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Abstract. We present a primal-dual interior-point method for constrained
nonlinear, discrete minimax problems where the objective functions and con-
straints are not necessarily convex. The algorithm uses two merit functions to
ensure progress toward the points satisfying the first-order optimality con-
ditions of the original problem. Convergence properties are described and
numerical results provided.

Key Words. Discrete min-max, Constrained nonlinear programming, Pri-
mal-dual interior-point methods, Stepsize strategies.
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1 Introduction

A number of interior-point algorithms for linear and nonlinear programming
have been developed in the years following the introduction of Karmarkar’s
method in Ref. 1. El-Bakry et al. provided the formulation and theory
of the Newton interior-point method for nonlinear programming in Ref. 2,
extending the general primal-dual framework proposed for LP problems by
Kojima et al. (Ref. 3). Their algorithm used the l2 norm of the residuals as
merit function in the line-search procedure. This choice of merit function,
however may lead the algorithm to converge to a saddle point or maximum
when a minimum is being sought. Facilitated by advances in computing,
the development of interior-point methods for nonlinear problems has been
of great interest over the last two decades. In light of the success of some
interior-point methods to this class of problems (see e.g. Ref. 4), the research
presented in this paper aimed to develop an efficient and robust algorithm for
general nonlinear minimax problems (Refs. 5, 6) using a primal-dual interior-
point method. The resulting algorithm is presented in this paper.

The algorithm is based on the primal-dual interior-point method de-
scribed in Ref. 7 and the minimax approach of Rustem (Ref. 8). It differs from
Ref. 8 mainly in the choice of merit function, stepsize rule and computation
of search direction. The objective and constraint functions of the optimiza-
tion problem are assumed to be smooth and twice differentiable. Newton’s
method is used to solve the primal-dual system of the problem, generating
descent directions for the merit function. The use of slack variables in the
inequality constraints relaxes the requirement of feasibility at each iteration.
An adaptive penalty parameter is employed to ensure progress towards op-
timality and feasibility. Two merit functions are used to ensure convergence
towards a solution of the optimization problem.

The algorithm code is linked with the mathematical programming lan-
guage AMPL, which provides first and second order derivative information, but
the approach is also applicable to quasi-Newton methods. Global and local
convergence results are established for the algorithm. The performance of
the method is illustrated through some numerical examples, and is compared
with the results obtained using MINOS, LOQO and IPOPT on the NEOS server
4.0 on problems drawn from the CUTE test set.
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2 Description of Algorithm

In this section we describe the algorithm we are going to present. First we
discuss a reformulation of the minimax problem and then propose how to
solve the reformulation with a primal-dual interior-point framework.

2.1 Minimax Problem

We consider the following equality constrained minimax problem:

min
x∈Rn

max
j=1,...,m

f j(x) subject to g(x) = 0, x ≥ 0, (1)

where f j : Rn → R, j = 1, . . . ,m and g : Rn → Rq are smooth, twice
differentiable, nonlinear functions.

It has been shown in Ref. 8, from the original proof Medanić and And-
jelić (Refs. 9, 10), that problem (1) is equivalent to the following min-max
formulation with pooled objectives

min
x∈Rn

max
α∈Ξm

+

{〈α, f(x)〉 |g(x) = 0, x ≥ 0}, (2)

where
Ξm

+ = {α ∈ Rm|α ≥ 0, 〈e, α〉 = 1} , (3)

e ∈ Rm is a vector of all ones, and f : Rn → Rm with

f(x) = [f1(x), . . . , fm(x)]T .

This follows from the fact that the maximum of m numbers is equal to the
maximum of their convex combination.

By introducing an additional variable, v, the discrete minimax problem
can be represented as the nonlinear program (NLP)

min
x∈Rn,v∈R1

{v|f(x) ≤ ve, g(x) = 0, x ≥ 0}. (4)

To enable comparison with other algorithms for nonlinear programming,
the minimax problems discussed in this paper are implemented using the
above NLP. However, both the equivalent formulations (2) and (4) are used
in this paper to represent problem (1) whenever convenient.
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2.2 Primal-Dual Method

The use of slack variables, as was done in Ref. 11, yields the following refor-
mulation of the minimax problem (4):

min
x∈Rn,v∈R1,s∈Rm

{v|f(x)− ve + s = 0, g(x) = 0, x ≥ 0, s ≥ 0}. (5)

The equality constraints can be combined to form a new constraint vector
G : Rn+m+1 → Rm+q defined as

G(v, x, s) =

(
f(x) + s− ve

g(x)

)
. (6)

For notational compactness, the decision variables x and slack variables s
can be combined into a single variable:

x̄ =

(
x
s

)
,

where x̄ ∈ RN and N = n + m. Thus, we can re-write problem (5) as:

min
x̄∈RN ,v∈R1

{v|G(v, x̄) = 0, x̄ ≥ 0}. (7)

