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Robust Portfolio Optimization: A Coni
Programming Approa
hKai Ye, Panos Parpas, Ber�
 RustemAbstra
tMarkowitz's mean-varian
e model (MMV) qui
kly be
ame verypopular in theory and pra
ti
e due to its simpli
ity and plausibility.However, there is limited appli
ability of this model be
ause of its ex-treme sensitivity to input parameters. Inputs su
h as the mean and the
ovarian
e matrix of returns are only estimates of parameters of un-known probability distributions. These estimations are prone to errors.In order to 
ope with the e�e
t of the estimation errors, we proposeto 
onstru
t a one-period robust mean-varian
e model by introdu
ingun
ertainty regions over the mean ve
tor and the se
ond moment ma-trix of returns. The resulting robust mean-varian
e portfolio sele
tionproblem 
an usually be 
ast as a 
oni
 program whi
h 
an be solvedeÆ
iently. In this paper, both se
ond order 
one program (SOCP)and semide�nite program (SDP) formulations are proposed. The nu-meri
al results show the portfolios generated by the proposed robustmean-varian
e model outperform MMV's portfolios. Moreover, the ro-bust eÆ
ient frontiers are presented.
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1 Introdu
tion: robust max returnThe mean-varian
e model has been the fundamental theoreti
al frameworkfor portfolio 
onstru
tion sin
e Markowitz [8℄ introdu
ed his Nobel prize-winning work. This model, however, has also been 
hallenged by invest-ment professionals from both a
ademia and �nan
ial institutions due to itshigh sensitivity to the input data su
h as expe
ted returns and the 
ovari-an
e matrix of returns. For example, Broadie [3℄ investigates this matterand 
on
ludes that the e�e
t of errors in parameter estimates on the resultsof mean-varian
e analysis 
an be surprisingly large. Robust optimizationframework has been introdu
ed to 
ope with this e�e
t by ensuring thatde
isions are reliable even if estimates of the input parameters are in
orre
t.Re
ently, T�ut�un
�u and Koenig [13℄ assuming 
omponentwise un
ertaintysets over the mean return ve
tor and the 
ovarian
e matrix, respe
tively,formulate the robust portfolio sele
tion problem as a saddle-point problemthat involves semide�nite 
onstraints. Goldfarb and Iyengar [5℄ also developa robust fa
tor model for the asset returns and 
ast the robust portfoliosele
tion problems to SOCP problems whi
h 
an be solved eÆ
iently. Inaddition, El-Ghaoui et al. [6℄ also 
onsider the robust portfolio problem viathe approa
h of worst-
ase Value-at-Risk (VaR), whi
h employs similar SDPte
hniques exploited in this paper.One short
oming of these models is that the authors seem to be 
onsideringseparated un
ertainty sets for the expe
ted return ve
tor x̂ and for the 
o-varian
e matrix �, whi
h means one has in
onsistent probability measuresover the un
ertainty set for the expe
ted return ve
tor and the un
ertaintyset for the 
ovarian
e matrix. More expli
itly, the worst-
ase varian
e prob-lem in these models has di�erent probability measures over the mean andthe 
ovarian
e of returns. This leads to a worse than worst-
ase situationand might be over-
onservative. Moreover, it is too restri
ted to assume2



that returns follow normal distributions as indi
ated by Goldfarb and Iyen-gar [5℄, be
ause the distribution of returns in pra
ti
e is not Gaussain.To mitigate these short
omings, we propose a robust portfolio optimiza-tion and sele
tion model by using 
oni
 programming approa
hes under themean-varian
e framework whi
h introdu
es un
ertainty sets to the meanve
tor and the se
ond moment of returns, respe
tively. Note that we donot have un
ertainty set over 
ovarian
e matrix dire
tly, but two un
er-tainty sets over the mean ve
tor and the se
ond moment matrix of returnssimultaneously under a probability measure. The robust portfolio sele
tionproblem 
an then be 
ast as a single 
onvex SDP problem by using dualitytheory, or a semi-in�nite 
oni
 programming problem. A salient feature isthat the expe
ted return and the 
ovarian
e matrix of returns are de�nedin a 
onsistent manner. In other words, we 
onsider the worst-
ase varian
eof a portfolio under a unique probability measure. Furthermore, we do notassume any spe
i�
 distributions over returns, but we do require the knowl-edge of the �rst two moments of the distribution of returns either exa
tlyor in un
ertainty sets.The un
ertainty sets in many (aforementioned) literatures are either poly-topes or ellipsoids. In this paper, we mainly 
onsider ellipsoidal un
ertaintyset on the se
ond moment matrix of returns and 
omponentwise bounds onthe mean ve
tor of returns. The ellipsoidal un
ertainty over the mean ve
toris also studied in the introdu
tion. In the sequel, we �rst only take the esti-mation error of the expe
ted returns into a

