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Robust Portfolio Optimization: A ConiProgramming ApproahKai Ye, Panos Parpas, Ber� RustemAbstratMarkowitz's mean-variane model (MMV) quikly beame verypopular in theory and pratie due to its simpliity and plausibility.However, there is limited appliability of this model beause of its ex-treme sensitivity to input parameters. Inputs suh as the mean and theovariane matrix of returns are only estimates of parameters of un-known probability distributions. These estimations are prone to errors.In order to ope with the e�et of the estimation errors, we proposeto onstrut a one-period robust mean-variane model by introduingunertainty regions over the mean vetor and the seond moment ma-trix of returns. The resulting robust mean-variane portfolio seletionproblem an usually be ast as a oni program whih an be solvedeÆiently. In this paper, both seond order one program (SOCP)and semide�nite program (SDP) formulations are proposed. The nu-merial results show the portfolios generated by the proposed robustmean-variane model outperform MMV's portfolios. Moreover, the ro-bust eÆient frontiers are presented.
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1 Introdution: robust max returnThe mean-variane model has been the fundamental theoretial frameworkfor portfolio onstrution sine Markowitz [8℄ introdued his Nobel prize-winning work. This model, however, has also been hallenged by invest-ment professionals from both aademia and �nanial institutions due to itshigh sensitivity to the input data suh as expeted returns and the ovari-ane matrix of returns. For example, Broadie [3℄ investigates this matterand onludes that the e�et of errors in parameter estimates on the resultsof mean-variane analysis an be surprisingly large. Robust optimizationframework has been introdued to ope with this e�et by ensuring thatdeisions are reliable even if estimates of the input parameters are inorret.Reently, T�ut�un�u and Koenig [13℄ assuming omponentwise unertaintysets over the mean return vetor and the ovariane matrix, respetively,formulate the robust portfolio seletion problem as a saddle-point problemthat involves semide�nite onstraints. Goldfarb and Iyengar [5℄ also developa robust fator model for the asset returns and ast the robust portfolioseletion problems to SOCP problems whih an be solved eÆiently. Inaddition, El-Ghaoui et al. [6℄ also onsider the robust portfolio problem viathe approah of worst-ase Value-at-Risk (VaR), whih employs similar SDPtehniques exploited in this paper.One shortoming of these models is that the authors seem to be onsideringseparated unertainty sets for the expeted return vetor x̂ and for the o-variane matrix �, whih means one has inonsistent probability measuresover the unertainty set for the expeted return vetor and the unertaintyset for the ovariane matrix. More expliitly, the worst-ase variane prob-lem in these models has di�erent probability measures over the mean andthe ovariane of returns. This leads to a worse than worst-ase situationand might be over-onservative. Moreover, it is too restrited to assume2



that returns follow normal distributions as indiated by Goldfarb and Iyen-gar [5℄, beause the distribution of returns in pratie is not Gaussain.To mitigate these shortomings, we propose a robust portfolio optimiza-tion and seletion model by using oni programming approahes under themean-variane framework whih introdues unertainty sets to the meanvetor and the seond moment of returns, respetively. Note that we donot have unertainty set over ovariane matrix diretly, but two uner-tainty sets over the mean vetor and the seond moment matrix of returnssimultaneously under a probability measure. The robust portfolio seletionproblem an then be ast as a single onvex SDP problem by using dualitytheory, or a semi-in�nite oni programming problem. A salient feature isthat the expeted return and the ovariane matrix of returns are de�nedin a onsistent manner. In other words, we onsider the worst-ase varianeof a portfolio under a unique probability measure. Furthermore, we do notassume any spei� distributions over returns, but we do require the knowl-edge of the �rst two moments of the distribution of returns either exatlyor in unertainty sets.The unertainty sets in many (aforementioned) literatures are either poly-topes or ellipsoids. In this paper, we mainly onsider ellipsoidal unertaintyset on the seond moment matrix of returns and omponentwise bounds onthe mean vetor of returns. The ellipsoidal unertainty over the mean vetoris also studied in the introdution. In the sequel, we �rst only take the esti-mation error of the expeted returns into aount as an introdution, whihis �rst introdued by Ceria and Stubbs [4℄. A robust maximum return prob-lem with given risk levels is ast as an SOCP problem. EÆient frontiersare generated for omparison and analysis between the MMV model and itsrobust ounterpart. In the numerial results (f.Figure1), it an be easilyseen that portfolios generated by the robust mean-variane model outper-form the MMV's portfolios in terms of sensitivity to the estimation error3



