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Abstract

Markowitz’s mean-variance model (MMV) quickly became very
popular in theory and practice due to its simplicity and plausibility.
However, there is limited applicability of this model because of its ex-
treme sensitivity to input parameters. Inputs such as the mean and the
covariance matrix of returns are only estimates of parameters of un-
known probability distributions. These estimations are prone to errors.
In order to cope with the effect of the estimation errors, we propose
to construct a one-period robust mean-variance model by introducing
uncertainty regions over the mean vector and the second moment ma-
trix of returns. The resulting robust mean-variance portfolio selection
problem can usually be cast as a conic program which can be solved
efficiently. In this paper, both second order cone program (SOCP)
and semidefinite program (SDP) formulations are proposed. The nu-
merical results show the portfolios generated by the proposed robust
mean-variance model outperform MMYV’s portfolios. Moreover, the ro-

bust efficient frontiers are presented.



1 Introduction: robust max return

The mean-variance model has been the fundamental theoretical framework
for portfolio construction since Markowitz [8] introduced his Nobel prize-
winning work. This model, however, has also been challenged by invest-
ment professionals from both academia and financial institutions due to its
high sensitivity to the input data such as expected returns and the covari-
ance matrix of returns. For example, Broadie [3] investigates this matter
and concludes that the effect of errors in parameter estimates on the results
of mean-variance analysis can be surprisingly large. Robust optimization
framework has been introduced to cope with this effect by ensuring that
decisions are reliable even if estimates of the input parameters are incorrect.
Recently, Titinci and Koenig [13] assuming componentwise uncertainty
sets over the mean return vector and the covariance matrix, respectively,
formulate the robust portfolio selection problem as a saddle-point problem
that involves semidefinite constraints. Goldfarb and Iyengar [5] also develop
a robust factor model for the asset returns and cast the robust portfolio
selection problems to SOCP problems which can be solved efficiently. In
addition, El-Ghaoui et al. [6] also consider the robust portfolio problem via
the approach of worst-case Value-at-Risk (VaR), which employs similar SDP
techniques exploited in this paper.

One shortcoming of these models is that the authors seem to be considering
separated uncertainty sets for the expected return vector Z and for the co-
variance matrix I', which means one has inconsistent probability measures
over the uncertainty set for the expected return vector and the uncertainty
set for the covariance matrix. More explicitly, the worst-case variance prob-
lem in these models has different probability measures over the mean and
the covariance of returns. This leads to a worse than worst-case situation

and might be over-conservative. Moreover, it is too restricted to assume



that returns follow normal distributions as indicated by Goldfarb and Iyen-
gar [5], because the distribution of returns in practice is not Gaussain.

To mitigate these shortcomings, we propose a robust portfolio optimiza-
tion and selection model by using conic programming approaches under the
mean-variance framework which introduces uncertainty sets to the mean
vector and the second moment of returns, respectively. Note that we do
not have uncertainty set over covariance matrix directly, but two uncer-
tainty sets over the mean vector and the second moment matrix of returns
simultaneously under a probability measure. The robust portfolio selection
problem can then be cast as a single convex SDP problem by using duality
theory, or a semi-infinite conic programming problem. A salient feature is
that the expected return and the covariance matrix of returns are defined
in a consistent manner. In other words, we consider the worst-case variance
of a portfolio under a unique probability measure. Furthermore, we do not
assume any specific distributions over returns, but we do require the knowl-
edge of the first two moments of the distribution of returns either exactly
or in uncertainty sets.

