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Abstract

An iterative algorithm for establishing the Nash Equilibrium in pure
strategies (NE) is proposed and tested in Cournot Game models. The
algorithm is based on the convergence of sequential best responses and
the utilization of a genetic algorithm for determining each player’s best
response to a given strategy profile of its opponents. An extra outer loop
is used, to address the problem of finite accuracy, which is inherent in
genetic algorithms, since the set of feasible values in such an algorithm is
finite. The algorithm is tested in five Cournot models, three of which have
convergent best replies sequence, one with divergent sequential best replies
and one with “local NE traps”(Son and Baldick 2004), where classical local
search algorithms fail to identify the Nash Equilibrium. After a series of
simulations, we conclude that the algorithm proposed converges to the
Nash Equilibrium, with any level of accuracy needed, in all but the case
where the sequential best replies process diverges.
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1 Introduction

We utilize a genetic algorithm to determine a player’s best reply in a sequen-
tial best reply process context, that converges to a Nash Equilibrium in pure
strategies, in Cournot oligopoly games (Cournot 1838). Lemke and Howson
(1964) discovered the LCP algorithm that allows for the derivation of the Nash
Equilibrium in pure strategies (NE) in a two-player game, but unfortunately,
that algorithm cannot be applied in n-player games. Therefore, computational
methods are needed in order to calculate the NE’s of a n-player game, when an
analytical calculation is not possible. Two major categories of this kind of algo-
rithms are evolutionary methods (see for example Vriend 2000, or Protopapas
and Kosmatopoulos 2008), which use adaptive agents that represent players,
who “learn” using a learning algorithm, and iterative algorithms, which are
based on the convergence of the best-reply sequence to a NE, in specific classes
of games (see for example Weber and Overbye 1999 or Hobbs et al. 2000).

The algorithm we introduce is an “iterative Nash Equilibrium Search Algo-
rithm” (Son and Baldick 2004). These algorithms are based on the convergence
of the “best reply process” (Fundenberg and Tirole 1991) to the Nash Equilib-
rium in pure strategies (NE). Cournot (1838) already proposed an adjustment
process for the two-player case, where players decide their quantities sequen-
tially, and each player’s decision is the best response to the other player’s total
output, as it has been formed at the previous round. It’s easy to generalize to
the n-player case, and the process of the sequential best replies can converge to
the NE, under certain provisions (Milgrom and Roberts 1990, Kukushin 1994,
Voorneveld 2000, Dubey et al. 2006). In the case of convergence to a NE, we
then say that the NE is “asymptotically stable” (Fundenberg and Tirole 1991).

In the cases in which the best-reply process converges to a NE an iterative
algorithm can be used to discover an unknown NE. An optimization algorithm
can be used to determine the first player’s reply to an initial strategy profile of
his opponents. Then that reply is used as the player’s strategy in the strategies
profile on the next iteration, when the next player’s reply will be defined by
the optimization algorithm, and so on. That loop ends when the NE has been
encountered or a given termination condition holds. These algorithms are known
as “iterative NE search algorithms” (Son and Baldick 2004). The conceptual
model of an “iterative NE search algorithm”, as given in that article is as follows:
First a random strategy is picked as the initial strategy for each player. Then,
the profit maximization problem with other players’ choices taken as given, is
solved for each player and its strategy is updated accordingly. This step is
executed for each player in turn, until the NE (as described by an appropriate
condition) is found, or another termination condition is met.

Two kinds of problems can arise: the first one arises when the maximum
number of iterations is not high enough to determine the NE accurately. A
similar cause could be that one of the NE quantities is an irrational number
and therefore cannot be discovered with infinite accuracy. This kind of problem
cannot be solved in the general case. The only feasible thing to do is to increase
the number of iterations, to achieve better accuracy. The second kind of problem
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is much more serious. As Son and Baldick (2004) point out, when a classical local
search algorithm -such as Newton’s method- is used for the discovery of a player’s
optimal response (see for example in Hobbs et al. 2000), the best-reply sequence
can converge to a “local NE trap” (Son and Baldick 2004), i.e. a strategy profile
in which each player’s strategy is a local optimum in its optimization problem,
but not a global one, and therefore it’s not a NE. We use a genetic algorithm as
the optimization algorithm in the best-reply determination problem, in order to
avoid these “local NE traps”. However, since the chromosomes’ values belong
in a finite set, in any genetic algorithm, an external loop should be utilized to
increase the solution’s accuracy, and consequently address the problem of the
first kind, described earlier, as well.