of the expeted returns. Following in the similar vein, we then propose ourmodel that onsiders the robust minimum variane problem in the setion2 of the paper. We start from onsidering the minimum variane problemwith omponentwise unertainty set over the seond moment matrix of re-turns assuming that the mean vetor is known and �xed. We then study themore general ase where omponentwise unertainty regions are introduedto both the expeted returns (mean square matrix f. setion 2:1) and theseond moment matrix of returns. The resulting robust mean-variane port-folio seletion problem is onverted into an SDP problem and an SOCP-SDPsemi-in�nite problem. In addition, the robust eÆient frontier is presented.
1.1 Robust maximum returnWe �rst fous on onsidering the e�ets of errors in estimates of expetedreturns in this subsetion. Aording to Markowitz's model, the maximumreturn problem is a quadrati (QP) problem that an be formulated asfollows: maxw2Rn x̂Tw � �wT�ws:t w 2 �W;where x̂ is the estimated expeted returns of x, the matrix � is the ovarianematrix of estimated returns, and �W represents the set of feasible portfolios.For instane, we an de�ne �W = fw 2 Rn jPni=1wi = 1; w � 0g. Broadie[3℄ shows that the e�ets of estimation error an be surprisingly large. Inorder to take the worst ase into aount, as proposed by Ceria and Stubbs[4℄, it is assumed that the vetor of true expeted returns x̂t is normallydistributed and lies in the on�dene region (ellipsoid)(x̂t � x̂e)T��1e (x̂t � x̂e) � k2 (1)4



generated by estimated expeted returns x̂e and a ovariane matrix �e ofthe estimates of expeted returns with probability �, where k2 = �2n(1 � �)and �2n is the inverse umulative distribution funtion of the hi-squared dis-tribution with n degrees of freedom. Suppose that we always over-estimatedthe expeted returns, the worst ase of the estimated expeted returns witha given portfolio an then be formulated as follows:maxx̂e�x̂t (x̂e � x̂t)T ŵ (2)s:t (x̂e � x̂t)T��1e (x̂e � x̂t) � k2;where ŵ is a given portfolio. By using Lagrange multiplier method, thetrue expeted returns of the portfolio therefore an be expressed as x̂eŵ �kjj�1=2e ŵjj. The problem now beomes a robust portfolio seletion problemthat an be formulated as follows:maxw2Rn x̂Tw � kjj�1=2e wjj (3)s:t �wT�w � 2w 2 �W:One an see this formulation is the traditional maximum return formulationadded with an additional term kjj�̂1=2e ŵjj to redue the e�et of estimationerror on the optimal portfolio. This problem an be easily ast as a seondorder one programming (SOCP) problem:maxw2Rn x̂Tw � kt (4)s:t w 2 �W; � jj�1=2w jj;t � jj�1=2e wjj;where  is a standard deviation target and it varies when one needs toompute points on the eÆient frontier. Note that the di�erene between5



� and �e. � is the ovariane matrix of returns whih is assumed to beknown exatly at this moment. �e is the ovariane matrix of estimatedexpeted returns, whih is related to the estimation error arising from theproess of estimating x̂, the vetor of expeted returns. As an be seen, thismodel proposed by Ceria and Stubbs [4℄ only onsiders unertainty regionon the mean vetor of returns assuming the ovariane matrix of returns isperfetly known. In the �rst part of the numerial results setion, the e�etof the estimated errors in expeted returns is shown by eÆient frontiers,and the improvement provided by using the robust optimization (4) is alsopresented.2 Robust minimum varianeReently, SDP has been used to ompute Chebyshev-type upper and lowerbounds �rstly by Bertsimas and Popesu [1℄, then by Lasserre [7℄ and Van-denberghe et al. [14℄. In whih, the problem of omputing tight bounds ofa probability measure on a given semialgebrai set is onverted into SDPproblems and solved eÆiently. Inspired by this work, we introdue theSDP formulations for the robust portfolio seletion problem. Let us reallthat the minimum variane formulation of the portfolio seletion problem isusually de�ned as follows: minw2Rn wT�ws:t w 2 �W;wT x̂ � R;where R is the lower limit on the expeted return one would like to ahieve.The robust portfolio seletion problem as in T�ut�un�u and Koenig [13℄ then6