The inequality constraints in (7) above can then be incorporated into a
barrier term

B(x̄) =
N∑

i=1

log x̄i,

leading to the problem:

min
x̄∈RN ,v∈R1

{v − µB(x̄) |G(v, x̄) = 0} (8)

for x̄ > 0 with barrier parameter µ ≥0.
The Lagrangian function associated with the constrained optimization

problem in (8) is given by

L(v, x̄, y; µ) = v + 〈y, G(v, x̄)〉 − µB(x̄), (9)

where y ∈ Rp, p = q + m, are the Lagrange multipliers of the equality
constraints.
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The Karush-Kuhn-Tucker (KKT) optimality conditions for this problem
are

∇vL(v, x̄, y; µ) = 1 + 〈y,∇vG(v, x̄)〉 = 0,
∇x̄L(v, x̄, y; µ) = ∇x̄G(v, x̄)T y − µX̄−1e = 0,
∇yL(v, x̄, y; µ) = G(v, x̄) = 0,

(10)

where X̄ = diag(x̄), is the diagonal matrix with elements x̄i, and ∇aG(v, x̄)
is the Jacobian matrix of G(v, x̄) with respect to variable a.

By introducing the nonlinear transformation z = µX̄−1e we modify
Eqs. (10) to produce the standard primal-dual system:

E(v, x̄, z, y; µ) =


1 + 〈y,∇vG(v, x̄)〉
∇x̄G(v, x̄)T y − z

X̄Ze− µe
G(v, x̄)

 = 0, (11)

where Z = diag(z), with (x̄, z) > 0.

2.3 Newton System and Search Direction

Primal-dual methods use the Newton or quasi-Newton method to solve ap-
proximately the perturbed KKT conditions for a fixed value of µ. The New-
ton system for (11) above is:

0 0 0 −eT

0 ∇2
x̄x̄L(v, x̄, y; µ) −I ∇x̄G(v, x̄)T

0 Z X̄ 0
−e ∇x̄G(v, x̄) 0 0




∆v
∆x̄
∆z
∆y

 = −E(v, x̄, z, y; µ), (12)

since
∇2

vvL(v, x̄, y; µ) = 0, (13)

and
∇vx̄L(v, x̄, y; µ) = ∇x̄vL(v, x̄, y; µ) = 0. (14)

Let wp = (v, x̄) represent the primal variables and w = (v, x̄, z, y) all the
variables of problem (7). System (12) is then solved to give the search direc-
tions ∆w = (∆v, ∆x̄, ∆z, ∆y). The algorithm proceeds iteratively from an
initial point (v0, x̄0, z0, y0) through a sequence wk+1 = wk + τk∆wk, where

τk = diag(τpkIv, τpkIx̄, τdkIz, τdkIy),
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with τpk being the primal stepsize, τdk the dual stepsize and Ia being a unity
matrix of dimension related to the length of a. System (12) can be expressed
as:

∇E(w; µ)∆w = −E(w; µ). (15)

The Newton system (12) can be re-written as:

−〈e, ∆y〉 = − [1− 〈y, e〉] (16a)

Q∆x̄ +∇x̄G(v, x̄)T ∆y −∆z = −[∇x̄G(v, x̄)T y − z] (16b)

Z∆x̄ + X̄∆z = −
(
X̄Ze− µe

)
(16c)

−∆ve +∇x̄G(v, x̄)∆x̄ = −G(v, x̄) (16d)

where Q is the Hessian of the Lagrangian function, L(v, x̄, y; µ), or an ap-
proximation of the latter.

Remark 2.1 Due to Eqs. (13), (14) there holds

〈∆wp,∇2
wpL(v, x̄, y; µ)∆wp〉 = 〈∆x̄,∇2

x̄L(v, x̄, y; µ)∆x̄〉 = 〈∆x̄, Q∆x̄〉.

Remark 2.2 From the definition of wp, Eq. (16d) can be expressed as:

∇wpG(wp)∆wp = −G(wp),

where
∇wpG(wp) =

[
∇vG(v, x̄) ∇x̄G(v, x̄)

]
,

and ∆wp = (∆v, ∆x̄).
The design of the algorithm used to solve problem (8) is based on the

following assumptions:

(A1) Smoothness: G(v, x̄) is a smooth twice continuously differentiable func-
tion of v and x̄.

(A2) Regularity : The columns of the matrix [∇G(v, x̄)] corresponding to
the binding constraints are linearly independent.

(A3) Complementarity: At a solution point, w∗ = (v∗, x̄∗, z∗, y∗), strict com-
plementarity is satisfied, i.e. if x̄i

∗ > 0 then zi
∗ = 0 and if zi

∗ > 0, x̄i
∗ = 0

for i = 1, 2, . . . , N .
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(A4) Second order sufficiency: The second order sufficiency condition is sat-
isfied at a solution point.