The uncertainty sets in many (aforementioned) literatures are either poly-
topes or ellipsoids. In this paper, we mainly consider ellipsoidal uncertainty
set on the second moment matrix of returns and componentwise bounds on
the mean vector of returns. The ellipsoidal uncertainty over the mean vector
is also studied in the introduction. In the sequel, we first only take the esti-
mation error of the expected returns into account as an introduction, which
is first introduced by Ceria and Stubbs [4]. A robust maximum return prob-
lem with given risk levels is cast as an SOCP problem. Efficient frontiers
are generated for comparison and analysis between the MMV model and its
robust counterpart. In the numerical results (cf.Figurel), it can be easily
seen that portfolios generated by the robust mean-variance model outper-

form the MMV’s portfolios in terms of sensitivity to the estimation error



of the expected returns. Following in the similar vein, we then propose our
model that considers the robust minimum variance problem in the section
2 of the paper. We start from considering the minimum variance problem
with componentwise uncertainty set over the second moment matrix of re-
turns assuming that the mean vector is known and fixed. We then study the
more general case where componentwise uncertainty regions are introduced
to both the expected returns (mean square matrix cf. section 2.1) and the
second moment matrix of returns. The resulting robust mean-variance port-
folio selection problem is converted into an SDP problem and an SOCP-SDP

semi-infinite problem. In addition, the robust efficient frontier is presented.

1.1 Robust maximum return

We first focus on considering the effects of errors in estimates of expected
returns in this subsection. According to Markowitz’s model, the maximum
return problem is a quadratic (QP) problem that can be formulated as

follows:

max 2w — Aw!Tw
weR™

s.t w EW,

where Z is the estimated expected returns of x, the matrix I is the covariance
matrix of estimated returns, and W represents the set of feasible portfolios.
For instance, we can define W = {w € R*|Y-" , w; = 1,w > 0}. Broadie
[3] shows that the effects of estimation error can be surprisingly large. In
order to take the worst case into account, as proposed by Ceria and Stubbs
[4], it is assumed that the vector of true expected returns Z; is normally

distributed and lies in the confidence region (ellipsoid)

(& — 2e) T (@ — Ze) < K2 (1)



generated by estimated expected returns Z, and a covariance matrix I', of
the estimates of expected returns with probability 7, where k% = x2(1 —n)
and x?2 is the inverse cumulative distribution function of the chi-squared dis-
tribution with n degrees of freedom. Suppose that we always over-estimated
the expected returns, the worst case of the estimated expected returns with
a given portfolio can then be formulated as follows:

max (&, — )T (2)

Te—it

st (Fe — ) T, (& — 24) < K2,

where w is a given portfolio. By using Lagrange multiplier method, the
true expected returns of the portfolio therefore can be expressed as Zow —
k||F}3/ 21I)|| The problem now becomes a robust portfolio selection problem
that can be formulated as follows:
~T 1/2
— k||l 3
max & w — k][I wl| (3)

st AwlTw < A2

weW.

One can see this formulation is the traditional maximum return formulation
added with an additional term k||f‘é/ 2113|| to reduce the effect of estimation
error on the optimal portfolio. This problem can be easily cast as a second
order cone programming (SOCP) problem:

max 27w — kt (4)

weR™

st we W,
1/2
y > I,

t > [T 2w]|,

where v is a standard deviation target and it varies when one needs to

compute points on the efficient frontier. Note that the difference between



I' and I'.. T is the covariance matrix of returns which is assumed to be
known exactly at this moment. I', is the covariance matrix of estimated
expected returns, which is related to the estimation error arising from the
process of estimating &, the vector of expected returns. As can be seen, this
model proposed by Ceria and Stubbs [4] only considers uncertainty region
on the mean vector of returns assuming the covariance matrix of returns is
perfectly known. In the first part of the numerical results section, the effect
of the estimated errors in expected returns is shown by efficient frontiers,
and the improvement provided by using the robust optimization (4) is also

presented.

2 Robust minimum variance

Recently, SDP has been used to compute Chebyshev-type upper and lower
bounds firstly by Bertsimas and Popescu [1], then by Lasserre [7] and Van-
denberghe et al. [14]. In which, the problem of computing tight bounds of
a probability measure on a given semialgebraic set is converted into SDP
problems and solved efficiently. Inspired by this work, we introduce the
SDP formulations for the robust portfolio selection problem. Let us recall
that the minimum variance formulation of the portfolio selection problem is

usually defined as follows:

where R is the lower limit on the expected return one would like to achieve.

