
Computational Optimization Methods in Statistics, Econometrics and Finance

www.comisef.eu

WPS-001  09/09/2008

M. Gilli
P. Winker

- Marie Curie Research and Training Network funded by the EU Commission through MRTN-CT-2006-034270 -



Review of Heuristic Optimization Methods in
Econometrics∗

M. Gilli† P. Winker‡

September 9, 2008

∗We are indebted to M. Meyer, G. di Tollo, and three anonymous referees for valuable
comments on preliminary drafts. Both authors gratefully acknowledge financial support from
the EU Commission through MRTN-CT-2006-034270 COMISEF.

†Department of Econometrics, University of Geneva and Swiss Finance Institute, Switzer-
land

‡Department of Economics, University of Giessen, Germany

1



Contents

1 Traditional numerical versus heuristic optimization methods 3
1.1 Optimization in econometrics . . . . . . . . . . . . . . . . . . . . 3
1.2 Optimization heuristics . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 An uncomplete collection of applications . . . . . . . . . . . . . . 7
1.4 Structure and instructions for use of the chapter . . . . . . . . . . 8

2 Heuristic optimization 9
2.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Trajectory methods . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Threshold methods (TM) . . . . . . . . . . . . . . . . . . 11
2.2.2 Tabu search (TS) . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Population based methods . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Genetic algorithm (GA) . . . . . . . . . . . . . . . . . . . 13
2.3.2 Ant colonies (AC) . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Differential evolution (DE) . . . . . . . . . . . . . . . . . . 14
2.3.4 Particle Swarm Optimization (PS) . . . . . . . . . . . . . 15

2.4 Hybrid meta-heuristics . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Basic characteristics of meta-heuristics . . . . . . . . . . . 17
2.4.2 Scheme for possible hybridization . . . . . . . . . . . . . . 18
2.4.3 An example: Memetic algorithms (MA) . . . . . . . . . . . 20

3 Stochastics of the solution 21
3.1 Optimization as stochastic mapping . . . . . . . . . . . . . . . . . 21
3.2 Convergence of heuristics . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Convergence of optimization based estimators . . . . . . . . . . . 26

4 General guidelines for the use of optimization heuristics 27
4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Presentation of results . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Selected applications 36
5.1 Model selection in VAR models . . . . . . . . . . . . . . . . . . . 36
5.2 High breakdown point estimation . . . . . . . . . . . . . . . . . . 38

6 Conclusions 42

2



1 Traditional numerical versus heuristic

optimization methods

1.1 Optimization in econometrics

Before introducing heuristic optimization methods and providing an overview
of some applications in econometrics, we have to motivate the use of such an
optimization paradigm in econometrics. Obviously, optimization is at the core of
econometric applications to real data sets, e.g., in model selection and parameter
estimation. Consequently, econometrics is a field with a long tradition in applying
the most up to date optimization techniques.

Maybe the most widely used technique is least squares estimation for linear mod-
els. The optimization problem in this case results in a system of linear equations
which can be solved by standard techniques from linear algebra. However, in
case of ill-conditioned matrices, e.g., due to very high multicolinearity, or huge
models, even this simple model might pose some numerical problems.

A more demanding class of optimization problems stems from general maximum
likelihood estimation. As long as the likelihood function can be considered as
being globally convex, efficient numerical methods are available to solve the op-
timization problem. However, in this class of models, the number of notorious
cases with flat likelihood functions or functions with several local optima is al-
ready quite substantial. Even a conceptually simple estimation problem such as
GARCH(1,1) might sometimes result in a likelihood function which does not al-
low for the successful application of standard numerical approximation algorithms
such as BHHH (Jerrell and Campione, 2001; Doornik and Ooms, 2003; Maringer
and Winker, 2006). Some more examples will be discussed at the end of this
section and in Section 5 together with the application of optimization heuristics.

Furthermore, there exist problem instances, e.g., in model selection, where tra-
ditional numerical methods cannot be applied at all due to the discreteness
of the search space (Winker, 2000; Winker and Maringer, 2004; Maringer and
Meyer, 2006). Again, discrete optimization problems might be categorized ac-
cording to whether they can be easily solved, e.g., by simple enumeration of a
small number of potential solutions, or not. In the latter case, the high inherent
complexity of the problem might be a binding constraint to any deterministic ap-
proach. For an example of proven high complexity see the aggregation problem
studied by Chipman and Winker (2005).

The few examples listed above and some more provided below just represent
an indication for the increasing number of modelling and estimation problems
in econometrics, which do not satisfy the necessary conditions for a guaranteed
convergence of traditional optimization methods. For such problem instances,

3



the unreflecting application of standard methods might fail to provide sensible
results. Unfortunately, for many applications of this type, there does not exist
a simple way to find out whether a result provided by a standard method is a
sensible one.

Thus, how can applied econometric work deal with the situation of optimization
problems, which are highly complex from a computational point of view? The first
approach would be to ignore the problem and to apply standard methods as if no
problems did exist. Although this approach is certainly not advisable, it can often
be observed in applications either due to ignorance about the real complexity of
the optimization problem or due to a priori beliefs that the solution obtained by a
standard method might nevertheless be useful in these cases. Second, one might
try to simplify the specification or estimation problem until traditional methods
can be applied successfully to the simplified problem. This option often had to
be chosen in the past as a compromise due to a lack of computational resources.
However, using this way out one sacrifices the potential gains resulting from the
use of the more complex – and, hopefully, more adequate – model and risks instead
to rely on a simplified – and, consequently, misspecified – problem formulation.
In fact, the rapid increase in computing power allows the almost routinely use of
optimization heuristics, which is the third – and often best – option.

As there is no free lunch in optimization either, this solution also comes at some
cost. In fact, one trades away a deterministic solution for a stochastic one. Fortu-
nately enough, econometricians are used to think in terms of stochastic outcomes
and might take into account this additional source of randomness. Given that
this aspect has been covered only marginally in reports on successful applications
of optimization heuristics, the present contribution will provide an extended anal-
ysis on the implications of the additional stochastic component resulting from the
use of heuristics for econometric analysis in Section 3.

1.2 Optimization heuristics

Before introducing a few more examples of optimization problems which cannot
be tackled by classical methods, but might be suitable for the successful applica-
tion of heuristics, the term “heuristic” or heuristic optimization method should
be defined. Obviously, heuristic optimization methods differ from classical tools,
but what exactly should we call an optimization heuristic?

Often the term heuristic is linked to algorithms mimicking some behavior found
in nature, e.g., the principle of evolution through selection and mutation (genetic
algorithms), the annealing process of melted iron (simulated annealing) or the self
organization of ant colonies (ant colony optimization). In fact, a large number of
heuristics results from such analogies extending to the “great deluge algorithm”
introduced by Dueck (1993). An overview of some of these and other heuristics

4



as well as an attempt for their classification will be provided in Section 2.

Here, we follow a slightly more general definition of “heuristic” based on the
properties of an algorithm (Winker and Maringer, 2007, p. 107). First, a heuristic
should be able to provide high quality (stochastic) approximations to the global
optimum at least when the amount of computational resources spent on a single
run of the algorithm or on repeated runs is increased. Second, a well behaved
heuristic should be robust to changes in problem characteristics, i.e. should not
fit only a single problem instance, but the whole class. Also, it should not be too
sensitive with regard to tuning the parameters of the algorithm or changing some
constraints on the search space. In fact, these requirements lead to the third one,
namely that a heuristic should be easily implemented to many problem instances,
including new ones. Finally, despite of its name, a heuristic might be stochastic,
but should not contain subjective elements.

Given the above definition of heuristics, one of their major advantages consists
in the fact that their application does not rely on a set of strong assumptions
about the optimization problem. In fact, for the implementation of most of the
algorithms discussed in the following, it is sufficient to be able to evaluate the
objective function for a given element of the search space. It is not necessary to
assume some global property of the objective function, nor is it necessary to be
able to calculate derivatives. In particular, several heuristics also allow to tackle
discrete optimization problems or are even tailor made for this class of problems.
On the other side, heuristics do not produce high-quality (or even exact) solutions
with certainty, but rather stochastic approximations. However, when traditional
methods fail, heuristics might still work in providing satisfying approximations.

Meanwhile, heuristic optimization tools have been used for some time in econo-
metrics. Below we will provide a non exhaustive overview of typical applications.
Some applications will be presented in more detail in Section 5. Nevertheless,
the use of optimization heuristics for tackling highly complex problems cannot
be considered yet as a well established part of econometric methodology. While
several reasons might be relevant for this situation, three arguments appear to
be most important:

1. Lack of knowledge about the real inherent complexity of optimization prob-
lems resulting in an inappropriate application of standard methods.

2. Lack of access to well documented implementations of heuristics. In fact,
the increasing number of different heuristics and hybrids might rather con-
fuse a potential user.

3. Difficulties in dealing with the stochastic nature of optimization results
obtained by means of heuristics, e.g., in an estimation setting.

The first constraint is obviously highly problem specific. For discrete optimization

5



problems, complexity theory might help to check whether it might be expected
that a problem can be tackled by classical approaches.1 However, for discrete
optimization problems in econometrics, not many results of this type are avail-
able so far. We are solely aware of a proof of NP-completeness for the optimal
aggregation problem studied by Chipman and Winker (2005) in Winker (2001,
pp. 261ff). For optimization problems on a continuous search space, the classi-
cal methods of complexity theory cannot be easily applied.2 A formal analysis
of complexity might become quite involved and, consequently, is often beyond
the scope of applied econometrics. Therefore, a more heuristic approach is often
used, namely grid search or restarting an optimization algorithm for different
starting values. If this results in different values of the objective function, this
finding might be taken as an indication of an optimization problem which is not
well behaved enough for a standard deterministic algorithm. A slightly more gen-
eral approach consists in using the implementation of an optimization heuristic
to produce a benchmark. Running both, a standard algorithm and a heuristic,
dominance of the heuristic in terms of solution quality is a clear indicator for
non adequacy of the classical tool. Unfortunately, a similar conclusion cannot
be drawn in the other direction, i.e. even if the classical method dominates the
heuristic, this does not proof that the problem is adequate for being solved by
classical techniques.

It might be easier to deal with the second issue, i.e. the access to heuristics,
guidelines for the selection of a specific heuristic and their implementation. To
this end, Section 2 will provide an overview of some of the most commonly used
heuristics and a classification including hybrid algorithms. Furthermore, Sec-
tion 4 introduces guidelines for a proper implementation of heuristics and for
reporting the results obtained with a specific implementation. Given that the
code of the core part of any optimization heuristic hardly exceeds a few lines,
these guidelines together with a growing number of successful implementations
might reduce the barrier to own applications.

With regard to the third issue, we do not think that we have to convince statis-
ticians and econometricians about the rationality and feasibility of dealing with
stochastic outcomes. However, by providing both, a formal framework and an
empirical approach for the analysis of the randomness introduced by the applica-
tion of heuristics in an econometric analysis, we might clarify the issues related
to this argument. Section 3 will cover these topics which have not been consid-
ered so far in econometric applications of optimization heuristics to the best of
our knowledge with the exception of the contributions by Maringer and Winker
(2006) and Fitzenberger and Winker (2007).

1For a short introduction to complexity issues see Winker (2001, pp. 50ff).
2In the context of maximum likelihood estimation problems, asymptotic theory might allow

to construct asymptotic tests for a global maximum (Gan and Jiang, 1999).

