, such as 3-loop and 4-loop, representing
the 3PI structure [92], are illustrated in Fig. Diagrammatically, it can be easily
reconstructed that these contributions are catched by a vertex dressing as illustrated

in Fig.

ok = et ]

Figure 4.11: The DSE for the vertex function is diagrammatically represented and
can be deduced from the higher loop contributions of the effective action

as given in Fig.

The inclusion of such a vertex dressing would make the considered theory (only
involving 3-vertices V3) exact due to the hierarchy scheme from Eq. (4.28)).
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THE STATIC APPROXIMATION

An important effect with high influence on the behavior of fermionic many particle
systems, especially well-known in solid state physics, is the screening effect within
charge distributions. In this chapter the screening of electrons from the w-bands
itself will be taken into account via appropriate Dyson-Schwinger equations for the
photon propagator. To be more precise, only the zeroth component of the photon
field is taken into account since electromagnetic retardation effects are suppressed
by a factor of about ~ 300, resulting from the ratio of Fermi velocity and the speed
of light.

5.1 Dyson-Schwinger Equations

In order to neatly derive the set of DSE’s for the described strongly coupled elec-
tronic system, the more descriptive formulation of second quantization is completely
transferred into the path integral formulation in Euclidean spacetime as pointed out
in App. Since the interaction matrix from Eq. is negative definite for the
regime

V>U/3, (5.1)

lattice calculations become extremely complicated [54] or even impossible. This is
one good reason to establish DSE’s also for this region. To make sure that we obtain
valid DSE’s in this region with an existing and well-defined generating functional
for the corresponding Green functions, the interaction is separated into two parts,

1 1 _
Htp - 5 Z :CLUC%U ‘@ CL,U’C?JJ/ : _5 Z 2617009[;,0 (_wa) CL,U’Cy,U’ g (5'2)

/ !
x,Y,0,0 z,Y,0,0

>0 >0
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5 THE STATIC APPROXIMATION

with VT and V™~ indicating the positive semidefinite and negative semidefinite
part, respectively. The related bosonic fields which were introduced by a Hubbard-
Stratonovich transformation (HST, see App. , which is different for the positive
and negative semidefinite part respectively, join the effective action with different
signs. Consequently, the DSE’s might be different as well.

For this reason, the corresponding DSE’s were concretely derived in App. [E] and
they were found to really be the same, independent of starting with a positive
or negative semidefinite interaction matrix. They hence can again be summarized
within one interaction matrix, V=V~ + VT without hesitation and the problem
of singularities known from lattice calculations is shown to be nonexistent in the
applied Dyson-Schwinger formalism.

The corresponding propagator of the required bosonic field from the HST is sim-
ply identified with the photon propagator D of the established theory where its
bare counterpart is determined by the interaction potential V' via Eq. . The
fermionic DSE’s (Eq. ) were proven to be quite similar to the equations ob-
tained from the Heisenberg formalism (compare to Eq. ),

Gy (k) = G, o [ S D) gk T G (54 )3T
qu,u
1 qu J[u—u/| 0,uu’ u u\ Pu’
52/ or > (-1 tr (D" (¢=0)T"Gpe(q) )T, (5.3)
q7u7u/7al

with the difference that also a dressed photon propagator D and vertex function
is considered. Additionally we deal with three vectors in Minskowski spacetime as
introduced in App. [B:I] from now on. Here we have also introduced the notation
of the vertex function I'° which is not completely equivalent to the proper three-
point function from Eq. due to some prefactors. For simplicity, I'Y labels the
part of the fermion-photon vertex that is given by 4" for the tree level (t1) vertex
T9[q,q + p] =~° (see App. [E).

In Fig. [5.I] the Fermion DSE’s are illustrated in terms of Feynman diagrams where
we have an additional sum over the sublattice index s and the spin degree of freedom
denoted by o’.

-1

U—G— = u

Figure 5.1: The Fermion DSE from Eq. 1’ as derived in App. |[E|is illustrated by
Feynman diagrams. Here u,u’ and s denote sublattice indices, while o
and o’ label the spin index, a sum over s and ¢’ is implicitly included.

In this context it is important to note that the Hartree-term still enters the
DSE with the bare photon propagator D” and the bare photon-fermion vertex (see
App. [E.2)). This might be counterintuitive, but expresses the fact that the origi-
nal background field is not dynamically adjusted to the dressed photon field what
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5.1 DYSON-SCHWINGER EQUATIONS

would lead to an overestimation of the influence of the Hartree-term. The associated
self energy for the photon field can be represented by the following Feynman graph

(Fig. and is also derived in App.
Gur u
o.q
Huur u u
o =

un’
0,q+p

Figure 5.2: The photon self-energy as given in Eq. 1' is diagrammatically depicted
with sublattice indices u and «’ and is determined by certain combina-
tions of the fermion propagator.

Here u and v/ again denote sublattice indices and the total self-energy is of course
given by the sum over all fermion flavors indicated by o. The self-energy is equiva-
lently represented by a matrix in sublattice space.

In this context, one has to pay attention to the single sublattice entries of the
self-energy matrix which do not result from a matrix multiplication of the fermion
propagators, but rather from the multiplication of single particular entries as il-
lustrated in Fig. The associated DSE for the propagator of the introduced
interaction D%(p) =1 V(p) takes the insertion of this vacuum polarization in infinite
succession into account, illustrated in Fig. [5.3

OO0
-+

Figure 5.3: The DSE for the photon propagator, which effectively takes one-loop

screening effects of the m-electrons into account is shown with a dressed
fermion propagator as well as a dressed fermion-photon vertex.

Analytically one finds a geometric series in sublattice space,

D(k) = D"(k) - D°(R)IL(K)D (k) + - = DO(k) (1 + TR)D (). (5.4)
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5 THE STATIC APPROXIMATION

so the fermion DSE can be rewritten in its common form as

’ _ uu’ _ 1 d 0 " o’
D (k) = DM (k) — % > (Gro(@) g, k + | T" G (k + ¢)7°T") .
q,0
(k)
(5.5)
-1 -1
A — Ao —l—

Figure 5.4: The photon DSE is represented diagrammatically, with the self-energy
particularly depicted in Fig. The shaded dots again indicated
dressed propagators and vertices.

In terms of Feynman diagrams, the photon DSE is illustrated in Fig. This kind
of dressing for the photon propagator considers the mutual screening of the w-band
electrons of the hexagonal lattice of graphene. It does not take the screening effects
from inner electron shells into account, which could have an additional influence for
the investigation of graphene.

In solid state physics this particle-hole polarization function with I'’ = +° and
Gr = G% follows from a quantum mechanical consideration within a random-phase
approximation (RPA) [93] and is commonly called the Lindhard function of the
considered electronic many particle system [60,(94,95]. In analogy to that we also
refer to I1(k) as Lindhard function in the following.

5.2 Static Lindhard Screening

In this section, the screening effects as introduced in the last chapter will now be
taken into account within a static approximation. In the framework of this common
ansatz, only the zero frequency contribution of the Lindhard function is considered,

x(k) =TI(K° =0, k), (5.6)

and the interaction therefore remains frequency independent, which ensures a trivial
wave-function renormalization for zero chemical potential,

Zy(k) =1. (5.7)

In order to complete the set of DSE’s, we would have to consider another DSE for
the fermion-photon vertex to close the obtained set of Dyson-Schwinger equations
(see Fig. . But the Ward-Takahashi identity still determines the vertex function
to its tree level counterpart, I'’ = A% for zero chemical potential in the static
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5.2 STATIC LINDHARD SCREENING

approximation. With the tree level vertex, the renormalization functions from the
ansatz of Eq. (3.18) read

i M,
DAA+DBB) 1 o,k+q
/ [ (¢ + p)?22 k+q Qg,k-&-q

i My
—21(D0;43—D0;4A) i a',q ,
w0~ Do) 2 i, e,

My (k) =mg + SN2

(5.8)

1 dqo . mBA 19, k4
@o(k) =1+ 575 [ S S (i DI . .69
N2 J 2w zq: O+ 2L g~ Dok
dq i (I)U k+
o (k) = / “ , (5.10)
R Z q T U225~ kg

. AA BB . . .
with and DO’_O = D(q)’:0 for the bare instantaneous interaction.

For the static approximation, i.e. for the assumption of a frequency-independent
photon propagator within the presented truncation scheme, one finds D44 = DBE ag
well. Consequently, the equations for M can be further simplified and the frequency
integral can be evaluated analytically (see App. [D.1)), what finally results in the
following equations for arbitrary temperature § = 1/T and chemical potential p,

_ 1 . naay Mok Qo tq — 17 Qo kerqg + 17
Mo = 373 321 D) g 2 [ (FH5=55) - tonn (45 50)

pOAB _ DO,:BA

i (DAB _ DAA M

_ q=0 q:O) o',p tanh Qaﬂpf,uaﬁ + tanh ,p+# i
N? %:,49[,,4,23,@[ anh (=25—=) + tan (

)
Po.k :¢a,k+]\1[22q:(—i Df"‘)%{tanh (W@Hanh( 0k:+q pe ﬁ)
)

1 . NAB ¢>ckrk+q Qak—i-q_ﬂa crk+q+u
fk=0hrt+ 5 > (-1 DJP)—ZT L ftanh (2L tanh
Por =00k T 72 q( ' )4Qa,k+q[ " ( 2 5)+ " ( ’

(5.11)

Here the bold symbols again denote discrete vectors in momentum space and the
u-dependence is just kept for completeness.

On the basis of frequency independent renormalization functions, the frequency in-
tegral of the vacuum polarization can also be evaluated analytically in the imaginary-
time formalism by using Eq. . The sum over the Matsubara frequencies
go = i(2n + 1)7T with fermionic boundary conditions in the polarization loop is
therefore evaluated for discrete bosonic frequencies w = i2wrmT (with integer m,n).
After an analytic back-continuation to real frequencies w, where we have introduced
retarded boundary conditions (indicated by R), the sublattice components of the
Lindhard susceptibility for the honeycomb lattice are finally given by

HAAR( ,P) = 4NQZ Z 1+5M0q/90q)(1+5Moq+p/QUq+p)
0,9 s,s'=+

% Pf(ﬁ(s Qo qip — p)) — Pf(B(SQU,q — 7))
=505+ 8 Qg qip —w — i€

: (5.12)
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HBB’R( w,p) 4N2 Z Z 1= sMyq/Q0,4)(1 S/MU,qup/Qa,qup)

0,9 s,8'=+

o PrB( Qogip — 1)) = py(B(520,g — 17))

1
—8Q.q + 8 Qogip —w — i€ ’ (5.13)
i W04
AP B (u, p) = AL (s )
4 N2 ;; S’SZ_:i QJ,QQU7P+Q
,Of(ﬁ(S Qo qp — p)) — Pf(ﬁ(SQa,q —u%)) (5.14)
—8Q.q + 8QVogip —w — i€ ’ '
K (ba ¢
HBAR ,p v vo,qto,pt+q (S‘S/)
N2 ;q:s;i Qan o:p+q
Pf( (s’ Qo qp — n)) — Pf(ﬁ(SQa,q - NU))’ (5.15)

—5Q5.q+ 8 Qg gip —w — i€

with the Fermi-Dirac distribution ps(x) = 1/(e® 4+ 1). The classical density-density
correlation for the honeycomb lattice, namely the Lindhard function, can be in-
ferred by taking the sum of all sublattice contributions and replacing the dressed
renormalization functions by its bare values with m, = 0 (indicated by the index
0),

3 w p) = ZHZ)LU ’R(va) ) (516)

which exactly agrees with the results from T. Stauber (2010) in Ref. [96] (see also
Ref. [97]). The contributions with s = s’ are related to intraband transitions
H& +(w,p), i.e. excitations of fermionic particles and holes within the same energy
band, whereas contributions with s = —s’ analogically involve interband transitions
Hg_ (w, p) between both bands. This can be easily retraced from the partial fraction
expansion of the fermion propagator (note the imaginary frequency argument),

1 Yo + (Ma, + ’igba, ’7+ + fﬂb?, 7_)5/90,
Ly p+ K dop P P )

GF iw,p = = . .
ol ) = (W—1ipe) +isQyp

where s identifies the two different energy bands.

The imaginary part of IT1§¥ vanishes in the static limit as long as the spatial mo-
mentum is nonzero. Then, the usual Thomas-Fermi susceptibility is in turn defined
as the subsequent long-wavelength limit x;¢ = lim,_0 x(p), and the order of limits
is of course important here.

In the long-wavelength limit, on the other hand, it is easy to see that only in-
terband transitions survive and that these are given by the density of states per
‘volume’ (area of sample) at the Fermi ‘surface’ (contour) [96],

_ 1 R _ s R _
Xep = lim Iy'(w = 0,p) = lim Relly ; (w =0,p)

= Jun @z (60~ Il = pln).
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5.2 STATIC LINDHARD SCREENING

The density of states was first derived for transverse vibrations of a hexagonal lattice
by Hobson and Nierenberg in 1953 [12]. They found logarithmic divergences near
the saddles of the energy bands, i.e., the van Hove singularities, as well as the zeros
now identified with the Dirac points.

In a first approach we are interested in the semimetal-insulator transition for zero
temperature, T" = 0, and zero chemical potential, u, = 0. Static Lindhard screening
x is furthermore described by the zeroth frequency contribution of the retarded
vacuum polarization

X’ltu/ (p) — HUUI’R((JJ = O7 p) , (519)

where v and u’ denote sublattice indices. In summary, for zero temperature and
zero chemical potential (T = p, = 0) the coupled DSE’s reduce to the following
equations

1 o aa\ Mok+q ., ~AB AA Mo p
Mg, =ms + — E —iD ——= —i(D —D E — |, 5.20
) g N2 ( p ( q ) QQO—JC_A'_q ( 0 0 ) oyt 290/717 ( )
1 . Do k+
_ _ipBA o,k+q 5.21
¢o,k: Po.k + 7N2 Eq ( 1 q )42 Qg,kJrq ) ( )
1 ok
Kok 72 _i DABy_oktq 5.29
¢a,k Po.k + N2 . ( 1 q ) ) Qa,k—i-q ) ( )
Zg’k =1, (5.23)
1 E 1— MU,QMU#H-Z? 1 — XBB (524)
N2 o.q QoqQogtp ) Qogt+ Logip P
1 o* P 1
AB o,q ~0,q+p BA*
x50 =— =x., (5.25)
P 2N? 02,.; Qo,q Qo,qﬂz Qa,q + anq+p P

which build a closed set of non-linear integral equations. In order to obtain the pho-
ton propagator and not its inverse as required by the fermionic DSE’s, the photon
DSE is inverted in two-dimensional sublattice space. With the established symme-
tries of the bare interaction matrix from Eq. —Eq. ,

VM =VPP=viteR, and VPP =yP=vEL (5.26)

the inverse matrix is given by

_ 1 ¥ -y
1 DYy t=__- 5.27
( +XP p) |$’2_’y|2 (_y* .T) ’ ( )
with
z =1+ xgADYA4 + B DYBA (5.28)
y=xp  DptP + x5 P Dy, (5.29)

So the screened propagator can be written as

uu’ 1 DO AA * DOAB * DOAB _DO AAy
Dy* = |22 = |y|? DOBA * DOBBy* DOBB Do A, | (5.30)
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5 THE STATIC APPROXIMATION

with u,u’ € {A, B}. Considering D™ it is easy to see that the symmetries from
Eq. are still valid for the screened potential with D" (p) = iV (p) as
specified before.