The robust portfolio selection problem as in Titiincii and Koenig [13] then



becomes a “min-max” problem:
min ~ max  w! Tw=w" (8- i:")w (5)
weR" YeXy,2eqy

st we W,

min w! & > R,
TETY

where the covariance matrix is written as I' = ¥ — 227, ¥ is the second
moment matrix of returns. ¥y and Zy are uncertain regions of ¥ and Z,
respectively. The notations will be detailed in section 2.1. In the following
we first assume that the expected returns of the assets are known and fixed
exactly, the SDP model is established to calculate the worst-case variance
and solve the robust portfolio selection problem. Following in the same vein,
we introduce componentwise bounded uncertain regions for the mean vector
and for the second moment matrix. An SDP formulation and an SOCP-SDP
semi-infinite formulation are proposed to solve the corresponding robust

portfolio selection problem.

2.1 Notations and conventions

We are mainly using SDP to establish the model so that the variables under
consideration are in the form of positive semidefinite symmetric matrices.
In this section, we introduce our notations and describe the second moment
and the localizing matrices of returns. It is important to introduce these
matrices, because that only under appropriate conditions on the moment
and localizing matrices the worst-case variance problem can be cast as an
SDP problem. We denote B be the usual Borel o-field of R*, z € R"
represents the returns of individual assets in one time periodxt%t_m, A0

if a symmetric matrix A is positive semidefinite, and use

S:{z e R"0(x) = 2T Po 4 2qix +7; >0, i=1,...,m}



to denote a compact semi-algebraic set S € B under consideration, which
will be the uncertainty sets over the second moment matrix of returns, where
0(x) = ! P,z + 2q;x +r; : R?" — R is a quadratic polynomial. Denote y as

a probability measure and let

/mdu:a?;:
S

L

and [y zz'dy = X be the first moment (mean) and the second moment of

returns, respectively. The covariance matrix is denoted by
'=%-ail = 0.

We have the second moment matrix denoted by

T
z| |z Y I

sl |1 271

We assume that £ = 0 and also T’ = ¥ — #27 > 0. We now introduce
so-called localizing matrices (see e.g. Lasserre [7]) to express the set S in
terms of the moment matrix. As the set S in this paper is described by

quadratic polynomials 0(z), the localizing matrices are defined by

T
T P ql| |z
My (0y) :/ tr dp
s |1 ad | |1
| B a4
:<27 T )
q; T

=(3,P)+2q;2+r; >0,i=1,...,m,

where (A, B) = Tr(AB) denotes the standard scalar product in the symmet-
ric matrices, and Mj(fy), a notation borrowed from Lasserre [7], represents
the localizing matrices when the set S is described by quadratic polynomials

f(z). Note that by a result in Putinar [9] the positive semi-definiteness of



the moment and localizing matrices are necessary and sufficient conditions
for the elements of £ to be the moments of some measure i supported on S
when the set S is compact. This result will be directly applied in this paper

and we refer interested readers to Putinar [9] and Lasserre [7]. In addition,

AT o
_ Ttz
we introduce a mean square matrix denoted by X = , and a port-
T 1
T
. . a3 ww w . .
folio matrix denoted by W = . ,where w € W is the weights of a
w 1
. . . . . . X $
portfolio. Generally speaking, defining linear matrix variable =0
z 1

with variables X and z means X — zz! > 0 by Schur complement so that
X is not necessary equal zz!. However, according to an interesting result
given by Body and Vandenberghe [2], we observe that quadratic program-