beomes a \min-max" problem:minw2Rn max�2�U ;x̂2x̂U wT�w = wT (�� x̂x̂T )w (5)s:t w 2 �W;minx̂2x̂U wT x̂ � R;where the ovariane matrix is written as � = � � x̂x̂T , � is the seondmoment matrix of returns. �U and x̂U are unertain regions of � and x̂,respetively. The notations will be detailed in setion 2:1. In the followingwe �rst assume that the expeted returns of the assets are known and �xedexatly, the SDP model is established to alulate the worst-ase varianeand solve the robust portfolio seletion problem. Following in the same vein,we introdue omponentwise bounded unertain regions for the mean vetorand for the seond moment matrix. An SDP formulation and an SOCP-SDPsemi-in�nite formulation are proposed to solve the orresponding robustportfolio seletion problem.2.1 Notations and onventionsWe are mainly using SDP to establish the model so that the variables underonsideration are in the form of positive semide�nite symmetri matries.In this setion, we introdue our notations and desribe the seond momentand the loalizing matries of returns. It is important to introdue thesematries, beause that only under appropriate onditions on the momentand loalizing matries the worst-ase variane problem an be ast as anSDP problem. We denote B be the usual Borel �-�eld of Rn , x 2 Rnrepresents the returns of individual assets in one time periodxt+1�xtxt , A � 0if a symmetri matrix A is positive semide�nite, and useS : fx 2 Rn j�(x) = xTPix+ 2qix+ ri � 0; i = 1; :::;mg7



to denote a ompat semi-algebrai set S 2 B under onsideration, whihwill be the unertainty sets over the seond moment matrix of returns, where�(x) = xTPix+2qix+ ri : R2n ! R is a quadrati polynomial. Denote � asa probability measure and letZS xd� = x̂ = 26664x̂1...̂xn37775and RS xxTd� = � be the �rst moment (mean) and the seond moment ofreturns, respetively. The ovariane matrix is denoted by� = �� x̂x̂T � 0:We have the seond moment matrix denoted by�̂ = ZS 24x13524x135T d� = 24 � x̂x̂T 135 � 0;We assume that �̂ � 0 and also � = � � x̂x̂T � 0. We now introdueso-alled loalizing matries (see e.g. Lasserre [7℄) to express the set S interms of the moment matrix. As the set S in this paper is desribed byquadrati polynomials �(x), the loalizing matries are de�ned byM0(�y) = ZS 24x135T 24Pi qiqTi ri3524x135 d�= h�̂;24Pi qiqTi ri35i= h�; Pii+ 2qTi x̂+ ri � 0; i = 1; : : : ;m;where hA;Bi = Tr(AB) denotes the standard salar produt in the symmet-ri matries, and M0(�y), a notation borrowed from Lasserre [7℄, representsthe loalizing matries when the set S is desribed by quadrati polynomials�(x). Note that by a result in Putinar [9℄ the positive semi-de�niteness of8



the moment and loalizing matries are neessary and suÆient onditionsfor the elements of �̂ to be the moments of some measure � supported on Swhen the set S is ompat. This result will be diretly applied in this paperand we refer interested readers to Putinar [9℄ and Lasserre [7℄. In addition,we introdue a mean square matrix denoted by �X = 24x̂x̂T x̂x̂T 135, and a port-folio matrix denoted by Ŵ = 24wwT wwT 135,where w 2 W is the weights of aportfolio. Generally speaking, de�ning linear matrix variable 24X xx 135 � 0with variables X and x means X � xxT � 0 by Shur omplement so thatX is not neessary equal xxT . However, aording to an interesting resultgiven by Body and Vandenberghe [2℄, we observe that quadrati program-ming problems de�ned byminx hA0;Xi + 2bT0 x+ 0s:t hA1;Xi + 2bT1 x+ 1 � 0X = xxT ;an be ast as an SDP problem de�ned byminX;x hA0;Xi + 2bT0 x+ 0s:t hA1;Xi + 2bT1 x+ 1 � 024X xx 135 � 0;
9