As argued in the beginning of this chapter, the instantaneous interaction as well as
the neglect of retardation effects are justified by the difference of the Fermi velocity
and the speed of light by a few orders of magnitude (~ 1/300). A priori there is no
argument that the assumption of a static Lindhard approximation results in realistic
predictions for the critical coupling of the semimetal insulator phase transition. The
particular advantage is that the infinite tower of Dyson-Schwinger equations closes
upon itself in the fully instantaneous approximation. The idea is to compare the
obtained results with already existing quantum Monte Carlo algorithms [23,84] for
@ = 0 in the low temperature regime for the SDW state, where a good accordance
should verify the static approximation and legitimate the same truncation scheme
for the CDW calculation as well as calculations for finite chemical potential and
arbitrary temperature, which can not be gained from lattice calculations.

5.2.1 Zero Temperature and Zero Chemical Potential

In analogy to the procedure from Sec. a restricted renormalization functions to
one of the competing phases, either SDW or CDW, are introduced. The resulting
system of coupled integral equations was subsequently solved for both phases with
the same methods as described in Sec. where the new vacuum polarization and
from that the screened potential is additionally calculated in every iteration step.

A huge numerical disadvantage in the static approximation comes from the fact
that the frequency independent Lindhard susceptibility x;, can not be represented
as a convolution. The numerical effort therefore again effectively increases with N2
and can not be reduced to N log N by exploiting the convolution theorem. This is
why calculations within this truncation become comparatively slow for huge lattices
in momentum space.

At first, the SDW results will be investigated on the basis of the solution for V' = 0,
i.e. without nearest-neighbor interaction. In contrast to the previous findings and
also to results from lattice calculations (see [84]) the SDW semimetal-insulator tran-
sition is found to be a first-order phase transition and exhibits the typical hysteresis
behavior which is shown in Fig. for V= 0. Obviously the location of the phase
transition decisively depends on the starting values I for the iteration procedure
which is chosen to be I = 10 for results represented in blue and I = 0.01 for those
in green. This is equivalent to the effect of magnetic hysteresis, where the position
of the phase transition depends on whether one starts from the symmetric phase
or from the symmetry broken phase. We deliberately choose comparatively high or
rather lower starting values to make sure to obtain a lower and an upper bound-
ary value for the considered transition. All datapoints in Fig. are solutions of
the considered DSE’s, i.e. minima of the free energy. For some coupling strengths
we found two solutions due to the first-order transition, where the energetically
preferred solution can be identified by the absolute minimum of the free energy.
Consequently, the corresponding free energy has to be calculated numerically as de-
scribed in Sec. in order to decide where the real phase transition consisting of
energetically preferred states is located.
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V=0

| |
starting from 0.01 —+—
starting from 10 —%—

M(E]) [K]

U [K]

Figure 5.5: The mass renormalization function at the Dirac point M (K) is plotted
against the strength of the on-site repulsion U, both in units of the
hopping parameter k. Depending on the initial value for the iteration
method with which the system of DSE’s is solved, different solutions are
found. This behavior represents the classical hysteresis effect commonly

known from magnetism.

Nevertheless, we found an upper and lower boundary where the associated tran-
sition definitely lies in between, what is absolutely sufficient for the following con-
sideration. Eventually, the critical on-site coupling within the static truncation
framework is roughly located between U = 8 k and U = 10 k, which is not compati-
ble to lattice results ,, that estimates the critical on-site coupling to be
slightly below U. = 4 k for the low temperature regime. The results in Fig. [5.5 were
obtained from calculations with lattice size N = 300.

Next, we want to focus on equivalent results for the CDW state, namely for the
case of zero on-site repulsion U = 0. Here, we still found a second-order phase
transition as illustrated in Fig. [5.6] For the regime of U = 0 — 0.6 x we could
not obtain reliable results in the vicinity of the phase transition in the chiral limit
m = 0, which means that we did not find a solution that converged with a precision
of 10™* within 10000 iterations. In general the phenomena of critical slowing down,
typically known from lattice calculations, is here reflected by the increasing number
of necessary iteration steps for coupling strengths approaching the critical value.
Here the attraction area from both solutions, the symmetry broken and the trivial
solution respectively, are close together.

Numerically there are several ways to work around, one possibility is to introduce
small nonzero explicitly symmetry breaking mass terms and extrapolate them to
zero. The result of this procedure is shown in Fig. where additionally a power
law fit was applied in order to locate the critical coupling which was determined
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Figure 5.6: Shown are solutions of the mass renormalization function at the Dirac
point to the considered system of DSE’s for different values of explicit
masses m. The obtained solutions are extrapolated to a zero mass so-
lution m — 0 which is subsequently fitted to a power law in order to
extract the critical coupling.

to be V' = 0.68 k. Since the extrapolated values (indicated by m — 0 in Fig. [5.6))
exactly agree with those for m = 0 away from the critical coupling, the extrapolation
method seems to work quite well. For the regime of U > 0.6 k we can again calculate
with zero explicit mass terms and omit the extrapolation procedure. This is why we
apply the method of FSS as described in Sec. for U = 1k in order to extract
the critical exponents. We obtain a compact crossing point for different lattice sizes
N = 54 — 180 with 8/v = 1, illustrated in Fig. The critical nearest-neighbor
coupling is determined to be V., = 0.6727 x = 0.673 k, for which we also find very
nice data collapse for § = v = 1 (Fig. . So for the CDW case the critical
exponents do not change in comparison to the extracted exponents of the Hartee-
Fock approximation from Sec. [£.3] Furthermore, in comparison to the unscreened
Hartree-Fock approximation we observe an increase of the critical coupling for U = 0
from V., = 0.412k to V., = 0.68 k. Therefore the coupling strength is effectively
suppressed because of electronic screening effects, which requires an enhanced critical
coupling to induce the considered semimetal insulator phase transition.

The corresponding phase diagram where the extracted critical coupling pairs are
plotted in the U -V plane is depicted in Fig. for the second-order CDW (violet)
as well as for the first-order SDW (blue) transition. The errorbars are again esti-
mated by the discretization in the U-V-plane and do not include the errors caused
by finite volume effects. The critical couplings are determined with the same proce-
dure as already described for the Hartree-Fock consideration of Sec. for a fixed
lattice size of N = 120. The unscreened results obtained within the Hartree-Fock
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Figure 5.7: The scaled order parameter for §/v = 1 is shown as a function of the
nearest neighbour coupling for different lattice sizes N = 54 — 180 in the
CDW case.
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Figure 5.8: The scaled order parameter is represented as a function of the scaled
reduced coupling as established in Sec. in order to show a nice data
collapse for f =v =1.
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5 THE STATIC APPROXIMATION

approximation is illustrated in orange in order to compare both approaches. The
function V' = 1/3U is represented as solid black line and still provides the first-order
transition between the CDW and the SDW state, whereas the dashed gray lines in-
dicate the spinodals in qualitative analogy to the Hartree-Fock phase diagram from
Fig. The shaded area represents the regime of coexistence and the white dot
locates the tricritical point at about (Ui./Vie) = (9k/3 k).

For an increasing nearest-neighbor interaction, the hysteresis effect of the first-
order SDW transition decreases and both first-order transitions seem to merge and
coincide for N — oo with the second-order CDW transition at the tricritical point.
Above the tricritical point, V' = 1/3 U still identifies the first-order CDW-SDW-
transition that has not changed in comparison to the Hartree-Fock approximation
and is also exactly valid for a frequency dependent consideration.

4.5

4

3.5

2.5

V K]

U [K]

Figure 5.9: The phase diagram for the static screened Lindhard interaction for N =
120 is represented. The second-order CDW transition is shown in violet,
and the first-order SDW transition is indicated in blue. For comparison
the mean field results from the last chapter are shown with orange colored
lines. The 1/3-line, separating the CDW and SDW state beyond the
tricritical point, is shown by a solid line in black or gray, for the static
and mean field approximation respectively. Furthermore the spinodals
are marked by dashed gray lines.

Generally, one can observe an increase of the critical couplings due to the inclusion
of screening effects. For the SDW calculation a huge increase of the critical line in
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5.2 STATIC LINDHARD SCREENING

the U -V plane has been found. For comparison, the associated Hybrid-Monte-Carlo
results (HMC) [20-23,25]/54,84] are indicated by a black rectangle. Unfortunately
the HMC results are definitely located between the Hartree-Fock and the screened
result. Consequently the static approximation seems to highly overestimate the
influence of screening effects for the SDW state, but we always obtain a lower and
an upper limit regarding the Hartree-Fock calculation and the statically screened
interaction.

For the CDW case, where the results from the static approximation and those
from the Hartree-Fock consideration are much closer together, we obtain a more
significant result. Following the interpretation for the SDW case, one would expect
the Hartree-Fock calculation and the statically screened approximation to give a
lower and an upper boundary again, which provides only a small area for the CDW
transition. For U = 0-0.6 x, the critical nearest-neighbor coupling seems to remain
almost constant, all in all the CDW transition for the static approximation is quite
similar to the results obtained from the Hartree-Fock ansatz.

5.2.2 Finite Temperature and Chemical Potential

Additionally we have solved the static DSE’s from Eq. for finite temperatures
and finite chemical potential in order to estimate their qualitative influence on the
phase transition. Here we were especially interested in the temperature dependence
to investigate whether we can come closer to the critical coupling results from lattice
calculations by approaching comparable finite temperatures. Therefore, limits of
p— 0and T — 0 in Eq. - Eq. were examined separately, where the
limit Qg4, — g, providing singularities, have to be evaluated analytically and the
concerned momentum contributions has to be treated separately within the discrete
momentum sum. Unfortunately, the overall outcome of this consideration was a
further increase of the critical couplings for both finite temperature and chemical
potential, as one would naively expect.

Finally we have to conclude that the static approximation for the SDW case nei-
ther provide quantitative nor qualitative suitable results. In contrary, the results
concerning the CDW states seems to be more promising.

Additionally it should be briefly mentioned that the DSE’s for a complete Fierz
transformed version of the interaction, given in Eq. and Eq. , have
been also derived in App. l [El The resulting photon DSE’s are listed in Eq. (E.62])-
Eq. - which are included in the fermion DSE’s from Eq. ( - and Eq. (]E
A similar mean field ansatz as represented in Sec. [4.1] for the SDW state would yield
the same critical on-site coupling with a factor of three half U, = 35 . (Eq. |i
which was found in Ref. [82]. This approximation seems to result 1n a critical on-
site coupling which is much closer to the abovementioned lattice results than the
approximation schemes which have been considered until now. Hence it might be
worthwhile to investigate this set of DSE’s more precisely and could be content the
content in following studies. Of course both approaches (see Eq. ) should give
identical solutions in the full theory, but with certain truncations on the level of
DSE’s different results can be obtained. In this work we still focus on solving the
set of DSE’s as discussed in Sec.
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FREQUENCY DEPENDENT SOLUTION

Since the static approach could not be validated in order to describe the SDW
semimetal-insulator transition on the hexagonal lattice as extensively examined in
the last chapter, the static ansatz will now be rejected and the frequency dependence
will be analyzed in this chapter.

The first step is to let all Dyson-Schwinger equations be frequency-dependent and
allow for non-trivial wavefunction renormalizations and non-trivial vertex dressings
to generate a closed system of coupled differential equations again. A dressed vertex
function is subsequently introduced by a Ball Chiu Ansatz including only the zeroth
component of the photon propagator as before. In Sec. it will then be shown
that the inclusion of a non-trivial wavefunction renormalization has almost no effect
and therefore Z; = 1 is a very good approximation. With regard to the achievement
of higher lattice sizes the wavefunction renormalization will then be reset to its bare
value and the semimetal insulator transition will be studied in detail.

6.1 Ball-Chiu Vertex Ansatz

In order to obtain a system of DSE’s that closes upon itself to provide an internally
conclusive approximation, we again start from the more general DSE’s of Eq.
and Eq. . The neglect of electromagnetic retardation effects and the validity of
an instantaneous bare interaction should still be warranted by the huge difference of
the Fermi velocity and the speed of light. The screening effects, on the other hand,
can strongly depend on the frequency as it seems to be the case for the SDW phase.
These results are in qualitative accordance with the calculations of Ref. [51./52] where
retardations effects were included within a low-energy approach. In Ref. [51,52] it
was also shown that comparable calculations for a Coulomb interaction in the low-
energy approximation were rather unsensitive to the form of the vertex function, why
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6 FREQUENCY DEPENDENT SOLUTION

they only take the first term of the noncovariant Ball-Chiu (1BC) vertex into account
[52]. We therefore assume to find reasonable results in the same approximation which
further simplifies to the zeroth component of 1BC by the neglect of retardation
effects. The tree-level vertex is therefore replaced by a part of the classical Ball
Chiu vertex ansatz, where we again only have to take the zeroth component of the
photon field into account. The idea of this vertex function is to primarily fulfill the
corresponding Ward identities of the corresponding theory [98,99]. In the simplest
truncation, this simply results in the inclusion of the wavefunction renormalization
within the vertex function as follows,

Zs(q) + Zs(q+ )

9 =70 Za[q7Q+p] ) (61)

1%g,q+p] =0

fulfilling the corresponding Ward-Takahashi identity. Here, we effectively sym-
metrize both contributing vertices within a loop diagram.
Note that the explicit frequency dependence of the vacuum polarization function

is of course given by Eq. —Eq. . Without any symmetry assumption
for the potential we obtain a more general expression for the associated frequency
dependent screened interaction with frequency dependent polarization function II,
in sublattice space,

(1411, DY) = (‘CL Z) : (6.2)

with
a=1+T1,4 DA + 1128 DOPA

_ 1AA H0,AB AB 10,BB

b =114 DYAP + 118 DYBE
_ BB 0,BB BA 10,AB
d=1+155 DyBB 4+ 1184 po.AB.