(A5) Feasibility: The feasible region is bounded1.

(A6) There exists a constant m1 > 0 such that

‖Qk‖ ≤ m1, for all k.

(A7) There exists a constant m2 > 0 such that

m2 ‖p‖2 ≤ 〈p, Qkp〉

for all k and all 0 6= p ∈ RN such that ∇x̄G(wp
k)p = 0.

2.4 Merit Functions

In this section we describe the merit functions used for determining the step-
size of the algorithm.

Let εG > 0 be a finite precision to which the equality constraints are
satisfied, i.e. we have a worst-case feasibility precision

‖G(wp
k)‖

2
2 > εG. (17)

While (17) holds, the inner iterations k use the following merit function

Φ1(w
p; c, µ) = v + (c/2) ‖G(wp)‖2

2 − µB(x̄). (18)

For any inner iteration, k, where 0 < ‖Gk‖2
2 ≤ εG, the algorithm switches to

the second merit function,

Φ2(w) = (1/2) ‖E(w; 0)‖2
2 , (19)

for all consecutive inner iterations, where E(w; 0) is as defined in (11) with
µ = 0. Once the convergence of the inner iterations is achieved, the algorithm
switches back to the original merit function.

1This may be enforced, if required, in the usual way of placing upper and lower bounds
on x̄.

8



2.5 Penalty Parameter Selection Rule

The penalty parameter selection strategy is an important part of the algo-
rithm. At each iteration for which (17) holds, a value of c is determined such
that the descent property

∆vk − µ∆x̄T
k X̄−1

k e− ck ‖G(vk, x̄k)‖2
2 + dk(∆x̄k) ≤ 0, (20)

associated with Φ1 holds. The monotonic descent of function Φ1 is discussed
in Theorem 3.1. Inequality (20) plays an important role to the proof of
Theorem 3.1. Term dk(∆x̄k) is a function of the search direction and should
have the property that

dk(∆x̄k) ≥ 0 (21)

in order to prove Theorem 3.1 and generally establish global convergence of
our algorithm. The exact choice of dk(∆x̄k) depends on the framework used.
For example, in a quasi-Newton framework exploiting hereditary positive-
definiteness of Hessian updates the natural choice would be

dk(∆x̄k) = 〈∆x̄k, Qk∆x̄k〉. (22)

In such frameworks Qk is chosen positive semi-definite, therefore (21) is sat-
isfied. In a Newton framework such a choice for dk(∆x̄k) is not entirely
sufficient. In our algorithm we choose

dk(∆x̄k) =

{
〈∆x̄k, Qk∆x̄k〉, if Gk = 0

σk ‖∆x̄k‖2 , otherwise
, (23)

where σk ∈ (0, 1/2] can be constant throughout the algorithm, or can be
updated from iteration to iteration1.

Remark 2.3 In order for dk(∆x̄k), as chosen by (23), to satisfy property
(21), then when Gk = 0, there must hold that 〈∆x̄k, Qk∆x̄k〉 ≥ 0. If we take
into account (16d), then 〈∆x̄k, Qk∆x̄k〉 ≥ 0 if Assumption A7 is satisfied.

Since µ is fixed throughout the inner iterations, it can be deduced that
the sign of the term on the left hand side of (20) is dependent on the value of
c. For insufficiently large values of c, the descent property (20) may not be
satisfied. When this is the case, the penalty parameter is updated to a new

1We do not present an iteration scheme for σk, and consider it a constant positive
value.
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value ck+1 > ck which guarantees the satisfaction of (20). Lemma 3.2 shows
that the algorithm chooses the value of the penalty parameter to satisfy (20).
In Lemmas 3.2 and 3.4 we show that descent is always guaranteed if (17)
holds or if G(vk, x̄k) = 0, and that the penalty parameter ck = ck(εG) remains
finite, due to the use of two merit functions. This scheme is a variation of
the watchdog technique, first suggested by Chamberlain et al. (Ref. 12),
and used in the context of interior-point methods by Gay et al. (Ref. 13).
The convergence property of an algorithm based on the merit function (19) is
discussed in Ref. 2. The algorithm in Ref. 2 has two salient features that need
to be noted. The first is the choice of penalty parameter selection rule for (18)
which extends the sequential quadratic programming approach proposed in
(Refs. 14, 15) for nonlinear programming and in Rustem and Nguyen (Ref.
16) for minimax. The second, and perhaps more important, aspect is the
objective and method of application of the second merit function, defined in
(19). We illustrate, through an example in Section 4, that the l2 norm of
the KKT conditions on its own is unsuitable for use as a merit function for
non-convex optimization, but this is overcome with a combination of merit
functions as defined in (18) and (19).

2.6 Line Search Strategies

The algorithm utilizes an Armijo line search strategy to determine stepsizes
in the search direction. The search strategy should decrease the value of the
merit function chosen by the algorithm.