and where both Ai; i = 0; 1 are symmetri matries, bi 2 Rn , i 2 R. Thesetwo problems have the same dual problemmax;� s:t � � 024 A0 + �A1 b0 + �b1(b0 + �b1)T 0 + �1 � 35 � 0:and the strong duality holds provided Slater's onstraint quali�ation issatis�ed, i.e. there exists an x with hA1;Xi + 2bT1 x + 1 < 0. Note thatthis result is valid when matries Ai are positive semide�nite or negativesemide�nite. The proof employs so-alled S-proedure and is elaboratedin Body and Vandenberghe [2℄. In this paper we will only enounter theonvex ase, whih means Ai � 0. Therefore, when we have quadratiprogramming (QP) problems as just mentioned, the linear matrix variable24X xx 135 in the SDP formulation is essentially equivalent to the quadratimatrix variable 24xxT xx 135 in the QP formulation. We will use the quadratimatrix variables Ŵ and �X diretly in the SDP formulation as they are moreintuitive than their orresponding linear matrix variables in formulating therobust portfolio optimization problem.2.2 Optimizing the seond momentIn this setion, suppose that the expeted returns RS xd� = x̂ are known and�xed, we propose a framework to ast the portfolio optimization problemwith worst-ase variane as an SDP problem. The ovariane matrix ofreturns is �� x̂x̂T , given the mean of returns x̂, the worst-ase variane isonly dependent on the seond moment �. Suppose that the portfolio w is10



�xed, then the worst-ase problem an be formulated as follows:sup� hwwT ;ZS xxTd�i � hw;ZS xd�i2 (6)s:t ZS xd� = x̂;ZS d� = 1;�(x) � 0;where � is a probability measure.Theorem 2.1. Suppose that S is ompat, onvex semialgebrai set withnonempty interior, then problem (6) is equivalent to the following problem:max� wT�w = max�̂ hŴ ; �̂i � hŴ ; �Xi (7)s:t �̂ � 0; (7a)hAi; �̂i = x̂i; i = 1; :::; n+ 1;hBj ; �̂i � 0; j = 1; :::;m: (7b)
The matries A and B in this formulation are seleted arefully to satisfythe onstraints of the problem. For instane,A1 = 26664 0 ::: 0:5... ... ...0:5 ::: 0 37775speify x̂1 in the moment matrix �̂. In the same way, suppose that theunertain region S is desribed by xTx � 1 so that matrix B is designed by24�I 00 135, where I is the n-dimensional identity matrix. The problem abovewill alulate the worst-ase variane given a portfolio w.11



Proof. Note that the onstraints (7a) and (7b) are showing positive semi-de�niteness of the moment and loalizing matries and S is ompat whih,as aforementioned, guarantee that the elements of �̂ are the moments ofsome measure � supported on S. The main proof of this theorem followsdiretly from Theorem 3:7 in Lasserre [7℄.The robust portfolio seletion problem (5) therefore beomes a \min-max"problem and an be formulated as follows:minŴ max�̂ hŴ ; �̂i � hŴ ; �Xis:t �̂ � 0hAi; �̂i = x̂i; i = 1; :::n + 1; (8)hBj ; �̂i � 0; j = 1; :::;m;hC; Ŵ i 2 �W;Ŵ � 0hD; Ŵ i � R;where C are designed matries to �t in the set of feasible portfolios. Forexample, C1 = 24 0 0:50:5 0 35 and C2 = 24�I 00 135 to satisfy �W = fw 2Rn jPni=1wi = 1; w � 0g and wTw � 1. Note that the problem (8) isin fat a onvex quadrati programming problem with respet to the port-folio variable w for every positive semide�nite matries �̂ � �X onstrainedby a quadrati funtion wTw � 1. As demonstrated in setion 2:1, thequadrati matrix variable Ŵ is equivalent to the linear matrix variable24W ww 135 � 0. The last onstraint is the performane onstraint in whihD = 24 0 12 x̂12 x̂ 0 35and R is the required return of the portfolio.12