_ 11BA 10,AA BB 10,BA

¢ =104 poad 4 BB po.Ba,

For the inverse matrix one finds

—C a

1 d -—b
0y—1 _
(1410, D) _adbc< ), (6.7)
and consequently

!
uyu
D" =

0,4A ~ 0,AB ~
1 (Dp + 158, Dyt —mAB vp> (6.9)

7 0,BA BA ~ 0,BB AA ~
ad — bc \ Dy, —Hp vp  Dp —i—Hp Up

with v, = (VPAAVPBB - VPABVPBA). Since vp € R (see Eq. ), the symmetry
properties of I, can be directly transferred to the screened photon propagator or
rather the screened interaction D;“‘, =i V;é% The bare photon propagator still
depends only on the spatial momentum, indicated by a bold vector notation. In this
context we have to examine whether D;;‘A = D(‘;‘A is still valid in order to simplify the
DSE’s analogically to the procedure from Sec. 5.2 From the explicitly frequency-
dependent Lindhard function, Eq. (5.12)-Eq. (5.15)), the following symmetries can

be extracted in Minkowski spacetime,

(i 1w, p))* = i T4 (w, —p) = 1 1" (w, p), (6.9)
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(i OBB(w,p))* =1 08B (w, —p) =i TPB(w, p), (6.10)
(i 147 (w, p))* =i 1P (w, —p) = i 174 (w, p), (6.11)

where the renormalization functions are assumed to transform like
Mo —p=Msp, ¢o-—p= qb;kr,p’ and Zo—p = Zop, (6.12)

due to their bare counterparts and the corresponding symmetry for the self-energy
part. Moreover it can be shown that

44w, p) = 172 (w, p), (6.13)

for the SDW case, where unequal contributions cancel because of the sum over
different spin states with M; , = —M, ,. This symmetry is still valid for the CDW
constellation, but only for the case of © = 0. However, these symmetries are assumed
to be still valid in terms of frequency dependent fermion propagators, since the DSE’s
do not change structurally. For the screened interaction (VSC%, = V +iIl,) the
symmetry of the polarization loop immediately entail

(—i DAA(w,p))* =—i DAA(w, —p) = —i DAA(w,p), (6.14)
(—i DPB(w, p))* = —i DP(w, —p) = —i DPB(w,p), (6.15)
(i DAB(w, p))* = —i DAB(w, ~p) = —i DPA(w,p). (6.16)

and Dz‘;m = D]])BB for the SDW case and the CDW case with u = 0.

In order to solve the obtained equations numerically, a Wick rotation to Euclidean
spacetime has been performed and the standard fermionic or bosonic Matsubara
frequencies were introduced (see App. ,

OZiQ%‘,n:i(2n+1)7r//Ba pO :ip%',m :i27rm/,8, (617)

here § again denotes the inverse temperature. The frequency-momentum vector is
then represented by ¢, = (i q%m, q), where n denotes the index of the introduced time
lattice with Ny being the number of lattice sites in time direction and § = 5/N; the
associated lattice discretization. Numerically, we perform the sum from n = —N;/2
ton = N¢/2—1 in order to obtain a real periodic function. The final set of equations
is specified in the following,

T4 () = N2 Y- Galan) Zolan, g + o) G5 (an +pm) (6.18)
on,q

14%(p,,) = BN 3 GHolan) Zelaw o+ o) Gillant o). (619

124 (py) = 3 N2 U;q G2B(an) Zolan, an + pm) GEA(Gn + Pim) (6.20)

%5 (p,,) = -3 N2 gzn:q GEE(an) Zolan, an + pm) GE2 (Gn + Pm) (6.21)
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i i M ~
My (ky) =my + —— —iDAA Tin Zolgn, k
k) e i O e g Pl
i M,
—i (DYAB _ pOA4y ST e 1 : (6.22)
v ) R i,
i . 1 (1 q% + /’LU) ZO— dn ~
Zo(ky) =1 — : —iDAA n ’ Zolgn, k
) e PR g i T
(6.23)
. i (iq%n+MUI)ZU' qn
i (DAB L pOAy ST il : , (6.24)
w0 T P02 G e V223140~ g,
i ' i dog _
b0 (kv) =0k + —-iD}4, ) A Zolan ko], (6.25
() BN? nz,;( vk G, wp e, — g, Cl bl (029)
i i ¢ _
(ko) =pp + =5 > (—iDIE, ) o Zolgn ko). (6.26
(ba( U) Pk BNQ nz;( qn k:u> (1 Q%,n + :U’U)QZg,qn _ Q%ﬁqn [Qn v] ( )

6.2 Order Parameter

Before we continue with the examination of the numerical results, the order param-
eter should be reviewed again. The order parameter for the semimetal-insulator
phase transition is still given by the singularities of the fermion propagator at the
Dirac point, providing the quasi-particle energies. The renormalized band-structure

here remains zero |®(w, K)| = 0 for all frequencies. Consequently, the following
equation has to be solved for w in Minkowski spacetime,
W=t M2(w,q)/72(w,q), (6.27)

with M being either the CDW or the SDW mass renormalization function. On
the Euclidean lattice with discretized frequencies, this equation formally cannot
be solved, since there is no singularity in euclidean spacetime. Another difficulty
that comes with the consideration of a fermionic system instead of a bosonic is the
nonexistence of real zero modes, whereas the right hand side of Eq. surely
reaches zero within the numerical accuracy.

The best and simplest approximation to determine an order parameter for this
strongly correlated electron system, without an extraction from the exponential
decay of the imaginary time propagator [84], is to evaluate the fermionic renormal-
ization functions for the minimal Matsubara frequency given by

Therefore the order parameter is fixed to \/Mg(q% mins K/ Z2q% ppin, K). - As

long as the chemical potential is set to zero, the wave-function renormalization as
well as the mass renormalization function are found to be real, so that

\/M2(q%,min’ K)/Zg(q%,mirw K) = ’ Re[M(q(L)?,minv K)]/ Re[Z(qu,minv K)]‘ . (629)

70



6.3 INCLUSION OF EFFECTS FROM WAVE FUNCTION RENORMALIZATION

6.3 Inclusion of Effects from Wave Function
Renormalization

In a first step, we want to discuss the numerical results obtained by solving the set
of DSE’s, given in Sec. for the SDW case. For simplicity, the nearest neighbor
interaction V is again omitted and the calculations have been computed with a fixed
spatial lattice size N = 90 and Ny = 1000 lattice sites in imaginary time direction.
For . = 0 the resulting dispersion relation, given by the dressed analog of Eq. ,
is plotted in Fig. [6.1] for different on-site interactions along the high symmetry points,
introduced in Fig. The temperature is chosen to be 8 = 20 k™! which is nicely
resolved by Ny = 1000 lattice points, as will be shown in the next section.

H=0, V=0, p=20 k1, N=90, N{=1000

4.5
4k U=3K, Q°pax —+— ]
U=3K, 9°min ——
3.5 U=4K, Q°pax —— *
3 |k U=4K, @°imin — i
U=5K, Q°max —
= 2.5 F U=5k, qornin N
3] 9+ -
1.5 | -1
1 -
0.5 | -
0

Figure 6.1: Shown is the dressed dispersion relation for different on-site interactions
U = 3—4 k. Here the results are plotted for the minimal and the maximal
Matsubara frequency, while all other contributions usually lie in between
them.

Since the mass renormalization function as well as the wavefunction renormaliza-
tion remain real-valued, one also ends up with a real energy function E in units of
the hopping parameter k. For comparison, the energy function is shown for both,
the minimal Matsubara frequency ¢2; as well as the maximal Matsubara frequency
¢° .. From the gap opening the critical on-site coupling can be clearly determined
to lie between U = 3k and U = 4 k. In the symmetric phase the band structure is
almost equal in the vicinity of the Dirac points for all Matsubara frequencies. With
an increasing band gap, the energy dispersion relation for the minimal and max-
imal Matsubara frequency becomes more and more separated. This confirms the
assumption that one could principally choose every Matsubara frequency to provide
the order parameter for the considered phase transition (see also Fig. [6.16)).

In Fig. the single contributions to the energy dispersion of Fig. namely
the set of fermionic renormalization functions, are depicted in the symmetry-broken
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H=0, V=0, p=20 K1, N=90, N{=1000

Re[M(q°min. )], U=4K —+—
Im[M(Q° . Q)] U=4K —%—
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[K]

sl N :
N/

r M K r

Figure 6.2: The real and imaginary part of the fermionic renormalization functions
is represented along the high symmetry points of the Brioullin zone for
the minimal Matsubara frequency denoted by ¢¥,. .

phase for U = 4 k. The mass renormalization function as well as the wavefunction
renormalization are almost constant and real. Here the minimal Matsubara contri-
butions are plotted, providing the maximal values for the real part of Z; which is
found to be slightly above its bare value Z, = 1.

V=0, B=20 k1, N=90, N=1000

2.5 L 1 1 1 1

=0 —+—

2 - p=0.1 —+— -

1 1 1 1 1 1

3 3.5 4 4.5 5 5.5 6
U [k]

(Re[ M(q°min.K)I/Rel Z(q°min. K) I-p) [K]

Figure 6.3: The semimetal to antiferromagnetic insulator transition is shown for dif-
ferent values of u for a fixed temperature 8 = 2071
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6.3 INCLUSION OF EFFECTS FROM WAVE FUNCTION RENORMALIZATION

Since the truncation scheme for the considered DSE’s should also be valid for
i # 0 in the SDW case, the behavior of the wavefunction renormalization was
also investigated for small chemical potentials greater than zero. In Fig. the
obtained order parameter (Eq. ) shifted by u is plotted against the on-site
coupling. With increasing chemical potential the critical coupling increases as well
due to the raised charge carrier density, while a first-order transition emerges. This
results are shown for a starting value of I = 10 in the iteration procedure, for a
better overview the corresponding counterparts for low starting values, exhibiting
the hysteresis effect of the first-order transition, are omitted.

Here it should be mentioned that for u > 1k it is hard to obtain a converged
solution in the vicinity of the phase transition. In order to overcome these issues,
some numerical methods as described in Sec. could help. For now the consid-
ered area of the chemical potential is absolutely sufficient. The main point that
should be considered here is the influence of the chemical potential on the wave-
function renormalization which is shown in Fig. [6.4] The real an imaginary part
of the wavefunction renormalization is illustrated for a fixed on-site coupling in the
symmetry-broken phase for both, maximal and minimal Matsubara frequency as
upper and lower boundaries. Shown is the comparison between the wavefunction
renormalization for 4 = 0 and p = 0.5 k which do not decisively differ in magnitude.

u=0, V=0, =20 k1, N=00, N;=1000 u=0.5, V=0, B=20 k'L, N=90, N;=1000
2
Re[Z(¢ iny D)), U=4K —— Re[Z(¢ i D], U=5K ——
IM[Z(Q° i Q. U=4K IM[Z(Q° i G}, U=BK ——
R Re[Z(( a0 Q)] U=4K i 15 k- Re|Z(QP oz @], U=5K —+—

IM{Z(QPmax. )], U=4K Im{Z(qPmax. )], U=5K ——

Figure 6.4: On the left hand side the wavefunction renormalization is illustrated for
zero chemical potential, while the right hand side represents comparable
results for p = 0.5 k.

Finally, in Fig.[6.5]the comparison between calculations with non-trivial and trivial
wavefunction renormalization is represented (indicated by Z = 1). Obviously the
dynamic inclusion of the wave function renormalization do neither change the critical
coupling nor the behavior of the order parameter intensively.

Additionally the influence of the wavefunction renormalization on the CDW solu-
tion was investigated for p = 0. In Fig. the computed renormalization functions
are illustrated individually within the symmetric phase V = 0.2 x as well as in the
symmetry-broken phase V' = 0.8 k. In analogy to the corresponding SDW calcula-
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V=0, B=20k"1, N=90, N{=1000
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U [K]

Figure 6.5: Shown are the resulting order parameters for various on-site couplings

u=0, U=0, B=20 k1, N=90, N=1000

for a fixed temperature and a fixed lattice size. For comparison the
results with non-trivial wavefunction renormalization as well as those for
a trivial wavefunction renormalization, denoted by Z = 1, are illustrated.
The specified parameter I = 10 refers to the initial value of the iteration
procedure in order to indicate the upper boundary concerning the first-

order transition.

u=0, U=0, B=20 k1, N=90, N;=1000
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Figure 6.6: The solution for the single renormalization functions for different nearest

74

neighbor interactions is shown with U = 0. On the left hand the system
is in the symmetric phase with a zero mass renormalization function. The
real part of the wavefunction renormalization obviously do not visually
differ from one. The structure function is slightly dressed which can be
seen from the somewhat raised values at the I' points as well as at the
M point.



6.4 RESULTS WITH TRIVIAL WAVE FUNCTION RENORMALIZATIONS

tion the temperature is set to 3 = 20 k™!, while the on-site coupling is now fixed to
zero. As it can be observed in Fig. [6.6] the influence from the wavefunction renor-
malization is even lower as in the SDW case. The wavefunction renormalization
remains bare in a very good approximation.

Consequently we really found Z; = 1 to be an excellent approximation for the
values that we are interested in. Indeed, it turned out that this is even valid within
the whole U-V-plane for both, the SDW as well as the CDW phase. The wave-
function renormalization is therefore again set to its trivial value in the following
calculations. This naturally saves run time as well as memory requirements and
enables the calculation for even higher lattice sizes characterized by N2 - Nj.

6.4 Results with Trivial Wave Function Renormalizations

In the first part, the final results for the semimetal to insulator transition will be
shown within the whole U-V plane for a fixed temperature 3 = 20 7. In the next
subsections the critical exponents and the temperature dependence of the critical
on-site coupling for the SDW state will be investigated. Finally we will present the
outcomes of the finite p consideration for the SDW case as well.

N=500, B=20 k!

0.5 T T

N=18 +

N=36  * &

0.4 | N=54 -
N=72
N=90
0.3 |N=108
N=135
N=162
0.2 |N=180 ‘s .
N=216 .

o+

> >+ ® 0O

RE[ M[qomin'K” [K]
<q

o
]

0.1 F

2.8 3 3.2 3.4 3.6 3.8 4 4.2

U [K]

Figure 6.7: The dependence of the order parameter (Eq. ) from the spatial
lattice size, characterized by N, is represented for a fixed inverse tem-
perature 3 = 20 x~! and a fixed number of lattice points in imaginary
time direction N; = 500.
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6.4.1 Finite Volume Effects and Phase Transition

In a first step, the numerical results for the spin density wave constellation will now
be discussed in detail, subsequently corresponding results for the CDW state are
represented. In the following the temperature is set to 8 = 20 ! and the chemical
potential is fixed to y = 0 in order to compare with recent results from Ref. [54]
for the whole U-V coupling plane and especially with Ref. [84] and Ref. [23] for the
case of vanishing nearest neighbor potential V' = 0.

With the current numerical setup we are able to reach huge lattice sizes in com-
parison to calculations on the basis of Monte Carlo methods. Since the lattice size
in real space determined by N? reflects the real size of the graphene sheet, we expect
equal results for equal lattice sizes here. However, correction terms due to the finite
lattice in the imaginary time formalism might differ. Therefore we should make sure
to reach the limit Ny — oo and preferably N — oo likewise.

In Fig. the order parameter in dependence of the on site coupling U for zero
nearest-neighbor coupling V' = 0 is shown for a fixed time lattice N; = 500 for
different lattice sizes in momentum space N = 18 — 216.