2 The Algorithm

Since we deal with Cournot oligopoly models (Cournot 1838) the player’s strate-
gic choices have to do with quantities of a single, homogeneous product, that
are either real or discrete1. The values of the chromosomes of the GA employed
can therefore represent real numbers2. Since a chromosome’s value is an integer
(binary) number, a usual decoding scheme is employed (Vriend 2000), adjusted
to allow for positive minimum values for the chromosomes.

q = qmin +
qmax − qmin

2l − 1
·

l∑
n=1

bn2n−1 (1)

where bn is the nth bit of the chromosome, and l is the total number of bits
in the chromosome. Adjusted this way, the decoding formula implies that a
quantity has a minimum value of qmin, a maximum qmax and a finite set of
values in between, all with equal probabilities.

The algorithm we introduce is as follows:

1. Pick minimum and maximum values for the chromosome values (and conse-
quently, the quantity choice) of each player.

2. Pick n random initial quantities for the n players, creating an initial profile of
strategies.

3. For each player, solve its profit maximization problem, using a “canonical Ge-
netic Algorithm” (Goldberg 1988).

4. Update the corresponding player’s strategy in the profile of active strategies.

5. Loop steps 3-4 for the next player, until all players’ strategies have been deter-
mined.

6. Loop to step 3, unless the profile of active strategies has remained unaltered (so
NE is assumed to be found) or a given number of maximum iterations has been
reached.

1In the original Cournot’s model, quantities are continuous.
2If the non-continuous version of the Cournot Game is addressed, a ‘1-1’ correspondence

between chromosome values and allowed quantities can be utilized to simplify the algorithm.
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7. If NE is assumed to be found, terminate.

8. If the accuracy of the current solution is considered to be adequate, terminate.
Else update the minimum and maximum values of the players’ chromosomes, to
allow a better refinement of the solution space and repeat from step 1.

The “canonical GA” is a single-population genetic algorithm with the proba-
bility for a chromosome to be selected as a parent being proportional to its
fitness (roulette wheel selection), single-point crossover with fixed probability
of application, fixed mutation probability throughout the GA process and no
elitism, i.e. the next generation is consisted entirely of the offspring of the cur-
rent chromosome population (Goldberg 1988). We also use “ordered” fitness
in our implementation (chromosomes are ranked on the basis of their implied
profits and fitness values ranging from 1 to the number of the chromosomes in
the population, are attributed to them).

Since the strategy of a player is updated in the active strategies profile
each time its profit maximization problem is addressed, we have a “sequential
best-reply correspondence” (Dubey et al. 2006), where each player determines
its strategy and the next player considers as given that updated strategy, so
“responds” in a sense, to that choice. It is possible to adjust the algorithm to
function with “simultaneous best replies” (Dubey et al. 2006), or with different
opponents’ quantities to be considered as given from the active player, when its
profit maximization problem is addressed3. In any case, the “sequential best
reply correspondence” converges to a NE under a broader set of assumptions
in the Cournot case or in any game with strategic substitutes in general (Amir
1996, Dubey et al. 2006).

The convergence of the best-replies sequence to the NE, also means that
the accuracy of the algorithm is better for a larger number of iterations in the
internal loop (steps 3-5), i.e. the values of the quantities in the sequence will
be closer to the NE values. Therefore, one can use the minimum and maximum
values attained for any players’ quantity in the current internal iteration, as the
minimum and maximum allowable values for the chromosomes in the outer loop
(steps 1-7). In practice a qualitatively assessment of the situation can provide
better results with a smaller number of external iterations, and that’s the tactic
we employ.

3 The Models

A linear Cournot model introduced by Alkemade et al. (2007) is used as an
initial testbed. The polynomial and exponential models used in Protopapas
and Kosmatopoulos (2008) are also used, adjusted in the cost functions. The
new cost functions are not the same for all players, allowing the study of non-

3Fundenberg and Tirole (1981) for example present the case when the expected quantity
chosen by any other player is a weighted average of the quantities chosen in the past from
that player
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symmetric Cournot games. The inverse demand in the first model is given by

P = 256−Q (2)

with Q =
∑n

i=1 qi, while cost functions are the same for the n players:

c(qi) = 56qi (3)

The polynomial Cournot model introduced in Protopapas and Kosmatopou-
los (2008) has inverse demand function:

P = aQ3 − b (4)

where a = −1 and b = 7.371̇07 and the same common cost functions, as in
the previous model. In the exponential model the inverse demand function is
(Protopapas and Kosmatopoulos 2008)

P = aQ3/2 − b (5)

a, b being equal to the previous case. In this implementation of the two models
we assume different cost function for each player:

ck = kxqi + y (6)

where k is the index of the respective player, x = 10 and y = 10, addressing the
case of non-symmetric Cournot games. In all three models we study the n = 4
player case. We used MATLAB Optimization Toolbox to discover the unique
NE in the polynomial and exponential models (table 1). For the linear model,
NE is derived easily and it is qN = 40 for each one of the 4 players .