6



1.3 An uncomplete collection of applications
of optimization heuristics in econometrics

The first applications of optimization heuristics in econometrics have been to
problems with a continuous search space. One of the pioneering applications has
been the study by Goffe et al. (1994). The authors apply an implementation of the
simulated annealing heuristic to a set of test problems including switching regres-
sion, solving a rational expectation model, estimation of a frontier cost function
and estimating the parameters of an artificial neural network. They demonstrate
that using the optimization heuristic can improve the results both with regard
to the best result out of a series of runs and with regard to the distribution of
outcomes over this series. The switching regression problem considered by Goffe
et al. (1994) has been analyzed by Dorsey and Mayer (1995) using both genetic
algorithms and simulated annealing. Both Goffe et al. (1994) and Dorsey and
Mayer (1995) reported results which improved the original solution proposed by
Maddala and Nelson (1974). Nevertheless, the stochastic nature of the heuristics
becomes quite obvious for this application as mentioned by Jerrell and Cam-
pione (2001) who repeated the application using genetic algorithms, evolution
strategies, simulated annealing and a hybrid of the Nelder-Mead simplex and
the simulated annealing algorithm. In fact, although all algorithms provide good
results compared to the original solution, the algorithms never reproduced the
same result for different runs.

Brooks and Morgan (1995) describe the application of simulated annealing (SA)
to some low dimensional problems including the estimation of univariate normal
mixtures. They find that SA performs better than classical algorithms.3

Jerrell and Campione (2001) discuss applications to a complex GARCH model.
This problem is also considered by Adanu (2006) using among other methods
genetic algorithms and differential evolution and by Maringer and Winker (2006)
using the threshold accepting heuristic. While Jerrell and Campione (2001) just
state that the algorithms do not converge repeatedly to the same value, Maringer
and Winker (2006) provide an analysis of this stochastic component. The formal
framework for such an approach is introduced in Section 3.

Other recent applications of optimization problems to continuous estimation
problems in econometrics include fitting piecewise linear threshold autoregressive
models (Baragona et al., 2004), maximum likelihood estimation for threshold
vector error correction models (Yang et al., 2007), estimation of the parame-
ters of stochastic ordinary differential equations (Alcock and Burrage, 2004), and
calculating joint confidence bands for VAR and VEC models (Staszewska, 2007).

About the same time when the first applications to continuous estimation prob-
lems have been presented, Winker (1995) proposed the application of the thresh-

3Hawkins et al. (2001) use differential evolution for a similar problem.

7



old accepting heuristic for model selection in VAR models. More recently, heuris-
tics have been repeatedly applied in the context of model selection. For example,
Brooks et al. (2003) consider model selection and parameter estimation for dif-
ferent classes of models by means of simulated annealing, Acosta-González and
Fernández-Rodŕıguez (2007) and Kapetanios (2007, 2007) use different heuris-
tics for selecting variables and instruments in regression models, Winker and
Maringer (2004) extend the approach from Winker (1995, 2000) to VEC models,
i.e. for modelling partially nonstationary time series, while Maringer and Meyer
(2006) consider model selection and parameter estimation in the logistic smooth
transition autoregressive (LSTAR) model.

Further discrete optimization problems in econometrics which have been tackled
by optimization heuristics include the identification of outliers (Baragona et al.,
2001) or the estimation of censored quantile regression (Fitzenberger and Winker,
2007).

Within the framework of econometric modelling many more problems are likely
to be solved efficiently using heuristic optimization methods. Among these prob-
lems we have the expectation maximization (EM) introduced by Dempster et al.
(1977) or the estimation of the parameters of a mixture of distributions such as
a hidden Markov model, to mention a few. In principle, any problem in statis-
tics and econometrics, which exhibits a high inherent complexity and cannot be
solved with standard methods, is a candidate for the application of optimization
heuristics. A full enumeration of all such problems being beyond the scope of
this chapter, the examples provided might still provide an idea about their variety
and omnipresence.

1.4 Structure and instructions for use of the chapter

This chapter is organized as follows. First, Section 2 will provide an overview of
optimization heuristics which are used or might be used for econometric applica-
tions. Besides presenting several heuristics, this section also aims at classifying
them. The following Section 3 is devoted to the issue of the additional ran-
domness introduced to econometric modelling and estimation problems by any
optimization heuristic. We will provide a formal framework for the analysis of
these effects and demonstrate how they can be communicated in real applications.
Section 4 aims at providing some key information for readers being interested in
implementing their own heuristic to a specific econometric optimization problem.
Although these guidelines focus on the threshold accepting heuristic, most of the
arguments and all general comments on presenting results apply to other heuris-
tics as well. In order to see the methods work, Section 5 provides a more detailed
description of two specific applications, one with a discrete search space, the
second one for a continuous parameter space related to an estimation problem.

8



For the reader primarily interested to learn how to implement a specific opti-
mization heuristic, we recommend to have a short look at the specific subsection
of the following section, and then to skip to Section 4. To obtain further details
in the context of an actual implementation, the two examples in Section 5 might
be helpful. Depending on whether the problem under study has a discrete or
continuous search space, the reader might concentrate on Subsection 5.1 or 5.2,
respectively. When the choice of an appropriate heuristic is also relevant, Sec-
tion 2 should be covered completely. Section 3 will become relevant once an
efficient implementation has been obtained if the complexity of the problem is
found to high. Typically, this is indicated by differing results when restarting
the algorithm with different initializations of the random number generator and
improving (mean) results when increasing the number of iterations/generations.

2 Heuristic optimization

Heuristic optimization methods are essentially computational and therefore they
have been naturally introduced following the development of electronic comput-
ing devices. First contributions go back to Bock (1958) and Croes (1958) who
developed procedures to solve the traveling salesman problem, but the most sig-
nificant advances in the domain have been made in the late 1980s and 1990s
when the main techniques have been introduced. However, only very recently,
desktop computers have reached the necessary performance to make the use of
these methods really appealing.

It is beyond the scope of this introduction to present an overview of all the opti-
mization heuristics developed during the last two decades. Osman and Laporte
(1996) provide an extensive bibliography; see also Winker (2001, ch. 5). The next
section will introduce the general concepts of optimization heuristics and provide
a classification of the numerous existing variants and combinations. It should be
noted that there does not exist a unique or generally accepted way of classify-
ing optimization algorithms and heuristics. Nevertheless, the classification might
help to identify methods which share common features and might be subject to
similar strong and weak points.

2.1 Basic concepts

Optimization heuristics, which are sometimes also labeled approximation meth-
ods, are generally divided into two broad classes, constructive methods also called
greedy algorithms and local search methods. Greedy algorithms construct the so-
lution in a sequence of locally optimum choices (Cormen et al., 1990, p. 329).
We are interested in the second class. For long local search was not considered

9



as a mature technique and it is only recently that the method enjoys increasing
interest. Some reasons for the resurgence of these methods are in particular the
dramatic increase in computational resources, the ease of implementation and
their flexibility as well as their successful application to many complex real-world
problems. Also, recently more emphasis has been put to consider the solutions
obtained with these tools as point estimates and, consequently, to provide infor-
mation about their distribution. This contributes to a better understanding of
the quality of a solution produced by heuristic methods. We will consider this
aspect in more detail in section 3.

Local search uses only information about the solutions in the neighborhood of a
current solution and is thus very similar to hill climbing where the choice of a
neighbor solution locally maximizes a criterion. The classical local search method
for minimizing a given objective function f(x) can be formalized as presented in
Algorithm 1.

Algorithm 1 Pseudo-code for the classical local search procedure.
1: Generate initial solution xc

2: while stopping criteria not met do
3: Select xn ∈ N (xc) (neighbor to current solution)
4: if f(xn) < f(xc) then xc = xn

5: end while

Hill-climbing uses information about the gradient for the selection of a neighbor xn

in statement 3 whereas local search algorithms choose the neighbors according to
some random mechanism. This mechanism as well as the criteria for acceptance
in statement 4, which are specific for a particular heuristic, define the way the
algorithm walks through the solution space. The stopping criteria often consists
in a given number of iterations.

Local search methods are generally divided into trajectory methods which work
on a single solution and population based methods,4, where a whole set of solu-
tions is updated simultaneously. In the first class we find threshold methods and
tabu search whereas the second class consists of genetic algorithms, differential
evolution methods and ant colonies. All these local search methods have partic-
ular rules for either or both, the choice of a neighbor and the rules for acceptance
of a solution. All methods, except tabu search, allow uphill moves, i.e. accept
solutions which are worse than the previous one, in order to escape local minima.
We give a brief sketch of these methods. For a description with more details see,
e.g., Winker (2001).

4Some of them are also called evolutionary algorithms by some authors.

10



2.2 Trajectory methods

The definition of neighborhood is central to these methods and generally depends
on the problem under consideration. Finding efficient neighborhood functions
that lead to high quality local optima can be challenging. For some guidelines
on how to construct neighborhoods see Section 4.1. We consider three different
trajectory methods.5 Jacobson and Yücesan (2004) present an approach for a
uniform treatment of these methods under the heading of generalized hill climbing
algorithms.

2.2.1 Threshold methods (TM)

The following two methods define the maximum slope for up-hill moves in the
succeeding iterations. The first method uses a probabilistic acceptance criterion,
while the maximum threshold is deterministic for the second.

Simulated annealing (SA) This refinement of the local search is based on an
analogy between combinatorial optimization and the annealing process of solids.
Similar to the classical local search an improvement of the solution for a move
from xc to xn is always accepted. Moreover, the algorithm accepts also a move up-
hill, but only with a given probability (implemented using a uniformly distributed
pseudorandom variable u in statement 6 of Algorithm 2). This probability de-
pends on the difference between the corresponding function values and on a global
parameter T (called temperature), that is gradually decreased during the process.
In Algorithm 2, the rounds are implemented in statement 2 and the reduction
of the probability by means of the parameter T is implemented in statement 8.
The stopping criterion is defined by a given number of iterations or a number of
consecutive iterations without change/improvement for the current solution xc.

Algorithm 2 Pseudo code for simulated annealing.
1: Generate initial solution xc, initialize Rmax and T
2: for r = 1 to Rmax do
3: while stopping criteria not met do
4: Compute xn ∈ N (xc) (neighbor to current solution)
5: Compute �= f(xn) − f(xc) and generate u (uniform random variable)
6: if (� < 0) or (e−�/T > u) then xc = xn

7: end while
8: Reduce T
9: end for

5Hoos and Stützle (2005) provide an introduction to stochastic local search algorithms.

11



Threshold accepting (TA) This method, suggested by Dueck and Scheuer
(1990), is a deterministic analog of simulated annealing where the sequence of
temperatures T is replaced by a sequence of thresholds τ . As for SA, these
threshold values typically decrease to zero while r increases to Rmax. Algorithm 2
becomes then

if � < τ then xc = xn

and in statement 8 we reduce the threshold τ instead of the temperature T .6

2.2.2 Tabu search (TS)

Tabu search7 is particularly designed for the exploration of discrete search spaces
where the set of neighbor solutions is finite. The method implements the selection
of the neighborhood solution in a way to avoid cycling, i.e, visiting the same
solution more than once. This is achieved by employing a short term memory,
known as the tabu list and which contains the solutions which were most recently
visited. In statement 3 of Algorithm 3 the construction of set V may or may not
imply the examination of all neighbors of xc.

Algorithm 3 Pseudo code for tabu search.
1: Generate current solution xc and initialize tabu list T = ∅
2: while stopping criteria not met do
3: Compute V = {x|x ∈ N (xc)}\T
4: Select xn = min(V )
5: xc = xn and T = T ∪ xn

6: Update memory
7: end while

The simplest way to update the memory in statement 6 is to remove older entries
from the list. The stopping criterion is defined by a given number of iterations or
a number of consecutive iterations without improvement for the current solution
xc.

2.3 Population based methods

In contrast to the trajectory methods, these approaches work simultaneously on
a whole set of solutions called population. Therefore, population based methods
might be more efficient with regard to exploring the whole search space at the
cost of a higher computational load and more complex structures.

6See Winker (2001, pp. 137–147) for implementation details.
7See Glover and Laguna (1997) for a detailed presentation.