Lemma 2.1. Suppose that strong duality holds for the max part of (8), the\min-max" problem (8) an then be expressed by the following \min" SDPproblem : miny;Ŵ � x̂T y � hŴ ; �Xis:t �AT y �BT � � Ŵ = � (9)� � 0� � 0; � 2 Rm ;hC; Ŵ i 2 �W;hD; Ŵ i � R:Proof. Proof of this lemma is mainly based on writing the Lagrangian of\max" funtion of (8) to ahieve the dual (see e.g. Boyd and Vanderberghe[2℄).By this lemma, we an solve the robust portfolio seletion problem (5) bya single \min" SDP problem instead of a \min-max" problem (8). Withoutthe last performane onstraint, (9) gives the optimal portfolio assumingthe worst-ase variane of returns. If one wants to �nd out the worst-asemean and variane orresponding this optimal portfolio, the \max" part of(8), or in other words (7) needs to be solved by giving the portfolio w. Byemploying this framework, we now onsider unertain regions over both theexpeted returns and the seond moment matrix of returns and solve therobust portfolio seletion problem.2.3 Optimizing the seond moment and the meanIn this setion, we relax the �rst moment onstraints by onsidering om-ponentwise bounds :x̂ 2 [x̂l; x̂u℄ 2 Rn , where x̂u; x̂l are given omponent-13



wise upper and lower bounds of the mean vetor, respetively. By using asimilar approah to that of setion 2:2, we provide two equivalent robustformulations. One is based on \min-max" and solved by using semi-in�niteprogramming. The other one is based on reformulation by using duality toan overall minimization problem.Following the same proedures as presented previously, we start with the\max" funtion by assuming that portfolios w is given. The worst-asevariane problem an be formulated as follows:max�;x̂ wT�w � wT x̂x̂Tw = max�̂; �X hŴ ; �̂i � hŴ ; �Xi (11)s:thA;1�̂i 2 [x̂l; x̂u℄ ;hA;1 �Xi 2 [x̂l; x̂u℄ ;hA; (�̂� �X)i = 0;hBj ; �̂i � 0; j = 1; :::;m;hC; �̂i = 1;hC; �Xi = 1;�̂ � 0;�X � 0;�̂� �X � 0;where the matries A = 26664A1...An37775 again are designed to identify the mean vetor
x̂ whih belongs to [x̂l; x̂u℄, and the matrix C = 266640 ::: 0... ... ...0 ::: 137775 is to spot \1" inthe matries �̂ and �X . To guarantee �̂ to be the seond moment matrix ofsome measure supported on S, we again have the positive semide�nitenessonstraints of the moment matrix �̂ and the loalizing matries hBj ; �̂i; j =14



1; :::;m;. The onstraint hA; (�̂ � �X)i = 0 ensures that the mean vetorsin the seond moment matrix and in the mean square matrix are the same.Moreover, in this worst-ase variane formulation we have a onvex QPproblem with respet to x̂ onstrained by �̂ � �X � 0, whih is again thesituation we illustrated in setion 2:1 where the quadrati matrix variable�X is equivalent to the the linear matrix variable 24X xx 135 � 0. As anbe seen, through this formulation one an derive the worst-ase variane ofreturns given reasonable omponentwise bounds on the mean of returns. Therobust portfolio seletion portfolio problem therefore beomes a \min-max"problem: minw max�̂; �X q(w; �X; �̂) = hŴ ; �̂� �Xi (12a)with onstraints. In the sequel, we use two di�erent approahes to solve the\min-max" problem. Firstly, following the exatly proedures introduedin the previous subsetion, we onvert the \min-max" problem to a \min"onvex SDP problem. The seond approah is by using semi-in�nite pro-gramming (Zakovi and Rustem [11℄). We use the seond approah as analternative to verify the validity of the �rst approah.As to the �rst approah, we an, by using the similar lemma illustrated insetion 2:2, express the problem (12a) in the form of the following:min�1;�2;�3;�;yu;yl;zu;zl;�;Ŵ �1 + �2 � x̂Tl (yl + zl) + x̂Tu (yu + zu)s:t �1C + �3A� �B � ylA+ yuA� �� Ŵ = �1;�2C � �3A� zlA+ zuA+�+ Ŵ = �2; (12)hD; Ŵ i 2 �W;� � 0;yu; yl; zu; zl � 0;�;�1;�2 � 0;hE; Ŵ i � R;15