As one can see in Fig. [6.7] we found almost no volume effects for lattice sizes
greater or equal to N = 54 for this setup. In contrary, lattice sizes of N = 18 are
shown to be way too small in order to estimate the phase transition. As a good
tradeoff, in order to minimize finite volume effects concerning the spatial lattice and
similarly choose a possibly small N to allow for larger time lattice sizes Ny, we fix
the number of unit cells to N = 90 in the following.
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Figure 6.8: Here the order parameter (Eq. 1' for different lattice sizes in imag-
inary time direction IV; is shown for a fixed spatial lattice with N = 90
and a fixed inverse temperature of 5 = 20 k~!. The obtained values were
extrapolated to Ny — oo as shown in Fig. and fitted to a polynomial
function of first-order.
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In Fig. an analogical consideration is represented for various lattice sizes in
time direction between N; = 500 and N; = 2300.

Here the results for different lattice sizes N; were additionally extrapolated to
N; — o0 by a polynomial least-square fit of second degree,

f(x) =a(1/Ny)* +b(1/Ny) +c.

Such a fit is exemplary shown in Fig. [6.9)for U = 3.8 k, where the extracted order
parameter is plotted against the inverse lattice size 1/N;. The value for Ny — oo is
then finally determined by the parameter ¢, for a fitted intercept smaller than zero
the order parameter was accordingly set to zero.
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Figure 6.9: The polynomial fit of second degree to the order parameter is illustrated
in dependence of the inverse number of lattice points in imaginary time
direction 1/N;. Exemplary, an on-site coupling of U = 3.8 k was chosen.

These values extrapolated to N — oo are represented as black dots in Fig.
where they were additionally fitted to a straight line. The interception with the
x-axis consequently determines the critical coupling for V =0 to be

U. =351 k. (6.30)

This is in rough accordance to the results from Ref. [84] and Ref. [23] were a
critical coupling between U, ~ 3.7 — 3.8 x was found. The deviation could still be
caused by the vertex approximation of the applied Dyson-Schwinger framework, but
also finite volume and temperature effects are not excluded. As it was shown in
the last section, a Ball Chiu vertex ansatz would not change the result, a vertex
dressing as discussed in Sec. [£.4] should therefore be taken into account. However,
the achieved accordance with the results from Quantum Monte Carlo algorithms
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within the frequency dependent ansatz is more than satisfactory for the considered
SDW case and really overcomes the observed overestimation of the critical on-site
coupling as obtained in the last chapter with the static approach of the screening
function.
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Figure 6.10: The semimetal to antiferromagnetic insulator transition is shown as
contour plot for # = 20 x~! within the U-V coupling plane for a spatial
lattice size fixed to N = 90.
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Figure 6.11: The order parameter is plotted in the U-V coupling plane for the case of
a CDW configuration. Analogically to Fig. the calculations were
made for B =20 k™! for a fixed spatial lattice size N = 90, whereas
the imaginary time lattice has been extrapolated to Ny — oo for lattice
sizes between IN; = 100 — 1000.
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As one can conclude from Fig. [6.8 and Fig.[6.9]the calculation for such large lattices
in imaginary time direction is not necessary for the considered temperature regime.
An analog evaluation for time lattices between N; = 100 and N; = 1000 was therefore
applied to the whole coupling regime characterized by U and V. The received
phase diagram, where the order parameter as given in Eq. is represented in
dependence of the control parameters U and V, is shown in Fig. [6.10

This results finally show up a very nice qualitative as well as quantitative accor-
dance with the outcomes from Ref. [54]. The great advantage of the Dyson-Schwinger
framework is the accessibility of the coupling regime beyond V' = 1/3 U since the
theory exhibits no sign problem here. Apart from that, the numerical setup estab-
lished in Sec. [3.5] enables the calculation for very large lattice sizes.

In order to eventually access the phase transition with regard to both phases, the
SDW as well as the SDW phase, an anolog consideration was made for the numerical
system fixed to the CDW case. The result is represented in Fig. In contrary
to the SDW state the phase transition concerning the CDW state seems to be in
nice quantitative and qualitative agreement with the results obtained in the static
approximation.

V [K]

U [K]

Figure 6.12: The resulting phase diagram is plotted on the extended Hubbard plane.
The critical coupling pairs as well as the indicated errorbars were ob-
tained with the same techniques as already pointed out in Sec.

All in all, the considered screening effects from the m—bands itself seem to be of
much higher influence regarding the SDW case. In complete analogy to Fig. the
presented phase transitions are summarized in Fig. where the individual areas
of the SDW, CDW and SM phase are sketched. The regime of coexistence is shaded

79
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in gray and limited by the spinodal lines as before. The first-order line, V' =1/3U,
separating CDW and SDW constellations is still valid as shown in Sec. [£.4]

6.4.2 Critical Exponents

As next step, the critical exponents will be investigated with the help of the es-
tablished finite size method from Sec. 4.2.1] in the SDW case. Until now we could
not extract critical exponents which deviate from the analytical finding of Sec. [4.]]
within a mean field approximation which determines the critical exponent of the or-
der parameter to § = 1 and were in nice accordance to the results from Ref. .

As extensively discussed in Chap. [4] the critical exponents characterize the system
to belong to a certain universality class which is only specified by a few macroscopic
properties. One of these properties is the range of the interaction, for the Hubbard
model there are several studies suggesting a chiral Heisenberg Gross-Neveu model
in three spacetime dimensions to be the adequate model , and indeed
these expectations has been validated . In order to extract the critical
exponents we observe some difficulties concerning the approximation of the order
parameter by the mass renormalization function at the Dirac point evaluated at
the smallest Matsubara frequency. As mentioned above for M(q%, K) # 0 it is not
decisively relevant which Matsubara contribution is chosen to be the order param-
eter. As shown in Fig. [6.16] the mass renormalization function at the Dirac point
provides an order parameter independent of the frequency variable, because the be-

V=0, Nt=500
12 T T T !
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Figure 6.13: The scaled order parameter is represented for varying on-site couplings.
An optimal intersection point was found for 5/v = 0.96 at U, = 3.131 k.
Concerning the red data points illustrating the results for N = 135, we
did not find a convergent solution for U = 3.11 k within a maximal
number of 10* iterations.
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havior coincides for all Matusbara modes in the vicinity of the critical coupling. For
the extraction of the critical coupling, the choice of the minimal Matsubara mode
is therefore more appropriate.

Regarding the determination of the critical exponents the situation is slightly
different. In order to make reliable results the FSS method should be applied, for
that the volume dependence of the order parameter is needed for coupling values
which are larger than the critical coupling, as well as for the coupling regime below
the critical value. For a numerically obtained mass renormalization function that
equals, or is approximately zero, Eq. cannot be fulfilled for 4 = 0 due to the
fermionic character and the related nonexistence of a zero Matsubara mode.

For the investigation of the critical exponents a simple solution to this problem is
provided by considering higher temperatures. Higher temperatures at least provide
very small minimal Matsubara modes and the finite volume behavior for control
parameters slightly below the critical coupling can be resolved.

This phenomena is depicted in Fig. [6.13] where the scaled order parameter is
plotted against the on-site coupling in order to determine the critical coupling value
in terms of the intersection point for all volumes. The finite volume behavior exactly
corresponds to what one would expect for a second-order phase transition for the
shown lattice sizes between N = 18 and N = 54. For larger lattice sizes one can
again observe the problem that the order parameter immediately drops to zero. By
minimizing the crossing section for varying critical exponents /v with the eye, an
optimal intersection point was found for

B/v=0.96. (6.31)

This optical method works also quite well for the achievement of an optimized data
collapse by systematically extending the coupling regime around zero, as illustrated
in Fig. Due to the abovementioned unusual behavior for lattice sizes larger
than N = 54, only the values for N = 72 have been added exemplary in Fig. [6.14]
Finally, a nice data collapse could be obtained for

v=1.1, (6.32)

leading to § = 1.056, which is still in markedly good agreement with the finding of
£ =1 from Sec. This result justifies the choice of a polynomial fitting procedure
of first degree, as already presented in Fig. [6.8]

In the following the critical exponents of the continuous chiral Heisenberg Gross-
Neveu model in three spacetime dimensions obtained from either renormalization
group approaches in certain expansion schemes or from related Monte-Carlo simula-
tions of discrete Hubbard systems are shown (Tab. . The table is taken from the
summary of Ref. [54] and was originally given in Ref. |[132]. The entries of the table
where 1/v and v is denoted have been evaluated independently. As one can see the
obtained results are in really nice accordance to the critical exponents listed in the
table, providing a good evidence for the considered model to lie in the Heisenberg
Gross-Neveu universality class.

This situation can change by taking the long-range tail of the interaction into
account, especially if the screening effects from the inner o-orbitals are included.
These screening effects are mostly important for the short-distance interactions, were
the long-range tail can again be dominant in the vicinity of the phase transition. The
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1/v B /v v
¢ expansion [2,2] Padé [105 0.6426 0.99925
€ expansion [3,1] Padé [105 0.6447 0.97815 1.2352
Functional RG [106] 0.795  1.016  1.26
Large N 0.8458 1.09245 1.1823
Monte-Carlo [102 0.74(2) 1.02(1)
Monte-Carlo [104 0.85(8) 0.84(4)

Table 6.1: For comparison, the critical exponents of the Heisenberg Gross-Neveu

model are shown for different expansion schemes as well as the results

from Monte-Carlo calculations, taken from Ref. .

dominance of the long-range interaction would suggest a conformal phase transition
of infinite order [136] in contrary to the Gross-Neveu universality class. In Ref.
they found numerical evidence for such a behavior, the inclusion of the long-range
interaction would therefore be an interesting extension to the present model.

For the consideration of the critical exponents, the finite size effects regarding the
imaginary time lattice are expected to be not relevant, this effect should rather be
important concerning dynamical critical exponents. In order to extract a reliable
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Figure 6.14: Shown is a nice data collapse for the scaled order parameter in depen-

dence of an appropriate scaled reduced control parameter. Due to the

described fermionic character of the many body system, data points

from lattice sizes equal or greater than N = 72 drop out of the data

collapse to zero on the left hand side of the critical coupling.
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critical coupling for 3 = 100 k!, these effects again have to be taken into account
and they are of course enhanced caused by the highly decreased temperature. In
the following we will therefore study the temperature dependence of the critical
coupling.

6.4.3 Temperature Dependence

In order to extract the critical coupling, the same procedure as pointed out for
B =20 k~! was undertaken for 8 = 100 x~! (see Fig. and the critical coupling
was fixed to about U, = 3.45 k by the fit to a straight line. The values slightly differ
from zero below the critical coupling, again exhibits finite volume effects from the
spatial lattice, which can be nicely compensated by the polynomial fit of first degree
which is justified by the findings of the last section (8 ~ 1).

With this approach we were able to determine the critical coupling for temper-
atures between 8 = 10 k= and B = 200 s~ at most. For smaller temperatures
the procedure is of course much simpler, here the choice of N = 90 and N; = 1000
reveals a good tradeoff between the lattice size in momentum space and the number
of lattice points in imaginary time direction with almost no finite volume effects. For
inverse temperatures below 8 = 10 k= we thus omit the finite size extrapolation
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0.5 LNi=720 N=1728 i
N=864 N=2000
X N=972 N=2160
g 04 N=1080 © N=2304 © .
E Ni=1200 e N o ®
T 0.3 N=1350 4 fit =
=
% 02| .
0.1 | .
0 i pp—— i it
0 1 2 3 4 5

U [K]

Figure 6.15: The real part of the mass renormalization function at the Dirac point
for the minimal Matsubara contribution is plotted against the on-site
coupling for various time lattice sizes IN; for a fixed finite temperature
of 3 =100x"1. As explained in relation with Fig. a polynomial fit
of second order was used to extrapolate to Ny — oco. Afterwards the
extrapolated values were fitted to a straight line in order to extract the
critical on-site coupling.
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and determine the critical coupling with the same procedure as in Sec. where
the error is similarly estimated by the discretization in direction of the on-site cou-
pling. In Fig. the order parameter is represented for varying on-site couplings
for high temperatures 8 = 0.3 — 1 x~! for both, the minimal as well as the maximal
Matsubara frequency. Here the coincidence for both frequencies in the vicinity of
the semimetal insulator transition can be nicely observed. Moreover, the critical on-
site coupling increases with increasing temperature, due to higher kinetic energies a
stronger on-site coupling is necessary to keep the system into an antiferromagnetic
ordered insulator phase.
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Figure 6.16: The semimetal to insulator transition for the SDW case is illustrated for
different temperatures in the high temperature regime. Here we found
to be in good accordance with the infinite volume limit N — oo, Ny —
oo for N =90 and Ny = 1000 lattice points. For comparison the results
for the minimal and maximal Matsubara frequency are depicted which

are in nice agreement near the critical point.

The final results for the SDW case are shown in Fig. [6.17] where the obtained
critical on-site potential is represented for different temperatures in units of the
hopping parameter k. These data points were fitted to a power function and show
excellent accordance with the following fit parameters, given by

f(z) =0.35- (x — 3.43)084. (6.33)

In the high-temperature regime the critical coupling increases fast for an increas-
ing temperature. In order to obtain a critical on-site coupling for T' — 0, quite
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small temperatures have to be reached, for instance even for 3 = 20 x~! the critical
coupling still drifts to lower values for lower temperatures. Therefore really high
lattice sizes IV; in imaginary time direction are necessary which can be provided by
using the framework of DSE’s as demonstrated in this section.
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Figure 6.17: The extracted critical on-site coupling is represented for different tem-
peratures in units of the hopping parameter x. The data points have
been fitted to a power function given by Eq. (6.33)).

As one can see the extracted critical coupling U, ~ 3.43 k in the applied calculation
for T — 0 is merely a bit larger than the on-site coupling of graphene Uy ~ 3.32k
given in Sec. In the next section we therefore want to discuss the possibility
of an infinite chemical potential concerning the charge carrier density as discussed
in App. with u = puy = p. Experimentally, this could be realized by chemical
modification in terms of doping or different substrate possibilities or e.g. by applying
a gate voltage.

6.4.4 Phase Diagram

As last step, the p dependence of SDW state should be investigated. In order to
study the p dependence concerning the CDW phase one has to include effects from
H?A # HkBB for the vacuum polarization which should not be taken into account
within this work. In Sec. [6.3]it was argued that the wavefunction renormalization
function even do not decisively influence the antiferromagnetic semimetal insulator
transition, at least for small chemical potentials. Within the truncation scheme
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keeping Zj = 1, the calculations for p # 0 are of course numerically less expensive.
The order parameter shifted by u, what eventually equates to the single quasi-
particle energies at the Dirac point, is illustrated in Fig. for different values of
w. Even higher chemical potentials are easily accessible with the applied numerics.
For small chemical potentials we found a good agreement with the solution for the
included non-ttrivial wavefunction renormalizations (see Fig. . Above the critical
couplings the mass renormalization functions without p shift all fall onto one line
due to the Silverblaze property.