12



2.3.1 Genetic algorithm (GA)

These technique has been initially developed by Holland (1975).8 Genetic al-
gorithms imitate the evolutionary process of species that sexually reproduce.
Thus, genetic algorithms might be considered the prototype of a population based
method. New candidates for the solution are generated with a mechanism called
crossover which combines part of the genetic patrimony of each parent and then
applies a random mutation. If the new individual, called child, inherits good
characteristics from his parents it will have a higher probability to survive. The
fitness of the child and parent population is evaluated in function survive (state-
ment 10) and the survivors can be formed either by the last generated individuals
P ′′, P ′′ ∪ {fittest fromP ′}, only the fittest from P ′′ or the fittest from P ′ ∪ P ′′.

Algorithm 4 Pseudo code for genetic algorithms.
1: Generate initial population P of solutions
2: while stopping criteria not met do
3: Select P ′ ⊂ P (mating pool), initialize P ′′ = ∅ (set of children)
4: for i = 1 to n do
5: Select individuals xa and xb at random from P ′

6: Apply crossover to xa and xb to produce xchild

7: Randomly mutate produced child xchild

8: P ′′ = P ′′ ∪ xchild

9: end for
10: P = survive(P ′, P ′′)
11: end while

The genetic algorithm first accepts a set of solutions (statement 3) and then
constructs a set of neighbor solutions (statements 4–10, Algorithm 4). In general,
a predefined number of generation provides the stopping criterion.

2.3.2 Ant colonies (AC)

This heuristic, first introduced by Colorni et al. (1992a, 1992b) imitates the way
ants search for food and find their way back to their nest. First an ant explores
its neighborhood randomly. As soon as a source of food is found it starts to
transport food to the nest leaving traces of pheromone on the ground which will
guide other ants to the source. The intensity of the pheromone traces depends
on the quantity and quality of the food available at the source as well as from the
distance between source and nest, as for a short distance more ants will travel
on the same trail in a given time interval. As the ants preferably travel along
important trails their behavior is able to optimize their work. Pheromone trails
evaporate and once a source of food is exhausted the trails will disappear and
the ants will start to search for other sources.

8For a more comprehensive introduction to GA see Reeves and Rowe (2003).

13



For the heuristic, the search area of the ant corresponds to a discrete set from
which the elements forming the solutions are selected, the amount of food is
associated with an objective function and the pheromone trail is modeled with
an adaptive memory.

Algorithm 5 Pseudo code for ant colonies.
1: Initialize pheromone trail
2: while stopping criteria not met do
3: for all ants do
4: Deposit ant randomly
5: while solution incomplete do
6: Select next element in solution randomly according to pheromone trail
7: end while
8: Evaluate objective function and update best solution
9: end for

10: for all ants do Update pheromone trail (more for better solutions) end for
11: end while

2.3.3 Differential evolution (DE)

Differential evolution is a population based heuristic optimization technique for
continuous objective functions which has been introduced by Storn and Price
(1997). The algorithm updates a population of solution vectors by addition,
substraction and crossover and then selects the fittest solutions among the original
and updated population.

The initial population of nP randomly chosen solutions can be represented by a
matrix P (0) of dimension d× nP, where d is the dimension of the domain of the
function.

1
2
...

d

P (0) =

1 2 · · · r3 · · · r1 · · · i · · · r2 · · · nP

The algorithm constructs nG generations of the population. A new generation is
obtained in three steps. For each solution P

(0)
·,i , i = 1, . . . , nP, represented by a

column of matrix P (0), the algorithm constructs two intermediate solutions P
(v)
·,i

and P
(u)
·,i from three randomly selected columns P

(0)
·,r1, P

(0)
·,r2 and P

(0)
·,r3.

9 The ith

solution P
(1)
·,i of the new generation is assembled from elements from P (0), P (v)

and P (u). These particular steps are summarized in Algorithm 6.

9Note that the standard notation for one of the intermediate solutions P (u) uses the symbol
(u) which is not related to the uniform random variable u used in the acceptance step.

14



Algorithm 6 Differential evolution.
1: Initialize parameters nP, nG, F and CR

2: Initialize population P
(1)
j,i , j = 1, . . . , d, i = 1, . . . , nP

3: for k = 1 to nG do
4: P (0) = P (1)

5: for i = 1 to nP do
6: Generate r1, r2, r3 ∈ {1, . . . , nP}, r1 �= r2 �= r3 �= i

7: Compute P
(v)
·,i = P

(0)
·,r1 + F× (P (0)

·,r2 − P
(0)
·,r3)

8: for j = 1 to d do
9: if u < CR then P

(u)
j,i = P

(v)
j,i else P

(u)
j,i = P

(0)
j,i

10: end for
11: if f(P (u)

·,i ) < f(P (0)
·,i ) then P

(1)
·,i = P

(u)
·,i else P

(1)
·,i = P

(0)
·,i

12: end for
13: end for

The parameter F in statement 7 determines the length of the difference of two
vectors and thus controls the speed of shrinkage in the exploration of the domain.
The parameter CR together with the realization of the uniform random variable
u ∼ U(0, 1) in statement 9 determines the crossover, i.e. the probability for el-

ements from P
(0)
·,i and P

(v)
·,i to form P

(u)
·,i .10 These two parameters are problem

specific. Suggested values are F = 0.8, CR = 0.8 and nP = 10 d for the popu-
lation size. For these values the algorithm generally performs well for a large
range of problems. In statement 9 it is important to make sure that at least one
component of P

(u)
·,i comes from P

(v)
·,i , i.e. ∃j such that P

(u)
j,i = P

(v)
j,i .

2.3.4 Particle Swarm Optimization (PS)

Particle swarm (PS) is a population based heuristic optimization technique for
continuous functions which has been introduced by Eberhart and Kennedy (1995).
The algorithm updates a population of solution vectors, called particles, by an
increment called velocity. Figure 1 illustrates the updating of the position of a
particle P

(k)
i from generation k to generation k+1. Two directions are considered,

the direction from the current position of the particle to the best position so far
found for the particle (P

(k)
i → Pbest i) and the direction from the current position

to the best position so far for all particles (P
(k)
i → Pbestgbest). Both directions are

then randomly perturbed by multiplying them with a parameter c and a uniform
random variable u ∼ U(0, 1) (c.f. statement 7 in Algorithm 7). A suggested value
for the parameter c is 2. The sum � vi of these two randomized directions falls
into a region characterized in the figure by a circle. The current velocity v

(k+1)
i

is then obtained by updating v
(k)
i with the increment �vi.

10Different strategies for the crossover are suggested in www.icsi.berkeley.edu/~storn/.

15

www.icsi.berkeley.edu/~storn/


P
(k)
i

v
(k)
i

Pbest i

Pbestgbest

�vi

P
(k+1)
i

v
(k+1)
i

Figure 1: Updating the position of a particle P
(k)
i with velocity v

(k)
i .

Algorithm 7 summarizes the particular steps for the updating of the population
of nP particles in nG succeeding generations.

Algorithm 7 Particle swarm.
1: Initialize parameters nP, nG and c

2: Initialize particles P
(0)
i and velocity v

(0)
i , i = 1, . . . , nP

3: Evaluate objective function Fi = f(P (0)
i ), i = 1, . . . , nP

4: Pbest = P (0), Fbest = F , Gbest = mini(Fi), gbest = argmini(Fi)
5: for k = 1 to nG do
6: for i = 1 to nP do
7: �vi = c u (Pbest i − P

(k−1)
i ) + c u (Pbestgbest − P

(k−1)
i )

8: v
(k)
i = v(k−1)+ �vi

9: P
(k)
i = P

(k−1)
i + v

(k)
i

10: end for
11: Evaluate objective function Fi = f(P (k)

i ), i = 1, . . . , nP

12: for i = 1 to nP do
13: if Fi < Fbest i then Pbest i = P

(k)
i and Fbest i = Fi

14: if Fi < Gbest then Gbest = Fi and gbest = i
15: end for
16: end for

2.4 Hybrid meta-heuristics

In a general framework optimization heuristics are also called meta-heuristics11

which can be considered as a general skeleton of an algorithm applicable to a
wide range of problems. A meta-heuristic may evolve to a particular heuristic
when it is specialized to solve a particular problem. Meta-heuristics are made
up by different components and if components from different meta-heuristics
are assembled we obtain a hybrid meta-heuristic. This allows us to imagine a
large number of new techniques. The construction of hybrid meta-heuristics is

11Apart this section, we do not follow this convention, but use the term heuristic synony-
mously.

16



motivated by the need to achieve a good tradeoff between the capabilities of a
heuristic to explore the search space and the possibility to exploit the experience
accumulated during the search.12

In order to get a more compact view of the possibilities and types of hybrid meta-
heuristics one can imagine, we will present a short and informal classification of
the different meta-heuristics, describe the basic characteristics of the different
components and give examples of hybrid approaches.13

2.4.1 Basic characteristics of meta-heuristics

In the previous sections, we demonstrated that different meta-heuristics use dif-
ferent strategies for the selection of a neighbor solution and for the acceptance
of such a neighbor solution. We will now enumerate some of the most impor-
tant features of these strategies and then provide a figure where we show what
particular feature is used in the meta-heuristics presented.

• Trajectory methods. The current solution is slightly modified by searching
within the neighborhood of the current solution. This is typically the case
for threshold methods and tabu search.

• Discontinuous methods. Full solution space available for the new solution.
The discontinuity is induced by genetic operators (crossover, mutation) as
is the case for genetic algorithms, ant colonies and differential evolution and
which corresponds to jumps in the search space.

• Single agent method. One solution per iteration is processed. Case for
threshold methods and tabu search.

• Multi-agent or population based method. Population of searching agents
who all contribute to the collective experience. Case of genetic algorithms,
ant colonies and differential evolution.

• Guided search or search with memory usage. Incorporates some additional
rules and hints on where to search. In genetic algorithms and differential
evolution the population represents the memory of the recent search experi-
ence. In ant colonies the pheromone matrix represents an adaptive memory
of previously visited solutions. In tabu search the tabu list provides a short
term memory.

• Unguided search or memoryless methods. Relies perfectly on the search
heuristic.

12A more general notion of a hybrid heuristic would also allow for combining a meta-heuristic
with classical optimization tools, e.g., gradient methods.

13This presentation builds on Talbi (2002), Taillard et al. (2000) and Birattari et al. (2001).

17



Figure 2 summarizes the meta-heuristics and their features discussed in this sec-
tion. An edge in the graph means that the feature is present in the meta-heuristic.

Features Meta-heuristics

Trajectory methods

Discontinuous methods
Single agent

Population based

Guided search
Unguided search

(TM) Threshold methods

(TS) Tabu search

(GA) Genetic algorithms

(AC) Ant colonies

(DE) Differential evolution

Figure 2: Meta-heuristics and their features.

2.4.2 Scheme for possible hybridization

We partially reproduce the classification presented in Talbi (2002). This classifica-
tion is a combination of a hierarchical scheme and a flat scheme. The hierarchical
scheme distinguishes between low-level and high-level hybridization and within
each level we distinguish relay and co-evolutionary hybridization.

Low-level hybridization replaces a component of a given meta-heuristic by a com-
ponent from another meta-heuristic. In the case of high-level hybridization dif-
ferent meta-heuristics are self-contained. Relay hybridization combines different
meta-heuristics in a sequence whereas in co-evolutionary hybridization the dif-
ferent meta-heuristics cooperate. A few examples might demonstrate the corre-
sponding four types of hybridizations:

• Low-level relay hybrid. As an example we could consider a simulated
annealing where a neighbor xn is obtained as following: Select a point xi

in the larger neighborhood of xc and perform a descent local search. If
this point is not accepted (left panel) we return to xc (not xi) and continue
(right panel).

xc
F (xc)

xi

xn
xc

F (xc)

xi

xn xi

xn

Iterated local search (Lourenço et al., 2002) and variable neighborhood
search (VNS) (Mladenovic and Hansen, 1997) also fall into this class of
hybrid meta-heuristics.

18



• Low-level co-evolutionary hybrid. Genetic algorithms and ant colonies
perform well in the exploration of the search space but are weak in the
exploitation of the solutions found. Therefore, for instance, an interesting
hybridization would be to use in a genetic algorithm a greedy heuristic for
the crossover and a tabu search for the mutation as indicated in Algorithm 8.