When Φ1 is in use, then for , τ̂ > 0, β ∈ (0, 1) the stepsize strategy in
the algorithm determines the stepsize τpk as the largest value of τ = τ̂βj, j =
0, 1, 2, . . . such that wp

k+1 given by x̄k+1 = x̄k + τpk∆x̄k, vk+1 = maxj f j(x̄k+1)
satisfies the inequality

Φ1(w
p
k+1; ck+1, µ)− Φ1(w

p
k; ck, µ) ≤ ρτpkφ1(w

p
k, ∆wp

k; ck+1, µ), (24)

where ρ ∈ (0, 1/2) is a given scalar and

φ1(w
p, ∆wp; c, µ) = 〈∆wp,∇wpΦ1(w

p; c, µ)〉 (25)

is the directional derivative of Φ1 at wp
k along the primal search direction

∆wp
k. At iteration k, using the definition of Φ1 from (18) and Remark 2.2 we

can write φ1 as

φ1(w
p
k, ∆wp

k; ck, µ) = ∆vk − µ∆x̄T
k X̄−1

k e− ck+1‖Gk‖2. (26)
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When Φ2 is in use, then for τ̂ > 0, β ∈ (0, 1) the stepsize strategy in
the algorithm determines the stepsize τk as the largest value of τ = τ̂βj, j =
0, 1, . . ., such that wk+1 given by

wk+1 = wk + τk∆wk

satisfies the inequality

Φ2(wk + τk∆wk)− Φ2(wk) ≤ ρτkφ2(wk, ∆wk). (27)

where, again, φ2 is the directional derivative of Φ2 at wk along the search
direction ∆wk. At iteration k we can write φ2, using (15), as

φ2(wk, ∆wk) = 〈∆wk,∇wΦ2(wk)〉 = 〈∇ET (wk; 0)E(wk; 0), ∆wk〉. (28)

Algorithm 1 : Primal-Dual Interior-Point algorithm

Step 0: Initialization:
Given ˜̄x0 ∈ RN , ˜̄x0 > 0.
Choose ỹ0 ∈ Rp, z̃0 ∈ RN , z̃0 > 0.
Choose penalty and barrier parameters c0 > 0, µ0 > 0.
Choose β, ε0, εG, η, θ ∈ (0, 1), ρ ∈ (0, 1/2), δ,M0, ω > 0, σk = 1.
Set ṽ0 = maxj f j(˜̄x0).
Set l = 0, k = 0 and new–merit = false.

Step 1: Convergence of outer iterations:
If

∥∥E(ṽl, ˜̄xl, z̃l, ỹl; µl)
∥∥

2
/(1 +

∥∥(ṽl, ˜̄xl, z̃l, ỹl)
∥∥

2
) ≤ ε0 then STOP.

Step 2: Inner iterations: (µ is fixed to µl throughout this step)
Set (vk, x̄k, zk, yk) = (ṽl, ˜̄xl, z̃l, ỹl)

Step 2.1: Convergence of inner iterations:

If
∥∥E(vk, x̄k, zk, yk; µ

l
∥∥

2
≤ ηµl and ‖Gk‖2

2 ≤ εG then set

(ṽl+1, ˜̄xl+1, z̃l+1, ỹl+1) = (vk, x̄k, zk, yk) and go to Step 3.

Step 2.2: Search direction generation:
Solve Newton system (12) to obtain ∆wk = (∆vk, ∆x̄k, ∆zk, ∆yk).

Step 2.3: Penalty parameter selection:
Compute dk(∆x̄k) using (23).
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Set ck+1 = ck.
If new–merit is false then set

Mnum = ∆vk − µ∆x̄T
k X̄−1

k e− ck‖Gk‖2 + dk(∆x̄k)

else go to Step 2.4
If new–merit is false and Mnum > 0 and ‖Gk‖2

2 > εG then set

ck+1 = max
{(

∆vk − µ∆x̄T
k X̄−1

k e + dk(∆x̄k)
)
/‖Gk‖2, ck + δ

}
Step 2.4: Step-length selection:

Set τmax
pk = min

1≤i≤N

{
−x̄i

k/∆x̄i
k

∣∣∆x̄i
k < 0

}
.

If (Mnum > 0 and 0 < ‖Gk‖2
2 ≤ εG) or new–merit is true then

Set τmax
dk = min

1≤i≤N

{
−zi

k/∆zi
k

∣∣∆zi
k < 0

}
.

Set τ̂k = min{1, θτmax
pk , θτmax

dk }.
Let τk = βj τ̂k, where j is the smallest non-negative integer:

Φ2(wk + τk∆wk)− Φ2(wk) ≤ ρτkφ2(wk, ∆wk).

Set new–merit = true.

else

Set τ̂pk = min{1, θτmax
pk }.