V=0, B=20 k1, N=90, N{=1000

4 1 ] ] I I

(Re[ M(q°min. K)-H) [K]
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Figure 6.18: The p dependence for the antiferromagnetic semimetal insulator tran-
sition is illustrated within the truncation scheme for Z; = 1.

In the following we want to consider a system which merely exhibits a fixed on-
site potential U = 5k. The coupling is fixed to a value slightly above the critical
coupling, exemplary we choose U = 5k and V = 0 but it could have been fixed to
any other coupling pair of the U-V plane. For this system the real phase diagram
illustrating the pu-T-dependence of the phase transition was calculated.

As we found a first-order transition for g # 0 as illustrated in Fig. the
starting point of the iteration was determined to find an upper and lower boundary
for the phase transition. In Fig. the results are shown for a fixed lattice size,
N =90 and N; = 1000. On the left hand side the initial value for the iteration was
set to I = 0.1 whereas the results for a initial value of I = 10 are demonstrated on
the right hand side. For small chemical potentials and low temperatures the system
persists in an insulating phase realized by an SDW configuration.

86



T k]

0.8

0.7

0.6

0.5

6.4 RESULTS WITH TRIVIAL WAVE FUNCTION RENORMALIZATIONS

N=90, Nt=1000 N=90, Nt=1000

2990000808 2000080808
2000 09888
- 204 - > [ 41
| | | | | | | | | | |
0 0.2 0.4 0.6 0.8 01 02 03 04 05 06 07 08 09
u k] u [K]
Figure 6.19: An electron system with zero nearest neighbor interaction and a fixed
on-site coupling U = 5k is investigated. On the left hand side the
T-p phase diagram is shown for a fixed lattice N = 90 and N, =
1000 and an initial iteration value of I = 0.1. On the right hand side
the corresponding results are illustrated for an initial iteration value
of I =10. From that the lower and upper boundary of the first-order
transition can be determined.
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Figure 6.20: The obtained phase diagram from Fig. is summarized in order to

locate the end point of the first-order transition for the electron system
exhibiting a fixed on-site coupling U = 5 k.
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The phase diagram resulting from Fig. [6.19|is summarized in Fig. [6.20] where the
endpoint of the first-order phase transition is identified by about

(1, T) = (0.6725,0.2625) & (6.34)

within the presented accuracy. This diagram provides an qualitative impression of
possible modifications on the location of the phase transition for a strongly corre-
lated electron system with a fixed coupling strength on the hexagonal lattice. Larger
chemical potentials as well as higher temperatures at some point pushes the consid-
ered electron system into the semimetal phase. Here a quantitative more realistic
and also the comparison to such CDW results would be interesting.
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SUMMARY AND OUTLOOK

In this thesis the semimetal to insulator transition of the hexagonal lattice was
investigated in regard to a possible SDW or CDW insulating phase [27,29-31].
Motivated by the strongly coupled electrons of graphene, a tight binding model was
applied, the kinetic energy is therefore approximated by nearest neighbor hopping
contributions. These contributions are determined by the hopping parameter
which describes the probability of an electron to hop from one lattice site to an
adjacent one [11,/16] and is experimentally fixed to about x = 2.8€V. The hopping
parameter consequently sets the natural energy unit for the considered theory.

In particular, the realization of two competing phases in the insulator regime,
the CDW and SDW configuration, were studied in Sec. These configurations
represent different vacuum alignments within the same symmetry-breaking pattern,
the involved symmetry is an analog of chiral symmetry in QED21; concerning the
sublattice-valley symmetry of the hexagonal lattice as pointed out in Sec. This
sublattice-valley symmetry can either be broken by an imbalance of the charge carrier
distribution or of the spin distribution (CDW or SDW state) which can both cause
a dynamical gap leading to an insulator phase of the fermionic many body system.

The fermionic interaction was modeled within a Coulomb interaction neglecting
electromagnetic retardation effects due to the small ratio between Fermi velocity
and speed of light, vy/c ~ 1/300. Additionally, we followed the approach of an
extended Hubbard model in Sec. where the long-range tail of the interaction is
omitted and only the on-site potential U as well as the nearest neighbor interaction
V' have been taken into account. In recent studies it was shown that the long-
range tail is expected to have only marginal influence on the semimetal insulator
transition [24,25]. Furthermore, the extended Hubbard model provides an optimal
framework in order to study the competing order within these insulating phases.
This is because a dominating on-site or nearest neighbor potential is directly related
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to the preference of an SDW or CDW state, respectively. The coupling strengths
U and V of the interaction determine the second important energy scale of the
theory and are also specified in units of k. The kinetic energy and the interaction
accordingly are of the same magnitude which defines the coupling parameter to be
a = 2.2, and makes perturbative methods unfeasible.

According to this we make use of the Dyson-Schwinger framework, representing
an effective and successful non-perturbative approach in QED [63}/65,/66,/107,/108]
as well as QCD [109,/110] phenomena. In comparison to Quantum Monte Carlo
procedures we are not faced with the sign problem and can therefore reach coupling
regions beyond V' = U/3 where the CDW phase becomes interesting. Moreover, the
Dyson-Schwinger formalism provides access to huge lattice sizes which is important
in order to reduce finite volume effects and extract critical exponents.

The Dyson-Schwinger equations have been derived twofold. In App.[C|the fermion
DSE was deduced from the Heisenberg equation within a Hartree-Fock approxima-
tion by means of second quantization, whereas we had to switch to the path inte-
gral formalism (App. in order to obtain the full set of DSE’s also including a
dressed photon propagator. The main difference between the CDW and SDW state
was proven to be a nonzero Hartree contribution concerning the CDW phase (see
Eq. or Fig. . In the first part of this work the interaction is assumed
to be static and the temperature as well as the chemical potential was set to zero.
In this context, the static approximation ensures the frequency independence of
the fermionic renormalization functions and consequently all frequency dependen-
cies could be integrated out analytically. Furthermore, the Ward identity within
the static approach requires a bare vertex function and provides a closed set of
Dyson-Schwinger equations.

In Chap. [4] several approaches within a mean field theory were discussed. In the
first step only the mass renormalization was considered where the critical coupling
was found to be analytically accessible [82]. Then bifurcation theory was applied in
order to extract the critical exponent of the order parameter 5 = 1 also analytically.
In a next step, in Sec. the renormalization effects on the band structure involving
Fermi velocity renormalization was included. The resulting phase transition for the
competing electron configurations was represented in Fig. where we have also
sketched the V' = U/3-line locating the first-order transition between the SDW state
and the CDW state. This V' = U/3-line was found analytically in Sec. by means
of the 2PI effective action and turned out to be even valid in the exact theory for
w=0.

In Chap. 5] the previous model was then extended towards a static approximation
considering the screening effects from the w-band electrons itself. In this context
the Dyson-Schwinger equation for the photon propagator was dynamically included
where the vacuum polarization is approximated by its zero frequency contribution.
Except to the static approximation the setup is similar to several studies employing
Quantum Monte Carlo techniques for the SDW case [20-24], hence the assumption
of a static screening should ideally be validated against these lattice results. Unfor-
tunately, the static approximation was proven to highly overestimate the screening
effects and hence the critical on-site coupling at least in the SDW case. For the
CDW case the deviation from the Hartree-Fock approximation is much smaller and
therefore the results seem to be much more reliable.
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However, in order to find an appropriate approximation, the fully frequency depen-
dent photon propagator was taken into account in Chap.[6] Based on the frequency
dependent interaction, the fermionic renormalization functions become frequency
dependent too, which requires a dressed vertex function. Due to fulfill the Ward
Takahashi identity, a kind of simplified Ball Chiu vertex ansatz was chosen to ac-
count for vertex corrections. This likewise asks for a dressed wavefunction renor-
malization which is thus dynamically included. The numerical results within this
truncation scheme supply clear evidence that the contained wavefunction renormal-
ization do not have a considerable influence on the quantities of interest, not for the
SDW case and even less regarding the CDW case. For this reason the wavefunction
renormalization is again fixed to its bare value in order to reach even larger lattice
sizes and in order to save run time.

The obtained critical coupling values for the SDW case are then found to be
in satisfying accordance with comparable lattice results [20-23,31,/40,54] why we
assume to end up with an appropriate truncation scheme. The obtained phase
diagram representing the semimetal to insulator transition regarding the SDW as
well as the CDW case is shown in Fig. In general, the results for the CDW
configuration seem to be much more stable throughout the applied approximations
which suggests that it is dominantly affected by the Hartree term of the self-energy.

With a finally reasonable truncation scheme at hand, we additionally investigated
the critical exponents of the theory which were found to be in nice agreement with
the critical exponents that were expected within a Gross-Neveu universality class
[30,[84L/100,/101]. Moreover, we could not find a deviation from g = 1 for the critical
exponent of the order parameter within our numerical accuracy. Apart from that
we investigated the temperature dependence of the critical on-site coupling as well
as the influence from a finite chemical potential u. The T-u phase diagram for an
exemplary on-site coupling of U = 5k and zero nearest neighbor interaction was
calculated and is represented in Fig.

On the basis of the established truncation scheme there are several further inter-
esting scenarios that can be investigated by only small modifications of the existing
numerical setup. For instance, the extension to possible deviations between the
interactions on the different sublattices, VA4 # VBB would make the semimetal
insulator transition accessible for the CDW case at finite p. Also a similar finite-size
scaling and the investigation of the temperature dependence of the critical coupling
for the CDW phase would be interesting and is already in progress. Furthermore,
the numerical realization of real competing phases within one system would be rea-
sonable in order to even find possible stable mixed states. This ansatz has already
been implemented numerically but with the choice of the initial iteration value one
likewise determines a preference of the system towards either an SDW or an CDW
realization. This problem might be solved by randomly distributed positive and
negative initial values and could be part of a future project. Also the possibility of
an external magnetic field [111,]112] could be studied in order to push graphene into
the insulating phase. Another interesting model is motivated by the introduction of
an arbitrary number of fermion flavors Ny regarding many flavor QED, | [113] or
for instance also the so-called t-V model where the CDW case for Ny = 1 and zero
on-site coupling is considered. Furthermore the inclusion of the long-range interac-
tion [69,114] or an improved Hubbard model [115] could provide a next step, here we
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would not expect remarkable changes in the location of the semimetal insulator tran-
sition. In this context also the inclusion of screening effects from inner o-electrons
can be interesting (see [69]) since it mainly affects the short-range interaction and
could lead to a dominant long-range interaction in the vicinity of the phase tran-
sition which would manifest itself in a conformal phase transition as suggested in
Ref. [40].

Beyond these simple extensions, the investigation of other hexagonal structures
with different structure functions as introduced in Chap. [I| or also allotropes of
graphene (see Chap. [2)) such as bilayer graphene would be exciting.
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NOTATION AND RELATIONS

A.1 Basis of the Hexagonal Lattice

In the following the characteristic quantities for two possible lattice representations
for the hexagonal lattice are listed.

Representation 1

Basis vectors in position space:

ar=a (?) , az = g (f) . (A1)

Basis vectors in momentum space:

b= (*f) , b= ({f) . (A2)

Unit cell area in position space: A, = |a; x az| = v/3a?/2.
Area of the Brillouin zone: BZ = |by x by| = 872/y/3a?.
Nearest neighbour vectors:

01 =ai, 02 = asg, 03 = —((11 + CLQ) . <A3)

The discrete position vector and the associated vector on the discrete momentum
lattice within the Brioullin zone is given by

1
Kmn =+ (mb1 +nbs), rij =ta1+jaz, (A.4)
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the structure function therefore reads

3 ) . ;
P = Y €1F0n = IR 4 TR 4 T (i) (A.5)
n=1
and fulfills several symmetry transformations and in particular all boundary condi-
tions,
Pmn = Pm+Nn+N Pmn = ‘p*meanv Pmn = Pnm , (Aﬁ)

(see Eq. (A.13)) and

Pmn = Pm+Nn » Pmn = Pmn+N - (A7>

Representation 2

Basis vectors in position space:

179\ 3 )" 279

Basis vectors in momentum space:

by = :277; (?) : by = 2T <\/§> . (A.9)

: . s 2
Unit cell area in position space: AZ = |a; X as| = @ .

Area of the Brillouin zone: BZ = |b; X ba| = 3\8/%22 .

Nearest neighbour vectors:

a—a s mt2e o 2ata (A.10)

o, = _
=3 3 3

The position and momentum space vectors are discretized as in Eq. (A.4) and the
corresponding structure function is given by

3 .
—2mi

P = > €K — o (mon) | oS (mi2m) | T Gmn) (A.11)

n=1
which also fulfills (compare with Eq. (A.6) and Eq. (A.7))

Pmn = Pm+Nn+N, Pmn = @?V—mN—n? Pmn = ‘P;kzm ) (A.12)

but not the boundary conditions given by
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A.2 MATHEMATICAL RELATIONS

Pmn 7‘é Pm+Nn » Pmn 7& Pmn+N - (Als)

Note that this basis is sufficient for considerations which only depend on the
absolute value |@p,,| since the absolute value again complies with the boundary
conditions of Eq. (A.13]). Nevertheless, in order to generalize ¢ to a renormalization
function within the Dyson-Schwinger formalism one needs to distinguish between ¢
and ¢* and therefore one has to use the basis representation 1, discussed above.