ming problems defined by

min (Ag, X) + 20} 2 + ¢
T

st (AL, X)+20T 2 +¢, <0
X = xxT,

can be cast as an SDP problem defined by

min (A, X) + 208z + ¢

5L

st (AL, X)+20T 2z +¢, <0

X z
=0

z 1 7



and where both A;, ¢ = 0,1 are symmetric matrices, b; € R", ¢; € R. These

two problems have the same dual problem

max
THA 7

st A>0

Ag + AAy by + Aby
(bo + )\bl)T Cp + )\01 -

and the strong duality holds provided Slater’s counstraint qualification is
satisfied, i.e. there exists an x with (A;, X) + 2bIz + ¢; < 0. Note that
this result is valid when matrices A; are positive semidefinite or negative
semidefinite. The proof employs so-called S-procedure and is elaborated
in Body and Vandenberghe [2]. In this paper we will only encounter the
convex case, which means A; = 0. Therefore, when we have quadratic

programming (QP) problems as just mentioned, the linear matrix variable

X
in the SDP formulation is essentially equivalent to the quadratic

r 1

T

[ 7
matrix variable in the QP formulation. We will use the quadratic
z 1

matrix variables W and X directly in the SDP formulation as they are more
intuitive than their corresponding linear matrix variables in formulating the

robust portfolio optimization problem.

2.2 Optimizing the second moment

In this section, suppose that the expected returns [ g Tdp = T are known and
fixed, we propose a framework to cast the portfolio optimization problem
with worst-case variance as an SDP problem. The covariance matrix of
returns is ¥ — £&7, given the mean of returns &, the worst-case variance is

only dependent on the second moment 3. Suppose that the portfolio w is

10



fixed, then the worst-case problem can be formulated as follows:

sup (wu [ o) = (w, [ adu? (6)

In

s.t /xduz:ﬁ,
S
/du=1,
s

p(z) >0,

where p is a probability measure.

Theorem 2.1. Suppose that S is compact, convex semialgebraic set with

nonempty interior, then problem (6) is equivalent to the following problem:

max w! Tw = max(W, %) — (W, X) (7)
5

st 3 >0, (7a)

The matrices A and B in this formulation are selected carefully to satisty

the constraints of the problem. For instance,

0 .. 05

Ay
0.5 ... 0

specify £; in the moment matrix 3. In the same way, suppose that the

uncertain region S is described by 2’z < 1 so that matrix B is designed by
-1 0
, where I is the n-dimensional identity matrix. The problem above

0 1

will calculate the worst-case variance given a portfolio w.

11



Proof. Note that the constraints (7a) and (7b) are showing positive semi-
definiteness of the moment and localizing matrices and S is compact which,
as aforementioned, guarantee that the elements of 3 are the moments of
some measure y supported on S. The main proof of this theorem follows

directly from Theorem 3.7 in Lasserre [7].

The robust portfolio selection problem (5) therefore becomes a “min-max”

problem and can be formulated as follows:

minmax (W, %) — (W, X)
w X

W =0

(D,W) >R,

where C are designed matrices to fit in the set of feasible portfolios. For

0 0.5 -I 0 ) -
example, (1 = and Cy = to satisfy W = {w €
05 0 0 1

RS jw; = 1,w > 0} and wlw < 1. Note that the problem (8) is
in fact a convex quadratic programming problem with respect to the port-
folio variable w for every positive semidefinite matrices ¥ — X constrained
by a quadratic function w'w < 1. As demonstrated in section 2.1, the

quadratic matrix variable W is equivalent to the linear matrix variable

W w
> 0. The last constraint is the performance constraint in which

w 1
0 iz

0

and R is the required return of the portfolio.