ount as an introdu
tion, whi
his �rst introdu
ed by Ceria and Stubbs [4℄. A robust maximum return prob-lem with given risk levels is 
ast as an SOCP problem. EÆ
ient frontiersare generated for 
omparison and analysis between the MMV model and itsrobust 
ounterpart. In the numeri
al results (
f.Figure1), it 
an be easilyseen that portfolios generated by the robust mean-varian
e model outper-form the MMV's portfolios in terms of sensitivity to the estimation error3



of the expe
ted returns. Following in the similar vein, we then propose ourmodel that 
onsiders the robust minimum varian
e problem in the se
tion2 of the paper. We start from 
onsidering the minimum varian
e problemwith 
omponentwise un
ertainty set over the se
ond moment matrix of re-turns assuming that the mean ve
tor is known and �xed. We then study themore general 
ase where 
omponentwise un
ertainty regions are introdu
edto both the expe
ted returns (mean square matrix 
f. se
tion 2:1) and these
ond moment matrix of returns. The resulting robust mean-varian
e port-folio sele
tion problem is 
onverted into an SDP problem and an SOCP-SDPsemi-in�nite problem. In addition, the robust eÆ
ient frontier is presented.
1.1 Robust maximum returnWe �rst fo
us on 
onsidering the e�e
ts of errors in estimates of expe
tedreturns in this subse
tion. A

ording to Markowitz's model, the maximumreturn problem is a quadrati
 (QP) problem that 
an be formulated asfollows: maxw2Rn x̂Tw � �wT�ws:t w 2 �W;where x̂ is the estimated expe
ted returns of x, the matrix � is the 
ovarian
ematrix of estimated returns, and �W represents the set of feasible portfolios.For instan
e, we 
an de�ne �W = fw 2 Rn jPni=1wi = 1; w � 0g. Broadie[3℄ shows that the e�e
ts of estimation error 
an be surprisingly large. Inorder to take the worst 
ase into a

ount, as proposed by Ceria and Stubbs[4℄, it is assumed that the ve
tor of true expe
ted returns x̂t is normallydistributed and lies in the 
on�den
e region (ellipsoid)(x̂t � x̂e)T��1e (x̂t � x̂e) � k2 (1)4



generated by estimated expe
ted returns x̂e and a 
ovarian
e matrix �e ofthe estimates of expe
ted returns with probability �, where k2 = �2n(1 � �)and �2n is the inverse 
umulative distribution fun
tion of the 
hi-squared dis-tribution with n degrees of freedom. Suppose that we always over-estimatedthe expe
ted returns, the worst 
ase of the estimated expe
ted returns witha given portfolio 
an then be formulated as follows:maxx̂e�x̂t (x̂e � x̂t)T ŵ (2)s:t (x̂e � x̂t)T��1e (x̂e � x̂t) � k2;where ŵ is a given portfolio. By using Lagrange multiplier method, thetrue expe
ted returns of the portfolio therefore 
an be expressed as x̂eŵ �kjj�1=2e ŵjj. The problem now be
omes a robust portfolio sele
tion problemthat 
an be formulated as follows:maxw2Rn x̂Tw � kjj�1=2e wjj (3)s:t �wT�w � 
2w 2 �W:One 
an see this formulation is the traditional maximum return formulationadded with an additional term kjj�̂1=2e ŵjj to redu
e the e�e
t of estimationerror on the optimal portfolio. This problem 
an be easily 
ast as a se
ondorder 
one programming (SOCP) problem:maxw2Rn x̂Tw � kt (4)s:t w 2 �W;
 � jj�1=2w jj;t � jj�1=2e wjj;where 
 is a standard deviation target and it varies when one needs to
ompute points on the eÆ
ient frontier. Note that the di�eren
e between5