Algorithm 8 Low-level co-evolutionary hybrid.
1: · · ·
2: Select P ′ ⊂ P (mating pool), initialize P ′′ = ∅ (children)
3: for i = 1 to n do
4: Select individuals xa and xb at random from P ′
5: Apply crossover to xa and xb to produce xchild (greedy algorithm)
6: Randomly mutate produced child xchild (tabu search (TS))
7: P ′′ = P ′′ ∪ xchild

8: end for
9: · · ·

• High-level relay hybrid. Examples are the use of a greedy heuristic to gen-
erate the initial population of a genetic algorithm and/or threshold method
and tabu search to improve the population obtained by the genetic algo-
rithm as described in Algorithm 9.

Algorithm 9 High-level relay hybrid.

1: Generate current population P of solutions (greedy algorithm)
2: Compute GA solution
3: Improve solution with threshold method (TM)

Another example is the use of a heuristic to optimize another heuristic, i.e.
find the optimal values for the parameters.

• High-level co-evolutionary hybrid. In this scheme many self-contained
algorithms cooperate in a parallel search to find an optimum.

For the flat scheme we distinguish the following hybridizations:

• Homogenous versus Heterogeneous. In homogenous hybrids the same meta-
heuristics are used whereas heterogenous hybrids combine different meta-
heuristics.

• Global versus Partial. In global hybrids all algorithms explore the same
solution space and partial hybrids work in a partitioned solution space.

• Specialist versus General. Specialist hybrids combine meta-heuristics which
solve different problems whereas in general hybrids the algorithms solve all
the same problem. For example a high-level relay hybrid for the optimiza-
tion of another heuristic is a specialist hybrid.

19



Figure 3 illustrates this hierarchical and flat classification.

Homogeneous
Heterogeneous

Global
Partial
General
Special

Co-evol (C)

Relay (R)

Low-level (L)

High-level (H)

Figure 3: Scheme for possible hybridizations.

2.4.3 An example: Memetic algorithms (MA)

A typical example of a high-level co-evolutionary hybrid or – with regard to the
flat scheme - a heterogeneous, global, general hybrid, is the so called memetic
algorithm (MA) proposed by Moscato (1989). The goal of this hybrid is to
combine the advantages of threshold methods and population based approaches.
Each agent of a population individually runs a threshold method. However,
in contrast to a simple restart scheme, the agents interact by competition and
cooperation. Algorithm 10 provides the pseudo code of a memetic algorithm. The
agents are positioned on a circle. Then, competition is always between neighbors
on the circle. Thereby, the better solution replaces the worse neighbor. Of course,
it is possible to use a more subtle acceptance criterion in this step. Cooperation is
quite similar to the crossover step in genetic algorithms. In this step, the solutions
of agent which are distant are combined to generate new offsprings replacing their
parents. Again, the decision on whether to replace the parents or not might be
based on some acceptance criterion.14

Algorithm 10 Pseudo code for memetic algorithm.
1: Initialize population
2: while stopping criteria not met do
3: for all agents do
4: Perform optimization with threshold method
5: end for
6: Compete
7: for all agents do
8: Perform optimization with threshold method
9: end for

10: Cooperate
11: Adjust acceptance criterion for threshold method
12: end while

14For a more detailed description and discussion of modified versions in the context of port-
folio optimization see Maringer (2005, pp. 152ff).

20



3 Stochastics of the solution

Given the dominating classical optimization paradigm, it is not too surprising
that the analysis of the results obtained by optimization heuristics concentrates
on the probability to obtain the global optimum. In fact, some optimization al-
gorithms allow to derive quite general convergence results as will be described
in Subsection 3.2. However, for practical implementations, it might be more in-
teresting to know the relationship between computational resources spent and
the quality of the solution obtained.15 Furthermore, often it is less the conver-
gence of the objective function one is interested in, but, e.g., the convergence
of the parameters estimated by optimizing the objective function. This aspect
will be discussed in Subsection 3.3. Before turning to convergence issues, we
start by providing a formal framework for the analysis of the results obtained by
optimization heuristics.

3.1 Optimization as stochastic mapping

Whenever repeated applications of an optimization method do not generate iden-
tical results, we have to deal with this type of stochastics, which is different from
the stochastics resulting from random sampling. For the optimization heuristics
introduced in the previous section, the generation of an initial solution (popula-
tion), the selection of candidate solutions in each search step and sometimes also
the acceptance decision are responsible for this type of randomness. It should
be noted that the use of classical methods might also generate additional ran-
domness, e.g., when using randomly generated starting values. In both cases, i.e.
independent from the classification as classical or heuristic method, the outcome
of a single run of the optimization procedure has to be interpreted as a random
drawing from some a priori unknown distribution.

From the point of view of an applied econometrician, this additional randomness
might be considered as a rather unwelcome feature of optimization heuristics
as compared to standard optimization tools. However, a classical tool might
well provide a deterministic solution which might be far away from the optimal
solution if it is applied to a problem which does not meet the requirements for
the method to converge to the global optimum. In such a situation, it is evident
that a stochastic approximation to the true optimum might be preferable to a
bad deterministic result. Furthermore, econometricians are well trained in dealing
with the stochastics resulting from random sampling. Therefore, it seems sensible
also to consider the stochastics of the outcome of optimization heuristics in some
more detail.

Let ψψψI,r denote the result of a run r = 1, . . . , nRestarts of an optimization heuristic

15For an example, see Brooks and Morgan (1995, p. 243).

21



H for a given problem instance with objective function f . Thereby, I denotes
a measure of the computational resources spent for a single run, e.g., number
of local search steps for a local search heuristic or number of generations for a
genetic algorithm. The value of the objective function obtained in run r amounts
to f(ψψψI,r). This value can be interpreted as a random drawing from a distri-
bution DH

I (μI , σI , . . .). It is assumed that the expectation and variance of this
distribution exist and are finite.

Although, for most optimization heuristics H , specific knowledge about the dis-
tribution DH

I (μI , σI , . . .) is very limited for most applications,16 some general
properties of the distribution can be derived. First, for minimization problems,
the distribution will be left censored at the global minimum of f denoted by fmin

in the following. Second, with increasing amount of computational resources I,
the distribution should shift left and become less dispersed, i.e. μI′ ≤ μI and
σI′ ≤ σI for all I ′ > I. Finally, for those applications, where asymptotical con-
vergence in probability can be proven, the distribution becomes degenerate as I
tends to infinity. It is beyond the scope of this contribution to develop a the-
ory for DH

I . Some ideas on how to build such a theory for the case of local
search heuristics like simulated annealing and threshold accepting can be found
in the convergence results presented by Aarts and Korst (1989) and Althöfer and
Koschnik (1991).17 A modelling approach for finite I is presented by Jacobson
et al. (2006).

Applying an optimization heuristic repeatedly to the same problem instance
makes it possible to calculate the empirical distribution function of f(ψψψI,r),
r = 1, . . . , nRestarts. This distribution function can be used to assess properties
of DH

I and to estimate its empirical moments. In particular, lower quantiles will
be of highest interest as estimates of the best solutions which might be expected
in an application to a minimization problem. Furthermore, extreme value theory
might be used to obtain estimates of the unknown global minimum (Hüsler et
al., 2003). Finally, repeating the exercise for different amounts of computational
resources I might allow estimation of an empirical rate of convergence.

Figure 4 presents results from an application of the threshold accepting heuristic
to the problem of lag structure selection in VAR models.18 Some details of the
threshold accepting implementation are presented in Section 5.1 below. The up-
per left plot exhibits the empirical distribution functions of the objective function
(Bayesian information criterion) for different values of I (from right to left for
I = 100, 500, 1000, 5000, 10000). As theoretically expected, the distributions
move left (μI is decreasing) and become steeper (σI is decreasing) with I grow-

16Pure random sampling might be an exception for problems with well-defined and easy to
model search space.

17See also Rudolph (1997) and Reeves and Rowe (2003).
18For a discussion of VAR models – model selection and estimation – see Lütkepohl (2007)

in this volume.

22



ing. The other three plots show kernel density estimates of the distribution of
f(ψψψI) for different numbers of replications. Obviously, these plots confirm the
findings from the empirical distribution function. In addition, they might provide
information about specific properties of the objective function. For example, the
multimodal shape for the lower right plot (I = 10 000) hints towards two local
minima with a large domain of attraction, whereby the first one might be the
global minimum.

−5 −4 −3 −2
0

0.5

1

 

 

100
500
1000
5000
10000

−5 −4 −3 −2
0

0.5

1

1.5

−5 −4 −3 −2
0

1

2

3

4

−5 −4 −3 −2
0

5

10

15

20

I = 100

I = 1 000 I = 10 000

Figure 4: Empirical distribution of f for different values of I (based on nRestarts =
1 000).

3.2 Convergence of heuristics

Given that the application of heuristics does not provide a deterministic result,
it is of interest to analyze the factors determining the shape of the distribution of
outcomes. Obviously, for a properly tuned heuristic, the amount of computational
resources spent on a single run I should have a positive impact on the expected
result.

For some optimization heuristics, asymptotic convergence results are available,

23



e.g., simulated annealing (Aarts and Korst, 1989), threshold accepting (Althöfer
and Koschnik, 1991), and genetic algorithm (Reeves and Rowe, 2003, pp. 111ff).
These results can be interpreted in the formal framework introduced in the pre-
vious subsection. Although the results indicate that μI and σI decrease as I
tends to infinity, they do not provide quantitative information, e.g., on the rate
of convergence. Hence, further research is required regarding these convergence
properties.

In the following, we will present the results for threshold accepting obtained by
Althöfer and Koschnik (1991) as an example. Similar reasoning might apply for
other convergent heuristics. The empirical assessment also focuses on threshold
accepting, but, again, the approach might be used for other heuristics as well.

First, it has to be noted that the results depend on a number of assumptions
regarding the problem instance. In particular, the objective function has to
satisfy certain conditions, and the search space has to be connected, i.e. it should
be possible to reach any point of the search space from any given starting point by
performing local search steps. Second, the results are existence results. Althöfer
and Koschnik (1991) prove that there exist suitable parameters for the threshold
accepting implementation such that the global optimum of the objective function
can be approximated at arbitrary accuracy with any fixed probability close to
one by increasing the number of iterations. Unfortunately, finding the suitable
parameter values is a different task.

Under the assumptions just mentioned and formalized in Althöfer and Koschnik
(1991), the following convergence result is obtained: For any given δ > 0 and
ε > 0, there exists a number of iterations I(δ, ε) such that for any replication
r = 1, . . . , nRestarts

P(|f(ψψψI,r) − fmin| < ε) > 1 − δ , (1)

where fmin denotes the global minimum of the objective function. When con-
sidering only the best out of nRestarts replications, a smaller number of iterations
might be sufficient for given values of δ and ε.

Although such a global convergence result might be considered a prerequisite
for considering an optimization heuristic in an econometric context, it is not a
sufficient property. In fact, at least two points deserve further attention. First,
given that it is not realistic to spend an unlimited amount of computational
resources, it is of interest to know at which rate μI converges to fmin and σI

converges to zero as I tends to infinity. So far, we are not aware of any theoretical
results on this issue, but we will discuss some empirical results in the following.
Second, as long as σI is not zero, i.e. typically for any finite value of I, any
deviation in fitting the global minimum of the objective function is linked to an
error in the approximation of a specific estimator. The following subsection will
provide some arguments on this issue.

24



As demonstrated in Figure 4, it is possible to approximate the unknown distribu-
tion function DH

I by the empirical distribution function obtained from a number
of replications r = 1, . . . , nRestarts. Table 1 exhibits mean and standard deviation
as well as some lower percentiles (p0.01, p0.05, p0.10) of these empirical distributions
based on nRestarts = 1 000 replications for the model selection problem described
above.