Player Polynomial Exponential
1 86.9400905 86.75703497
2 86.94006293 83.05809161
3 86.94003537 79.35914826
4 86.94000781 75.66020491

Table 1: NE in Polynomial and Exponential Models

In all these models, the assumptions that, as proved in Dubey et al (2006),
guarantee the convergence of the sequential best reply process to a NE, hold
and, furthermore, the NE is unique (as it can be easily proven using elementary
calculus), and no local optima (“local NE traps”) exist.

A model introduced by Arifovic (1994) is used for the n = 2 case, with
parameters chosen in a way such that a) a NE exists and b) the best-reply se-
quence diverges from that NE. A sufficient condition for the latter (Fundenberg
and Tirole 1991) is

∂2u1

∂q1∂q2

∂2u2

∂q1∂q2
>
∂2u1

∂2q21

∂2u2

∂2q22
(7)
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where u1, u2 are the payoff functions for each player, which are functions of the
chosen quantities q1, q2. The inverse demand function in Arifovic’s (1994) model
are

P = A−B(q1 + q2)

and each player’s cost is given by

c = xqi + yq2i

The payoff functions are, therefore

ui = Pqi − ci = [A−B(qi + qj)]qi − xqi − yq2i

where qi = {1, 2} and qj = {2, 1}. So,

∂ui

∂qi
= A−B(qi + qj)−Bqi − x− 2yqi

and
∂ui

qi
= 0⇔ qi =

A− x−Bqj
2B + 2y

From the latter, we derive the “reaction functions” that determine player i’s
best response to a given quantity choise by player j,

ri(qj) =
A− x−Bqj

2B + 2y
(8)

and the Nash Equilibrium quantities

qN
i =

A− x
3B + 2y

(9)

Since a maximum is required, the second order partial derivatives of the payoff
functions must be negative at the NE quantities

∂2ui

∂2qi
< 0⇔ B + y > 0

and from (7)

∂2u1

∂q1∂q2

∂2u2

∂q1∂q2
>
∂2u1

∂2q21

∂2u2

∂2q22
⇔ B2 > 4(B + y)2

Since B + y > 0 we have

B2 > 4(B + y)2 ⇔ y <
−B
2

an finally,

−B < y <
−B
2

(10)
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Figure 1: Best replies in Arifovic’s model

For these values of y there is a NE and the best replies sequence diverges from
it, at the same time. For the values A = 1000, B = 5, x = 100 and y = −10

3
used for simulations, the best reply sequence diverges (see fig. 1).

Finally, we use one of the “quasi-Cournot” models used in Son and Baldick
(2004). Although the models employed there are not Cournot Games per se,
since the players have different demand functions, existence of “local NE traps”
makes them quite interesting to study. As Son and Baldick (2004) prove, a
“local search algorithm” can get stuck to a “local NE trap” instead of finding
the absolute NE. The model we use (introduced by Son and Baldick 2004) is a
duopoly. The two players’ payoff functions are

u1(q1, q2) = 21 + q1 sinπq1 + q1q2 sinπq2

u2(q1, q2) = 21 + q2 sinπq2 + q1q2 sinπq1

and, as reported in Son and Baldick (2004) the NE quantities are4 (q1, q2) =
(6.61, 6.61) and the “local NE traps” where the local search algorithms (We-
ber and Overbye 1999, Hobbs et al. 2000) could erroneously converge to are
(6.58, 4.66), (0.25, 0.92) and (6.54, 2.8).

4We discovered, after analyzing the model, that these values are approximations of the
respective quantities, to the second decimal digit.
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4 Results

4.1 Linear Model

For minimum quantity Qmin = 0, maximum quantity Qmax = 120 for all play-
ers, population size pop = 100 chromosomes, probability for crossover pc = 1
and probability of mutation of a bit pm = 0.01 we got the following results
(table 25).

88.554 53.287 40.964 38.243 38.555 39.274 39.747 39.945 40.02 40.026
47.109 50.2 45.586 41.915 40.313 39.844 39.795 39.869 39.946 39.987
28.269 39.233 42.405 42.16 41.146 40.444 40.12 39.995 39.969 39.977
18.047 28.64 35.522 38.841 39.993 40.219 40.195 40.095 40.032 40.005

40.015 40.005 40.001 40 39.999 40 40 40 40 40
40.001 40.004 40.003 40.001 40 40 40 40 40 40
39.989 39.997 40 40 40 40 40 40 40 40
39.997 39.997 39.998 39.999 40 40 40 40 40 40

Table 2: Linear Model

The algorithm converged to the NE, after the 16th iteration. Allowing the
algorithm to continue until the 1000th iteration, we had6 expected frequency of
the state defined by the NE strategy (all players choose Qi = 40) π̂N = 0.984
and expected return time to this state m̂NN = 1.01626.