Let τpk = βj τ̂pk, where j is the smallest non-negative integer:

Φ1(w
p
k+1; ck+1, µ)−Φ1(w

p
k; ck+1, µ) ≤ ρ τpkφ1(w

p
k, ∆wp

k; ck+1, µ)

with x̄k+1 = x̄k + τpk∆x̄k and vk+1 = maxj f j(xk+1).

Choose m̂, M̂ > 0.

Set

LBi
k = min

{
(1/2)m̂µ, x̄i

k+1z
i
k

}
UBi

k = min
{

2M̂µ, x̄i
k+1z

i
k

}
Set for i = 1, . . . N

τ i
dk = max

{
τi > 0 : LBi

k ≤ x̄i
k+1

(
zi

k + τi∆zi
k

)
≤ UBi

k

}
.
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Set τdk = min

{
1, min

1≤i≤N

{
τ i
dk

}}
.

Set
yk+1 = yk + τdk∆yk, zk+1 = zk + τdk∆zk.

Step 2.5: Start a new inner iteration:
Set k = k + 1 and go to Step 2.1.

Step 3: Barrier parameter adjustment:
Reduce the barrier parameter µ as described in Section 2.8.

Step 4: Start a new outer iteration:
Set new–merit = false
Set l = l + 1 and go to Step 1.

2.7 Stepsize Rules

In this section we discuss the step size rules associated with Φ1. A treatment
of the step size rules associated with Φ2 can be found in Ref. 2.

Primal Stepsize Rule. For the primal variables, (x, s), represented by
x̄, we determine the maximum allowable stepsizes by the boundary of the
feasible region:

τmax
pk = min

1≤i≤N

{
−x̄i

k/∆x̄i
k

∣∣∆x̄i
k < 0

}
.

This is indeed the maximum step allowed because τmax
pk gives an infinitely

large value to at least one term of the logarithmic barrier function B(x̄k+1).
However, if the stepsize is in the interval [0, τmax

pk ) then the next primal iterate
x̄k+1 is strictly feasible and none of the logarithmic terms become infinitely
large. As an initial step, τ̂pk, we choose a number close to τmax

pk but never
greater than one, i.e. τ̂pk = min[θτmax

pk , 1]. with θ ∈ (0, 1). The Armijo rule is
then applied to give τpk = βj τ̂pk, with β chosen to be in the interval [0.1, 0.5],
dependent on the confidence on the initial step τ̂pk.

Dual Stepsize Rule. The dual stepsize strategy used by the algorithm
follows that described in Ref. 7. It is a modification of the strategy suggested
by Yamashita (Ref. 17) and Yamashita and Yabe (Ref. 18).
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For a fixed value of the barrier parameter µ, we determine a stepsize τ i
dk

along the direction ∆zi
k for each dual variable zi

k, i = 1, 2, . . . , N, such that
the following box constraints are satisfied:

τ i
dk = max

{
τi > 0 : LBi

k ≤ x̄i
k+1

(
zi

k + τi∆zi
k

)
≤ UBi

k

}
(29)

with LBi
k and UBi

k defined, as in Step 2.4 of the algorithm, as

LBi
k = min{(1/2)m̂µ, x̄i

k+1z
i
k}

UBi
k = min{2M̂µ,

(
x̄i

k+1

)(
zi

k

)
}.

The parameters m̂ and M̂ , as proposed in Ref. 19, are chosen to satisfy

0 < m̂ ≤ min
{

1,
(
(1− η)(1− η/Mµl

0 ) min
i
{(˜̄xl)i(z̃l)i}

)
/µl

}
(30)

and
M̂ ≥ max

{
1, max

i
{(˜̄xl)i(z̃l)i}/µl

}
> 0, (31)

for a fixed value of µl, with η ∈ (0, 1) and M0 a large positive number.
The common dual step τdk, is the minimum of all individual step-lengths

τ i
dk with the restriction of always being no greater than one. Numerically:

τdk = min

{
1, min

1≤i≤N

{
τ i
dk

}}
.

The step-lengths for the dual variables y can be set to either τdk or 1. It is
clear from the construction of the lower and upper bounds that

LBi
k/

(
x̄i

k + τpk∆x̄i
k

)
≤ zi

k ≤ UBi
k/

(
x̄i

k + τpk∆x̄i
k

)
for all i = 1, . . . , N.

The dual stepsize rule defines a neighborhood of the central path beyond
which the iterates cannot stray. It does so by setting a lower bound which
prevents the products x̄i

kz
i
k from becoming very much smaller than the cur-

rent value of the barrier parameter, preventing them reaching the boundary
of the feasible region prematurely. The dual stepsize rule also prevents the
variables x̄i

k and zi
k from becoming unbounded by setting an upper bound on

them that is proportional to the barrier parameter.
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2.8 Selection of Barrier Parameter

The selection of the barrier parameter follows the strategy outlined in Ref.
7. It is restated here for convenience

Set µl+1 = min{0.95µl, 0.01(0.95)k ‖E(wk; 0)‖2}

if
∥∥E(wk; µ

l)
∥∥

2
≤ 0.1ηµl and µl < 10−4 the set

µl+1 = min{0.95µl, 0.01(0.95)k+2ω ‖E(wk; 0)‖2}.

if
∥∥E(wk; µ

l)
∥∥

2
≤ 0.1ηµl and µl ≥ 10−4 the set

µl+1 = min{0.95µl, 0.01(0.95)k+ω ‖E(wk; 0)‖2}.

