Robust Portfolio Optimization with Derivative Insurance Guarantees

Steve Zymler Berç Rustem Daniel Kuhn

Department of Computing Imperial College London

Zymler, Rustem and Kuhn Derivative Insurance Guarantees

Optimal Asset Allocation Problem

Choose the weights vector $\boldsymbol{w} \in \mathbb{R}^n$ to make the portfolio return high, whilst keeping the associated risk $\rho(\boldsymbol{w})$ low.

Mean-Variance Portfolio Optimization problem:

$$\begin{array}{ll} \underset{\boldsymbol{w} \in \mathbb{R}^{n}}{\text{maximize}} & \boldsymbol{w}^{T} \boldsymbol{\mu} - \lambda \boldsymbol{w}^{T} \boldsymbol{\Sigma} \boldsymbol{w} \\ \text{subject to} & \boldsymbol{w} \in \mathcal{W}. \end{array}$$

Solves tradeoff between expected return $\boldsymbol{w}^T \boldsymbol{\mu}$ and risk $\rho(\boldsymbol{w}) \equiv \boldsymbol{w}^T \boldsymbol{\Sigma} \boldsymbol{w}$, where λ is the risk aversion parameter.

Introduction to Robust Portfolio Optimization

- Let \tilde{r} denote the asset returns. Portfolio return is $w^T \tilde{r}$.
- Ben-Tal and Nemirovski [1], Rustem and Howe [3], suggest investor wants to maximize portfolio return:

 $\max_{\boldsymbol{w}\in\mathcal{W}} \boldsymbol{w}^T \tilde{\boldsymbol{r}}$

• Assume that $\mathbf{r} \in \mathcal{U}$, where

$$\mathcal{U}_{\boldsymbol{r}} = \{ \boldsymbol{r} \mid (\boldsymbol{r} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{r} - \boldsymbol{\mu}) \leq \delta^2 \}$$

Robust optimization takes worst-case approach:

$$\max_{\boldsymbol{w}\in\mathcal{W}}\min_{\boldsymbol{r}\in\mathcal{U}_{\boldsymbol{r}}} \boldsymbol{w}^{\mathsf{T}}\boldsymbol{r} \equiv \max_{\boldsymbol{w}\in\mathcal{W}} \boldsymbol{w}^{\mathsf{T}}\boldsymbol{\mu} - \delta \|\boldsymbol{\Sigma}^{1/2}\boldsymbol{w}\|_{2}.$$

Probabilistic Guarantees

- Assume we know the means μ and covariance matrix $\Sigma \succ \mathbf{0}$ of the returns $\tilde{\mathbf{r}}$, but not the entire distribution.
- Let *P* be the set containing all the distributions that have mean μ and covariance matrix Σ.
- ▶ El Ghaoui *et al.* [2] have shown for any $w \in W$

$$\delta = \sqrt{p/(1-p)} \implies \inf_{\mathbb{P} \in \mathcal{P}} \mathbb{P}\{\boldsymbol{w}^T \tilde{\boldsymbol{r}} \ge \min_{\boldsymbol{r} \in \mathcal{U}_{\boldsymbol{r}}} \boldsymbol{w}^T \boldsymbol{r}\} = p$$

• Let $\phi^* = \max_{\boldsymbol{w} \in \mathcal{W}} \min_{\boldsymbol{r} \in \mathcal{U}_{\boldsymbol{r}}} \boldsymbol{w}^T \boldsymbol{r}$, then

$$\boldsymbol{w}^{*T}\boldsymbol{r} \geq \phi^{*} \quad \forall \boldsymbol{r} \in \mathcal{U}_{\boldsymbol{r}}.$$

The non-inferiority property of robust portfolios can be seen as a form of weak insurance.