where matries A,B and C are the same as illustrated previously, D is toensure the feasible set of portfolios, and E is to suÆe the performaneonstraint by the required return of the portfolio R.Proof. The proof is again utilizing Langrangian to alulate its dual (see e.g.Boyd and Vanderberghe [2℄). If the ovariane matrix is positive de�nite sothat strong duality holds aording to the slater ondition (see e.g. Boydand Vanderberghe [2℄).We an therefore, without the performane onstraint in (12), attain theoptimal portfolio assuming the worst-ase mean and variane of returnsby solving the single onvex \min" SDP problem (12). As to the seondapproah, the \min-max" problem an also be written asminw max�̂; �X q(w; �X; �̂) = hwT 0i (�̂� �X)24w035 ;whih means it is a onvex quadrati programming problem with respetto 24w035 and a linear SDP problem with respet to �̂; �X . By employing thesemi-in�nite programming algorithm introdued by S.Zakovi and B.Rustem[11℄, we an ahieve the optimal portfolio and its orresponding worst-asemean and variane at the same time.Semi-in�nite Programming Algorithm:Set A = f(�̂0; �X0)gwhile U > L doCompute lower bound L = minw2W max�̂; �X q(w; �X; �̂) globallywith w� = arg minw2W max(�̂; �X)2A q(w; �X; �̂)Compute upper bound U = max(�̂; �X)2B q(w�; �X; �̂)with (�̂�; �X�) = arg max(�̂; �X)2B q(w�; �X; �̂)A = A [ f(�̂�; �X�)g 16



end whileOptimal values (w�; �̂�; �X�) are attained when U == LNote that the �rst \min-max" problem in the algorithm involving a maxi-mum of norms an be ast as a standard SOCP problem: the problemminŵ max�̂2 Si=0;:::;p(�̂i; �Xi) ŵT �̂iŵ = �̂1=2i ŵ2s:t w 2 �W;whih is related to the SOCP problemmin ts:t �̂1=2i ŵ � t; i = 0; :::; pw 2 �W;
where variables w 2 Rn ; t 2 R and ŵ is designed to be 24w035 to suit thematries �̂ and �X for alulations. In eah iteration, the lower bound L = t2is omputed to ompare with the upper bound U generated by the seondmaximization problem. The seond maximization problem in the algorithmis a linear SDP problem with domain B that an be solved eÆiently. Aftereah iteration, if U > L then the set A is enlarged by the new (�̂�; �X�)generated by the seond maximization problem, whih will ause p inreasesone in the SOCP problem in the next iteration. The iterations terminatewhen U = L. Our numerial experiments show that the almost same results(auray denoted by 1E�4) an be attained by solving the robust portfolioseletion problem via these two approahes aforementioned. It an be seenthat the single SDP approah is easier and faster to solve the robust portfolioseletion problem. However, one needs to plug in the optimal portfolio into17



(11) to attain the orresponding worst-ase variane (the worst-ase meanand seond moment). the semi-in�nite formulation is an alternative way tosolve the robust portfolio seletion problem and also provides the validity ofthe SDP model. To this end, we an use the following algorithm to generatea disrete approximation to the robust eÆient frontier:Robust EÆient Frontier Algorithm:1. Solve problem (9) or (12) without performane onstraint to attainoptimal portfolio wmin.2. Solve problem (7) or (11) to attain the worst-ase mean and varianex̂w;�w.3. Set Rmin = x̂Twwmin, Rmax = x̂Twwmax and � = Rmax �Rmin.4. Choose N, the number of desired points on the eÆient frontier. ForR 2 fRmin + �N�1 ; Rmin + 2 �N�1 ; :::; Rmin + (N � 1) �N�1g solve problem(12) with onstraints x̂Tww = R.In this algorithm, wmin orresponds to the risk averse portfolio with respetto the worst-ase risk measure minw max�̂; �X q(w; �X; �̂) without performanerequirement of the type of the last onstraint in (12) on the portfolio. Thisessentially orresponds to the worst-ase portfolio performane. wmax, onthe other hand, represents to the best portfolio return with respet to theworst-ase x̂ with no onsideration on risk. This is in fat the problemmaxw minx̂ x̂Tw with onstraints only on x̂ and w.3 Numerial ResultsWe now illustrate numerial results of the proposed methods to the prob-lems of robust portfolio optimization. The SOCP and SDP solver used isSeDuMi version 1.1 developed by Sturm ([10℄). The omputations are doneon a pentium IV 3.2G HZ PC with 1G RAM.18



