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Kai Ye, Berç Rustem, Panos Parpas

June 15, 2009

Abstract

Recently, given the first few moments, tight upper and lower bounds

of the no arbitrage prices can be obtained by solving semidefinite pro-

gramming (SDP) or linear programming (LP) problems. In this paper,

we compare SDP and LP formulations of the European-style options

pricing problem and prefer SDP formulations due to the simplicity of

moments constraints. We propose to employ the technique of change

of numeraire when using SDP to bound the European type of op-

tions. In fact, this problem can then be cast as a truncated Hausdorff

moment problem which has necessary and sufficient moment condi-

tions expressed by positive semidefinite moment and localizing matri-

ces. With four moments information we show stable numerical results

for bounding European call options and exchange options. Moreover,

A hedging strategy is also identified by the dual formulation.

Keywords: moments of measures, semidefinite programming, linear

programming, options pricing, change of numeraire
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1 Introduction

Pricing financial derivatives has been a major focus in financial engineering.

One of the central questions in this area is, given information on the un-

derlying assets, to find no arbitrage prices for derivatives of such underlying

assets. Black-Scholes formula provides an insightful answer to this question.

However, the result is based on the assumption that the underlying price

dynamics follows a geometric Brownian motion, which often becomes a tar-

get of critics. Corresponding to this, instead of pursuing an exact value,

under assumptions of no-arbitrage and a complete market, we try to achieve

the tight bounds of the no-arbitrage option prices by using the moment ap-

proach.

Several authors have tried to use tools of semidefinite programming(SDP)

and linear programming(LP) to obtain bounds on option prices. In particu-

lar, Boyle and Lin [12] is, to our knowledge, the first to use SDP to bound the

option on maximum of multiple assets with first two moments information.

Bertsimas and Popescu [3] are among the first to solve the moment problems

using SDP systematically and apply this framework to compute the tight

bounds of European options (one dimension). Lasserre [7] then establishes a

scheme of semidefinite approximations for multi-dimensional cases and later

applies it in a class of exotic options (see Lasserre et al. [16]). The main issue

in the moment problems with SDP is to define constraints that guarantee

a nonnegative polynomial on Rn can be decomposed into a sum of squares

of other polynomials, which is Hilbert’s 17th problem presented at Paris in

1900. Bochnak et al[10] give a description of the problem in special cases:

n ≤ 2;m = 2; or n = 3,m = 4; where n and m denote number of dimensions

and moments, respectively. In the general case, Renznick [13] shows that if

θ(x) ∈ Rn is positive definite it is always possible to write (
∑n

i=1 x2
i )

rθ(x)

for a certain r ∈ N as a sum of squares. A hierarchy of semidefinite approx-
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imations for Pn,m is therefore derived by Zuluaga et al [17]. On the other

hand, the semidefinite approximation scheme developed by Lasserre [7] is

exploiting Putinar’s theorem [11] which assumes a semialgebraic compact

set defined by polynomials. In this paper, we will employ Putinar’s theorem

to bound option prices due to its simplicity of implementation. We present

Putinar’s theorem and the SDP formulations in section 2.1. With regard to

the approach of LP, Stockbridge [14] proposes infinite-dimensional LP for-

mulations for different options, which can lead us to SDP or LP problems.

We will find out in section 2.2 that despite the advantages of LP solvers, we

prefer to use SDP to bound option prices due to its simplicity of moment

constraints.

In this paper, we propose to apply the technique of change of numeraire on

bounding equity option prices with SDP in one and two dimension cases.

The change of numeraire technique was first introduced by Jamshidian [6]

to deal with interest rate derivatives. In the case of equity derivatives, the

numeraire is usually taken by the cash bond, but it can be any of the trad-

able instruments. It is also well known that no matter which numeraire is

chosen, the price of the derivative will always be the same. The idea of

changing numeraire comes after observing unstable numerical results by di-

rect implementing the SDP models aforementioned, especially when higher

moments (for e.g. up to 4th moments) information are involved. According

to our numerical experiments, one often has a marginally feasible problem

when dealing the truncated Stieltjes moment problem (unbounded region)

with higher moments, which may cause the instability of the numerical re-

sults. With the change of numeraire we are able to cast the bounding op-

tion price problem as the truncated Hausdorff moment problem (bounded

region) rather than the truncated Stieltjes moment problem (unbounded re-

gion) (see e.g. [16]), which shows much more stable numerical performance.