N —
>

12



Lemma 2.1. Suppose that strong duality holds for the maz part of (8), the
“min-maz” problem (8) can then be expressed by the following “min” SDP
problem :

min — 21y — (W, X)

y,W

st —ATy—BT'r—W =A (9)

A=0

Proof. Proof of this lemma is mainly based on writing the Lagrangian of
“max” function of (8) to achieve the dual (see e.g. Boyd and Vanderberghe
2)). O

By this lemma, we can solve the robust portfolio selection problem (5) by

“min-max” problem (8). Without

a single “min” SDP problem instead of a
the last performance constraint, (9) gives the optimal portfolio assuming
the worst-case variance of returns. If one wants to find out the worst-case
mean and variance corresponding this optimal portfolio, the “max” part of
(8), or in other words (7) needs to be solved by giving the portfolio w. By
employing this framework, we now consider uncertain regions over both the

expected returns and the second moment matrix of returns and solve the

robust portfolio selection problem.

2.3 Optimizing the second moment and the mean

In this section, we relax the first moment constraints by considering com-

ponentwise bounds :z € [%;,%,] € R", where Z,,Z; are given component-

13



wise upper and lower bounds of the mean vector, respectively. By using a
similar approach to that of section 2.2, we provide two equivalent robust
formulations. One is based on “min-max” and solved by using semi-infinite
programming. The other one is based on reformulation by using duality to
an overall minimization problem.

Following the same procedures as presented previously, we start with the
“max” function by assuming that portfolios w is given. The worst-case

variance problem can be formulated as follows:

max w! Yw — wlziTw = max(W, fl) — (W,X> (11)
¥, 2,X

(A,1X) € [#), 3],
(4,5 - X)) =0,
(Bj,£) 20, j=1,..,m,
(C,%) =1,
(C.X) =1,
=0,
X =0,
S—X =0,
Ay
where the matrices A = | * | again are designed to identify the mean vector
A
0 ... 0
Z which belongs to [Z;, Z,], and the matrix C'= |! : ] istospot “1” in
0 ... 1

the matrices ¥ and X. To guarantee 3 to be the second moment matrix of
some measure supported on S, we again have the positive semidefiniteness

constraints of the moment matrix ¥ and the localizing matrices (B, ﬁ), j =

14



1,...,m, The constraint (A, (3 — X)) = 0 ensures that the mean vectors
in the second moment matrix and in the mean square matrix are the same.
Moreover, in this worst-case variance formulation we have a convex QP
problem with respect to & constrained by S — X > 0, which is again the

situation we illustrated in section 2.1 where the quadratic matrix variable

X is equivalent to the the linear matrix variable = 0. As can
z 1

be seen, through this formulation one can derive the worst-case variance of
returns given reasonable componentwise bounds on the mean of returns. The
robust portfolio selection portfolio problem therefore becomes a “min-max”
problem:

minmax ¢(w,X,%) = (W, - X) (12a)

wonX

with constraints. In the sequel, we use two different approaches to solve the
“min-max” problem. Firstly, following the exactly procedures introduced
in the previous subsection, we convert the “min-max” problem to a “min”
convex SDP problem. The second approach is by using semi-infinite pro-
gramming (Zakovic and Rustem [11]). We use the second approach as an
alternative to verify the validity of the first approach.
As to the first approach, we can, by using the similar lemma illustrated in

section 2.2, express the problem (12a) in the form of the following:

. ~T ~T
min onFog =37 (g 2) + 2y (Yu + 2)
al7a27a3)7-7yu)ylzzuazle)W

S.t 01104-0[3./4—7'B—ylA—l—yuA—A—I/T/:A17

20 — a3 A — A+ 2, A+ A+ W = Ay, (12)
(D,W)eW,
T 20,

Yu, Yty Zus 21 > 07
A7A17A2 t 07

(E,W) >R,

15



where matrices A,B and C are the same as illustrated previously, D is to
ensure the feasible set of portfolios, and E is to suffice the performance

constraint by the required return of the portfolio R.