In the above, ω > 0 is a parameter which accelerates the decrease of µ at
appropriate points. The algorithm checks if the current point is close enough
to the central path (i.e. if

∥∥E(wk; µ
l)
∥∥

2
≤ 0.1ηµl) and to the optimum

solution (i.e if µl < 10−4), in which case the barrier parameter is multiplied
by (0.95)2ω, reducing it at a faster rate. If the current point is close to the
central path but not an optimum solution, the barrier parameter is multiplied
by the larger factor (0.95)ω.

3 Convergence Results

In this section the algorithm is shown to be globally convergent, in the sense
that it guarantees progress towards a solution of the approximate KKT con-
ditions (11) from any starting point and for a fixed value of the barrier
parameter µl = µ.

Lemma 3.1 Let f and g be differentiable functions and let there exist a small
εG > 0 such that ||Gk||22 > εG. If ∆x̄k is the search direction for variable x̄
calculated by the solution of the Newton system (12), ck+1 is chosen as in
Step 2.4 of the algorithm above and dk(∆x̄) satisfies (21), then ∆x̄k is a
descent direction for Φ1. Furthermore

φ1(w
p
k, ∆wp

k; ck+1, µ) ≤ −dk(∆x̄k) ≤ 0.

15



Proof. Step 2.3 of the algorithm checks if

∆vk − µ∆x̄T
k X̄−1

k e− ck‖Gk‖2 + dk(∆x̄k) ≤ 0. (32)

If this is satisfied then by setting ck+1 = ck and rearranging (32) we obtain

φ1(w
p
k, ∆wp

k; ck+1, µ) ≤ −dk(∆x̄k) ≤ 0. (33)

On the other hand, if (32) is not satisfied, then by setting

ck+1 ≥
(
∆vk − µ∆x̄T

k X̄−1
k e + dk(∆x̄k)

)
/‖Gk‖2

and substituting into (26), it can be verified from (21) that

φ1(w
p
k, ∆wp

k; ck+1, µ) ≤ −dk(∆x̄k) ≤ 0.

This proves the lemma.
The above lemma establishes the descent property of the search direction

for ‖Gk‖2
2 > εG. We now proceed to demonstrate the descent property for

the merit function when ‖Gk‖2
2 = 0. We stress that assumption A7 is needed

in order to prove descent for Φ1 in this lemma only.

Lemma 3.2 Let f and g be differentiable functions and also let A7 hold. If
(∆vk, ∆x̄k, ∆yk, ∆zk) is the solution to the Newton system (12) and Gk = 0
for some k, then the descent property

φ1(w
p
k, ∆wp

k; ck, µ) ≤ −dk(∆x̄k) ≤ 0

is satisfied for any choice of the penalty parameter, ck ∈ [0,∞). Therefore
the search direction ∆x̄k obtained from the solution of the Newton system of
equations is still a descent direction after feasibility of the equality constraints
has been achieved.

Proof. If Gk = 0, (26) can be written as:

φ1(w
p
k, ∆wp

k; ck+1, µ) = ∆vk − µ∆x̄T
k X̄−1

k e. (34)

We can also write (16d) as:

−∆vke +∇x̄Gk∆x̄k = 0.
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Multiplying the last one by (yk + ∆yk)
T and using (16a) we get

∆vk = 〈∆x̄k,∇x̄G
T
k (yk + ∆yk)〉. (35)

Rearranging (16b) we get

∇x̄G
T
k (yk + ∆yk) = −Qk∆x̄k + zk + ∆zk

and if we multiply it on the left by ∆x̄T
k we obtain

〈∆x̄k,∇x̄G
T
k (yk + ∆yk)〉 = −〈∆x̄k, Qk∆x̄k〉+ 〈∆x̄k, zk + ∆zk〉.

and therefore write (35) as

∆vk = −〈∆x̄k, Qk∆x̄k〉+ 〈∆x̄k, zk + ∆zk〉. (36)

Next, solving equation (16c) for ∆zk + zk gives

∆zk + zk = −X̄−1
k Zk∆x̄k + µX̄−1

k e

and multiplying it by ∆x̄T
k yields

〈∆x̄k, ∆zk + zk〉 = −∆x̄T
k X̄−1

k Zk∆x̄k + µ∆x̄T
k X̄−1

k e. (37)