Another reason to employ the change of numeraire technique is due to the
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interesting analysis of bounds on measures with support region on a com-

pact interval in the one dimensional case by Lasserre [7]. The work shows

that only under at least four moment conditions a tight upper bound will

be more discriminating. We will show in the numerical experiments that

the bounds computed via SDP are indeed tighter with first four moments

than with only first two moments. We also show that change of numeraire

can also simplify options pricing problems, for instance, the exchange op-

tion by reducing the dimensions of the problem comparing with the work by

Zuluaga and Peña [18]. Moreover, we identify a hedging strategy from the

SDP formulations and apply our methods to two types of options including

European call options and exchange options in section 3. Our numerical

results in section 3 are numerically computed to be global optimal using

Gloptipoly3 (SeDuMi). In the following, we first study the SDP and LP for-

mulations for the the European-style option prices problem in general and

demonstrate that SDP is preferred as the moments constraints are easy to

be expressed. As we want to obtain tighter bounds with higher moments

conditions, we propose and apply the technique of change of numeraire to

cast the bounding option prices problem as a Hausdorff moment problem

and numerical results are presented. Notice that the moments conditions

of the martingale measure (risk-neutral) should be collected and calculated

from the existed option prices, but for the convenience of comparison with

the Black and Scholes’ closed-form solution and ease of computation, we

calculate the moments from the exponential martingales.

2 Formulation

In this section, we consider European-style option pricing problem with

knowing a few moments information in general (multi-dimension). In par-
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ticular, we have an option with payoff function f(x), f : Rn → R, and the

tight bounds on the price of European-style option can be formulated as

follows:

min or max Eµ[f(x)] (4.1)

s.t.

∫

xαdµ = σα, ∀α ∈ Id

∫

µ(x)dx = 1,

µ(x) ≥ 0, x ∈ Rn,

where the expectation is taken over all martingale measures µ defined on Rn

and σα are the truncated moments of the measure. Id is a finite set defined

by {α ∈ Nn : α1 + α2 + ... + αn ≤ d}. In the sequel, we will introduce SDP

and LP formulations to solve this kind of problems.

2.1 SDP: Primal and Dual

As stated by many aforementioned literatures (see e.g. [3]), the problem

(4.1) can be formulated as follows:

inf
µ

or sup
µ

∫

S

f(x)dµ

(P ) s.t.

∫

S

xαdµ = σα, ∀α ∈ Id

µ(x) ∈ M(S),

where f(x) : S → R, a real-valued measurable function, is mainly a piece-

wise linear polynomial on S. B is the Borel σ-field of Rn, S ∈ B is the

domain under consideration, and M(S) denotes the set of finite positive

Borel measures supported by S. Therefore, the problem can be seen as

computing upper or lower bounds of expectations of functions f(x) with

moments constraints on x in the domain S. In the sequel, we will only

demonstrate, for convenience of exposition, the case of upper bound (sup),
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the lower bound follows in an analogous manner. We hence can obtain the

primal and dual as follows:

zP = sup
µ

∫

S

f(x)dµ zD = inf
∑

α∈Id

σαθα

(P ) s.t.

∫

S

xαdµ = σα, ∀α ∈ Id (D) s.t.
∑

α∈Id

θαxα ≥ f(x) ∀x ∈ S.

µ(x) ∈ M(S).

Note that these formulations involve two well-studied classes of cones, namely,

the moment cones and the cones of positive semidefinite polynomials. The

cone of moments supported in S for the primal is defined as

Mn,d(S) = {y ∈ RId : yα = Eµ(xα),∀α ∈ Id for some µ ∈ M(S)}.

The cone of positive semidefinite polynomial for the dual is defined as

Pn,d(S) = {θ = (θα)α∈Id
∈ RId : θ(x) =

∑

α∈Id

θαxα ≥ 0 ∀x ∈ S}.