� and �e. � is the 
ovarian
e matrix of returns whi
h is assumed to beknown exa
tly at this moment. �e is the 
ovarian
e matrix of estimatedexpe
ted returns, whi
h is related to the estimation error arising from thepro
ess of estimating x̂, the ve
tor of expe
ted returns. As 
an be seen, thismodel proposed by Ceria and Stubbs [4℄ only 
onsiders un
ertainty regionon the mean ve
tor of returns assuming the 
ovarian
e matrix of returns isperfe
tly known. In the �rst part of the numeri
al results se
tion, the e�e
tof the estimated errors in expe
ted returns is shown by eÆ
ient frontiers,and the improvement provided by using the robust optimization (4) is alsopresented.2 Robust minimum varian
eRe
ently, SDP has been used to 
ompute Chebyshev-type upper and lowerbounds �rstly by Bertsimas and Popes
u [1℄, then by Lasserre [7℄ and Van-denberghe et al. [14℄. In whi
h, the problem of 
omputing tight bounds ofa probability measure on a given semialgebrai
 set is 
onverted into SDPproblems and solved eÆ
iently. Inspired by this work, we introdu
e theSDP formulations for the robust portfolio sele
tion problem. Let us re
allthat the minimum varian
e formulation of the portfolio sele
tion problem isusually de�ned as follows: minw2Rn wT�ws:t w 2 �W;wT x̂ � R;where R is the lower limit on the expe
ted return one would like to a
hieve.The robust portfolio sele
tion problem as in T�ut�un
�u and Koenig [13℄ then6



be
omes a \min-max" problem:minw2Rn max�2�U ;x̂2x̂U wT�w = wT (�� x̂x̂T )w (5)s:t w 2 �W;minx̂2x̂U wT x̂ � R;where the 
ovarian
e matrix is written as � = � � x̂x̂T , � is the se
ondmoment matrix of returns. �U and x̂U are un
ertain regions of � and x̂,respe
tively. The notations will be detailed in se
tion 2:1. In the followingwe �rst assume that the expe
ted returns of the assets are known and �xedexa
tly, the SDP model is established to 
al
ulate the worst-
ase varian
eand solve the robust portfolio sele
tion problem. Following in the same vein,we introdu
e 
omponentwise bounded un
ertain regions for the mean ve
torand for the se
ond moment matrix. An SDP formulation and an SOCP-SDPsemi-in�nite formulation are proposed to solve the 
orresponding robustportfolio sele
tion problem.2.1 Notations and 
onventionsWe are mainly using SDP to establish the model so that the variables under
onsideration are in the form of positive semide�nite symmetri
 matri
es.In this se
tion, we introdu
e our notations and des
ribe the se
ond momentand the lo
alizing matri
es of returns. It is important to introdu
e thesematri
es, be
ause that only under appropriate 
onditions on the momentand lo
alizing matri
es the worst-
ase varian
e problem 
an be 
ast as anSDP problem. We denote B be the usual Borel �-�eld of Rn , x 2 Rnrepresents the returns of individual assets in one time periodxt+1�xtxt , A � 0if a symmetri
 matrix A is positive semide�nite, and useS : fx 2 Rn j�(x) = xTPix+ 2qix+ ri � 0; i = 1; :::;mg7