Table 1: Statistics of empirical distributions.

I μ̂I σ̂I p0.01 p0.05 p0.10

100 -3.435 0.244 -4.016 -3.835 -3.747
500 -4.019 0.138 -4.365 -4.246 -4.186

1000 -4.148 0.109 -4.418 -4.308 -4.285
5000 -4.326 0.067 -4.418 -4.418 -4.418

10000 -4.359 0.054 -4.418 -4.418 -4.418

The numbers support the descriptive results obtained from Figure 4. In partic-
ular, the value of −4.418 might correspond to the global minimum. Beyond the
purely descriptive approach, the empirical moments obtained allow to estimate
convergence rates. For example, estimation of the model

μI = α0 + α1
1

I

results in estimates α̂0 = −4.291 with an estimated standard deviation of 0.046
and a significant positive estimate of α1. These findings do not contradict a global
minimum of −4.418. The R2 of this simple regression model amounts to 0.981.
Of course, one might consider alternative functional forms for estimating the rate
of convergence.

Although finding the global optimum is certainly preferred, this will not always
be feasible for problems of high computational complexity given limited com-
putational resources. Therefore, alternative measures of convergence might be
also of interest. Jacobson et al. (2006) use the concept of β-acceptable solution
probability in this context.

In particular, one might care about the number of iterations I and/or replications
nRestarts which is necessary to obtain a solution fbest = minr=1,...,nRestarts

f(ψψψI,r) ≤ β
with a certain probability. Although it is possible to model the β-acceptable
solution probability as a function of the distributions DH

I , concrete numbers
have to be calculated for each particular application. Furthermore, also in this
case, rates of convergence might be of interest, e.g., to determine the increase
of I required to obtain a given improvement either in β or in the β-acceptable
solution probability for given β.

25



Typically, an optimization heuristic is applied repeatedly to the same problem
instance. Therefore, the result reported will correspond to the best out of nRestarts

replications, also called restarts. Obviously, the expected value for this best
result will be better than for a single run. Extreme value analysis might be used
to derive results on the distribution in this situation. Then, the results of the
analysis might be used to derive an optimal number of restarts. For some ideas
on this issue from the application point of view see the paragraph on restarts in
Section 4.1 below.

Given that optimization heuristics start playing a more important role in econo-
metrics, we argue that further research on these and similar aspects of their
application is highly relevant and urgently needed.

3.3 Convergence of optimization based estimators

When optimization heuristics are applied to estimation problems like, e.g., cen-
sored quantile regression or (augmented) GARCH models, the stochastics of the
optimization algorithm interferes with the stochastics of the estimators. We pro-
vide a formal description of this inference and demonstrate that, at least asymp-
totically, this interference favors the application of optimization heuristics. In
fact, it is possible to derive joint convergence results.

Let us assume that the sample size T grows to infinity and that the theoretical
estimator ψ̂̂ψ̂ψT will converge to its “true” value ψψψ in probability. We consider the
implementation of a convergent heuristic, i.e. we might assume that the heuristic
converges in probability to the global optimum corresponding to ψ̂̂ψ̂ψT with I going
to infinity. Furthermore, we assume that the search space for ψψψT is a compact
set and that the estimation function is continuous.19 Then, given δ > 0 and
ε > 0 it is possible to choose the number of iterations I as a function of T, δ, and
ε such that the estimate obtained using the heuristic ψψψI

T satisfies the following
inequality:

P(|ψψψI
T − ψ̂ψψT | < ε) > 1 − δ . (2)

Combining this result with the convergence in probability of the estimator, one
obtains a joint convergence result: There exists a function I(T ) for the number

of iterations such that the estimate ψψψ
I(T )
T converges in probability to the true

parameter vectorψψψ. Although this result is not precise with regard to the choice of
I(T ), it bears some promises in cases where classical methods might not converge

to ψ̂̂ψ̂ψT . For a more detailed description see Fitzenberger and Winker (2007) and
Maringer and Winker (2006).

As for the objective function itself, the convergence of parameter estimates might

19In passing note that these conditions are sufficient for the following results to hold but not
necessary. One can probably obtain the results under much weaker assumptions.

26



be improved when considering the best result (with regard to f) out of a number
of nRestarts restarts of the optimization heuristic. The analysis of this effect by
means of extreme value theory is a topic of current research.

4 General guidelines for the use of optimization

heuristics

The first questions to be answered for a specific application is whether to use an
optimization heuristic at all and if so, which one to employ. Unfortunately, both
questions do not allow for a general answer. Obviously, when a problem is known
to be computational complex, e.g., due to several local minima, we recommend
to apply an optimization heuristic as a benchmark for classical optimization pro-
cedures. Whenever the application of the heuristic generates better results at
least for some replications, this is a clear indication for the use of such methods.
Then, a more careful implementation analysis should follow. In fact, given a
growing availability of code for some optimization heuristics on different software
platforms, their use as a benchmark might become more standard.

The second choice is with regard to the heuristic itself. One selection can be
based on the properties of the search space and the objective function given
as some heuristics like DE are not well suited to tackle discrete optimization
problems or problems with noise in the objective function. Another motivation
for a specific optimization heuristic consists in previous (own) experience with
a method for problems exhibiting similar characteristics. Finally, we argue that
one should start with a simple general heuristic before turning to more problem
specific hybrids.

Irrespective of the specific method chosen, any implementation of the algorithms
presented in Section 2 needs particular attention with respect to a number of
details, a task which is generally left to the user. For instance in the case of
a trajectory method the neighborhood solution should be easy to generate, the
definition of the neighborhood should not be too large and the topology of the
objective function not too flat. Population based methods or evolutionary algo-
rithms perform in each iteration a mechanism of co-operation and a mechanism of
self-adaption. In a genetic algorithm information is exchanged among individu-
als during crossover which can be considered as co-operation, while mutation is a
self-adaptation process. It is then important that pertinent information is trans-
mitted during co-operation. The combination of two equivalent parent solutions
should not produce an offspring that is different from the parents. The preserva-
tion of the diversity in the population is also very important for the efficiency of
the algorithm.

Rather than covering the details of a large variety of methods this section aims

27



at providing some basic principles for the successful adaptation of heuristics in
difficult optimization problems. We present these principles for the threshold
accepting algorithm with its particularly simple structure.

We consider a minimization problem on a subset Ω of R
k:

min
x∈Ω

f(x) Ω ⊂ R
k . (3)

For applications to discrete optimization problems see, e.g., Section 5.1.

4.1 Implementation

The implementation of the threshold accepting algorithm involves the definition
of the objective function, the neighborhood and the threshold sequence. Moreover
one has to specify the number of restarts nRestarts,

20 the number of rounds nRounds

in which the threshold is reduced to zero and the number of steps nSteps the
algorithm searches neighbor solutions for a given value τr of the threshold. Then,
the number of iterations per restart is given by I = nRounds × nSteps.

Objective function and constraints

Local search essentially proceeds in successive evaluations and comparisons of
the objective function and therefore the performance of the heuristic crucially
depends on its fast calculation. To improve this performance, the objective
function should, whenever possible, be locally updated, i.e. the difference Δ =
f(xn) − f(xc) between the value of the objective function for a current solution
xc and a neighbor solution xn should be computed directly by updating f(xc)
and not by computing f(xn) from scratch. If possible, local updating will also
improve the performance of population based algorithms. However, local updat-
ing requires a detailed analysis of the objective function. In the fields of statistics
and econometrics, we are only aware of the applications to experimental design
by Fang et al. (2003) and Fang et al. (2005) making use of local updating.

We use the classical traveling salesman problem from operations research to de-
scribe the idea of local updating. The problem consists in finding a tour of
minimum length going through a given number of cities. Starting with some
random tour, a local modification is given by exchange the sequence of two cities
in the tour. Obviously, the length of the new tour has not to be calculated from
scratch, but can be obtained from the length of the previous tour by subtracting
the length of the removed links and adding the length of the new links. The
speed up will be considerable as soon as the number of cities becomes large.

20Algorithm 12 below provides the pseudo code for the implementation with restarts.

28



In the presence of constraints the search space Ω is a subspace Ω ⊂ R
k. The

generation of starting and neighbor solutions which are elements of Ω might
be difficult, in particular if Ω is not connected. Therefore, R

k should be used as
search space and a penalty term added to the objective function if x �∈ Ω. In order
to allow the exploration of the whole search space, the penalty term is usually set
at small values at the beginning of an optimization run. It is increased with the
number of rounds to rather high values at the end of the run to guarantee that
the final solution is a feasible one. If expressed in absolute terms, these scheme of
penalty terms has to be adjusted for every application. Alternatively, one might
use relative penalty terms allowing for more general implementations.

The handling of constraints is also an issue in population based algorithms unless
all operators can be constructed in a way to guarantee that only feasible solutions
can result.

Neighborhood definition

The objective function should exhibit local behavior with regard to the closer
neighborhood, denoted N (x), of a solution x. This means that for elements
xn ∈ N (x), the objective function should be closer to f(x) than for randomly
selected points xr. Of course, there is a trade-off between large neighborhoods,
which guarantee non-trivial projections and small neighborhoods with a real local
behavior of the objective function.

For real valued variables, a straightforward definition of the neighborhood is given
by means of ε-spheres

N (xc) = {xn|xn ∈ Rk and ‖xn − xc‖ < ε} ,
where ‖ · ‖ denotes the Euclidian metric. In the case of a discrete search space,
one might use the Hamming metric instead (Hamming, 1950). A drawback of
this definition in the Euclidian case is that the generation of elements in N (xc)
might be computational costly. A simpler method consists in considering hyper-
rectangles, possibly only in a few randomly selected dimensions, i.e. to select
randomly a subset of elements xc

i , i ∈ J ⊂ {1, 2, . . . , k} for which ‖xn
i − xc

i‖ < ε.
For many applications a choice with #J = 1, i.e. where we modify a single
element of xc, works very well.

Threshold sequence

The theoretical analysis of the threshold accepting algorithm in Althöfer and
Koschnik (1991) does not provide a guideline on how to choose the threshold
sequence. In fact, for a very small problem, Althöfer and Koschnik (1991, p. 194)
even show that the optimal threshold sequence is not monotonically decreasing.

29



Nevertheless, for applications in econometrics, two simple procedures seem to
provide useful threshold sequences. First, one might use a linear schedule de-
creasing to zero over the number of rounds. Obviously, for this sequence, only
the first threshold value is subject to some parameter tuning. Second, one might
exploit the local structure of the objective function for a data driven generation
of the threshold sequence.

A motivation for this second approach can be provided for a finite search space.
In this case, only threshold values corresponding to the difference of the objec-
tive function values for a pair of neighbours are relevant. Given the number of
elements in real search spaces, it is not possible to calculate all these values. In-
stead, one uses a random sample from the distribution of such local differences.
This procedure can also be applied to the cases of infinite and continuous search
spaces.

Algorithm 11 provides the details of the procedure. On starts with a randomly
selected point xc ∈ Ω, chooses a randomly selected neighbour xn ∈ N (xc) and
calculates the absolute value of the difference in the objective function Δ =
|f(xc) − f(xn)|. Next, xc is replaced by xn and the steps are repeated a certain
number of times nDeltas ≥ nRounds. The resulting empirical distribution of Δs is
shown in Figure 5. For very large values of the threshold, the search procedure
resembles closely a pure random search. Thus, it is often useful to consider only a
lower quantile of the empirical distribution function. Then, based on the nRounds

smallest Δs, the threshold sequence can be computed as proposed by Winker
and Fang (1997) and used in several applications afterwards. It is given by the
quantiles corresponding to a vector of equidistant percentiles Pi = (nRounds −
i)/nRounds, i = 1, . . . , nRounds. Figure 5 also provides the threshold sequence τ for
nRounds = 10 for the application presented in Section 5.2 below.