Therefore, the sufficient conditions for the strong duality can be summarized

as follows (see e.g. Zuluaga and Peña [18]):

If either

1. σ ∈ Int(Mn,d(S)) or

2. there exists θ ∈ RId such that(θ − f) ∈ Int(Pn,d(S)).

Then zP = zD. Here, Int(S) denotes the interior of the set S. More-

over, if the function f(x) is defined by a piece-wise n-variate polynomial

of degree d, such as f(x) : S = ∪p
i=1Si → R, where Borel measurable sets

Si ⊆ Rn, i = 1, ...p, is defined by f(x) = qi(x) if x ∈ Si, i = 1, ..., p.,

the strong duality holds similarly with the previous case. The proof follows

Zuluaga and Peña [18]. As mentioned in the introduction, by employing
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Putina’s theorem we have semidefinite representation results for both the

moment cones (see e.g. [7]) and the cones of positive semidefinite polynomi-

als (see e.g. [2]). Putinar’s theorem is the cornerstone of the construction

of Lasserre’s hierarchy of semidefinite approximations, we state the theorem

as follows.

Theorem 2.1. Suppose that the semialgebraic set S defined by

S := {x ∈ Rm|pj(x) ≥ 0, j = 1, ..., l}

is compact, and there is a polynomial p : Rm → R

p(x) = s0(x) +

l
∑

i=1

pi(x)si(x),∀x ∈ Rm

such that the set

{x ∈ Rm|p(x) ≥ 0}

is compact and the polynomials si(x), i = 0, ..., lare all sums of squares.

Then any polynomial v(x), strictly positive on S, can be written as

v(x) = u0(x) +
l

∑

i=1

pi(x)ui(x),∀x ∈ Rm

for some polynomials ui(x), i = 1, ..., l that are all sums of squares.

Proof. The proof is referred to Putinar [11].

This theorem shows us that with the defined semi-algebraic compact set and

mild conditions, we are able to decompose a positive polynomial into sum of

squares of other polynomials. Based on this theorem, both the primal and

dual problems mentioned above can be cast as SDPs and solved efficiently.

Moreover, as we usually encounter piece-wise (linear) functions in option

pricing problems, the underlying probability measure then are decomposed
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into several measures supported by different pieces. The following is the

SDP formulations for such problems:

zPpw = sup

p
∑

i=1

〈qi, yi〉 sup〈c, x〉

(Ppw) s.t.

p
∑

i=1

yi = σ, (PSDP ) s.t.Ax = b,

yi ∈ Mn,d(Si), i = 1..., p. x ∈ K,

zDpw = inf〈σ, θ〉 inf〈b, y〉

(Dpw) s.t.θ − qi ∈ Pn,d(Si), i = 1, ...p, (DSDP ) s.t.A∗y − c ∈ K∗,

where M denotes the closure of M , c ∈ Rn, b ∈ Rm, A : Rn → Rm is a linear

map and 〈Ax, y〉 = 〈x,A∗y〉, K and K∗are a closed convex cone and its dual

cone, respectively. (PSDP ) and (DSDP ) are standard SDP formulations in

Sturm [15] when the cone K is defined by positive semidefinite symmetric

matrices. It is worth emphasizing that the definition of the pieces of the sup-

port region of the measure µ is important in problems of bounding option

prices as the objectives of such problems are often piece-wise linear func-

tions. For instance, in the case of European call option (one dimension),

we usually have two pieces in (Ppw) p = 2, and q1(x) = x − K, q2(x) = 0

corresponding to support region S1 = [K,∞), S2 = (∞,K], respectively.

In fact, in this case we are calculating the upper bound of the measure

supported on [K,∞) given the the moments of the measure supported on

(−∞,∞). Note that yi is the truncated moments of the measure on sup-

port region i, and hence the moment constraints become y1
α + y2

α = σα, and

yi ∈ Mn,d(Si), i = 1, 2. To solve the problem by SDP, the only remaining

problem is to transfer constraints yi ∈ Mn,d(Si), i = 1..., p, to linear ma-

trices inequalities (LMIs) so it falls in with the standard SDP formulations.