to denote a 
ompa
t semi-algebrai
 set S 2 B under 
onsideration, whi
hwill be the un
ertainty sets over the se
ond moment matrix of returns, where�(x) = xTPix+2qix+ ri : R2n ! R is a quadrati
 polynomial. Denote � asa probability measure and letZS xd� = x̂ = 26664x̂1...̂xn37775and RS xxTd� = � be the �rst moment (mean) and the se
ond moment ofreturns, respe
tively. The 
ovarian
e matrix is denoted by� = �� x̂x̂T � 0:We have the se
ond moment matrix denoted by�̂ = ZS 24x13524x135T d� = 24 � x̂x̂T 135 � 0;We assume that �̂ � 0 and also � = � � x̂x̂T � 0. We now introdu
eso-
alled lo
alizing matri
es (see e.g. Lasserre [7℄) to express the set S interms of the moment matrix. As the set S in this paper is des
ribed byquadrati
 polynomials �(x), the lo
alizing matri
es are de�ned byM0(�y) = ZS 24x135T 24Pi qiqTi ri3524x135 d�= h�̂;24Pi qiqTi ri35i= h�; Pii+ 2qTi x̂+ ri � 0; i = 1; : : : ;m;where hA;Bi = Tr(AB) denotes the standard s
alar produ
t in the symmet-ri
 matri
es, and M0(�y), a notation borrowed from Lasserre [7℄, representsthe lo
alizing matri
es when the set S is des
ribed by quadrati
 polynomials�(x). Note that by a result in Putinar [9℄ the positive semi-de�niteness of8



the moment and lo
alizing matri
es are ne
essary and suÆ
ient 
onditionsfor the elements of �̂ to be the moments of some measure � supported on Swhen the set S is 
ompa
t. This result will be dire
tly applied in this paperand we refer interested readers to Putinar [9℄ and Lasserre [7℄. In addition,we introdu
e a mean square matrix denoted by �X = 24x̂x̂T x̂x̂T 135, and a port-folio matrix denoted by Ŵ = 24wwT wwT 135,where w 2 W is the weights of aportfolio. Generally speaking, de�ning linear matrix variable 24X xx 135 � 0with variables X and x means X � xxT � 0 by S
hur 
omplement so thatX is not ne
essary equal xxT . However, a

ording to an interesting resultgiven by Body and Vandenberghe [2℄, we observe that quadrati
 program-ming problems de�ned byminx hA0;Xi + 2bT0 x+ 
0s:t hA1;Xi + 2bT1 x+ 
1 � 0X = xxT ;
an be 
ast as an SDP problem de�ned byminX;x hA0;Xi + 2bT0 x+ 
0s:t hA1;Xi + 2bT1 x+ 
1 � 024X xx 135 � 0;
9



and where both Ai; i = 0; 1 are symmetri
 matri
es, bi 2 Rn , 
i 2 R. Thesetwo problems have the same dual problemmax
;� 
s:t � � 024 A0 + �A1 b0 + �b1(b0 + �b1)T 
0 + �
1 � 
35 � 0:and the strong duality holds provided Slater's 
onstraint quali�
ation issatis�ed, i.e. there exists an x with hA1;Xi + 2bT1 x + 
1 < 0. Note thatthis result is valid when matri
es Ai are positive semide�nite or negativesemide�nite. The proof employs so-
alled S-pro
edure and is elaboratedin Body and Vandenberghe [2℄. In this paper we will only en
ounter the
onvex 
ase, whi
h means Ai � 0. Therefore, when we have quadrati
programming (QP) problems as just mentioned, the linear matrix variable24X xx 135 in the SDP formulation is essentially equivalent to the quadrati
matrix variable 24xxT xx 135 in the QP formulation. We will use the quadrati
matrix variables Ŵ and �X dire
tly in the SDP formulation as they are moreintuitive than their 
orresponding linear matrix variables in formulating therobust portfolio optimization problem.2.2 Optimizing the se
ond momentIn this se
tion, suppose that the expe
ted returns RS xd� = x̂ are known and�xed, we propose a framework to 
ast the portfolio optimization problemwith worst-
ase varian
e as an SDP problem. The 
ovarian
e matrix ofreturns is �� x̂x̂T , given the mean of returns x̂, the worst-
ase varian
e isonly dependent on the se
ond moment �. Suppose that the portfolio w is10