Algorithm 11 Generation of threshold sequence.
1: Randomly choose xc ∈ Ω
2: for i = 1 to nDeltas do
3: Compute xn ∈ N (xc) and Δi = |f(xc) − f(xn)|
4: xc = xn

5: end for
6: Compute empirical distribution F of Δi, i = 1, . . . , nSteps

7: Compute threshold sequence τr = F−1
(

nRounds−r

nRounds

)
, r = 1, . . . , nRounds

Instead of considering the local changes of the objective function Δ along a path
through the search space as described in Algorithm 11, one might consider several
restarts to produce different trajectories of shorter length, or – in the limit –
generate all xc randomly. Obviously, when letting nDeltas tend to infinity, all
three methods should provide the same approximation to the distribution of local
changes of the objective function. However, we do not have clear evidence which

30



method is best for small numbers of nDeltas.

0 0.68 1.57 3.33 5.01 8.36
0

0.2

0.4

0.6

0.8

1

τ

Figure 5: Empirical distribution of a sequence of Δs. To the nRounds = 10 equally
spaced percentiles on the y-axis we have the corresponding quantiles on the x-axis
which constitute the threshold sequence τ .

Monitoring the algorithm

To gain insight into the way the algorithm explores the search space we recom-
mend to produce a plot of the function values accepted in the succeeding rounds.
This provides information about how the algorithm moves. Figure 6 exhibits such
a plot for an optimization using the threshold determined in Figure 5. We observe
that the amplitude of the up-hill moves diminishes in the succeeding rounds. In
the last round no more up-hill moves exist.

0 0.5 1 1.5 2

x 10
4

0

5

10

15

Figure 6: Function values for accepted steps in the local search. The vertical
lines correspond to the beginning of a new round.

The definition of the threshold sequence is closely related to the definition of the
neighborhood. We suggest the following rule of thumb: The standard deviation

31



of the generated distances Δ in Algorithm 11 should be of the same order of mag-
nitude as the standard deviation of the function values accepted in statement 8
of Algorithm 12. For the example illustrated in Figures 5 and 6 the standard
deviations are respectively 2.3 and 1.5.

The graphics in Figures 5 and 6 give important information about whether the
algorithm is appropriately parameterized. For instance an irregular shape (almost
horizontal or vertical portions) of the cumulative distribution of the Δs is a clear
signal for a bad local behavior of the objective function. The plot of the accepted
function values for the objective function will among other also help to judge
whether the choice for nRounds and nSteps has been appropriate. Typically, the
number of steps per round nSteps exceeds the number of nRounds by far. Suggested
minimum values for nRounds are about 10. However, when the total number of
iterations I becomes very large, nRounds might be increased as well to obtain a
closer approximation to the empirical distribution function. One might think
to choose nRounds proportional to I with a low factor of proportionality in this
case. Obviously, the choice of I and, consequently, for given nRounds, the choice
of nSteps is problem dependent. If the evaluation of the objective function is very
expensive this parameter will be kept as small as possible.

Restarts

Although the expected value μI of the result improves with an increasing num-
ber of iterations I, the discussion above indicated that it might be reasonable to
split available resources for several restarts nRestarts. Although we are not aware
of any theoretical result allowing for general conclusions, our experience with
quite different problem instances indicate that a number of restarts nRestarts rang-
ing between 5 and 20 might be optimal for many applications. Optimality in
this context means that for given total computational resources C, using nRestarts

restarts with I = C/nRestarts iterations for each restarts will result in a smaller
expected value of f for the best out of the nRestarts runs than using all resources
for a single run.

If the restarts are executed in a distributed computing environment, the optimal
allocation of computing resources has to be considered differently. Again, the
question is how to choose nRestarts and I in order to minimize execution time for
a given quality of the result fsol = minr=1,...,nRestarts

f(ψψψI,r) ≤ c.

To illustrate how this question could be answered let us consider in Figure 7 the
empirical distribution of results f(ψψψI) of a heuristic for increasing values of I. We
associate a Bernoulli random variable z to the solution f(ψψψI) of a single execution
where z = 1 if f(ψψψI) < c and z = 0 else. For I = 10 000 and c = −1.265 we have
p = P(z = 1) = 0.727 which corresponds to the percentile of f(ψψψI) = −1.265
in the empirical distribution. We now consider the random variable x which

32



counts the number of solutions verifying f(ψψψI) < c out of nRestarts solutions. We
know that x ∼ B(nRestarts, p) is a binomial random variable. The probability for
a solution being at least as good as fsol = minr=1,...,nRestarts

f(ψψψI,r) ≤ c is given by

π = 1 − P(x = 0) (4)

from which it is possible to compute the number of restarts nRestarts necessary to
obtain the desired quality c with a given probability π. For x ∼ B(n, p) we have
P(x = 0) = (1 − p)n and the number of restarts nRestarts we seek is given by the
smallest positive integer n verifying π ≤ (1 − p)n.

−1.29 −1.265 −1.23
0

0.087

0.365

0.727

1

I=10000
I=  2000
I=  1000

Figure 7: Empirical distribution of results f(ψψψI).

Table 2 reproduces the values of nRestarts retrieved from (4) for π = 0.99. We
conclude that I = 1 000 and nRestarts = 51 would be the best choice in a distributed
computing environment with at least 51 nodes, whereas I = 2 000 and nRestarts =
11 is the best choice if the restarts have to be executed serially.

Table 2: Number of restarts and iterations for a given quality of the result.

I R C
1 000 51 51 000
2 000 11 22 000

10 000 4 40 000

Finally, Algorithm 12 summarizes the implementation of the threshold accepting
algorithm with restarts.

The algorithm behaves quite robust within a given class of problems and therefore
in statement 2 the threshold sequence needs not to be recomputed for different
executions with similar data.

33



Algorithm 12 TA algorithm with restarts.
1: Initialize nRestarts, nRounds and nSteps

2: Compute threshold sequence τr (Algorithm 11)
3: for k = 1 : nRestarts do
4: Randomly generate current solution xc ∈ X
5: for r = 1 to nRounds do
6: for i = 1 to nSteps do
7: Generate xn ∈ N (xc) and compute Δ = f(xn) − f(xc)
8: if Δ < τr then xc = xn

9: end for
10: end for
11: ξk = f(xc), xsol

(k) = xc

12: end for
13: xsol = xsol

(k), k | ξk = min{ξ1, . . . , ξnRestarts
}

4.2 Presentation of results

Accepting the differences between the classical and the heuristic optimization
paradigm has some implications on the presentation of results. In particular, all
relevant information has to be provided allowing for an assessment of the quality
and robustness of results. Given the novelty of heuristic optimization based ap-
proaches in econometric applications and the still limited number of publications
in this field, we do not pretend to describe a generally accepted standard. In
fact, many publications so far have provided only selective information on the
procedure and its properties. Nevertheless, a few aspects seem of particular in-
terest in this context and should be reported for any application. Therefore, the
issues mentioned in the following might be considered as a guideline to ensure the
distribution of a minimum of information required to assess econometric results
which are based on a heuristic optimization method.

Implementation details

The actual implementation of the heuristic should be completely described includ-
ing all parameter settings. If a standard implementation is chosen, a reference
to the literature might be sufficient. Otherwise, it is recommended to provide
pseudo code of the implementation. Some examples are given in Section 2. Dif-
ferences to standard implementations deserve a particularly detailed description.
If possible, a reason should be given for any such departure from a standard
approach.

34



Pretesting

Typically, a preliminary test phase is run for choosing appropriate parameter val-
ues for the heuristic. Preferably, this testing phase should follow some structured
approach, e.g., a grid search over some parameter values. The approach followed
should be documented. In any case, it is relevant to report the number of runs
in this preliminary phase as they will have an impact on the quality of the final
outcomes.

Computational resources

Authors should always clearly indicate how much computational resources have
been spent for each of the results presented. In general, stochastic algorithms will
be run repeatedly on a single problem instance. Then, the number of restarts
and the number of iterations (generations) per restart should be indicated. Fur-
thermore, information on the distribution of the results (in terms of values of the
objective function and/or other variables of interest, e.g., parameter estimates)
should be provided. This might be done using standard statistics such as mean,
variance and quantiles if only a small number of restarts has been considered, or
by density plots similar to the example provided in Figure 4 in Section 3.1.

Rate of convergence

As long as an implementation of a heuristic does not provide the global opti-
mum with probability close to one, an increase in computational resources spent
(iterations/generations, restarts) should improve (expected) results. Since no
theoretical results are available with regard to this convergence speed, empirical
information is highly valuable. It might be provided by some graphical presen-
tation or an econometric estimate of the rate of convergence as presented for an
example in Section 3.2.

Generality of results

Finally, for comparison with other methods, results on a single problem instance
are not sufficient. Either multiple real problem instances should be discussed or
a Monte Carlo simulation study should be conducted. In case of a Monte Carlo
analysis, problem instances might be constructed in a way to allow for a response
surface analysis of the results. Again, detailed information on the setup has to
be provided.

35



5 Selected applications

The selected applications presented in the following subsections are not meant to
present a complete analysis of the implementation of heuristics and the results
obtained. Given the page constraint, they should rather provide an illustration
of some of the issues addressed in the previous sections, while not all of the
requirements mentioned in Section 4.2 can be met.

The first example describes the discrete problem of model selection in VAR mod-
els with an implementation of the threshold accepting heuristic. This example
has been used to illustrate the stochastic dimension of working with optimization
heuristics in Section 3. The second example compares implementations of thresh-
old accepting and differential evolution for the continuous optimization problem
stemming from high breakdown point estimation.

5.1 Model selection in VAR models

A p-dimensional vector autoregressive process Xt is given by

Xt =

K∑
k=1

ΓΓΓkXt−k + εεεt , (5)

where εεεt
iid∼ N(0,ΣΣΣ). The matrices ΓΓΓk provide the autoregression coefficients. In

the following, we assume that all component time series in Xt are stationary.
For a more detailed treatment of this type of multivariate time series models,
estimation issues and interpretation of results, the reader is referred to Lütkepohl
(2007) in this volume.

Here, we assume that a maximum lag length K0 can be derived either from
economic theory or from some rule of thumb based on the number of available
observations. Then, for a given realization of the process (X1, . . . ,XT ), the model
selection problem consists in identifying K along with those elements of ΓΓΓk, k =
1, . . . , K, which are non zero in the process (5). Consequently, the search space
can be described by the set Ω = {0, 1}p2×K0, where a zero corresponds to a
parameter constraint to be zero, and a one to a parameter to be estimated freely.

For this model selection problem, different objective functions can be considered.
Information criteria represent one standard approach by weighting model fit (as
measured by the determinant of the fitted residuals covariance matrix Σ̂) against
the number of non zero parameters l. For the application presented in this sub-
section, the Bayesian or Schwarz information criterion BIC = ln |Σ̂| + l lnT/T
is used (Schwarz, 1978). However, using a different information criterion does
not require any change of the implementation besides replacing the objective
function.

36



Given that Ω is finite, the optimization problem can be solved by complete enu-
meration of all elements of Ω and choosing the lag structure corresponding to
the lowest value of the information criterion. However, even for modest values
of p and K0, the number of possible lag structures (2p2×K0) precludes this naive
approach. In applied research, often only a small subspace of Ω is considered
by choosing only Kmax and to allow all elements in ΓΓΓk to be estimated freely for
k = 1, . . . , Kmax. Obviously, for a given K0 only K0 different models have to be
compared in this constraint research space which is feasible with enumeration.
However, there is no reason to expect that the optimal lag structure in Ω happens
to fall in this small subset. Hence, the application of a threshold method or an-
other optimization heuristic suitable for discrete search spaces appears indicated.

The definition of neighborhoods on Ω is straightforward using ε-spheres defined
by the Hamming distance (Hamming, 1950). Intuitively, two lag structures with
a Hamming distance of two just differ with regard to the constraints on two ele-
ments of the Γ matrices. One might refine these neighborhoods, e.g., by imposing
further restrictions on the elements which might be exchanged in a single step
(Winker, 2000, p. 92). Here, we stick to the standard case. Then, we just have
to choose a value of ε large enough for not getting stuck in a bad local minima
and small enough to result in a guided local search.