In other words, we need the constraints of positive semidefinite matrices

to guarantee the sequence yi is indeed the moments of some measure sup-

ported on Si. This problem is usually referred as the truncated Hausdorff
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moment problem or the truncated Stieltjes moment problem depending on

the supported region of the measure. If the supported region is compact,

e.g. [a, b] on the real line, it is termed by the truncated Hausdorff moment

problem. If the support region is semi-compact, e.g. [a,+∞] on the real

line, it is called the truncated Stieltjes moment problem. By a result of the

aforementioned Putinar’s theorem, the positive semidefinitness of appropri-

ate moment and localizing matrices proved to be necessary and sufficient

conditions for the sequence y to be the moments of some measure supported

on a semi-algebraic compact set S (see e.g. [1], [7]). For easy and clear

exposition, we use the similar notations as in Lasserre [7] and demonstrate

the moment conditions in form of positive semidefinite matrices. Let

(xα, |α| ≤ 2r) :=
(

1, x1, ..., xn, ..., x2
1, x1x2, ..., x

d
1, x

d−1
1 x2, ..., x

2d
n

)

, (4.2)

be the basis of the space of real-valued polynomials in n variables, of degree

at most 2d, where |α| = α1 + ... + αn. Given a multi-index family of scalars

ỹ ≡ {yα, α ∈ Nn}, let ŷ ≡ {ŷi, i ∈ N} denote the sequence obtained by

ordering ỹ so that it conforms with the indexing implied by the basis(4.2).

The moment-matrix Md(ỹ) with rows and columns indexed in the basis(4.2)

is defined by

Md(ỹ)(1, i) = Md(ỹ)(i, 1) = ŷi−1, for i = 1, ..., d + 1,

Md(ỹ)(1, j) = yα and Md(ỹ)(i, 1) = yβ ⇒ Md(ỹ)(i, j) = yα+β,
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where Md(ỹ)(i, j) is the (i, j)-entry of the matrix Md(ỹ). To fix ideas, when

n = 2, d = 2, one obtains ŷ = {y0,0, y1,0, y0,1, y2,0, y1,1, y0,2...} and

M2(ỹ) =











































y0,0 | y1,0 y0,1 | y2,0 y1,1 y0,2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y1,0 | y2,0 y1,1 | y3,0 y2,1 y1,2

y0,1 | y1,1 y0,2 | y2,1 y1,2 y0,3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y2,0 | y3,0 y2,1 | y4,0 y3,1 y2,2

y1,1 | y2,1 y1,2 | y3,1 y2,2 y1,3

y0,2 | y1,2 y0,3 | y2,2 y1,3 y0,4











































.

In this context, moment matrices are of relevance if the family of scalars

ỹ ≡ {yα, α ∈ Nn} considered above can be identified with the moments of

a finite measure µ defined on the Borel σ-algebra on Rn. In such a case,

given any d ∈ N, the moment matrix Md(ỹ) is positive semidefinite, denoted

Md(ỹ) � 0 (similarly, the notation ≻ 0 represents positive definite matrices).

In fact, for all polynomials x → f(x) of degree at most k, and with vector

of coefficients (fα, |α| ≤ d) in the basis (4.2), we have

〈f,Md(ỹ)f〉 =

∫

f2dµ ≥ 0.

Note that the converse is not in general true: given a moment-like matrix

Md(ỹ) � 0, the yα involved are not necessarily moments of some measure µ

on Rn.

We need also to introduce localizing matrices in order to take some bounded

regions into consideration besides the general case of Rn we just mentioned

above. Give a polynomial q, we consider the set S ⊆ Rn defined by

S = {x ∈ Rn| q(x) ≥ 0}.

The localizing matrix Md(q, ỹ) is defined as follows. Let β(i, j) be the β-

subscript of the (i, j)-entry of the matrix Md(ỹ). If the polynomial q has
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coefficients (qα) in the basis 4.2, then the localizing matrix is defined by

Md(q, ỹ)(i, j) =
∑

α

qαyβ(i,j)+α.