Proof. The proof is again utilizing Langrangian to calculate its dual (see e.g.
Boyd and Vanderberghe [2]). If the covariance matrix is positive definite so
that strong duality holds according to the slater condition (see e.g. Boyd
and Vanderberghe [2]). O

We can therefore, without the performance constraint in (12), attain the
optimal portfolio assuming the worst-case mean and variance of returns
by solving the single convex “min” SDP problem (12). As to the second

approach, the “min-max” problem can also be written as

. . - |w
minmax q(w,X,X) = [wT 0] (X —-X) ,
wonX 0

which means it is a convex quadratic programming problem with respect

w .
to and a linear SDP problem with respect to %, X. By employing the
0

semi-infinite programming algorithm introduced by S.Zakovic and B.Rustem
[11], we can achieve the optimal portfolio and its corresponding worst-case
mean and variance at the same time.

Semi-infinite Programming Algorithm:
Set A = {(3, Xo)}
while U > L do
Compute lower bound L = min max g(w, X, %) globally

weW f;,)‘(
with w* = arg min max q(w, X, ﬁ)
weW (32 X)eA
Compute upper bound U = max ¢q(w*, X,
(2,X)eB
with (i*,)_(*) =arg max g w*,)_(,f])
(X,X)eB
A= AU{(E, X))

M>

)
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end while

Optimal values (w*,£*, X*) are attained when U == L

Note that the first “min-max” problem in the algorithm involving a maxi-

mum of norms can be cast as a standard SOCP problem: the problem

which is related to the SOCP problem

min ¢

S.t ‘ fi/%

‘ <ti=0,..p

weW,

w
where variables w € R*, ¢t € R and @ is designed to be to suit the
0

matrices 3 and X for calculations. In each iteration, the lower bound L = t*
is computed to compare with the upper bound U generated by the second
maximization problem. The second maximization problem in the algorithm
is a linear SDP problem with domain B that can be solved efficiently. After
each iteration, if U > L then the set A is enlarged by the new (3*, X*)
generated by the second maximization problem, which will cause p increases
one in the SOCP problem in the next iteration. The iterations terminate
when U = L. Our numerical experiments show that the almost same results
(accuracy denoted by 1E —4) can be attained by solving the robust portfolio
selection problem via these two approaches aforementioned. It can be seen
that the single SDP approach is easier and faster to solve the robust portfolio

selection problem. However, one needs to plug in the optimal portfolio into
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(11) to attain the corresponding worst-case variance (the worst-case mean
and second moment). the semi-infinite formulation is an alternative way to
solve the robust portfolio selection problem and also provides the validity of
the SDP model. To this end, we can use the following algorithm to generate
a discrete approximation to the robust efficient frontier:

Robust Efficient Frontier Algorithm:

1. Solve problem (9) or (12) without performance constraint to attain
optimal portfolio wi,;y,.

2. Solve problem (7) or (11) to attain the worst-case mean and variance
ZFwes Dwe-

3. Set Ryin = &L wWinin, Rmaz = &5, Wmaez and A = Ryae — Rinin-

4. Choose N, the number of desired points on the efficient frontier. For
R € {Rumin + 327, Rmin + 2527, -y Rimin + (N — 1)527 } solve problem

12) with constraints 22 w = R.
wce

In this algorithm, w,;, corresponds to the risk averse portfolio with respect
to the worst-case risk measure rrti)n max q(w, X, f]) without performance
requirement of the type of the last cozr;;(traint in (12) on the portfolio. This
essentially corresponds to the worst-case portfolio performance. w4, on
the other hand, represents to the best portfolio return with respect to the

worst-case £ with no consideration on risk. This is in fact the problem

T

maxmin Z° w with constraints only on £ and w.

w iy

3 Numerical Results

We now illustrate numerical results of the proposed methods to the prob-
lems of robust portfolio optimization. The SOCP and SDP solver used is
SeDuMi version 1.1 developed by Sturm ([10]). The computations are done
on a pentium IV 3.2G HZ PC with 1G RAM.