The second column of Table 3, labeled σΔN exhibits the standard deviation of
the generated distances Δ in Algorithm 11 for the model selection problem and
different choices of Hamming distances ε.21 As expected, this standard deviation
increases with an increasing size of the neighborhood. The third column labeled
σaccepted provides the standard deviation of the function values accepted during the
runtime of the algorithm for I = 5 000. According to the rule of thumb discussed
in Section 4.1, a Hamming distance of 4 appears to be an adequate choice for
this problem.

Table 3: Standard deviation of local changes and accepted solutions.

Hamming
distance σΔN σaccepted

2 0.1706 0.9569
4 0.2578 0.5961
6 0.2916 0.7932

The threshold sequence is constructed as described in Algorithm 11 with nSteps =
100. From the ordered absolute values of differences, only the lower 30%-quantile
is used as threshold sequence resulting in nRounds = 30.

For the results presented in Section 3, a rather small problem instance with p = 3

21For this simulation, nSteps was set to 500 to obtain reliable estimates.

37



andK = 3 has been considered. The problem instance exhibits different lag struc-
tures for the three equations and “holes” such that the standard approach cannot
result in a proper model selection. The model selection procedure is applied to
simulated data from this process of length T = 100. For the optimization, we set
K0 = 5.

When considering a single realization of the process, we find that the overall best
solution is found 4 times for I = 500 iterations, 18 times for I = 1 000, 217
times for I = 5 000 and 332 times for I = 10 000 iterations when considering
nRestarts = 1 000 restarts. At the same time, the mean relative deviation from this
best solution decreases from 22% for I = 100 to 1.3% for I = 10 000 iterations.
Given the low number of observations of the realization of the process, it should
not be expected that the model with the lowest value of the information criterion
found by the heuristic corresponds to the true data generating process. The
heuristic just delivers the best or at least a good approximation for the given
realization.

Of course, a test of the properties of the presented application has to be based
on a much larger set of different model structures and realizations for a given
model structure. However, this is beyond the present contribution. More details
on model selection in VAR models including a much more comprehensive set
of simulations can be found in Winker (2001, Ch. 12). A generalization of the
approach to non stationary time series, i.e. in a VEC modelling context is pre-
sented by Winker and Maringer (2004) using a model selection criterion proposed
by Chao and Phillips (1999) for (co)integrated series and the estimator proposed
by Ahn and Reinsel (1990).22 According to their findings, adequate modelling of
the autoregressive part of the model, e.g., by means of optimization heuristics,
might have a strong impact on the correct identification of long run relationships.

5.2 High breakdown point estimation

We consider23 the linear regression model

yi =
[
xi1 · · · xip

]
⎡
⎢⎣
θ1
...
θp

⎤
⎥⎦ + εi i = 1, . . . , n (6)

where θ ∈ R
p are the parameters and ε ∼ N(0, σ2I) is the disturbance vector. The

breakdown point of an estimator is defined as the smallest percentage of contam-
ination in the data that may cause the estimator to be affected by an arbitrary

22Bauer and Wagner (2002) propose an alternative estimator which might also be used in
the context of model selection for (co)integrated time series.

23Builds on a presentation given by M. Gilli and A. Marazzi at the 3rd IASC World conference
in Limassol, Cyprus, 28–31 October 2005.

38



bias (Hampel et al., 1986, chap. 2). The breakdown point for ordinary least
squares is 0% but regression estimators with maximum breakdown point of 50%
have been proposed. Unfortunately, the optimization problems corresponding to
such high breakdown estimators cannot be solved as easily as is the case with
least squares. Indeed, the objective functions are non convex and have multiple
local minima. Over the last two decades, many algorithms have been proposed
to solve the problem, e.g., Marazzi (1992) and Rousseeuw and Driessen (2000).
These methods are based mainly on resampling techniques. More recently, the
algorithms have been improved for faster execution, e.g., by Salibian-Barrera and
Yohai (2004) and Rousseeuw and Driessen (2002). The resulting algorithms are
complex ad hoc procedures. We demonstrate that standard heuristic optimiza-
tion techniques can solve these problems easily.24

To keep this presentation as short as possible, we concentrate on the example of
the least median of squares (LMS) estimator defined as

θ̂LMS = argmin
θ

QLMS(θ)

where QLMS(θ) = med(r2
1, . . . , r

2
n) is the median of the squared residuals r2

i =
(yi − xi·θ̂)2, i = 1, . . . , n. Other estimators are the least trimmed squares and
the S-estimator.

To illustrate the computation of an LMS estimator we use a data generation pro-
cess which has been borrowed from Salibian-Barrera and Yohai (2004). We con-
sider model (6) where 90% of the observed variables are i.i.d. standard normally
distributed (gray zone in the scheme) and therefore θi = 0, i = 1, . . . , p. The
remaining 10% are constituted by outliers corresponding to slopes θ2 = M/100
and θj = 0 for j �= 2. The structure of the data is summarized in Figure 8.

In the following, we generate such data for n = 100, p = 10 and M = 190 and
compute the LMS estimators which should not be affected by the outliers, i.e.
none of the estimated parameters θ̂i, i = 1, . . . , p should be significantly different
from zero. Figure 9 illustrates the non convex shape of the objective function to
be minimized. The left panel corresponds to data generated with the artificial
model described above. From the figure, one can recognize the local minimum
corresponding to estimates of θ̂2 with value M/100 = 1.9. The objective function
in the right panel is related to real data from a biomedical application (Brown
and Hollander, 1977).

We now proceed with the description of the implementation of the threshold
accepting algorithm for this optimization problem with a continuous objective
function. The objective function F (θ) has already been defined and is computed
as

ri = (yi − Xi,· θ)2, i = 1, . . . , n

24Atkinson and Weisberg (1991) have been among the first to use heuristics in this context.

39



M...
M

1
2
...

�0.9 n�+1

n

�

1...

...
1

100...
100

1 2 3 · · · p

0...
0

0· · · ...
0· · ·

θ1
θ2

...

θp

Figure 8: Structure of the data.

−1
0

1
2

−1
0

1
2

0

2

4

6

θ
1θ

2

−10
−5

0
5

10

0

50

100
0

100

200

300

θ
1

θ
2

Figure 9: Shape of function QLMS for p = 2.

40



F = med(r2
1, . . . , r

2
n) ,

and a solution θn in the neighborhood of a current solution θc is generated with
a mechanism defined as

θn = θc

Uniformly select i ∈ {1, . . . , p}
Generate uniform random variable u ∈ [−h, h]
θn
i = θc

i + u × (1 + |θc
i |) ,

where h has been set to 0.40. The threshold sequence is then generated following
Algorithm 11 with nRounds = 10 and nSteps = 2500. Figure 5 shows the computed
threshold sequence and Figure 6 the accepted function values for an execution of
the threshold accepting algorithm.

This continuous optimization problem can also be solved with a population based
method such as differential evolution or particle swarm. For both algorithms the
objective function remains unchanged. In order to make the comparison fair, the
size of the population and the number of generations has been set to nP = 100,
respectively nG = 250 resulting in an overall number of function evaluations
of 25 000 and which corresponds to the nRounds × nSteps evaluations in the TA
algorithm.

The algorithm parameters for the differential evolution algorithm have been set
to CR = 0.8 and F = 0.75 and c = 2 for the swarm particle algorithm respectively.
For both algorithms the initial population of solutions has been initialized in the
domain θi ∈ [−3, 3], i = 1, . . . , p.

Figure 10 shows the empirical distribution of the value of the objective function at
the solution found by the threshold accepting, differential evolution and particle
swarm algorithm for 200 executions.

All solutions identify the presence of outliers, i.e. none of the estimated θ̂2 ap-
proach the value M/100 = 1.9. From Figure 10 we conclude that for this case
population based methods (and in particular particle swarm optimization) pro-
duces slightly better solutions than TA. The very small variance of the solutions
also indicates that we only need a very limited number of restarts, say 10, to
obtain with high probability a solution identifying the outliers.

Execution times per restart for our implementation in Matlab R2006a on a Intel
U2500 1.20 GHz processor are 4 seconds for TA, 3.5 seconds for DE and 1.5
seconds for PS.

For the same parameter settings we also tried the Matlab function devec3 of
Rainer Storn, downloadable from http://www.icsi.berkeley.edu/~storn/code.html.
With parameter strategy equal 2 the function produced similar results in same
execution times.

41

http://www.icsi.berkeley.edu/~storn/code.html


0.25 0.3 0.35 0.4 0.45
0

0.5

1

PS DE TA

Figure 10: Empirical distribution of the value of the objective function of 200
solutions for TA, DE and PS.

6 Conclusions

In this contribution, the use of optimization heuristics in econometrics is moti-
vated by the fact that many optimization problems in econometrics cannot be
dealt with adequately using classical tools. Instead of simplifying the model,
searching for alternative work arounds or using highly specified algorithms, we
propose to employ general optimization heuristics.

The chapter provides an overview of some of the most commonly used optimiza-
tion heuristics in fields close to econometrics, e.g., in statistics and finance. Fur-
thermore, a classification of the basic algorithms and possible hybrids provides
a base for selection of algorithms which might be most suitable for a specific
problem instance.

In traditional applications of optimization heuristics in operations research, engi-
neering and related fields, the inherent randomness of the results does not seem
to play a major role. However, econometricians appear to be very anxious about
this stochastic component. Therefore, a formal approach is proposed to deal with
this additional source of randomness in the context of econometric applications.
Obviously, our contribution provides only a few preliminary insights and might
point towards issues deserving additional research. Nevertheless, the results pre-
sented indicate that it might be possible to include the randomness stemming
from the application of optimization heuristics in the usual econometric analysis.

Another major obstacle to a more widespread use of optimization heuristics ap-
pears to be that few standard applications are available and most algorithms
require some parameter tuning for a specific problem instance. In a chapter de-
voted to implementation issues, we tried to summarize our (limited) knowledge
about these issues and to provide guidelines to the potential user of such meth-
ods. According to our understanding, it is equally important for a more general
use of the heuristic methods that authors and editors become more careful about
the presentation of the results. Again, we presented some guidelines without

42



claiming that they represent a complete set.

The chapter is complemented by the short description of two applications in
econometrics, one for a discrete optimization problem in model selection and the
second for a continuous optimization problem. The results indicate that these
methods represent a valuable extension of the econometrician’s toolbox when it
comes to model and estimate slightly more complex problems than standard linear
least squares. We are confident that given their performance, the methods will
become a standard tool once a common standard for presentation and evaluation
of the results and their randomness has been developed and is generally accepted.

References

Aarts, E. and J. Korst (1989). Simulated Annealing and Boltzmann Machines. J.
Wiley and Sons. Chichester.

Acosta-González, E. and F. Fernández-Rodŕıguez (2007). Model selection via ge-
netic algorithms illustrated with cross-country growth data. Empirical Eco-
nomics 33, 313–337.

Adanu, K. (2006). Optimizing the GARCH model – an application of two global
and two local search methods. Computational Economics 28, 277–290.

Ahn, S.K. and G.C. Reinsel (1990). Estimation for partially nonstationary mul-
tivariate autoregressive models. Journal of the American Statistical Associ-
ation 85(411), 813–823.

Alcock, J. and K. Burrage (2004). A genetic estimation algorithm for parameters
of stochastic ordinary differential equations. Computational Statistics and
Data Anylsis 47(2), 255–275.

Althöfer, I. and K.-U. Koschnik (1991). On the convergence of threshold accept-
ing. Applied Mathematics and Optimization 24, 183–195.

Atkinson, A.C. and S.W. Weisberg (1991). Simulated annealing for the detection
of multiple outliers using least squares and least median of squares fitting.
In: Directions in robust statistics and diagnostics, Part I (W.A.Stahel and
S.W. Weisberg, Ed.). Springer-Verlag. New York.