For example, if x → q(x) : 1 − x2
1 − x2

2, for x ∈ R2, then M1(q, ỹ) is

M1(q, ỹ) =











1 − y2,0 − y0,2 y1,0 − y3,0 − y1,2 y0,1 − y2,1 − y0,3

y1,0 − y3,0 − y1,2 y2,0 − y4,0 − y2,2 y1,1 − y3,1 − y1,3

y0,1 − y2,1 − y0,3 y1,1 − y3,1 − y1,3 y0,2 − y2,2 − y0,4











.

Following the same argument, if the elements of the family ỹ ≡ yα are the

moments of some measure µ supported on S, then Md(q, ỹ) � 0, because, for

all polynomials x → f(x) of degree at most d, and with vector of coefficients

(fα, |α| ≤ d) in the basis (4.2),

〈f,Md(q, ỹ)f〉 =

∫

f2qdµ ≥ 0.

The converse is again not true: the necessary conditions Md(q, ỹ) � 0 and

Md(ỹ) � 0 are not in general sufficient to ensure that the elements of ỹ are

the moments of some measure µ supported on S. However, if S is a compact

semi-algebraic set as we defined in the Putinar’s theorem (Theorem 2.1):

S := {x ∈ Rn|gi(x) ≥ 0, foralli = 1, ..., l},

where gi, i = 1, ..., l, are given polynomials, under some mild conditions,

the conditions

Md(ỹ) � 0 and Md(gi, ỹ) � 0, i = 1, ..., l, k = 1, 2, ..., (4.3)

are necessary and sufficient for the elements of ỹ to be moments of some

measure supported on S. Note that if S is not compact then the conditions

(4.3) are only necessary but not sufficient. In particular, when on the real

line (n = 1) we have following results stated by Lasserre et al. [16] and

proved by Curto and Fialkow [1].
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Theorem 2.2. Given a vector y = (y0, y1, ..., y2d) ∈ R2d+1, the following

statements are true: (a) With regard to the truncated Hausdorff moment

problem,

Md(y) � 0 and Md(g, y) � 0,

with x → g(x) := (b − x)(x − a), are necessary and sufficient conditions for

the elements of y to be the first 2d + 1 moments of a measure supported on

[a, b].

(b) With regard to the truncated Stieltjes moment problem,

Md(y) ≻ 0 and Md(g, y) ≻ 0,

with x → g(x) := x− a, are sufficient conditions for the elements of y to be

the first 2d + 1 moments of a measure supported on [a,+∞).

Note that this important result provides easy expressing conditions for mea-

sures supported on compact and non-compact sets, and we shall see later

that this is one of the advantages of the SDP moment approach over lin-

ear programming (LP) approach in which one must consider moments of

measure with supports on compact sets.

2.2 LP formulation

To solve the option prices problem, the basic infinite-dimensional LP for-

mulation proposed by Stockbridge [14] is as follows:

OptimizevT ,µ0
〈g(ZT ), vT 〉 (4.4)

s.t 〈f, vT 〉 − 〈Af(Zt), µ0〉 = f(z),∀f ∈ D (bj)

|vT | = 1, |µ0| = T,

where the process satisfies

dZt = b(Zt)dt + σ(Zt)dBt, Z0 = z0 ∈ Rn
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in which b : Rn → Rn and σ : Rn → Rn×m are deterministic functions

such that the diffusion has a unique strong solution. A is the infinitesimal

generator of the underlying process Zt that is defined by

f → (Af)(z) :=
1

2
tr[σσT f ′′](z) + [bT f ′](z), f ∈ D(A)),

the domain D(A)) of which contains the set C2(Rn) of all twice-continuously

differentiable functions f : Rn → R with compact support. vT denotes the

distribution of ZT called the exit location measure and µ0 denotes the ex-

pected occupation measure of the diffusion Z up to time T . |vT | and |µ0|

denote the total masses of the measures vT and µ0, respectively. Moreover,

the equation (bj) in (4.4) is called basic adjoint equation (e.g., see Helmes

et al [5]) and “Optimize” stands for either “maximize” or “minimize”. It

can be seen that the basic adjoint equation in fact provides a way to cal-

culate the moments of the exit location measure. If these moment are easy

to be computed, this formulation coincides with the SDP formulation (pri-

mal) previously illustrated. Moreover, this formulation is more general in

the sense that we can change the time to maturity T to Ft-stopping time

τ subject to constraints. Hence we can take path-dependent exotic options

into account such as barrier options and Asian options (see e.g. [16]).