Support Information and Coherency

• Assume we have support information about \tilde{r} :

 $\mathcal{B} = \{ \boldsymbol{r} : \boldsymbol{I} \leq \boldsymbol{r} \leq \boldsymbol{u} \}$ (Always true: $\mathcal{B} = \{ \boldsymbol{r} : \boldsymbol{r} \geq \boldsymbol{0} \}$)

• Can add support information to U_r :

$$\mathcal{U}_{\boldsymbol{r}} = \{ \boldsymbol{r} \in \mathcal{B} \mid (\boldsymbol{r} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{r} - \boldsymbol{\mu}) \leq \delta^2 \}$$

By strong conic duality:

$$\max_{\boldsymbol{w}\in\mathcal{W}}\min_{\boldsymbol{r}\in\mathcal{U}_{\boldsymbol{r}}} \boldsymbol{w}^{T}\boldsymbol{r} \equiv \max_{\boldsymbol{w}\in\mathcal{W},\boldsymbol{s}\geq\boldsymbol{0}} \mu^{T}(\boldsymbol{w}-\boldsymbol{s}) - \delta \left\|\boldsymbol{\Sigma}^{1/2}(\boldsymbol{w}-\boldsymbol{s})\right\|_{2}.$$

Consider the function ρ:

$$\rho(\boldsymbol{w}) = \min_{\boldsymbol{s} \ge \boldsymbol{0}} -\mu^{T}(\boldsymbol{w} - \boldsymbol{s}) + \delta \left\| \boldsymbol{\Sigma}^{1/2}(\boldsymbol{w} - \boldsymbol{s}) \right\|_{2}.$$

Can show that ρ is a coherent risk-measure.

Uncertainty Set: Illustration

Parameter Uncertainty

- ► Have to estimate means μ and covariance matrix $\Sigma \rightarrow$ considerable uncertainty.
- ▶ Portfolio optimization is very sensitive to errors in $\hat{\mu} \rightarrow$ error-maximization effect.
- When \tilde{r} are i.i.d. then $\hat{\mu}$ is approx. normally distributed:

$$\hat{oldsymbol{\mu}} \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Lambda}), \quad oldsymbol{\Lambda} = (1/M) oldsymbol{\Sigma}$$

• Can create uncertainty set for $\hat{\mu}$

$$\mathcal{U}_{\boldsymbol{\mu}} = \{ \boldsymbol{\mu} \mid (\boldsymbol{\mu} - \hat{\boldsymbol{\mu}})^T \boldsymbol{\Lambda}^{-1} (\boldsymbol{\mu} - \hat{\boldsymbol{\mu}}) \leq \kappa^2, \ \boldsymbol{e}^T (\boldsymbol{\mu} - \hat{\boldsymbol{\mu}}) = \mathbf{0} \}.$$

• Obtain uncertainty set for \tilde{r} that takes into account \mathcal{U}_{μ} :

$$\mathcal{U}_{\boldsymbol{r}} = \{ \boldsymbol{r} \in \mathcal{B} \mid \exists \mu \in \mathcal{U}_{\boldsymbol{\mu}}, \ (\boldsymbol{r} - \mu)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{r} - \mu) \leq \delta^2 \}$$

Insurance through Options

Options allow us to limit the worst-case portfolio return.

$$egin{aligned} V(\mathcal{S}_{\mathcal{T}}) &= \mathcal{S}_{\mathcal{T}} + \max\{\mathcal{K} - \mathcal{S}_{\mathcal{T}}, 0\} & V(\mathcal{S}_{\mathcal{T}}) &= -\mathcal{S}_{\mathcal{T}} + \max\{\mathcal{S}_{\mathcal{T}} - \mathcal{K}, 0\} \ &= \max\{-\mathcal{S}_{\mathcal{T}}, -\mathcal{K}\} \end{aligned}$$

 Only consider European options maturing at investment horizon.

Modelling Option Returns

- Let w^d and \tilde{r}^d denote option weights and returns resp.
- \tilde{r} uniquely determines \tilde{r}^{d} , thus $\tilde{r}^{d} \equiv f(\tilde{r})$.
- Assume option *j* is a call with strike K_j and premium C_j on underlying stock *i* with initial price Sⁱ₀, then r^d_i is

$$f_j(\tilde{\boldsymbol{r}}) = \frac{\max\left\{0, S_0^j \tilde{r}_i - K_j\right\}}{C_j}$$

= max $\left\{0, a_j + b_j \tilde{r}_i\right\}$, with $a_j = -\frac{K_j}{C_j}$ and $b_j = \frac{S_0^j}{C_j}$.