4.2 Polynomial Model

Using the same parameter set as in the linear case, we observe the process does
not converge to a NE (for 1000 iterations of the inner loop) with an adequate
level of accuracy. Chosen quantities (after an “initial” number of 100 iterations
have passed) range between 86 and 87.5 (see fig. 2).

A second outer loop iteration is utilized with Qmin = 86 and Qmax = 87.5 for
all 4 players. The quantities chosen by each player, for iterations 100, ..., 1000,
range between the values seen on table 3:

player 1 player 2 player 3 player 4
min 86.93750 86.93750 86.93750 86.93750
max 86.94310 86.94400 86.94460 86.94370

Table 3: Polynomial Model. Second outer loop

Setting the minimum and maximum allowable quantities for the players
equal to those values acquired on table 3 and executing another iteration of

5Each line represents the respective player’s quantity at the given round.Iterations 1-10
are in the first block and iterations 11-20 in the second

6The random process underlying a “canonical” Genetic Algorithm is an ergodic Markov
chain,and the same holds, consequently, for the random process defined by the strategies
chosen.
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Figure 2: Polynomial model. First outer loop.

the outer loop, we got the maximum and minumum quantities in the iterations
100, ..., 1000 of the inner loop shown on table 4 and fig. 3.

min max mean
player 1 86.940046425672900 86.940162502539200 86.940091341955200
player 2 86.940012996781300 86.940162502539200 86.940061909895200
player 3 86.939973528073800 86.940162502539200 86.940037999838900
player 4 86.939924654316600 86.940019043368400 86.940006131756100

Table 4: Polynomial Model. Third outer loop

We could continue this process of refining the minimum and maximum quan-
tities and executing more iterations of the outer loop of the algorithm, if better
accuracy was required.

4.3 Exponential Model

For pop = 100, pc = 1, pm = 0.01, and initial Qmin = 0, Qmax = 120 we have
the results shown on table 5 and fig. 4:

Repeating the outer loop for minumum and maximum allowable values, ac-
cording to table 5 we had the results shown on table 6, and fig. 5.

Finally, we executed a third iteration of the outer loop, setting the minimum
and maximum allowable values equal to those of table 6. The results are shown
on table 7.

A comparison between the minimum and maximum values of the players,
attained in the third iteration of the outer loop leads to the conclusion (also
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Figure 3: Polynomial model. Third outer loop.

min max mean
player 1 86.620985623346000 87.880599861717100 86.871269377449000
player 2 81.249886751066900 83.759387740505000 83.039159084961000
player 3 74.999880790596800 79.931716853825400 79.361882675560900
player 4 74.999880790596800 77.953794435305100 75,557777410666100

Table 5: Exponential model. First outer loop.

seen by comparing tables 7 and 1) that the algorithm gives the NE quantities
with an accuracy of 4 decimal digits.

4.4 Model with divergent best replies

We used various parameter sets for the simulations in the divergent model,
inspired by Arifovic(1994). In all cases, the algorithm diverges. In fig. 6 we see
the outcome for Qmin = 0 and Qmax = 300, for both players.

Since the best response to qi = 0 is qj = 270 and to qj = 270 it is qi =
−135 < 0 ( as derived from eq.(8)), the situation depicted in fig. 6 is easily
understood.

4.5 Model with local NE traps

We used the parameters pop = 100, pc = 1, pm = 0.01, and Qmin = 0, Qmax =
7.5 for each of the two players. We run 100 simulations7, starting from different

7Just one iteration of the outer loop. The minimum and maximum quantities were not
updated
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Figure 4: Exponential model. First outer loop.

min max mean
player 1 86.718436392246600 86.777500150203800 86.757826134771000
player 2 83.037370488520100 83.066017366425900 83.057558000397000
player 3 79.321249409913400 79.363343823760800 79.357501005526800
player 4 75.639685287175500 75.732500708103900 75.661182399135300

Table 6: Exponential model. Second outer loop.

quantities in the initial strategy profile, and the algorithm always converged to
the NE quantities (within a given degree of accuracy of course). So the local
NE traps were avoided in all of the 100 runs of the simulation conducted. On
table 8 we see the first 10 iterations of the inner loop for two of those runs.