Notice that both formulations are originally infinite-dimensional LP formu-

lations, with a finite number of moment constraints involved we are able to

obtain finite relaxations of these formulations, one can end up with either

SDP formulations(introduced in the previous section) or LP formulations.

As to LP relaxations we have Hausdorff moment conditions which state that

for any measure µ on [0, 1]

∫

yk(1 − y)nµ(dy) ≥ 0 k = 0, 1, 2, . . . ; n = 1, 2 . . . .

Let {mk}k≥0 be the moments of µ. This inequality becomes:

n
∑

r=0

(−1)r
(

n

r

)

mk+r ≥ 0 k = 0, 1, 2, . . . ; n = 1, 2 . . . .

13



These moment conditions are necessary and sufficient conditions for the

sequence {mk}k≥0 be the moments of µ, and are linear so they fit into

the LP constraints. The advantage of LP is that there are many good LP

solvers that can solve large size problems, but the measure is restricted to the

compact region [0, 1]n and this can cause problems. For instance, in the case

of European call option, with change of numeraire, which will be introduced

in the next section, we are able to consider the exit location measure upon

two pieces of the support region [0, 1] and [1,+∞). It can be seen that

we do not easily have linear moment conditions for the region [1,+∞). In

addition, the moment conditions for LP are numerically ill-posed because of

the binomial coefficients involved. Therefore, we prefer SDP formulations to

bound the option prices. As to the convergence of the bounds with respect

to different distributions as we increase knowing the number of moments, we

refer to Lasserre et al [16]. In the next section, we will show applications of

SDP formulations with change of numeraire. We will not only consider the

European call option but also study exotic options such as exchange options

with knowing up to fourth moment information.

2.3 Options with change of numeraire

In the case of one dimensional Black-Scholes formula, if there are two assets

satisfying the following two diffusions

dS0
t = rS0

t dt, dS1
t = µS1

t dt + σS1
t dBP

t ,

where S0
t = ert(S0

0 = 1) denotes the price of a bond, S1
t denotes the price

of a stock, µ and σ are constants in this paper so the Novikov condition

E[exp{1
2

∫ T

0 σ2ds}] ≤ ∞ is automatically satisfied, and BP
t is a Brownian

motion on some filtered probability space (Ω,Ft, P). There exists a risk-

neutral probability measure Q that is equivalent to probability measure P,
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and such that discounted prices are martingales under Q. We have the

following well known lemma.

Lemma 2.3. Let g(x) = (x − K)+ = max(x − K, 0). The arbitrage free

price of European call option can therefore be defined by

C0 = e−rT EQ[g(S1
T )] = e−rT EQ[(S1

T − K)+], (4.5)

The proof is well known and can be found in any text book of mathematical

finance (see e.g. [9]). As we see from the lemma that the discounted stock

process
S1

t

S0

t

is a martingale under risk-neutral measure Q and so is the con-

tingent claim g(x). Because the stock prices are usually positive numbers

(x ∈ R+), by employing the framework studied in section 2.1 the upper

bound of problem (4.5) can actually be treated as the upper bound of the

martingale measure supported on [K,+∞). By Theorem 2.2 (b), the mo-

ment and localizing matrices are required to be positive definite in order to

be the sufficient moment conditions. This may cause numerical problems

in solving SDPs as the constraints in SDP are usually positive semidefinite.

However, for the problem (4.5) we observe that

C0 = S0E
Q(1 −

K

ST

)+ (4.6)

if we take the discounted stock out of the expectation and utilize the mar-

tingale property. The resulting upper bound problem becomes calculating

the upper bound of the martingale measure supported on [0, 1]. Again, by

Theorem 2.2 (b) the sufficient and necessary moment conditions only require

the moment and localizing matrices to be positive semidefinite. The equa-

tion (4.6) can be formally obtained by taking the stock as the numeriaire.