�xed, then the worst-
ase problem 
an be formulated as follows:sup� hwwT ;ZS xxTd�i � hw;ZS xd�i2 (6)s:t ZS xd� = x̂;ZS d� = 1;�(x) � 0;where � is a probability measure.Theorem 2.1. Suppose that S is 
ompa
t, 
onvex semialgebrai
 set withnonempty interior, then problem (6) is equivalent to the following problem:max� wT�w = max�̂ hŴ ; �̂i � hŴ ; �Xi (7)s:t �̂ � 0; (7a)hAi; �̂i = x̂i; i = 1; :::; n+ 1;hBj ; �̂i � 0; j = 1; :::;m: (7b)
The matri
es A and B in this formulation are sele
ted 
arefully to satisfythe 
onstraints of the problem. For instan
e,A1 = 26664 0 ::: 0:5... ... ...0:5 ::: 0 37775spe
ify x̂1 in the moment matrix �̂. In the same way, suppose that theun
ertain region S is des
ribed by xTx � 1 so that matrix B is designed by24�I 00 135, where I is the n-dimensional identity matrix. The problem abovewill 
al
ulate the worst-
ase varian
e given a portfolio w.11



Proof. Note that the 
onstraints (7a) and (7b) are showing positive semi-de�niteness of the moment and lo
alizing matri
es and S is 
ompa
t whi
h,as aforementioned, guarantee that the elements of �̂ are the moments ofsome measure � supported on S. The main proof of this theorem followsdire
tly from Theorem 3:7 in Lasserre [7℄.The robust portfolio sele
tion problem (5) therefore be
omes a \min-max"problem and 
an be formulated as follows:minŴ max�̂ hŴ ; �̂i � hŴ ; �Xis:t �̂ � 0hAi; �̂i = x̂i; i = 1; :::n + 1; (8)hBj ; �̂i � 0; j = 1; :::;m;hC; Ŵ i 2 �W;Ŵ � 0hD; Ŵ i � R;where C are designed matri
es to �t in the set of feasible portfolios. Forexample, C1 = 24 0 0:50:5 0 35 and C2 = 24�I 00 135 to satisfy �W = fw 2Rn jPni=1wi = 1; w � 0g and wTw � 1. Note that the problem (8) isin fa
t a 
onvex quadrati
 programming problem with respe
t to the port-folio variable w for every positive semide�nite matri
es �̂ � �X 
onstrainedby a quadrati
 fun
tion wTw � 1. As demonstrated in se
tion 2:1, thequadrati
 matrix variable Ŵ is equivalent to the linear matrix variable24W ww 135 � 0. The last 
onstraint is the performan
e 
onstraint in whi
hD = 24 0 12 x̂12 x̂ 0 35and R is the required return of the portfolio.12



Lemma 2.1. Suppose that strong duality holds for the max part of (8), the\min-max" problem (8) 
an then be expressed by the following \min" SDPproblem : miny;Ŵ � x̂T y � hŴ ; �Xis:t �AT y �BT � � Ŵ = � (9)� � 0� � 0; � 2 Rm ;hC; Ŵ i 2 �W;hD; Ŵ i � R:Proof. Proof of this lemma is mainly based on writing the Lagrangian of\max" fun
tion of (8) to a
hieve the dual (see e.g. Boyd and Vanderberghe[2℄).By this lemma, we 
an solve the robust portfolio sele
tion problem (5) bya single \min" SDP problem instead of a \min-max" problem (8). Withoutthe last performan
e 
onstraint, (9) gives the optimal portfolio assumingthe worst-
ase varian
e of returns. If one wants to �nd out the worst-
asemean and varian
e 
orresponding this optimal portfolio, the \max" part of(8), or in other words (7) needs to be solved by giving the portfolio w. Byemploying this framework, we now 
onsider un
ertain regions over both theexpe
ted returns and the se
ond moment matrix of returns and solve therobust portfolio sele
tion problem.2.3 Optimizing the se
ond moment and the meanIn this se
tion, we relax the �rst moment 
onstraints by 
onsidering 
om-ponentwise bounds :x̂ 2 [x̂l; x̂u℄ 2 Rn , where x̂u; x̂l are given 
omponent-13