• Likewise, when option *j* is a put with premium P_j , then \tilde{r}_i^d is

$$f_j(ilde{m{r}}) = \max\left\{0, a_j + b_j \widetilde{r}_i
ight\}, ext{ with } a_j = rac{\mathcal{K}_j}{\mathcal{P}_j} ext{ and } b_j = -rac{\mathcal{S}_0^i}{\mathcal{P}_j}.$$

In compact notation:

$$\tilde{\boldsymbol{r}}^{\boldsymbol{d}} = f(\tilde{\boldsymbol{r}}) = \max\left\{0, \boldsymbol{a} + \boldsymbol{B}\tilde{\boldsymbol{r}}\right\}.$$

Incorporating Options within Robust Framework

- Portfolio return is $\tilde{r}_{\rho} = \boldsymbol{w}^{T} \tilde{\boldsymbol{r}} + (\boldsymbol{w}^{\boldsymbol{d}})^{T} \tilde{\boldsymbol{r}}^{\boldsymbol{d}}$.
- We will always set $w^d \ge 0$, and $\mathbf{1}^T w + \mathbf{1}^T w^d = 1$.
- Robust max-min problem formulation:

$$\max_{\substack{(\boldsymbol{w},\boldsymbol{w}^{\boldsymbol{d}})\in\mathcal{W}\\\boldsymbol{r}^{\boldsymbol{d}}=f(\boldsymbol{r})}}\min_{\substack{\boldsymbol{r}\in\mathcal{U}_{\boldsymbol{r}},\\\boldsymbol{r}^{\boldsymbol{d}}=f(\boldsymbol{r})}}\boldsymbol{w}^{T}\boldsymbol{r}+(\boldsymbol{w}^{\boldsymbol{d}})^{T}\boldsymbol{r}^{\boldsymbol{d}}$$

Equivalent semi-infinite problem formulation:

 $\begin{array}{ll} \underset{w,w^d,\phi}{\text{maximize}} & \phi \\ \text{subject to} & \boldsymbol{w}^T \boldsymbol{r} + (\boldsymbol{w}^d)^T \boldsymbol{r}^d \geq \phi & \forall \boldsymbol{r} \in \mathcal{U}_{\boldsymbol{r}}, \ \boldsymbol{r}^d = f(\boldsymbol{r}) \\ & (\boldsymbol{w}, \boldsymbol{w}^d) \in \mathcal{W} \end{array}$

At optimality ϕ^* is the worst-case portfolio return when $\mathbf{r} \in \mathcal{U}_{\mathbf{r}}$.

Incorporating Options within Robust Framework

- Portfolio return is $\tilde{r}_{\rho} = \boldsymbol{w}^{T} \tilde{\boldsymbol{r}} + (\boldsymbol{w}^{\boldsymbol{d}})^{T} \tilde{\boldsymbol{r}}^{\boldsymbol{d}}$.
- We will always set $w^d \ge 0$, and $\mathbf{1}^T w + \mathbf{1}^T w^d = 1$.
- Robust max-min problem formulation:

$$\max_{\substack{(\boldsymbol{w}, \boldsymbol{w}^{\boldsymbol{d}}) \in \mathcal{W} \\ \boldsymbol{r}^{\boldsymbol{d}} = f(\boldsymbol{r})}} \min_{\substack{\boldsymbol{r} \in \mathcal{U}_{\boldsymbol{r}}, \\ \boldsymbol{r}^{\boldsymbol{d}} = f(\boldsymbol{r})}} \boldsymbol{w}^{T} \boldsymbol{r} + (\boldsymbol{w}^{\boldsymbol{d}})^{T} \boldsymbol{r}^{\boldsymbol{d}}$$

Equivalent semi-infinite problem formulation:

$$\begin{array}{l} \underset{w,w^d,\phi,y,s}{\text{maximize}} & \phi \\ \text{subject to} & \mu^T (w + \mathbf{B}^T y - s) - \delta \left\| \Sigma^{1/2} (w + \mathbf{B}^T y - s) \right\|_2 + a^T y \geq \phi \\ & (w,w^d) \in \mathcal{W}, \ \mathbf{0} \leq y \leq w^d, \ s \geq \mathbf{0} \end{array}$$

• At optimality ϕ^* is the worst-case portfolio return when $\mathbf{r} \in \mathcal{U}_{\mathbf{r}}$.