We have the following proposition.

Proposition 2.1. If we let

Yt =
S0

t

S1
t

,

15



where S0
T = K and S1

t , S0
t satisfy

dS0
t = rS0

t dt, dS1
t = µS1

t dt + σS1
t dBP

t ,

The arbitrage free price of European call option can therefore be defined by

C0 = S1
0EQ′

[(1 − YT )+], (4.7)

where Yt = Y0 exp{−1
2σ2t + σBQ′

t }.

Proof. The proof is analogous to Lemma 2.3. By using Itô’s Lemma and

Girsanov’s theorem, we obtain

dYt = Yt[(r − µ + σ2)dt − σdBP
t ] = σYtdBQ′

t ,

from which we can deduce Yt = Y0 exp{−1
2σ2t + σB

Q′}
t that shows Y is a

martingale and so is the call option C, and Yt = K
S1

0

exp{−(r+ 1
2σ2t)+σBQ′

t }.

Therefore, the European call option then can be defined as C0 = S1
0EQ′

[(1−

YT )+].

Moreover, in the case of computing bound on a interval [a, b], Lasserre [7]

shows that the bounds are discriminating tight when one has at least four

moment conditions. With the change of numeraire, we are able to apply the

problem of bounding option prices into this case and will show the bounds for

the European call options and exchange options with up to fourth moments

in the next section.

With regard to hedging strategies, we notice that a hedging strategy can be

calculated via the dual formulation. The constraints of the dual formulation

(D) show
∑

α∈Id

θαxα ≥ f(x).

If we take expectations on both sides, we obtain

∑

α∈Id

θασα ≥ E[f(x)],
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which give us an over-hedged strategy with θ0 in the cash bond and
∑

α∈Id

θασα(α 6=

0) in risky assets.

3 Applications and numerical results

We now illustrate applications of the proposed method to bound the options

with up to fourth moment information. The SDPs are solved by GloptiPoly3

which is a Matlab/SeDuMi (see e.g. [15]) add-on solver available in public

domain. The computations are done on a pentium IV 3.2G HZ PC with 1G

RAM.

In the case of European call option, according to our numerical tests, solving

the SDPs of bounding the European options without change of numeraire

often runs into marginal feasible problem and can not get the global op-

timality certified numerically. This is, according to Theorem 2.2 , due to

the positive definite requirements for the moment and localizing matrices

when we are dealing with measures supported on unbounded region. We

can, however, obtain the numerically certified global optimality using the

stock as the numeraire which in fact changes the supported region of the

objective measure to a bounded region. We compute the upper and lower

bounds of a European call option (4.7) with knowing up to fourth moments

of the martingale measure. For convenience of comparison, we assume the

discounted stock is a exponential martingale as in the Black-Schole model

with inputs such as

S0 = 40, r = 0.06, σ = 0.2, T = 1/52.

and employ the primal SDP formulation previously demonstrated. The re-

sults are shown in Table 1. The results are similar to [4] which utilizes

the dual SDP formulation. It needs to be noted that one can increase the
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Table 1: Bounds for European call option

4-moments 3-moments 2-moments

Strike [UB, [UB, [UB, BS

LB] LB] LB]

30 10.0347

10.0346

10.0453

10.0346

10.0518

10.0346

10.0346

35 5.0419

5.0404

5.0768

5.0404

5.0866

5.0404

5.0404

40 0.5777

0.3422

0.5777

0.0461

0.5777

0.0461

0.4658

45 0.0042

0.0000

0.0773

0.0000

0.0773

0.0000

0.0000

50 0.0008

0.0000

0.0480

0.0000

0.0480

0.0000

0.0000

moments to attain tighter bounds, but the bounds, in this log-normal dis-

tribution case, will not converge to the exact value. This is pointed out by

Lasserre et al [16] that only moment-determinate distributions can guarantee

the convergence, and log-normal is not a moment-determinate distribution.