wise upper and lower bounds of the mean ve
tor, respe
tively. By using asimilar approa
h to that of se
tion 2:2, we provide two equivalent robustformulations. One is based on \min-max" and solved by using semi-in�niteprogramming. The other one is based on reformulation by using duality toan overall minimization problem.Following the same pro
edures as presented previously, we start with the\max" fun
tion by assuming that portfolios w is given. The worst-
asevarian
e problem 
an be formulated as follows:max�;x̂ wT�w � wT x̂x̂Tw = max�̂; �X hŴ ; �̂i � hŴ ; �Xi (11)s:thA;1�̂i 2 [x̂l; x̂u℄ ;hA;1 �Xi 2 [x̂l; x̂u℄ ;hA; (�̂� �X)i = 0;hBj ; �̂i � 0; j = 1; :::;m;hC; �̂i = 1;hC; �Xi = 1;�̂ � 0;�X � 0;�̂� �X � 0;where the matri
es A = 26664A1...An37775 again are designed to identify the mean ve
tor
x̂ whi
h belongs to [x̂l; x̂u℄, and the matrix C = 266640 ::: 0... ... ...0 ::: 137775 is to spot \1" inthe matri
es �̂ and �X . To guarantee �̂ to be the se
ond moment matrix ofsome measure supported on S, we again have the positive semide�niteness
onstraints of the moment matrix �̂ and the lo
alizing matri
es hBj ; �̂i; j =14



1; :::;m;. The 
onstraint hA; (�̂ � �X)i = 0 ensures that the mean ve
torsin the se
ond moment matrix and in the mean square matrix are the same.Moreover, in this worst-
ase varian
e formulation we have a 
onvex QPproblem with respe
t to x̂ 
onstrained by �̂ � �X � 0, whi
h is again thesituation we illustrated in se
tion 2:1 where the quadrati
 matrix variable�X is equivalent to the the linear matrix variable 24X xx 135 � 0. As 
anbe seen, through this formulation one 
an derive the worst-
ase varian
e ofreturns given reasonable 
omponentwise bounds on the mean of returns. Therobust portfolio sele
tion portfolio problem therefore be
omes a \min-max"problem: minw max�̂; �X q(w; �X; �̂) = hŴ ; �̂� �Xi (12a)with 
onstraints. In the sequel, we use two di�erent approa
hes to solve the\min-max" problem. Firstly, following the exa
tly pro
edures introdu
edin the previous subse
tion, we 
onvert the \min-max" problem to a \min"
onvex SDP problem. The se
ond approa
h is by using semi-in�nite pro-gramming (Zakovi
 and Rustem [11℄). We use the se
ond approa
h as analternative to verify the validity of the �rst approa
h.As to the �rst approa
h, we 
an, by using the similar lemma illustrated inse
tion 2:2, express the problem (12a) in the form of the following:min�1;�2;�3;�;yu;yl;zu;zl;�;Ŵ �1 + �2 � x̂Tl (yl + zl) + x̂Tu (yu + zu)s:t �1C + �3A� �B � ylA+ yuA� �� Ŵ = �1;�2C � �3A� zlA+ zuA+�+ Ŵ = �2; (12)hD; Ŵ i 2 �W;� � 0;yu; yl; zu; zl � 0;�;�1;�2 � 0;hE; Ŵ i � R;15



where matri
es A,B and C are the same as illustrated previously, D is toensure the feasible set of portfolios, and E is to suÆ
e the performan
e
onstraint by the required return of the portfolio R.Proof. The proof is again utilizing Langrangian to 
al
ulate its dual (see e.g.Boyd and Vanderberghe [2℄). If the 
ovarian
e matrix is positive de�nite sothat strong duality holds a

ording to the slater 
ondition (see e.g. Boydand Vanderberghe [2℄).We 
an therefore, without the performan
e 
onstraint in (12), attain theoptimal portfolio assuming the worst-
ase mean and varian
e of returnsby solving the single 
onvex \min" SDP problem (12). As to the se
ondapproa
h, the \min-max" problem 
an also be written asminw max�̂; �X q(w; �X; �̂) = hwT 0i (�̂� �X)24w035 ;whi
h means it is a 
onvex quadrati
 programming problem with respe
tto 24w035 and a linear SDP problem with respe
t to �̂; �X . By employing thesemi-in�nite programming algorithm introdu
ed by S.Zakovi
 and B.Rustem[11℄, we 
an a
hieve the optimal portfolio and its 
orresponding worst-
asemean and varian
e at the same time.Semi-in�nite Programming Algorithm:Set A = f(�̂0; �X0)gwhile U > L doCompute lower bound L = minw2W max�̂; �X q(w; �X; �̂) globallywith w� = arg minw2W max(�̂; �X)2A q(w; �X; �̂)Compute upper bound U = max(�̂; �X)2B q(w�; �X; �̂)with (�̂�; �X�) = arg max(�̂; �X)2B q(w�; �X; �̂)A = A [ f(�̂�; �X�)g 16



end whileOptimal values (w�; �̂�; �X�) are attained when U == LNote that the �rst \min-max" problem in the algorithm involving a maxi-mum of norms 
an be 
ast as a standard SOCP problem: the problemminŵ max�̂2 Si=0;:::;p(�̂i; �Xi) ŵT �̂iŵ = 