Worst-Case Return Behaviour

Zymler, Rustem and Kuhn Derivative Insurance Guarantees

Insured Robust Portfolio Optimization

At optimality we obtain the non-inferiority guarantee:

$$\boldsymbol{w}_{*}^{T}\boldsymbol{r} + (\boldsymbol{w}_{*}^{d})^{T}\boldsymbol{r}^{d} \geq \phi^{*} \qquad \forall \boldsymbol{r} \in \mathcal{U}_{\boldsymbol{r}}, \ \boldsymbol{r}^{d} = f(\boldsymbol{r})$$

- Extreme events can cause *r̃* to be realised outside U_r → no more guarantees!
- Control deterioration of portfolio return below \u03c6 for any realisation of \u03c6:

$$\boldsymbol{w}^{\mathsf{T}}\boldsymbol{r} + (\boldsymbol{w}^{\boldsymbol{d}})^{\mathsf{T}}\boldsymbol{r}^{\boldsymbol{d}} \geq \theta\phi \qquad \forall \boldsymbol{r} \in \mathcal{B}, \ \boldsymbol{r}^{\boldsymbol{d}} = f(\boldsymbol{r}),$$

where $\theta \in [0, 1]$.

- Insurance guarantee expressed as fraction of ϕ :
 - Only hedge against extreme scenarios not covered by non-inferiority guarantee.
 - Prevents insurance from being overly expensive.

The insured robust portfolio optimization model:

$$\begin{array}{ll} \underset{\boldsymbol{w},\boldsymbol{w}^{\boldsymbol{d}},\boldsymbol{\phi}}{\text{maximize}} & \phi \\ \text{subject to} & \boldsymbol{w}^{\mathsf{T}}\boldsymbol{r} + (\boldsymbol{w}^{\boldsymbol{d}})^{\mathsf{T}}\boldsymbol{r}^{\boldsymbol{d}} \geq \phi & \forall \boldsymbol{r} \in \mathcal{U}_{\boldsymbol{r}}, \ \boldsymbol{r}^{\boldsymbol{d}} = f(\boldsymbol{r}) \\ & \boldsymbol{w}^{\mathsf{T}}\boldsymbol{r} + (\boldsymbol{w}^{\boldsymbol{d}})^{\mathsf{T}}\boldsymbol{r}^{\boldsymbol{d}} \geq \theta \phi & \forall \boldsymbol{r} \in \mathcal{B}, \ \boldsymbol{r}^{\boldsymbol{d}} = f(\boldsymbol{r}) \\ & (\boldsymbol{w}, \boldsymbol{w}^{\boldsymbol{d}}) \in \mathcal{W}. \end{array}$$

- Has a SOCP reformulation \rightarrow tractable.
- Model exposes tradeoff between non-inferiority and insurance guarantees:
 - As U_r increases, ϕ^* decreases.
 - When φ* decreases, so does insurance level θφ* and associated insurance costs (premium).

Guarantee Tradeoff

We consider the following indices in the portfolio:

Ticker	Name
XMI	AMEX Major Market Index
SPX	S&P 500 Index
MID	S&P Midcap 400 Index
SML	S&P Smallcap 600 Index
RUT	Russell 2000 Index
NDX	NASDAQ 100 Index

- Adopt a monthly rebalancing strategy.
- Each month, we include all the options on the indices maturing in one month (data by Optionmetrics).
- Calculate out-of-sample returns between 19/06/1997 and 10/10/2008.

Backtest Results

A. Ben-Tal and A. Nemirovski.

Robust solutions of uncertain linear programs. *Operations Research Letters*, 25(1):1–13, 1999.

L. El Ghaoui, M. Oks, and F. Outstry.

Worst-case value-at-risk and robust portfolio optimization: A conic programming approach.

Operations Research, 51(4):543-556, 2003.

B. Rustem and M. Howe.

Algorithms for Worst-Case Design and Applications to Risk Management.

Princeton University Press, Princeton, NJ, 2002.