18



The first numerical experiment is to investigate the effect of the errors of
the estimated expected returns (see Ceria and Stubbs [4]). We take Broadie
[3]’s true and estimated data as inputs and generate the estimated, true
and actual efficient frontiers. We then employ (4) with the estimated ex-
pected returns and true expected returns to calculate the estimated robust
efficient frontier and the actual robust efficient frontier. Suppose that the
true expected returns falls in the confidence region with probability 95%,
which means £ = 1.0703 in the formulation (4), we have the efficient fron-
tiers shown in the Figure 1. We can see that the robust portforlios perform
better than MMV’s portfolios in terms of sensitivity to the input data. The
numerical results also show that the robust portfolios are more diversified
than MMV’s portfolios.

The following numerical experiments show that the effect of robust port-
folios over uncertainty of the covariance matrix of returns, and the robust
efficient frontiers are presented. When the expected returns are specified,
we optimize the portfolios assuming the worst-case variance, which is, in
fact, an implementation of the proposed model (9). For simplicity, suppose
that S := {z € R%|z’z < 0.1} and the expected returns and the covariance
matrix of returns are taken from Broadie [3],we can compute an efficient
frontier of the MMV model and the worst-case variances with given portfo-
lios via (7). Moreover, by employing the robust efficient frontier algorithm
and the formulation (9) the optimal portfolios are achieved assuming the
worst-case variances. The result is shown in Figure 2.

When the expected returns are only given by componentwise upper and
lower bounds, we implement the two models proposed previously to solve
the robust portfolio selection problem. The approach by employing semi-
infinite programming algorithm can attain the worst-case expected returns,
the covariance matrix of returns and the corresponding optimal portfolio

simultaneously, but it is slower then using the linear SDP model ((11) and
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Figure 1: Efficient Frontiers
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(12)). By choosing upper bounds and lower bounds of the expected returns,
the semi-infinite algorithm needs about 90 iterations to attain the optimal
value. On the other hand, we can solve an single convex SDP problem (12)
to gain the optimal portfolio assuming the worst-case variance. To this end,
the classical efficient frontier and the robust efficient frontier generated by
the algorithm aforementioned are shown in the Figure 3. Note that the Fig-
ure 3 only demonstrates how different the robust efficient frontier may look
comparing with the classical efficient frontier. The performance of the ro-
bust portfolio is largely dependent on the settings of the uncertainty regions.

We will test our robust portfolio model in the following backtesting.
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Figure 2: Efficient Frontier, worst-case variance, and worst-case optimal

portfolio
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3.1 Backtesting

We randomly choose 5 components (BT, BP, Barcalys, Bay system, HSBO)
of FTSE100 as our portfolio and employ the robust portfolio optimization
and selection model proposed in this paper to compare the returns with
the index FTSE100 from 3rd January 2005 to 22th January 2008. We take
10 weeks as a history window from which we calculate means, covariance
matrices, and the second moment matrices every week (5 days). With the
highest and the lowest value over these weeks as the elements of the upper or
lower bound of mean vector and the second moment matrix, we can obtain,

according to (12), a robust portfolio which assumes that in the future week
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Figure 3: Robust Efficient Frontier
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the mean and the second moment matrix of returns would not escape from
the bounds provided. The history windows keeps moving which means that
we are always looking back for the latest 10 weeks in order to construct
a portfolio for the next week. In running the backtesting, we occasionally
encounter numerical problems with the solver SEDUMI (see e.g. Sturm [10]),
we then switch to SDPT3 (see e.g. Toh et al. [12]) to solve the problem.
Equally weighted portfolio is also included in the backtesting as it can be
obtained when S is described by a sphere. The result is shown in the Figure

4.
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Figure 4: Backtesting
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4 Conclusion

We have established the one time period robust portfolio selection model
under the setting of conic programming. Uncertain regions are introduced
to both the expected returns and the second moment matrix of returns,
the resulting robust portfolio selection problems are formulated as conic
programming problems and solved by solvers available in public domain.
It is shown that the robust portfolios perform more reliable than MMV’s

portfolios in the sense that the robust portfolios are less sensitive to the
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errors of inputs.
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