�̂1=2i ŵ


2s:t w 2 �W;whi
h is related to the SOCP problemmin ts:t 


�̂1=2i ŵ


 � t; i = 0; :::; pw 2 �W;
where variables w 2 Rn ; t 2 R and ŵ is designed to be 24w035 to suit thematri
es �̂ and �X for 
al
ulations. In ea
h iteration, the lower bound L = t2is 
omputed to 
ompare with the upper bound U generated by the se
ondmaximization problem. The se
ond maximization problem in the algorithmis a linear SDP problem with domain B that 
an be solved eÆ
iently. Afterea
h iteration, if U > L then the set A is enlarged by the new (�̂�; �X�)generated by the se
ond maximization problem, whi
h will 
ause p in
reasesone in the SOCP problem in the next iteration. The iterations terminatewhen U = L. Our numeri
al experiments show that the almost same results(a

ura
y denoted by 1E�4) 
an be attained by solving the robust portfoliosele
tion problem via these two approa
hes aforementioned. It 
an be seenthat the single SDP approa
h is easier and faster to solve the robust portfoliosele
tion problem. However, one needs to plug in the optimal portfolio into17



(11) to attain the 
orresponding worst-
ase varian
e (the worst-
ase meanand se
ond moment). the semi-in�nite formulation is an alternative way tosolve the robust portfolio sele
tion problem and also provides the validity ofthe SDP model. To this end, we 
an use the following algorithm to generatea dis
rete approximation to the robust eÆ
ient frontier:Robust EÆ
ient Frontier Algorithm:1. Solve problem (9) or (12) without performan
e 
onstraint to attainoptimal portfolio wmin.2. Solve problem (7) or (11) to attain the worst-
ase mean and varian
ex̂w
;�w
.3. Set Rmin = x̂Tw
wmin, Rmax = x̂Tw
wmax and � = Rmax �Rmin.4. Choose N, the number of desired points on the eÆ
ient frontier. ForR 2 fRmin + �N�1 ; Rmin + 2 �N�1 ; :::; Rmin + (N � 1) �N�1g solve problem(12) with 
onstraints x̂Tw
w = R.In this algorithm, wmin 
orresponds to the risk averse portfolio with respe
tto the worst-
ase risk measure minw max�̂; �X q(w; �X; �̂) without performan
erequirement of the type of the last 
onstraint in (12) on the portfolio. Thisessentially 
orresponds to the worst-
ase portfolio performan
e. wmax, onthe other hand, represents to the best portfolio return with respe
t to theworst-
ase x̂ with no 
onsideration on risk. This is in fa
t the problemmaxw minx̂ x̂Tw with 
onstraints only on x̂ and w.3 Numeri
al ResultsWe now illustrate numeri
al results of the proposed methods to the prob-lems of robust portfolio optimization. The SOCP and SDP solver used isSeDuMi version 1.1 developed by Sturm ([10℄). The 
omputations are doneon a pentium IV 3.2G HZ PC with 1G RAM.18