A.2 Mathematical Relations

Dirac Matrices

The following Dirac matrices are introduced in the two-dimensional sublattice space
Yo = 03, Vi =03 0i, (A.14)

with ¢ = 1,2, satisfying the Clifford algebra {v,,7,} = 2g,, with g, = diag(1,-1,-1)
for p,v € {0,1,2}. The matrices o; label the standard Pauli matrices given by

10 0 1 0 —i 1 0
on = o1 = g9 = g3 = .
=10 1) 7 \1 o) 2= \i o) 7o -1

(A.15)

Gaussian Integrals

The n-dimensional form of the Gaussian integral, with J and ¢ denoting n-dimensional
fields and A being an n X n matrix, is given by

[ Db e honttrions _ g Ak b5, (A.16)
(2m)
where the product of field integrations is commonly abbreviated by

n

Do =[] ém- (A.17)

m=1

For the integration over fermionic complex fields the behavior of the complex
Grassmann valued variables has to be taken into account (see e.g. Ref. [85}[116])
wherefore one obtains

/ Dy Dy e A HEmAEN — [det A] €546 (A.18)
as fermionic version of the Gaussian integral. Note that in the bosonic case the

inverse of the determinant appears. The determinant in the numerator results from
a coordinate transformation for Grassmann valued variables [116].
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Hubbard-Stratonovich Transformation

The transformation introduced by Strotonovich and Hubbard [117] makes use of the
above presented Gaussian integrals to construct a quantum field theory in which the
interaction is permitted by bosonic gauge fields. These gauge fields are introduced
by the transformation of a Gaussian integral, where exponents of quadratic powers
in the fermionic density fields are converted into an integral over an auxilary bosonic
field (that plays the role of a gauge field) that is now linearly coupled to the fermionic
density [70,116],

D=

edovions = [det(OV) ) [ S emhe o, (A.19)

2m) 7

where n represents the dimension of the field vector and V' is an n x n matrix. For
a negative sign in the exponent, a complex coupled field is needed [116]

Do —Soivij'o;-isoini (A.20)
(27)"/2

D=

e 3PiVijpi — [det((6 V)_l)]
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MINKOWSKI AND EUCLIDEAN SPACETIME

B.1 Three-Vector Notation and Fourier Transform

Minkowski spacetime

For the Minkowskian spacetime we define the common vector notation with real-
time variable t = 2% and the corresponding Minkowskian action and Lagrangian,
denoted by Sp; and L) respectively,

x=(t,x), SM:%EM with %EZ/CZZ‘O, (B.1)

where x is a two-dimensional vector of the discrete honeycomb lattice generally given
by
r=1a;+jas, (B.Q)

explicitly described in App. The spatial sum means the sum over the lattice
indices ¢ and j and still contains the sum over the sublattices A and B as well as the
sum over unoccupied sites for the finer triangular lattice (App. |A.1). However, the
summands are often restricted to one sublattice as described by (see also Eq. (2.15)))

&(t,z), x on sublattice B,
0, otherwise.
(B.3)
For the transition to a continuous spatial integral, of course the area of the unit
cell A, has to be taken into account

AY =AY — /d% (B.4)

&(t,x), x on sublattice A,
ga(-r) = .
0, otherwise,

and  &(x) = {
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B MINKOWSKI AND EUCLIDEAN SPACETIME

The corresponding frequency-momentum space description results by a Fourier trans-
form

= ik f(k) e7'*  with k= (k% k) and i e Z/ dko (B.5)

with the common Minkowski metric as defined in App. the inner product is
given by
k-x=k%2"-kz. (B.6)

Here the lattice decomposition from above accordingly demands for a discretization

of momentum space
1

with normalized basis vectors a; - b; = 27wd;;. The sum over k therefore means the
sum over momentum space indices m and n, providing an usual discrete Fourier
transform between spatial and momentum space variables. A transition to a con-

tinuous description can be realized by

d’k
N227r2z NQQWQZ - /(2”)2’ (B.8)

m,n

with BZ being the surface area of the Brioullin zone as defined in App. and
AC . BZ — (27‘(‘)2 .
Euclidean spacetime

For Euclidean spacetime we take an analog notation with the three-vector

TR TE T

where Sg is the Euclidean action with the corresponding Euclidean Lagrangian Lg.
The Euclidean time % is denoted by 7 as usual.
Fourier analysis then results with standard Matsubara frequencies k,, as follows

Z/ (B.10)

flzg) = i f(kg) e*2%E  with kg = (K%, k) and
k’E kE

where the Euclidean scalar product can be identified by
kg -zp =wr+kax, (B.11)

with k and @« as explained above and the Euclidean frequency is denoted by w.

The transition from Minkowski to Euclidean spacetime is related to some ambigu-
ous analytical continuation. The direct formal continuation is carried out by a Wick
rotation, which is here defined by ¢t — i7 and k° — iw. For finite temperature, the
frequency integral from Eq. is finite as well,

B
/da:%—)/o dxY;
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B.1 THREE-VECTOR NOTATION AND FOURIER TRANSFORM

with the inverse temperature 5 = 1/T, leading to discrete periodic functions in
frequency space characterized by the standard Matsubara frequencies w,, = (2n +
1)7/B for antiperiodic and w, = 27n/f for periodic boundary conditions, i.e. for a
fermionic and bosonic behavior respectively. Consequently the continuous frequency
integral is rewritten in terms of a discrete Matsubara sum for finite temperature
considerations |118]

dw 1 1
— = = and # S . B.12
o e BN kZ (B.12)

Conventions of propagators in different time formalisms

In the following we want to investigate the transition between the Euclidean prop-
agator marked with a subscript F and the corresponding Feynman propagator Gp.
In general the action in Minkowski space Sys should satisfy the following equation

Z = / Db, e IrlPal = / Dd,, e Smlbal (B.13)

where « labels arbitrary quantum fields. For simplicity we consider the bare fermionic
action which was obtained directly from path integral formalism (see App. and
is given by

R %E ;é ¥(wp) Gholws —ap) " V(a), (B.14)

where ¢ indicates the spin index and the Euclidean propagator in position space is

given by
, 2
0 ) (Or = po +mg) é(zp — o) —K Y Ozt Al Orrr
Gpolzp —ap)™" = 2 =0
/ilz 5w+Al,:c’ Orrt (—87— + Uo + mo') (5($E — :C;E)
=0
(B.15)
In momentum space we obtain
Sk —Z w (kg) G o (kp) ™" ¢(kp) (B.16)
with
_ —i kY — o +m —K Pk
GY (k)L = BT P e . B.17
Bo(k2) ( K9k i kY + o + Mg (B17)

This can be related to the Minkowskian notation where the action is given by
St =03 9k G0 (k). (B.18)
g

so the associated Green functions are connected via

GhUkp) ' = -iGr(k® =ik%) 1, (B.19)
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B MINKOWSKI AND EUCLIDEAN SPACETIME

with the bare inverse fermion propagator in momentum space

1KY — e My, —K ¢k
Gho (k) ' =i ( wot K me (B.20)

The corresponding propagator is found to be

G0 (k) = i K + po + mg Ork
fre (K + pig)? — (m2 + w2|okl?) +ie \ —¢jr K0 —po+mg)
(B.21)
For completeness we also want to specify the Feynman propagator in position space
. 2
(=1 0k — pto + mo) 6(x — 2') —K 3 Optr AL Ot
G%ﬂ(a} —2) =i ) 1=0
K Y Ogy Al Ot (i 0+ po +my) 0(x — ')
1=0

(B.22)
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THE FERMIONIC DSE’S FROM THE
HEISENBERG EQUATIONS

C.1 The Free Propagator

At first, the free fermion propagator should be derived from the Heisenberg equations
for the non-interacting Hamiltonian Hy from Eq. (2.28). With the time ordered
propagator for fermionic fields

(Cino()ch g, (0) >0
_<C;r‘,k7g(0)ci,k,a(t)> t<0

= 0(t) (cima(t)ch, ,(0) — O(=t) (el (0)cino(t)), (C2)
where ¢ and j denote sublattice indices, with i,j € {0,1} for the A and B lattice

respectively.
The time differenciated propagator then is given by

(T(Cio (D))o (0)) = { (C.1)

%G%g@,m =21 (O(1) (ko (1)eh 1o (0)) ~ O(—1) (el (0)eso(1))) (C3)
2 (1 6(0) (i lt), g o (O)]1) (C.4)
:%(_1)j <T(éi,k,a(t)c;r-7k’g(0))> + (—1)j 5(t) 6ij (C5)

with the anti-commutator relations from Eq. (2.22)). The time dependence of the
operator can be derived from the Heisenberg equation (i = 1)

.0
i aci,k,a(t) = —[Ho, Ciko(t)]-, (C.6)
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where the minus sign now refers to the commutator instead of the anti-commutator
indicated by a plus sign. For the commutator one finds

K *
[Ho, Ciko]— =Nz > ([a;t;/,g/aci,k,cr]-i- Ok by o7 + [b;rc/,guci,k,ah brr arror)  (C.7)

! !
k' o

+ Uo Cik,o + (_l)l Mg Ciko - (CS>

With the symmetry transformations from Chap.

27ril _27Til
Oktin =€ 3 P,  bppyan=e 3 by, (C.9)
and .
_2miyg
Ppsin =€ 3 P, Qgyia = Gk, (C.10)

the following equations were found

iak,0(t) = —KORbE,o(t) — fotk o (t) + Meak o (1), (C.11)
ii)k,o(t) = _H¢lt;ak:,a(t) - Mobk,a(t) - mabk,g(t) . (0'12)

By multiplying with the appropriate creation operator at t = 0, the matrix equation
for the free fermion propagator can be obtained

d _ _
LG (k)= —i [ Mot 2 GO (t,k)+5(t) 1" . (C.13)
dt —QZ)ZFL —lhe — My ’

Mo

Fourier transforming this expression into frequency space yields

/ ” dGY,(t,k)

< e = kG, (K, k) . (C.14)

By Fourier transforming Eq. (C.13), the free fermion propagator is given by

(C.15)

- RO+ pe —m Prk
G (K, k)™ = — o
F,a( ) ) 1 _¢ZKV _ko — Uy — M )

and its associated inverse matrix with appropriate Feynman boundary conditions

; 0
G%7U(k;0’k) _ 1 (k +,uo'+mo' ¢)k/€ > )

(B4 o) — (2 + /) i\ —gps kO — gt g
(C.16)

C.2 The Interacting Propagator

Exactly the same procedure should now be repeated for the interacting theory.
The Coulomb interaction on the honeycomb lattice in momentum space is given
in Eq. (3.14) and can be separated into its sublattice contributions via

- 1 -
He = N6 Z Vq” C;pﬂﬁ(t) c;r',qu,o’(t) Cj,kﬂ’(t) Cim,a(t)a (0-17)

k.p,q,0,0’
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C.2 THE INTERACTING PROPAGATOR

where the time index is again supressed in the following. The corresponding com-
mutator is finally given by

[Hc”, Cv,k:’,s]— = N4 Z VqZ] (6Uj C;p.;_qﬁ Cu,k'+q,s Ci,p,oc — din C;L',p_qp Cjp,o Cv,k’—q,s) ,
P.q,0
(C.18)
the two terms can be further summarized by a shift of the momentum sum with
q— —q.

Following the procedure from the last section, the Heisenberg equation now is
used to obtain the time dependence of the annihilation operator. Additionally, time
ordered products of annihilation and creation operators, which arise in combina-
tions of four, were factorized by possible combinations of corresponding nonzero
expectation values of two operators [68]. Exemplary, for sublattice A we found

<T(a;:)+q,o'/ak"l‘qﬂ'a’p,gla;;:,o' (0))) = Z Opk+1A0507 <T(a;r;+q,g'ak+q,a)> <T(ap,0’a;rc,g (0)))
=0

- Z Og+18,0(T p+q o 0p.o)) <T(ak+q,aa};,o(0))>

=3 <6pk5w/< (A}, g orhtq.0)) (T (aporal ,(0))
— 8g0{T(al ¢ .o )N (asg,00} ,(0))))
=N? (koo (T(al, o orUhq.o)) — 0g0(T(a) o 1ap0))) GEA(LK).

(C.19)
The equation of motion can therefore be written as
dGps(t, k
F’dt() —(t)y° = (M° + M) Gro(t,k), (C.20)

with M° from Eq. (C.13)) and the following components of M

AA AA rAA BA
(Z V a’k:+q o dk+q, U - Vq=0 Z<T(CLL’U,CLP7 V Z p o' Pv ) ’
p,o’
A
B N4 Z VB k+q o'ak+Q70')> 9

MPA = ZVAB (fyq.0kq0)

MBB = (ZVBB (b quoDk+g.0) VBBZ T(b), by, VABZ (a) ap.ar) ))

The tilde here indicates a symmetrized version of the interaction terms given by

: 1 - 1
VA = 5(VAA +VAD, VP = 5(VBB +VEP), (C.21)
VP =3 (VAB vEY, Vit =3 (VBA vaDy. (C.22)
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In principal we have V_“‘qA = VqAA = VqBB and quB = VqAB* = VqBA, so that
the sublattice matrices V; and Vj coincide (VqA:% = VqB:% € R). This point has
to be reconsidered for the case of a frequency-dependent potential, which can be
simply introduced by an extension of the momentum variable within the presented
formalism. For now, the interaction is assumed to be frequency independent, and
so is the self-energy (see Eq. in the following).

Performing a Fourier transform of Eq. yields

— (M° +ik% + M) Gro (K k) =+°. (C.23)

So we end up with the Dyson-Schwinger equation for the interacting fermion prop-
agator

Gro(k% k)™ =G, (K, k)™ + S, (k), (C.24)
where the self-energy 3 can be identified by —v°M, and is finally given by
S (k) = +§2/C§q (ZV“G 2@k +q) - ZG TV D Glala p)) :
q p.o
$AB (k) = — / ZVBAG (¢ k+q),
$BA(gy = ) / Z VABGBA(S k + q), (C.25)

»BB () = +ﬁ/ (ZVBBG B(® k+q)— VBBZG qp+VABZG (q p))

p,o

In a more convenient way the self-energy can be represented in sublattice space as

S, (k) = Z DY (q)7°T" Gro(q®, k + q) 7T (C.26)
q,u,u’
L9 S (ol (D3 (g = )T Gror(g®, @) T T
N A= S ’

(C.27)

where the trace has to be taken in sublattice space and also u and u' represent
sublattice indices, either refering to the A (u = 0) or B (u = 1) lattice. Furthermore,
we introduce explicit sublattice projectors I'* (Eq. ) to come closer to the well
known form of DSE’s within a standard QED approach. Additionally we identify
the bare photon propagator with the presumed interaction via

Dg"(q) =iV"™(q). (C.28)
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FREQUENCY INTEGRALS AND MATSUBARA
SUMS

D.1 Matsubara Sums

In the static approximation the explicitly frequency dependent parts of the DSE’s
can be evaluated analytically. For that we mainly have to handle two kind of inte-
grals,
dq® i
L (k)= [ — D.1
Lo (k) 2 (0 +p)? — Q2,7 (B-1)

and 0 " )
dg°  i(q"+p)Zok
I,(k)= [ — : D.2
270( ) o7 (q0+ﬂ>2ng_ng7 ( )
which were solved within the Matsubara sum formalism for finite temperature and
by using the residue theorem with modified integration contours as elaborated in

Ref. [119] and Ref. [120]. So finally we found

1 1 1

I o (k) = e Z:Z o 1 (o) Zon — 1) om —1 (o) Z0n + 11) (D.3)
s o (L) o (M) o
= 290; Zop 0 (F50) )
110, B—00 1 (D.7)

2 Qo‘,k Za,k ’

105
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and
1 Qg’k/Zo,k 2 Qo’,k/ka + M

I, (k) 178 {tanh (fﬁ) — tanh (fﬂ)} (D.8)
129, (D.9)
B—o0
2% sen (p) O (|| — Lo/ 20 1) (D.10)

275k
_#=0, 00, 0, (D.11)
(2n+1)w

with ¢ — iw, and w, = for fermionic boundary conditions. Regarding the
second integral, it can be helpful to introduce a regularization term which is equal
to the case of = 0, in order to apply the residue theorem

dg®  i(¢"+p)Zog dg®  1¢°Z,k
IQ,U(k): i 0 (q P) /;) : 5 i 0 a 27 3 . (D12)
27 (¢" + ) 25— g 27 (q° Zyp)? — Qg,k
=0
From the evaluation of Eq. (D.3]) one can additionally extract