Then we substitute 〈∆x̄k, ∆zk + zk〉 from (37) in (36) to obtain

∆vk = −〈∆x̄k, Qk∆x̄k〉 −∆x̄T
k X̄−1

k Zk∆x̄k + µ∆x̄T
k X̄−1

k e (38)

Finally, using (38) in (34) we can write

φ1(w
p
k, ∆wp

k; ck+1, µ) = −〈∆x̄k, Qk∆x̄k〉 −∆x̄T
k X̄−1

k Zk∆x̄k

+ µ∆x̄T
k X̄−1

k e− µ∆x̄T
k X̄−1

k e

= −〈∆x̄k, Qk∆x̄k〉 −∆x̄T
k X̄−1

k Zk∆x̄k

≤ −〈∆x̄k, Qk∆x̄k〉
= −dk(∆x̄k) ≤ 0.

The last inequality holds since x, z are kept strictly feasible, and the last
equality from the definition of dk(∆x̄k) in (23).

Lemma 3.3 Let f and g be differentiable. If ∆wk is the direction calculated
by solving the Newton system (12) with ck+1 chosen as in Algorithm 1, then
∆wk is a descent direction for Φ2 when 0 < ‖Gk‖2

2 ≤ εG.
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Proof. When 0 < ‖Gk‖2
2 ≤ εG, Step 2.4 of the algorithm uses Φ2(wk). Using

(15) we can write

〈∆wk,∇Φ2(wk)〉 = 〈∆wk, (∇ET
k Ek)〉 = −‖Ek‖2 ≤ 0

from which the descent property is established.

Corollary 3.1 If ‖∆wk‖=0, the algorithm chooses ck+1 = ck.

Proof. From (16d) and the definition of Gk when ∆wk = 0, Gk = 0, therefore
this situation is covered by Lemma 3.2 (See Ref. 7).

Lemma 3.4 Let f and g satisfy Assumption A1. Then, for a fixed value µl

of µ:

(i) There exists a constant ck+1 ≥ 0, satisfying Step 2.3 of the algorithm.

(ii) Assuming that the sequence x̄k is bounded, ck is increased finitely often.
That is, there exists an integer k∗ ≥ 0, and c∗ ≥ 0, such that for all
k ≥ k∗, ck = c∗ < ∞.

Proof. Part (i) follows directly from the preceding Lemmas, since a finite
value ck+1 is always generated in Step 2.3. Part (ii) can be shown by con-
tradiction. Assume that ck → ∞ as k → ∞. From the definition of ck+1 in
Step 2.3, we can deduce that if ck →∞ then ‖Gk‖2

2 → 0. Hence, there exists
an integer k1 such that for all k ≥ k1 we have ‖Gk‖2

2 ≤ εG. In Step 2.4 of the
algorithm, however, when ‖Gk‖2

2 ≤ εG, the algorithm stops increasing the
penalty parameter and switches to the second merit function. Therefore, the
maximum value that ck can attain is c∗ = ck1 = Mnum/εG where Mnum and
c∗ are finite values. Hence, c∗ < ∞, contrary to our assumption that ck →∞
as k →∞. Hence, the penalty parameter does not increase indefinitely and
there exists an integer k∗ ≥ 0 such that for all k ≥ k∗ we have ck < ∞.

3.1 Convergence of the Inner Iterations

Consider the objective function

max
α∈Ξ+

m

L(x, α) = max
α∈Ξ+

m

〈α, f〉 = max
j

(f j),
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and its linear approximation with respect to x at xk

max
α∈Ξ+

m

Lk(x, α) = max
α∈Ξ+

m

〈α, f(xk) +∇fT (xk)(x− xk)〉

= max
j

(f j
k + 〈∇f j

k , ∆xk〉). (39)

This objective function is used in the following theorem.

Theorem 3.1 Monotonic Descent of Φ1

• Let Assumptions A1, A6, A7 hold,

• For each k, let there exist a bounded point ∆wk = (∆vk, ∆x̄k, ∆zk, ∆yk)
as a solution to the Newton system (12),

• Let there exist an iteration k∗, small εG > 0, ‖Gk‖2
2 /∈ (0, εG) and a

scalar c∗ ≥ 0, c∗ = c∗(εG), such that the condition

∆vk − µ∆x̄T
k X̄−1

k e− ck(εG)‖Gk‖2 + dk(∆x̄k) ≤ 0,

is satisfied for all k ≥ k∗ and ck+1(εG) = ck(εG) = c∗(εG).

Then the stepsize computed in Step 2.4 is such that τpk ∈ (0, 1] and hence the
sequence {Φ1(w

p
k; ck, µ)} is monotonically decreasing for k ≥ k∗ and µ fixed.

