Problem Set 8 (due date: 16.12.2013)

- 1. Two crude oil producers decide independently on quantities x_1, x_2 . Variable costs are proportional to quantity and are c_1, c_2 per ton crude oil. World demand is given by P = B bx.
 - a) Calculate the equilibrium values x_1^{NC} , x_2^{NC} , p^{NC} .
 - b) Calculate the market share and the profits of producer *i*.
 - c) How are market share and profit of producer *i* changed if he can lower his production costs?
 - d) Set B = 1, b = 1 and $c_i + c_j = 1$ and calculate $\Pi^1 + \Pi^2$. How is this sum altered if c_i rises and c_j falls, so that $c_i + c_j = 1$ remains?
 - e) With how much quantity would you start producing as firm 1 if there is no possibility of later reversal of this quantity? What is the market price? (Hint: This is the Stackelberg case.).
- 2. N (> 2) identical planter decide independently how much tons of coffee they want to produce and sell. The demand for coffee is given by $x = p^{-\epsilon}, \epsilon > 1$. Variable costs per ton of coffee are *c*. Calculate the market equilibrium $(x_1^{NC}, ..., x_N^{NC}, p^{NC})$.
- 3. Two hotels of equal quality have capacity of beds of \overline{x}_1 and \overline{x}_2 . Demand for hotel nights is x(p) = S p, marginal costs are c.
 - a) What is the price if there is price competition and $\bar{x}_i > S$, i = 1,2?
 - b) Assume that customers book in the order of their reservation prices and that they book first at the cheaper hotel. If hotel 1 charges $p_1 = S \bar{x}_1 \bar{x}_2$, is it optimal for hotel 2 to charge a different price if max $\{\bar{x}_1, \bar{x}_2\} \leq (S c)/3$?
- 4. Consider the same situation as in problem 4 with the exception that customers book in a different order. Now the order is random and independent of their willingness to pay (proportional rationing). Again $p_1 = S \bar{x}_1 \bar{x}_2$. Has hotel 2 an incentive to charge a different price if
 - a) $\bar{x}_1 = \bar{x}_2 = (S c)/3?$
 - b) max $\{\bar{x}_1, \bar{x}_2\} \le (S-c)/4$?
- 5. Each of two hotels of equal quality has a capacity of 50 beds. Off-season demand for hotel nights is x(p) = 100 p, marginal costs are 0. Assume that rationing occurs according to the efficient rationing rule.
 - a) ** Discuss whether the values from the unlimited capacity Bertrand game and from the standard Cournot game, respectively, can arise as equilibrium.
 - b) ***What prices and quantities might constitute an equilibrium?