1 1
Zn:n+1/2+ia: n+124+iy -y

[tanh(7z) — tanh(7y)] (D.13)

which is a usefule relation in order to evaluate Matsubara sums and is also exploited
to determine the frequency integrals that occur in the vacuum polarization function

in Sec. 5.2

D.2 Fermion Number Conservation

With the frequency integrals at hand, the free energy for the non-interacting theory
and thus especially the number of fermions per unit cell can be easily extracted.
The fermionic contribution to the free energy in the non-interacting theory is given
by Qf (T, pn) = =T In 2y [118,[121},[122] with

Zy = / D Dip e 58 and  S%[¥,4] from Eq. (B.16), (D.14)

where o labels the spin index. By evaluating the gaussian integral (see Sec. |A.2)),
the free energy per unit cell is found to be

Qf(T, 1) /N? = —% > Te[In((ko + o)” — €4 )/ T7)] (D.15)

Here the trace is given by the sum over all Matsubara frequencies and momentum
modes within the Briouillin zone Tr — 3, ,, with ko = ¢wy, as usual. With

ekt (ko+i po))[Eh o+ (—ko+ 116)?] = [k§+ (ko — o) 2] [kG + (Ek,o+10)], (D.16)
and

2 | = 2\ _ 5’2“’/T2 2 1
> In ((wp + ko) /T?) = da® )
n 1 n

(wn/T)? + 22

+> In(1+ (wa/T)?),
! (D.17)
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where the Matsubara sum of the first term has already been calculated in Eq. ,
the Matsubara sum within the free ernergy can be evaluated. The second term has
been dropped, due to the fact that it neither depends on the chemical potential nor
on the temperature (with fermionic frequencies w, = (2n+ 1) 7 T'), what effectively

regularizes the integral and determines the vacuum energy to be zero. So we finally
find

(T, 1) /N? = — 3 In cosh(B(ene — to)/2) +In cosh(B(ekp + 110)/2)
(D.18)

Tooo T
=z _ WZ(EIC,U 6(5k,0_ ‘MUD + |/J/g'|@("u/a-| _gk,a)), (Dlg)
k,o

from what the fermion number per unit cell can be simply extracted and is given by

1 dQy . 1
Ng = ﬁm = 51gn(,ug) ; ﬁ@ﬂ#o‘ - 51@,0) (D-QO)
[l
= sign(uo) de p(e) (D.21)
0

with p(e) being the density of states [16], originally calulated in Ref. [12] in 1953.
Consequently for u — 400 one finds plus or minus one quasiparticle per unit cell and
per spin degree of freedom, here negative values refer to hole states of the energy
band. However, important to note here is that the neutrality point for electron
states and holes, so for graphene at half-filling, is found for puy = p; = 0 for two
fermion flavors.
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DYSON-SCHWINGER EQUATIONS

E.1 Path Integral Formalism

In the following the formalism of second quantization is translated to the path inte-
gral formalism of a quantum field theory by the introduction of coherent fermionic
states via

ot _ Cb*
) =e 2% ]0)  and (9] = (0] e 2V (E1)
with the fermionic creation and annihilation operators c;r and ¢; for the quasi-
particles in coordinate space as already introduced in Sec. These states com-

posed by Grassmann numbers and the corresponding creation/annihilation operator
build a basis of Eigenstates of the respective operator

ci [¥) = —; |¥) and (W) cf = (W] (7). (E-2)

For a detailed description and derivation of the basic principles we recommend
Ref. |116] or Ref. |123]. Note that in the considered theory the vacuum state in-
dicated by |0) or (0| refers to the many-particle state of the half-filled hexagonal
lattice.

Starting from the Hamiltonian in second quantization, the partition function that
leads to the generating functional for correlation functions in Euclidean space-time
is given by

Z=tre P = / [T d€; de digs dng e 2 S8Fn) (g —pl =Pl |g ) (B.3)

for convenience we drop the subscript E (as introduces in App. for Euclidean
space-time variables throughout the whole chapter. The fermionic many-particle
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state |, n) is characterized by two complex Grassmann valued fields  and £. In order
to distinguish between spin-up and spin-down fermions we introduce the notation

§o = Yzt and Ny = Yu,| - (E.4)

For any normal ordered function F ( e0 Cats € L 1C 1) the matrix element is then
given by [116]

&l F(el o, connel | cay) 1€ ) = F(EL €yl Tin) €2 Exbatniile (E.5)

With the Trotter-Theorem [70] the partition function from Eq. (E.3) is factorized
via

e PH g M=o om0l (E.6)
with § = &~ and a complete set of states building the unity
/ [T de; de dn dn, e ZSETE) Je gy (e | =1, (E7)
€T

is inserted between all exponentials. With antiperiodic boundary conditions

<_£7 _?7’ = <_§I,07 - = <£9§,Nt7 nx,Nt’ ’ (E8)

and a new integration variable for each insertion which is labeled by a second index
t, one obtains

Ni—1
zZ = / H H dfx t dg:v t dnx it dnx t e Zz t(fz erafetrid 41 w+1) <€:c Ni5 Nz, Nt‘ e ‘g:v Ni—15 Nz,Ny— 1>
t=0 =

X (€ Ni—1> NeNe—1] € €N, 25 Mo Ny—2) -+ - (€t Net] €T |En 0, M) -

In the next step the expectation values have to be evaluated for the Hamiltonian
of interest, here given by the free Hamiltonian from Eq. ([2.25)

0= —K Z Czo'cJU—i_C]ch"«U + Z mo ,ng Cis,o _Z/Lo 106207 (Eg)

< 7.7> 15,8,0 1,0
plus the two-particle interaction, as already introduced in Eq. (5.2)),
1 1
Hip=5 > oML+ Vi) e pejori—g D el eiq N1 =Vif) ef icjor:+Hos.

.. .. /
7‘7]’0—10— 2,1,0,0

>0 >0

(E.10)

Here the on-site interaction H,s is additionally separated from the interaction matrix

with ‘N/J = ‘7”_ = 0 and we formally introduce an arbitrary term proportional

to A € R, to ensure the invertibility of (A1 + ‘7;1',) and (A1 — V;) Note that

contributions proportional to the particle number operator has been absorbed in
the chemical potential (see Eq. (3.7)).

In order to take a closer look on the predominant on-site interaction, we use a

kind of complete Fierz transformation

(CI ci — 1)(0,]; ci—1)=— (CI Eci)(cz 7o), (E.11)
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E.1 PATH INTEGRAL FORMALISM

to gain another representation of the on-site contribution which directly couples to
the order parameter of an SDW state.

The spin index notation here is replaced by a two dimensional vector notation
with ¢; = (¢i¢,¢i,) and analogically for the creation operator, & is refering to the
Pauli matrices ¢! in spin space were the matrix product should be understood as
follows: Gopdys = Z?n:l U;”B . U%. In order to keep track of both possibilities in the
derivation of DSE’s an artificial parameter o was inserted which equals to o = 1 for
the theory investigated in the main part of this work,

Hos = % Z : (c;[ci)2 —(1—-aw) % Z : (ci&ci) (CI gei) . (E.12)

(] K2
Next, the required expectation values within the partition function are evaluated
with the use of Eq. and contributions which are quadratic in the density oper-
ator were linearized by a Hubbard-Stratonovich transformation (HST) (App. [A.2)).
As an example, the HST for the long-range contribution is considered in the follow-
ing, where the bosonic fields o and o~ have been introduced. These fields therefore

couple to the positive or negative semidefinite part of the interaction,

o * * Y7 * *
exp D) Z (§x,t+1fz,t + Ux,t+177z,t) ()\]1 + Vx@) (§y,t'+1§y,t' + 77y,t'+177y,t') (E~13)
x7y7t7tl

4] * T — * *
+§ Z (f;,tJrlgac,t + 773:,t+177;t,t) <)\]1 - V:Uy) (fy,turl{y,t’ + ny,t/+177y,t’)] =

I7y7t7t/
= = Dot Do~
+y—1 ST\ -1
x \Jdet [(A1 + V) ~1]y/det [(AT — 6V5)~1] / T / ey (B149)
[ 6 = — . * *
X €exp 3 Z U;cr,t (AT + VJF)xle;,t/ - 1520;,1& (fx,tﬂfx,t + 77x,t+177w,t)]
z,y,t,t’ x,t

- 5 ) o )
X exp b Z Ozt (AL-V )xylay,t’ + 5Z%,t (5;,t+15w,t + 772,t+177x7t)] .

x7y7t7t/ x7t

Here the product of integrals over all fields in Euclidean space-time is abbreviated

by
N¢e—1

DE =[] [] déus- (E.15)
t=0 =z

With the view of a compact notation we additionally absorb the prefactors in the in-
tegral measures (D = N2-N,). Furthermore we analogically introduce the Hubbard-
fields ® and g which couple to the on-site interaction and its Fierz transformed
version (Eq. (E.12).

In the next step we introduce the fermionic fields in sublattice space, this repre-
sentation simply divides the summation from above over all lattice points = (with
all fermionic fields being zero on unoccupied lattice points due to Eq. ) into
a summation over all lattice points of the corresponding sublattice (either A or B),
labeled by an index 1,

. T
=& = <§i“22> Y and L =&(t) = (2:;@2;3) ) (E.16)
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E DYSON-SCHWINGER EQUATIONS

for the bosonic fields we use

ot () e (P
ol =0l (t)= (% (t)> ,and @ =®(t) = (‘be (t)>, (E.17)

with the gamma matrices in sublattice space, given in App.[A2] With a transition
to a continuous time integral with § — 0 and Ny — oo for a fixed value of 5 (note
also the continuous time argument in Eq. and Eq. ) we obtain the
partition function of the form

B=6-N,
2 — [ DEDE DDy DO D Do Do exp |- / CiE &7, 6,50 0]

- / DEDE DDD$DpDo Do~ e Selé&nndioto™] (E.18)

In order to cover the sum over A and B sublattices within a matrix notation, the
sublattice projectors IT'4 and T'P already defined in Eq. (3.15) are used to obtain the
following Lagrangian,

2

2
= ng 700, & + 77 0, 771') — K> &G Ga, +mr & & — i E°6 — KD i miva,

z 0 1=0
+my i — g 5 + ﬁ O +1y (P + 0, +10;°) (€1 T & + iy T my)
S
3 N _ - . _ -
+ =’ 2t A TG+ & 0T ) = D i ps, (1 T8 & — €7 T my)
S S

1
_ZPSz 51’7 g — 7717 om) + 50?_1—[()‘]1 + V+)i ]0 + 9 ij

(E.19)

where s = 0,1 denotes the sublattice index, corresponding to the A or B lattice,
respectively, and g = (p1, p2, p3). The first terms can exactly be identified by the
Euclidean propagator from Eq. (B.15) and the Euclidean action is eventually given
by

SE[57§7ﬁ7nch)aﬁa O'Jrao-i] = i _56 GOE',T('%ﬁg)il fg + ﬁﬁ? G%,i(i.7g)71 Ny (E20)

z.y

Lo - vt

)

i *‘1)2+ Zi (@5 + 07" +105°) (£7°T° & + 717" T° nz)

" iﬁ pi® Z ipiac (727" T° & + £:7° T z)

—i Zi@x (127 T% & — &7 " T nz) Z# (&°T° & —

+% ;é o TAL+ V) lof + ; yf oz T[(AL - V—)j;]ag] ,

Z, Z,
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E.1 PATH INTEGRAL FORMALISM

with the generating functional
20 = [ Do exp |-Silo] + [ deja(z)éno)] (E.22)

¢ = {57 57 mn, 7_77 q)7 /77 U+7 0_} and ] = {&Ta 1/’T7 TZJ’a wia h17 527j+7j_} should abbrevi-
ate the entirety of all fields and sources. The generating functional for connected
n-point function is then given by (see Ref. [85]/124}/125] for a general introduction)

W[j] = In Z[j], (E.23)

which accounts for the correctly normalized expectation values in presence of all
sources within the resulting n-point functions. If all sources are set to zero, W[0] = 0
is retained from Z[0] = 1.

The full propagator (¢1(z)¢1(y)) resulting from the functional derivative of Z[j]
is easily connected to the associated counterpart of Z[j], the so called connected
Green function G(z —vy) ,

2 .
Gz =) = (9a(@)05(9))conn. = m\jzo (e (@)05()) — (a@) (Ba())
= @07 o~ D) (E.24)

Here the derivatives are defined as right- and left-derivatives, respectively,

—— =: left derivative, and

0 (x)

The conventions in Euclidean space-time follow them from Ref. [110].
With a Legendre transformation with respect to the sources j, (z) = dI'[¢]/d¢S, (),

0
—— =: right derivative. E.25
%) g (E.25)

Plo) =~ Wl + [ & 6 @)ia ). (.26)

the generating functional for 1PI n-point functions I'[¢¢] depending on the corre-
sponding field expectation values with nonzero sources ¢ (x) = 0W/[j]/0ja(x) = (¢a);
is obtained. The complete set of classical field variables is given by

¢)C = {507 gc’ 77C7 ﬁc7 (bcﬂ ﬁc7 O-+C7 J_c} °

The DSE’s result from performing a total derivative on an integral equation which
surely vanishes [110], from Eq. (E.22) one immediately finds

-0 =St [ deja(@)da(e) — o~SI81+ [ deja(@)pal@) O __gran
" T / e / D¢ (57518 — 96 @))
0 ,
= <(W‘S’[¢] - ]B(y))>j- (E.27)

By replacing all field dependencies within the expectation value by the derivative
with respect to the corresponding source, Z[j] can be separated as a factor,

(= 5o [5:] + )20 =0. (E.28)
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E DYSON-SCHWINGER EQUATIONS

in terms of the generating functional for connected Green functions this can be
rewritten as

1o, 5
opp(y) Loj  dj
where the additional derivative with respect to j in the replacement for the field

dependency take account for the product rule. Finally, for the 1PI generating func-
tional we obtain

} +is(y) =0, (E.29)

NG 68 W 6
c - c ¢C + <. < = 5 E30
555(y)  005(0) [ 570 56° (E.50)
where the field component ¢, () more precisely has to be replaced by
PRA%Y 0
o(z) — oo (z) + / - - , E.31
$ale) = 6@+ | 2 5 () 305 (2) (E31)

for instance. These equations build the starting point for the derivation of DSE’s
for full, connected or proper n-point functions, respectively.

In the following we will take the Ansatz from Eq. as a starting point and
use the relations of App.[E.4]to obtain the DSE’s for 1PI Green functions. Although
starting from Eq. and use Eq. would probably be less laborious, follow-
ing Eq. and elaborate the 1PI part afterwards clearly contribute to a better
understanding.

Performing an additional derivative on Eq. with respect to a source entails

— S+ daja(@)ga(@) (__O iy

5 Do (53575191~ 35®) (E32)

_ /D¢ oSO+ [ dzja(2)da(x) (%(2)5(1)5 S[@] — ¢ (2)jp(y) — 0p40(y — x)) ,

5(y)
(E.33)
from that the DSE directly follows,
6S[g)

( Sa0) qb,y(z)>j:0 — 0, 0(y — ), (E.34)

with all sources set to zero.