The �rst numerial experiment is to investigate the e�et of the errors ofthe estimated expeted returns (see Ceria and Stubbs [4℄). We take Broadie[3℄'s true and estimated data as inputs and generate the estimated, trueand atual eÆient frontiers. We then employ (4) with the estimated ex-peted returns and true expeted returns to alulate the estimated robusteÆient frontier and the atual robust eÆient frontier. Suppose that thetrue expeted returns falls in the on�dene region with probability 95%,whih means k = 1:0703 in the formulation (4), we have the eÆient fron-tiers shown in the Figure 1. We an see that the robust portforlios performbetter than MMV's portfolios in terms of sensitivity to the input data. Thenumerial results also show that the robust portfolios are more diversi�edthan MMV's portfolios.The following numerial experiments show that the e�et of robust port-folios over unertainty of the ovariane matrix of returns, and the robusteÆient frontiers are presented. When the expeted returns are spei�ed,we optimize the portfolios assuming the worst-ase variane, whih is, infat, an implementation of the proposed model (9). For simpliity, supposethat S := fx 2 R5 jxTx � 0:1g and the expeted returns and the ovarianematrix of returns are taken from Broadie [3℄,we an ompute an eÆientfrontier of the MMV model and the worst-ase varianes with given portfo-lios via (7). Moreover, by employing the robust eÆient frontier algorithmand the formulation (9) the optimal portfolios are ahieved assuming theworst-ase varianes. The result is shown in Figure 2.When the expeted returns are only given by omponentwise upper andlower bounds, we implement the two models proposed previously to solvethe robust portfolio seletion problem. The approah by employing semi-in�nite programming algorithm an attain the worst-ase expeted returns,the ovariane matrix of returns and the orresponding optimal portfoliosimultaneously, but it is slower then using the linear SDP model ((11) and19



Figure 1: EÆient Frontiers

0.05 0.06 0.07 0.08 0.09 0.1
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Risk:sigma

R
et

ur
n:

m
ea

n

 

 
True Efficient Frontier
Estimated Frontier
Actual Frontier
Estimated robust EF
Actual robust EF

(12)). By hoosing upper bounds and lower bounds of the expeted returns,the semi-in�nite algorithm needs about 90 iterations to attain the optimalvalue. On the other hand, we an solve an single onvex SDP problem (12)to gain the optimal portfolio assuming the worst-ase variane. To this end,the lassial eÆient frontier and the robust eÆient frontier generated bythe algorithm aforementioned are shown in the Figure 3. Note that the Fig-ure 3 only demonstrates how di�erent the robust eÆient frontier may lookomparing with the lassial eÆient frontier. The performane of the ro-bust portfolio is largely dependent on the settings of the unertainty regions.We will test our robust portfolio model in the following baktesting.
20



Figure 2: EÆient Frontier, worst-ase variane, and worst-ase optimalportfolio
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3.1 BaktestingWe randomly hoose 5 omponents (BT, BP, Baralys, Bay system, HSBO)of FTSE100 as our portfolio and employ the robust portfolio optimizationand seletion model proposed in this paper to ompare the returns withthe index FTSE100 from 3rd January 2005 to 22th January 2008. We take10 weeks as a history window from whih we alulate means, ovarianematries, and the seond moment matries every week (5 days). With thehighest and the lowest value over these weeks as the elements of the upper orlower bound of mean vetor and the seond moment matrix, we an obtain,aording to (12), a robust portfolio whih assumes that in the future week21



Figure 3: Robust EÆient Frontier
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the mean and the seond moment matrix of returns would not esape fromthe bounds provided. The history windows keeps moving whih means thatwe are always looking bak for the latest 10 weeks in order to onstruta portfolio for the next week. In running the baktesting, we oasionallyenounter numerial problems with the solver SEDUMI (see e.g. Sturm [10℄),we then swith to SDPT3 (see e.g. Toh et al. [12℄) to solve the problem.Equally weighted portfolio is also inluded in the baktesting as it an beobtained when S is desribed by a sphere. The result is shown in the Figure4.
22



Figure 4: Baktesting
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4 ConlusionWe have established the one time period robust portfolio seletion modelunder the setting of oni programming. Unertain regions are introduedto both the expeted returns and the seond moment matrix of returns,the resulting robust portfolio seletion problems are formulated as oniprogramming problems and solved by solvers available in publi domain.It is shown that the robust portfolios perform more reliable than MMV'sportfolios in the sense that the robust portfolios are less sensitive to the23
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