The �rst numeri
al experiment is to investigate the e�e
t of the errors ofthe estimated expe
ted returns (see Ceria and Stubbs [4℄). We take Broadie[3℄'s true and estimated data as inputs and generate the estimated, trueand a
tual eÆ
ient frontiers. We then employ (4) with the estimated ex-pe
ted returns and true expe
ted returns to 
al
ulate the estimated robusteÆ
ient frontier and the a
tual robust eÆ
ient frontier. Suppose that thetrue expe
ted returns falls in the 
on�den
e region with probability 95%,whi
h means k = 1:0703 in the formulation (4), we have the eÆ
ient fron-tiers shown in the Figure 1. We 
an see that the robust portforlios performbetter than MMV's portfolios in terms of sensitivity to the input data. Thenumeri
al results also show that the robust portfolios are more diversi�edthan MMV's portfolios.The following numeri
al experiments show that the e�e
t of robust port-folios over un
ertainty of the 
ovarian
e matrix of returns, and the robusteÆ
ient frontiers are presented. When the expe
ted returns are spe
i�ed,we optimize the portfolios assuming the worst-
ase varian
e, whi
h is, infa
t, an implementation of the proposed model (9). For simpli
ity, supposethat S := fx 2 R5 jxTx � 0:1g and the expe
ted returns and the 
ovarian
ematrix of returns are taken from Broadie [3℄,we 
an 
ompute an eÆ
ientfrontier of the MMV model and the worst-
ase varian
es with given portfo-lios via (7). Moreover, by employing the robust eÆ
ient frontier algorithmand the formulation (9) the optimal portfolios are a
hieved assuming theworst-
ase varian
es. The result is shown in Figure 2.When the expe
ted returns are only given by 
omponentwise upper andlower bounds, we implement the two models proposed previously to solvethe robust portfolio sele
tion problem. The approa
h by employing semi-in�nite programming algorithm 
an attain the worst-
ase expe
ted returns,the 
ovarian
e matrix of returns and the 
orresponding optimal portfoliosimultaneously, but it is slower then using the linear SDP model ((11) and19



Figure 1: EÆ
ient Frontiers
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(12)). By 
hoosing upper bounds and lower bounds of the expe
ted returns,the semi-in�nite algorithm needs about 90 iterations to attain the optimalvalue. On the other hand, we 
an solve an single 
onvex SDP problem (12)to gain the optimal portfolio assuming the worst-
ase varian
e. To this end,the 
lassi
al eÆ
ient frontier and the robust eÆ
ient frontier generated bythe algorithm aforementioned are shown in the Figure 3. Note that the Fig-ure 3 only demonstrates how di�erent the robust eÆ
ient frontier may look
omparing with the 
lassi
al eÆ
ient frontier. The performan
e of the ro-bust portfolio is largely dependent on the settings of the un
ertainty regions.We will test our robust portfolio model in the following ba
ktesting.
20



Figure 2: EÆ
ient Frontier, worst-
ase varian
e, and worst-
ase optimalportfolio
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3.1 Ba
ktestingWe randomly 
hoose 5 
omponents (BT, BP, Bar
alys, Bay system, HSBO)of FTSE100 as our portfolio and employ the robust portfolio optimizationand sele
tion model proposed in this paper to 
ompare the returns withthe index FTSE100 from 3rd January 2005 to 22th January 2008. We take10 weeks as a history window from whi
h we 
al
ulate means, 
ovarian
ematri
es, and the se
ond moment matri
es every week (5 days). With thehighest and the lowest value over these weeks as the elements of the upper orlower bound of mean ve
tor and the se
ond moment matrix, we 
an obtain,a

ording to (12), a robust portfolio whi
h assumes that in the future week21



Figure 3: Robust EÆ
ient Frontier
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the mean and the se
ond moment matrix of returns would not es
ape fromthe bounds provided. The history windows keeps moving whi
h means thatwe are always looking ba
k for the latest 10 weeks in order to 
onstru
ta portfolio for the next week. In running the ba
ktesting, we o

asionallyen
ounter numeri
al problems with the solver SEDUMI (see e.g. Sturm [10℄),we then swit
h to SDPT3 (see e.g. Toh et al. [12℄) to solve the problem.Equally weighted portfolio is also in
luded in the ba
ktesting as it 
an beobtained when S is des
ribed by a sphere. The result is shown in the Figure4.
22



Figure 4: Ba
ktesting
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4 Con
lusionWe have established the one time period robust portfolio sele
tion modelunder the setting of 
oni
 programming. Un
ertain regions are introdu
edto both the expe
ted returns and the se
ond moment matrix of returns,the resulting robust portfolio sele
tion problems are formulated as 
oni
programming problems and solved by solvers available in publi
 domain.It is shown that the robust portfolios perform more reliable than MMV'sportfolios in the sense that the robust portfolios are less sensitive to the23
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