E.2 Boson DSE

First of all the DSE for the long-range field 0" should be derived exemplary. The
derivative of the Euclidean action Eq. (E.21)) yields

U+s Z$G2f2+ $y - +s +1§x7F§z+17Im7ana (E.35)
with

+ AL+ V)9 (E.36)

Ss 1 7 —1,s
G2+U+ (z,9)” ! 5(()‘1 + V+)mgl7
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E.2 BosoN DSE

where § and s’ again are sublattice indices. This can be simplified by the general
relation for the components of the interaction matrix in sublattice space. For the in-
teraction matrix between different sublattices VAP = (VAB ) the transposition effec-

tively changes the sublattices, so that the following applies VAB (VBA) VBA
and of course VAA VAA and VBB VBB So also the 2 x 2 dimensional inverse
interaction matrlx from Eq. reduces to

GSf;(a: B = (L V)

1
o (E.37)

Furthermore one obtains

0S 3s’ ~ .8 s . 5/¢65¢5 s . 5/=5,38 s
(s o) =S GO ) ooy U@ )+ ()

—5(x — y)Jss » (E.38)
and
5z — y) bss zyfagf; 2.5)" 07 07 comn +zgfagfz+ 2,5) " (o ) (o)
(1) (o) (G0 )+ G:;%( ) (E:39)
+i(-1) ny S —2) G (@ — )T ()G (0 — )

FIEDE Y GG ) Gl =T Gy G ),
/ y' 2!

/
s Ly,

by making use of App. and especially of Eq. (E.97 m
Taking the sum over Zsi and multiplying with U+U+ (y — 2)~! gives

Yy
(@ —2) T =G (w,2) T+ ARz 2) (E-40)
i) Y G —2) G (@ — )T (2

Ly S
4 (_1)8 i /szﬁS(Z/ - .CL‘) Gf;sﬁ”(l‘ _ y/)FnS 7S oS (z/’ y/, z) ,
z 7y
with

Moo =2) =( L G0 0™ o] ") +1 (DGO + G 0)) (Ea)

«3 %@;:8) s (y—2)L (E.42)

S

Moreover, Eq. (E.27) for zero source terms

6SE(¢] il
immediately entails
£ = =1 0 G (o) (<1)(GE(0) + G35 (0)). (E.44)
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E DYSON-SCHWINGER EQUATIONS

and consequently Ai‘ila +(r—2) =0. In a first approach we will assume the fully
dressed vertex function to be at tree level (indicated by a subscript tl), which is
given by

53SE[¢ = const.]

dorte(2")8€* (')0€* (2)
=id(z —y)0(z — ') (=1)°. (E.46)

T8 (o, 2) =TT (2 2) =

(E.45)

With the help of the tree level vertex and the sublattice projectors, Eq. (E.41)) can
be written as

55l (z—2)7"! :Gg’fi+ (x—2)" P +i i tr (Geg(2' — 2)~0T* Geg(x — YT rE ot (2., 2)
Zl:y,

i ?5 1 (G (2 — 2)7°T* G — )T )T T (2 2)
Z/ y/
0,ss' - '
=G0 (x,2)7 = tr (Geglz — )T Geglz — 2)7°T*)
— tr (Gpy(z — 2)7°T° Gz — 2)7°T%) . (E.47)
Analogically for the ¢~ one obtains

st,la, (x—2)7* :Gg’f‘i, (x—2)"' +tr (Geglz — x)°T* Geglz — z)’yol“s/)

+ 11 (G2 = 27T G (w = 2)7°T), (E.48)
with / -
GS’EZ* (ZE - Z)_l = ()‘]1 - V_);ZLSS/ ) (E49)
and
;éGgfif z,y) (€776 + 707 T 1) (E.50)
= Z ?f G (2.y) (~1)°(GE(0) + G55 (0)) - (E.51)

These equations are actually of the same form, except the global minus sign which
can be absorbed in the dressed and bare bosonic propagators, respectively. For the
Hubbard field ® the same procedure similary results in

ss’ — 1 s s’
sso(x—2)7t = 0(x — 2)dss — tr (Geg(z — )T Geg(w — 2)7°T*)

— tr (G (2 — 2)7°T% Gz — 2701, (E.52)
with the associated field expectation value

(®5) = —ia U (~1)*(GL(0) + G35 (0). (E.53)

These contributions can again be summarized in one DSE were we additionally
define a factor of i within the bosonic propagator in order to match the conventions

from Eq. (3.35)

D =i (qup + GU+U+ — GU—U—) . (E54>

116



E.2 BosoN DSE

So with the bare contribution

Dz, y) =i (Ud(z—y)+V,", — V), (E.55)

x?y
the combined DSE reads
D¥ (x —2)" ' =D% (z — 2) T +itr (Geg(z — z)~°T* Gee(w — 2)7°T%)
+itr (Gyi(z — 2)7°T% Gy (@ — 2)7°T) . (E.56)

Doing a Fourier transform into frequency-momentum space
D* (pg) ™' =D"** (pp) " +1 ?,;& tr (Ceg(pp) T Geglpp + kp)y'T™)
E

+1 ?}é tr (Gyi(pE)Y'T® G (pE + k)T (E.57)
E

and performing a Wick rotation (App. [B|) to Minkowskian space-time with the Feyn-
man propagator from Eq. (B.21)), finally yields

D (p)~! = DO (p) 7L — (~1)l=1 S y; G, (k) G35 (p + K) (E.58)

= D" (p) =" ?; tr (Gro (k)T Grg(p+ k)TY) . (E.59)

Huu/

The second ansatz for the vector field p, where a complete Fierz transformation
was used, yields

3
(1-a)U

- (_1)8 %/ y ijS‘I/(z/ - l’) a Gf;\i;(aj - y/)F\PS v (Zla y,7 Z) )

ssi(p—2)"! =

A 0(x — 2)dsg (E.60)

with the shorthand notation Gz = (G, p1, Gpapss Gpsps) and the fermionic Green
function in spin space Gy = (Gyis ng). The corresponding expectation values of
the Hubbard fields are given by

() = Lo GE@ s a0, amd (6 = (k) = 0. (B

By making use of the tree level vertex again the following DSE’s for the three
Hubbard-fields were found

Goip (@ —2)71 =G} (x = 2)7" (E.62)

3 s o
:m §(x — 2)d5s + tr (Gpi(z — 2)7°T Gee(w — 2)7°T*)

+tr (Gegl(z — )T Gz — z)’yOFSI) ,
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and
ss’ - 3 s s’
G (T — 2) ! :m 0(x — 2)dss + tr (Geg(z — z)y°T Gegz — 2)7°T*)
+ tr (Gpi(z — 2)7°T° Gpin(z — 2)7°T%) . (E.63)

E.3 Fermion DSE

In the following the fermion DSE for the spin-up field & is derived from the Euclidean
action (Eq. (E.21))). Following the manner from the last section one finds

55 ~\ — . s S . —8 S S
_E[gb] - i G%,T(m,y) 1 & +i Z (@2 + o +i(o,° + P32)) AT, (E.64)
55(%) Y s s
=:0$
- Z Pa—105a) 7T e, (E.65)
\—’.,_/
=:p
and consequently
5SE . N0 1S /FS -
< GET 2, 0) " (€E) + L S i 6z — 2)6(x — 2O TH(DLEE,)
#2 s bare vertex for ®
= AT (Fmady) (E.66)
=(x —y). (E.67)

Since GOE7T(:Z:, x)~! does not depend on any field variable, it can be separated from
the expectation value. The sum over the 3-point functions for each sublattice can
be understood as

dacoeny  (Breséd) ) (E.68)

[
01s/&Hs
STz EE) = |
; ’ —(P2E2€5) —(BLE2E)
The appearing 3-point functions can be rewritten with Eq. (E.88)). Here one has to
take care of the non-zero expectation values of the bosonic fields, even for vanishing

sources. The fermionic expectation values of course still vanish (&) = (£,) = 0. So
finally the 3-point function can be written in terms of connected Green functions

(see App.
> ATHRLEE) = Z 7O T%(@3 E:6y ) conn. + z YO TH(8%) Gz — )

i ZG s (2 — 2)7°T Geg(z — )I"isgsgs(z’, ) A Ggé(x’ —v)
2y 5,8’
+ ZVO % (®%) Gee(z —y), (E.69)

with

G35 (2—Y) = Goa(Z—Y )+ Goior (Z—Y ) +i1Go o 2=y ) +1Gpyps (Z—Y) . (E.T0)
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as matrices in sublattice space and the corresponding vertex function abbreviated
by I'**¢°¢" with the appropriate field ® = {®, 07,07, p3} for each term. The
expectation value is composed by

(@) = (®z) + (0F) +i(07) +1i{psz) - (E.71)

Accordingly one obtains

—y) Zi Gop(,5) " (€g&y) +i Z P TH®;) Gegle — ) (E.72)

+i # Z Gey(2 —x) 70T Geg(z —y NI (o 2 )De Ggg(a:’ )
2y s,s’

i Z (2" — 2)7°r* G (x — Y )TPTE (2 oy a\Te G&-(x’ —-v),
2y ! 5,8’

with analogical abbreviations for p, e.g. Gp3(2 —v') = Gpp, (Z—Y') —1Gpypo (Z—Y').
Multiplying Eq. (E.73)) with Gg):_—l (y—z), where Ggg—l denotes the inverse matrix of the

propagator in 2 x 2 sublattice space, and integrating over y (<§x§y> (£Z£y>cmm =
Geg(z —y)) gives

Geglz — 2)7t =GY% +(,2) i Z’yo D8(®5) 6(x — 2) (E.73)
+1 i Z Gss (z' — 2)y°r* Geglz — y’)F&’SgSES(z’, Y, 2)I?
’y S S
- i Z Gf;%,(z' — z)7°r* Gz — ¢ ) TP TE (2 2)T5.
Z/7y/s,s’

By using again the tree-level vertex, the full fermion DSE reads

Gegle =) =Cha(e =)™ +1 LA T(@) + (@) +1(03 ") +1(050)) 8 = 2
- Z Gz =) + G (2 = 2) = G5 - (2 = ) |1°T Gl — )71
- Z G ( T Geg(x — 2)7°T* (E.74)
+Z (Gos (2 = 2) + G35, (2 = 2)[1 T Gl — 207717

For the spin-down propagator G,;(z — z) we obtain exactly the same result except
a minus sign as a prefactor of (p,),

Gz — 2) 7" =G (& —2)7! +i ZVOTS (D3) + (o) +ioy ") —i{p5,)) (z — 2)
—Z{ (z—x +Ga‘ig+( )—Gj‘ia, (z—x)}fyof‘sl Gz — 2)7°T*

Z Gf)ng z — z)y°T* Gi(x — 2)7°T® (E.75)

Z [G;jpl (z— )+ G5 (2 — x)}y‘)w’ Gz — 2)7°T*.
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Based on the calculations for the bosonic DSE’s, the related vacuum expectation
values were found to be

(@) + o)1) £101) =~ 3 [aU b 3 (1= 0) U (E.76)
e e yfa?,f; v)| x (~1)7 (G (0) + Gy (0))).

In the following the contributions from the g field should be omitted to end up
in the final representation of DSE’s solved in this work. With the combined photon
propagator from Eq. (E.55)) the fermion DSE’s can be summarized as

Gpo(z—2)7" :GO (x—2)"1 —i Z 1)k~ sliDOSS — ) Z GSEIi;(O) oz —2)
g
+i Z D% (z — )’yOFS Gi(z — 2)7°T* .
s,s’
By a Fourier transform into momentum space as described in App. [B] one obtains

GE,U(]?E) ! _GE,T pE —1i Z |S Sl' DO ss' = 0 i G kE E 77)

SSO’

+i Z / D* (k) 1°T* G0 (ks + ps)y°T. (E.78)

Eventually a Wick-rotation to Minkoswkian space-time was performed and the Feyn-
man propagator was inserted via Eq. (B.21)) as described in App. [B|to finally obtain
the fermionic DSE

Gralp) ™ =Gho(0) ™ + 3 LD (07°T Gralh 49T (ET9)

S S p=0) 3 %‘ G2 (k)

E.4 Full, Connected and 1Pl n-point Correlators

For the 1-point function or the field expectation value respectively one simply finds

_ 02l] _ wii WU _ owiil g ,
(Gl = 5y =P s =V Gal@eonn s, (80
turning off all sources then yields
<¢a($)> = <¢a(aj)>conn. ) (E81)
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with the same procedure for the 2-point function we get

6% Z|5]

(Pa(@)ds(y)) ) = m (E.82)
o [SWIISWG) | 2L
Giole) 37(0) © Bhal@is )] )
so we have
(Pa()95(y)) = (Pa(x)Dp(Y))conn. + (Pal2))(dp(Y)) - (E.84)
An analog consideration for the 3-point function leads to
3 s
(0nl@)05(0)850))) ~5 - AT (5.5
_ i) [ OWITOWIG WG] dWL] 3> W[j] L IW] 3> Wj]
0ja() 0jp(y) 0jy(2) ~ 03p(y) 0y (2)0jalz)  dja(x) 0jy(2)85s(y)
Wil 82 W] W]
55 (2) 0305 | @)
and hence

(0a(2)05(y)P4(2)) = (Pa()P(Y)Dy(2))conn. + (Pa(2))(¢(y)) (D~ (2)) (E.87)

+(0a(2))Gys(z = y) + (05(¥))Gral(z — ) + (64(2))Gap(z — y) -
(E.88)

With the identity

PW T[] SO G0s0) _y s
%gﬂmwmw%um %% ) 5oi(s) ~ 0@ —2) (B89

where greek indices denote the field index, the functional inverse of the propagator
is obtained by additionally setting all sources to zero

°T[¢°] ‘
095 (y)dgg,(x) li=0

Performing an additional further derivative on the first relation (Eq. (E.89)) with
respect to another source term,

Ggﬂl (r—y) = (E.90)

5 5%( 5
3j,(2) iz 8 (2 i Z 59 5]7 BSYFAEE (E.91)
yields
W) 52T[¢]
i Zéjv(z)éja(x)dj/j’ (') 565 (1365 () (E.92)
- ?f ?f a1 LR (E.93)
6ju(2")0J(2) 0ja(x)dja (y') 095, (2) 005 (y')dds(x') : :
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Multiplying this expression by (m‘(i% integrating over 2’ and taking the sum

0jp(y)’
over 0 (relabeling 3/ — v) results in

W] 52T [¢] P2Wj]
iy’ %; 69+ (2)0ja(x)0jp (y) %,; 5% ()65 (") 375 ()85 (y) (E.94)
_ W
 6jy(2)0ja(x )5jﬁ( ) (E.95)
-1, 2 ) oI WLl
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(E.96)

which can be rewritten as
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(E.97)
Additionally, the following expression can be extracted
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