Problem Set 8 (due date: 16.12.2013)

1. Two crude oil producers decide independently on quantities x_{1}, x_{2}. Variable costs are proportional to quantity and are c_{1}, c_{2} per ton crude oil. World demand is given by $P=B-$ $b x$.
a) Calculate the equilibrium values $\boldsymbol{x}_{1}^{N C}, x_{2}^{N C}, \boldsymbol{p}^{N C}$.
b) Calculate the market share and the profits of producer i.
c) How are market share and profit of producer i changed if he can lower his production costs?
d) Set $\boldsymbol{B}=\mathbf{1}, \boldsymbol{b}=\mathbf{1}$ and $\boldsymbol{c}_{\boldsymbol{i}}+\boldsymbol{c}_{\boldsymbol{j}}=\mathbf{1}$ and calculate $\boldsymbol{\Pi}^{\mathbf{1}}+\boldsymbol{\Pi}^{\mathbf{2}}$. How is this sum altered if $\boldsymbol{c}_{\boldsymbol{i}}$ rises and $\boldsymbol{c}_{\boldsymbol{j}}$ falls, so that $\boldsymbol{c}_{\boldsymbol{i}}+\boldsymbol{c}_{\boldsymbol{j}}=\mathbf{1}$ remains?
e) With how much quantity would you start producing as firm 1 if there is no possibility of later reversal of this quantity? What is the market price? (Hint: This is the Stackelberg case.).
2. $\boldsymbol{N}(>2)$ identical planter decide independently how much tons of coffee they want to produce and sell. The demand for coffee is given by $\boldsymbol{x}=\boldsymbol{p}^{-\boldsymbol{\epsilon}}, \boldsymbol{\epsilon}>\mathbf{1}$. Variable costs per ton of coffee are \boldsymbol{c}. Calculate the market equilibrium $\left(x_{1}^{N C}, \ldots x_{N}^{N C}, \boldsymbol{p}^{N C}\right)$.
3. Two hotels of equal quality have capacity of beds of $\overline{\boldsymbol{x}}_{\mathbf{1}}$ and $\overline{\boldsymbol{x}}_{\mathbf{2}}$. Demand for hotel nights is $x(p)=S-p$, marginal costs are c.
a) What is the price if there is price competition and $\bar{x}_{i}>S, i=1,2$?
b) Assume that customers book in the order of their reservation prices and that they book first at the cheaper hotel. If hotel 1 charges $p_{1}=S-\bar{x}_{1}-\bar{x}_{2}$, is it optimal for hotel 2 to charge a different price if max $\left\{\bar{x}_{1}, \bar{x}_{2}\right\} \leq(S-c) / 3$?
4. Consider the same situation as in problem 4 with the exception that customers book in a different order. Now the order is random and independent of their willingness to pay (proportional rationing). Again $p_{1}=S-\bar{x}_{1}-\bar{x}_{2}$. Has hotel 2 an incentive to charge a different price if
a) $\bar{x}_{1}=\bar{x}_{2}=(S-c) / 3$?
b) $\max \left\{\bar{x}_{1}, \bar{x}_{2}\right\} \leq(S-c) / 4$?
5. Each of two hotels of equal quality has a capacity of 50 beds. Off-season demand for hotel nights is $\mathrm{x}(\mathrm{p})=100-\mathrm{p}$, marginal costs are 0 . Assume that rationing occurs according to the efficient rationing rule.
a) ** Discuss whether the values from the unlimited capacity Bertrand game and from the standard Cournot game, respectively, can arise as equilibrium.
b) $* * *$ What prices and quantities might constitute an equilibrium?