Baragona, R., F. Battaglia and C. Calzini (2001). Genetic algorithms for the iden-
tification of additive and innovation outliers in time series. Computational
Statistics & Data Analysis 37(1), 1–12.

43



Baragona, R., F. Battaglia and D. Cucina (2004). Fitting piecewise linear thresh-
old autoregressive models by means of genetic algorithms. Computational
Statistics & Data Analysis 47, 277–295.

Bauer, D. and M. Wagner (2002). Estimating cointegrated systems using subspace
algorithms. Journal of Econometrics 111, 47–84.

Birattari, M., L. Paquete, T. Stützle and K. Varrentrap (2001). Classification
of metaheuristics and design of experiments for the analysis of components.
Technical Report AIDA-2001-05. Intellektik, Technische Universität Darm-
stadt, Germany.

Bock, F. (1958). An algorithm for solving “traveling salesman” and related net-
work optimization problems. 14th ORSA meeting, St. Louis.

Brooks, S.P. and B.J.T. Morgan (1995). Optimization using simulated annealing.
The Statistician 44(2), 241–257.

Brooks, S.P., N. Friel and R. King (2003). Classical model selection via simulated
annealing. Journal of the Royal Statistical Society Series B 65, 503–520.

Brown, B.W. and M. Hollander (1977). Statistics: A Biomedical Introduction.
Wiley. New York.

Chao, J.C. and P.C.B. Phillips (1999). Model selection in partially nonstation-
ary vector autoregressive processes with reduced rank structure. Journal of
Econometrics 91, 227–271.

Chipman, J. S. and P. Winker (2005). Optimal aggregation of linear time series
models. Computational Statistics and Data Analysis 49(2), 311–331.

Colorni, A., M. Dorigo and V. Manniezzo (1992a). Distributed optimization by
ant colonies. In: Proceedings of the First European Conference on Artifi-
cial Life (ECAL-91) (F.J. Varela and P. Bourgine, Ed.). The MIT Press.
Cambridge MA. pp. 134–142.

Colorni, A., M. Dorigo and V. Manniezzo (1992b). An investigation of some
properties of an ant algorithm. In: Parallel problem solving from nature,
Vol 2. (R. Männer and B. Manderick, Ed.). North-Holland. Amsterdam.
pp. 509–520.

Cormen, T.H., C.E. Leiserson and R.L. Rivest (1990). Introduction to Algorithms.
MIT Electrical Engineering and Computer Science. MIT Press. Cambridge.

Croes, G.A. (1958). A method for solving traveling salesman problems. Operations
Research 6, 791–812.

44



Dempster, A.P., N.M. Laird and D.B. Rubin (1977). Maximum likelihood from
incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39, 1–38.

Doornik, J.A. and M. Ooms (2003). Multimodality in the GARCH regression
modell. Technical Report 2003-W20. University of Oxford. Oxford.

Dorsey, B. and W.J. Mayer (1995). Genetic algorithms for estimation problems
with multiple optima, nondifferentiability and other irregular features. Jour-
nal of Business and Economic Statistics 13, 53–66.

Dueck, G. (1993). New optimization heuristics: The great-deluge algorithm and
the record-to-record travel. Journal of Computational Physics 13, 53–66.

Dueck, G. and T. Scheuer (1990). Threshold accepting: A general purpose algo-
rithm appearing superior to simulated annealing. Journal of Computational
Physics 90, 161–175.

Eberhart, R.C. and J. Kennedy (1995). A new optimizer using particle swarm
theory. In: Proceedings of the Sixth International Symposium on Microma-
chine and Human Science. Nagoya, Japan. pp. 39–43.

Fang, K.-T., D. Maringer, Y. Tang and P. Winker (2005). Lower bounds and
stochastic optimization algorithms for uniform designs with three or four
levels. Mathematics of Computation 75(254), 859–878.

Fang, Kai-Tai, Xuan Lu and P. Winker (2003). Lower bounds for centered and
wrap–around l2–discrepancies and construction of uniform designs by thresh-
old accepting. Journal of Complexity 19, 692–711.

Fitzenberger, B. and P. Winker (2007). Improving the computation of censored
quantile regressions. Computational Statistics & Data Analysis 52(1), 88–
108.

Gan, L. and J. Jiang (1999). A test for global maximum. Journal of the American
Statistical Association 94(447), 847–854.

Glover, F. and M. Laguna (1997). Tabu Search. Kluwer Academic Publishers.
Boston, MA.

Goffe, W.L., G.D. Ferrier and J. Rogers (1994). Global optimization of statistical
functions with simulated annealing. Journal of Econometrics 60(1-2), 65–99.

Hamming, R.W. (1950). Error detecting and error correcting codes. Bell System
Technical Journal 29, 147–160.

Hampel, F.R., E.M. Ronchetti, P.J. Rousseeuw and W.A. Stahel (1986). Robust
Statistics: The Approach based on Influence Functions. Wiley. New York.

45



Hawkins, D.S., D.M. Allen and A.J. Stromberg (2001). Determining the number
of components in mixtures of linear models. Computational Statistics & Data
Analysis 38(1), 15–48.

Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. The Univer-
sity of Michigan Press. Ann Arbor, MI.

Hoos, H.H. and T. Stützle (2005). Stochastic Local Search: Foundations and
Applications. Elsevier. Amsterdam.

Hüsler, J., P. Cruz, A. Hall and C.M. Fonseca (2003). On optimization and
extreme value theory. Methodology and Computing in Applied Probability
5, 183–195.

Jacobson, S.H. and E. Yücesan (2004). Global optimization performance mea-
sures for generalized hill climbing algorithms. Journal of Global Optimization
29, 173–190.

Jacobson, S.H., S.N. Hall and L.A. McLay (2006). Visiting near-optimal solu-
tions using local search algorithms. In: COMPSTAT 2006, Proceedings in
Computational Statistics (Alfredo Rizzi and Maurizio Vichi, Ed.). Physica.
Heidelberg. pp. 471–481.

Jerrell, M.E. and W.A. Campione (2001). Global optimization of econometric
functions. Journal of Global Optimization 20(3-4), 273–295.

Kapetanios, G. (2007). Variable selection in regression models using nonstan-
dard optimisation of information criteria. Computational Statistics & Data
Analysis 52(1), 4–15.

Kapetanios, George (2006). Choosing the optimal set of instruments from large
instrument sets. Computational Statistics & Data Analysis 51(2), 612–620.

Lourenço, H.R., O. Martin and T. Stützle (2002). Iterated local search. In: Hand-
book of Metaheuristics (F. Glover and G. Kochenberger, Ed.). Vol. 57 of In-
ternational Series in Operations Research and Management Science. Kluwer
Academic Publishers. Norwell, MA. pp. 321–353.

Lütkepohl, H. (2007). Econometric analysis with vector autoregressive models.
In: Handbook of Computational Econometrics (E. Konthoghiorghes et al.,
Eds.). Elsevier. Amsterdam. p. forthcomming.

Maddala, G.S. and F.D. Nelson (1974). Maximum likelihood methods for models
of markets in disequilibrium. Econometrica 42(6), 303–317.

Marazzi, A. (1992). Algorithms, Routines and S-functions for Robust Statistics.
Wadsworth & Brooks/Cole.

46



Maringer, D. (2005). Portfolio Management with Heuristic Optimization.
Springer. Dordrecht.

Maringer, D. and M. Meyer (2006). Smooth transition autoregressive models –
new approaches to the model selection problem. Technical Report WP010-
06. University of Essex. Colchester.

Maringer, D. and P. Winker (2006). The convergence of optimization based
GARCH estimators: Theory and application. In: COMPSTAT 2006, Pro-
ceedings in Computational Statistics (Alfredo Rizzi and Maurizio Vichi, Ed.).
Physica. Heidelberg. pp. 483–494.

Mladenovic, N. and P. Hansen (1997). Variable neighborhood search. Computers
and Operations Research 34, 1097–1100.

Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and
martial arts: Towards memetic algorithms. Technical report. Caltech.

Osman, I. H. and G. Laporte (1996). Metaheuristics: A bibliography. Annals of
Operations Research 63, 513–623.

Reeves, C.R. and J.E. Rowe (2003). Genetic Algorithms – Principles and Per-
spectives. Kluwer. Boston.

Rousseeuw, P.J. and K. Van Driessen (2000). An algorithm for positive-
breakdown regression based on concentration steps. In: Data Analysis:
Scientific Modeling and Practical Application (W. Gaul, O. Opitz and
M. Schader, Ed.). Springer-Verlag. Berlin. pp. 335–346.

Rousseeuw, P.J. and K. Van Driessen (2002). Computing LTS regression for large
data sets. Estadistica 54, 163–190.

Rudolph, G. (1997). Convergence Properties of Evolutionary Algorithms. Kovač.
Hamburg.

Salibian-Barrera, M. and V.J. Yohai (2004). A fast algorithm for S-regression
estimates. Technical report. University of British Columbia.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics
6, 461–464.

Staszewska, A. (2007). Representing uncertainty about response paths: The use
of heuristic optimisation methods. Computational Statistics & Data Analysis
52(1), 121–132.

Storn, R. and K. Price (1997). Differential evolution – a simple and efficient
heuristic for global optimization over continuous spaces. Journal of Global
Optimization 11, 341–359.

47



Taillard, E.D., L.M. Gambardella, M. Gendreau and J-Y. Potvin (2000). Adap-
tive memory programming: A unified view of metaheuristics. European Jour-
nal of Operational Research 135, 1–16.

Talbi, E-G. (2002). A taxonomy of hybrid metaheuristics. Journal of Heuristics
8, 541–564.

Winker, P. (1995). Identification of multivariate AR-models by threshold accept-
ing. Computational Statistics and Data Analysis 20(9), 295–307.

Winker, P. (2000). Optimized multivariate lag structure selection. Computational
Economics 16, 87–103.

Winker, P. (2001). Optimization Heuristics in Econometrics: Applications of
Threshold Accepting. Wiley. Chichester.

Winker, P. and D. Maringer (2004). Optimal lag structure selection in VAR
and VEC models. In: New Directions in Macromodeling (A. Welfe, Eds.).
Elsevier. Amsterdam. pp. 213–234.

Winker, P. and D. Maringer (2007). The threshold accepting optimisation algo-
rithm in economics and statistics. In: Optimisation, Econometric and Finan-
cial Analysis (E. J. Kontoghiorghes and C. Gatu, Ed.). Vol. 9 of Advances
in Computational Management Science. Springer. Berlin. pp. 107–125.

Winker, P. and Kai-Tai Fang (1997). Application of threshold accepting to the
evaluation of the discrepancy of a set of points. SIAM Journal on Numerical
Analysis 34, 2028–2042.

Yang, Z., Z. Tian and Z. Yuan (2007). GSA-based maximum likelihood estimation
for threshold vector error correction model. Computational Statistics & Data
Analysis 52(1), 109–120.

48


	cover_page
	COMISEF-DP-09-09-09.pdf
	Traditional numerical versus heuristic optimization methods
	Optimization in econometrics
	Optimization heuristics
	An uncomplete collection of applications
	Structure and instructions for use of the chapter

	Heuristic optimization
	Basic concepts
	Trajectory methods
	Threshold methods (TM)
	Tabu search (TS)

	Population based methods
	Genetic algorithm (GA)
	Ant colonies (AC)
	Differential evolution (DE)
	Particle Swarm Optimization (PS)

	Hybrid meta-heuristics
	Basic characteristics of meta-heuristics
	Scheme for possible hybridization
	An example: Memetic algorithms (MA)


	Stochastics of the solution
	Optimization as stochastic mapping
	Convergence of heuristics
	Convergence of optimization based estimators

	General guidelines for the use of optimization heuristics
	Implementation
	Presentation of results

	Selected applications
	Model selection in VAR models
	High breakdown point estimation

	Conclusions