The next numerical experiment is to calculate the tight bounds on European

style exchange options which defined as

C0 = EQ[(S1
T − S2

T )+], (4.8)

where dSi
t = Si

t[µidt + σidBP
t ], i = 1, 2. Bounding the no arbitrage price

of exchange options, at first glance, has two dimensions, we can have two

pieces of the support region of the measure, one is S1
T − S2

T ≥ 0 and the

other is S1
T − S2

T ≤ 0 on R2. The moments of exit location measure can be

easily computed so that this problem can be solved by SDPs. Zuluaga and

Peña [18] have computed the upper bound with first two moments of the

measure supported on R2
+ in a similar manner. However, we note that this
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problem can be simplified to one dimension problem by using the change of

numeraire. In fact, we actually have two numeraires to choose S1
t or S2

t . If

we choose S2
t as the numeraire, we obtain:

C0 = S2
0EQ[(

S1
T

S2
T

− 1)+], (4.9)

where dYt = Yt(σ1 − σ2)dBQ
t , Yt =

S1
t

S2

t

. In this case, we note that the

two pieces of support region are [1,∞) and (−∞, 1] in R and the objective

measure is supported on [1,∞). Similarly, if we take S1
t as the numeraire,

we obtain:

C0 = S1
0EQ[(1 −

S2
T

S1
T

)+], (4.10)

where dY ′
t = Y ′

t (σ2 − σ1)dBQ′

t , Y ′
t =

S2

t

S1
t

. In this case, we observe that

the two pieces of support region are [0, 1] and [1,∞) in R and the objective

measure is supported on [0, 1]. Therefore, we prefer to choose S1
t as the

numeraire because this change provides bounded region for the objective

measure, and according to Theorem 2.2 we need only positive semidefinite

moment and localizing matrices constraints to guarantee the sequences in

the matrices are indeed the moments of some measure supported on the

region. We take the inputs from Zuluaga and Peña [18]:

S1
0 = 0.95, S2

0 = 0.90, σ1 = 0.2, σ2 = 0.22, T = 1,

and the exact value is calculated from Margrabe [8]. We compute the upper

and lower bounds with up to fourth moments. The results are shown in

Table 2. We also can attain the lower bounds showing in Table 3. Note that

we prefer to use S1
T as the numeraire as the objective measure is supported

on a bounded region.
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Table 2: Upper bounds for exchange options
S2

T

S1

T

ρ Exact 2-mom 4-mom

-1.0 0.1801 0.2242 0.2114

-0.5 0.1600 0.1961 0.1888

0 0.1361 0.1641 0.1621

0.5 0.1051 0.1241 0.1240

1 0.0500 0.0516 0.0502

Table 3: Lower bounds for exchange options
S2

T

S1

T

ρ Exact 2-mom 4-mom

-1.0 0.1801 0.0500 0.1233

-0.5 0.1600 0.0500 0.1152

0 0.1361 0.0500 0.1033

0.5 0.1051 0.0500 0.0844

1 0.0500 0.0500 0.0500

4 Conclusion

We have examined the applications of the moment approach on options pric-

ing problems. The resulting problem can be cast and solved as SDP or LP

problems. We prefer the SDP approach due to its simplicity of express-

ing the moment conditions on bounded and unbounded regions. We have

proposed the technique of change of numeraire to bound option prices with

moments constraints via SDP. This technique can, for the European call

type options, change the supported region of the martingale measure from a

semi-compact set to a compact set, which requires only positive semidefinite

moment and localizing matrices rather than strict positive definite matrices
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as the sufficient moment conditions. This would solve the marginal feasible

problems one often encounters when implementing the SDP models with

larger inputs and higher moments. Moreover, it can simplify option pricing

problems such as exchange options comparing with the method adopted by

Zuluaga and Peña [18]. In this paper, we have only tested cases that are

within the domain of n ≤ 2; d = 2;n = 3, d = 4 and thus give us global

optimal solutions. However, it is not hard to extend to other cases such as

higher dimensions and higher moments with exploiting a hierarchy of SDP

approximations.
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