5 Discussion

The algorithm introduced here is quite effective when the theoretical optimal
response sequence converges to the NE. The algorithm converged to the NE8, in
all of the models studied here, in which this precondition holds. The “linear”,
“polynomial” and “exponential” models are games with “strategic substitutes”
(Bulow et al. 1985), and consequently sequential best replies converge to the
NE (Amir 1996, Dubey et al. 2004). Another trivial necessary condition is that
the NE quantities belong to the feasible set of the chromosome values. This
is not always possible, since the NE quantities might sometimes be irrational
or have a large number of decimal digits, while a typical encoding scheme as

8within a finite level of accuracy
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Figure 5: Exponential model. Second outer loop.

min max mean
player 1 86.755675667069100 86.757312379383400 86.757064178033700
player 2 83.057409410926800 83.058247337057300 83.058084838326400
player 3 79.358082017011800 79.359397508843500 79.359154305916900
player 4 75.659988591350600 75.662889164536500 75.660173659449200

Table 7: Exponential model. Third outer loop.

the one used, implies the chromosomes encode values with finite number of
digits. In those cases the outer loop we employed leads to increased accuracy of
the computed NE. Those are the cases of the “polynomial” and “exponential”
models, where increased accuracy is achieved, after the fine-tuning process of
the chromosome values bounds, and the consequent outer loop iterations. Of
course, if the Cournot game studied is of the “dicrete type” (players can only use
discrete quantities), that problem does not exist, provided that the chromosomes
have enough digits to hold all the possible admissible quantity values.

The above remarks also hold in the model with “local NE traps”. As pointed
earlier, the quantities of the NE and the local NE traps are given with a finite
accuracy of two decimal digits by Son and Baldick (2004). The algorithm attains
that level of accuracy relatively easily (with Qmin = 0, Qmax = 7.5 less than 10
iterations of the inner loop are generally needed to set correctly the three first
digits of the players’ quantities). If better accuracy is required more outer loop
iterations can be employed.

The only case when the algorithm clearly diverges, is the case of the model
with divergent best replies process used. By using Qmin = 0 and Qmax =
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Figure 6: Divergent model.

3009, the quantities proposed by the algorithm diverge quickly after the initial
iterations of the inner loop, something that leads to a situation where one of the
players “picks” the zero quantity. Since the best reply to this quantity is 270,
which is correctly identified by the algorithm, and the other player assumes that
choise, the best reply of his opponent is then an inadmissible negative quantity.
The best reply under the constraint Qmin = 0 is again zero, so the algorithm
attributes this value to the other player correctly, thus entering an infinite path
of attributing 0 to one of the players and 270 to the other, ad infinitum.

6 Conclusions

The potency of the genetic algorithm meta-heuristic is evident in the case of
Cournot games, as in most other cases genetic algorithms have been applied.
The convergence of the sequential best reply search is almost ensured when a
genetic algorithm is used for the search of a player’s best response to other
players strategies, provided that the theoretical best reply sequence converges
to a Nash Equilibrium. This depends on the model, so if appropriate conditions
hold for the demand and cost functions, such that the sequence of iterative best
replies can be proved to an existing Nash equilibrium then the algorithm should
derive that strategy profile. One can also study the case of simultaneous best
replies, or a case in which the expected opponents’ quantities are different of
those selected by the players at the previous round.

We’ve also seen that even if there are “local NE traps“, a case in which
classical local search algorithms fail, a genetic algorithm will converge to the

9and random initial quantities as always
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iter player 1 player 2 player 1 player 2
1 0 6.514891639 6.581954081 6.613768686
2 6.617437952 6.611243831 6.611615764 6.611830341
3 6.611866104 6.611801731 6.611808883 6.611808883
4 6.611808883 6.621100064 6.611808883 6.611808883
5 6.610857592 6.611901867 6.611944782 6.611794578
6 6.611801731 6.611808883 6.611944782 6.621100064
7 6.611944782 6.611794578 6.610857592 6.611901867
8 6.611944782 6.611801731 6.562499106 6.621100064
9 6.,611944782 6.611944782 6.61085044 6.611901867
10 6.611794578 6.611808883 6.611801731 6.611808883

Table 8: Local NE traps model. Initial iterations for 2 runs

“true NE“. The only case when the GA did not find the Nash Equilibrium profile
is the case when the sequence of best replies diverges. In that case, the quantities
proposed by the algorithm also diverge. Finally, the drawback of the accuracy
of the genetic algorithm, a usual case in continuous problems, is addressed
by introducing an outer loop in which the values sets of the chromosomes are
adjusted to improve the accuracy of the calculated NE, after each iteration.
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