Proof. From Step 2.4 of the algorithm we wish to find a bound for

∆Φ1 = Φ1(w
p
k+1; ck+1, µ)− Φ1(w

p
k; ck, µ) (40)

for x̄k+1 = x̄k + τpk∆x̄k, vk+1 = maxj {f j(xk+1)}2.
We have that

uk+1 = max
α∈Ξ+

m

{
〈α, f(xk) + τpk∆xT

k∇f(xk)〉
}

= max
α∈Ξ+

m

{Lk(xk + τpk∆xk, α)}

where Lk is defined in (39). From the convexity of maxα∈Ξ+
m
{Lk(x, α)}

uk+1 ≤ max
α∈Ξ+

m

{Lk(xk, α)}+ τpk

(
max
α∈Ξ+

m

{Lk(xk + τpk∆xk, α)} − max
α∈Ξ+

m

{Lk(xk, α)}
)

≤ uk + τpk ((uk + ∆uk)− vk)

= uk + τpk∆vk. (41)

2The dependency of ∆Φ1 on (wp
k+1, w

p
k, ck+1, ck, µ) has been dropped so as to avoid

long equations.
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Using the definition of Φ1 from (18) we can write (40) as

∆Φ1 = uk+1 − uk + (c∗/2)
(
‖Gk+1‖2 − ‖Gk‖2) + µ (B(x̄k+1)−B(x̄k))

≤ τpk∆vk − τpkc∗ ‖Gk‖2 − τpkµ〈∆x̄k, X̄
−1
k e〉+ (τ 2

pk/2)FΦ1

= τpk

(
∆vk − c∗ ‖Gk‖2 − µ〈∆x̄k, X̄

−1
k e〉

)
+ (τ 2

pk/2)FΦ1

= τpkφ1(∆wp
k, w

p
k; c∗, µ) + (τ 2

pk/2)FΦ1 .

The first term on the right of the inequality comes from (41); the second
and third terms come from a Taylor series expansion of G(x) and B(x̄),
respectively; we use the fact that ck = ck+1 = c∗ for k ≥ k∗ according to
Lemma 3.4; second order terms of the Taylor expansion are in FΦ1 , which is
defined as

FΦ1 =

∫ 1

0

(1− t)〈∆x̄k,∇2
x̄2

k
Φ1(vk, x̄k + tτpk∆x̄k; c∗, µ)∆x̄k〉dt.

Finally, the last equality comes from from (26).
If we add and subtract (τ 2

pk/2)〈∆x̄k, Qk∆x̄k〉 from the right hand side, we
can write

∆Φ1 ≤ τpkφ1(∆wp
k, w

p
k; c∗, µ) + (τ 2

pk/2)FΦ1

+ (τ 2
pk/2) (〈∆x̄k, Qk∆x̄k〉 − 〈∆x̄k, Qk∆x̄k〉)

= τpkφ1(∆wp
k, w

p
k; c∗, µ) + (τ 2

pk/2)〈∆x̄k, Qk∆x̄k〉
+ (τ 2

pk/2) (FΦ1 − 〈∆x̄k, Qk∆x̄k〉)
≤ τpkφ1(∆wp

k, w
p
k; c∗, µ) + (τ 2

pk/2)〈∆x̄k, Qk∆x̄k〉
+ (τ 2

pk/2)ξk ‖∆x̄k‖2 (42)

where

ξk =

∫ 1

0

(1− t)
∥∥∥∇2

x̄2
k
Φ1(vk, x̄k + tτpk∆x̄k; c∗, µ)−Qk

∥∥∥ dt.

Using the Cauchy-Schwarz inequality and Assumption A6 we can write

〈∆x̄k, Qk∆x̄k〉 ≤ ‖Qk‖ ‖∆x̄k‖2 ≤ m1 ‖∆x̄k‖2

therefore inequality (42) can be written as

∆Φ1 ≤ τpkφ1(∆wp
k, w

p
k; c∗, µ) + (τ 2

pk/2)m1 ‖∆x̄k‖2 + (τ 2
pk/2)ξk ‖∆x̄k‖2

= τpkφ1(∆wp
k, w

p
k; c∗, µ) + (τ 2

pk/2)(m1 + ξk) ‖∆x̄k‖2 .
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In Lemmas 3.1, 3.2 we have shown that for ‖Gk‖2 /∈ (0, εG)

φ1(∆wp
k, w

p
k; c∗, µ) ≤ −dk(∆x̄k).

If we choose M1 = min{σk, m2}, then from (23)

dk(∆x̄k) ≥ M1 ‖∆x̄k‖2 ,

therefore combining the last two

‖∆x̄k‖2 ≤ −(1/M1)φ1(∆wp
k, w

p
k; c∗, µ). (43)

In this case we can write

∆Φ1 ≤ τpkφ1(∆wp
k, w

p
k; c∗, µ)− (τ 2

pk/2M1)(m1 + ξk)φ1(∆wp
k, w

p
k; c∗, µ)

= τpkφ1(∆wp
k, w

p
k; c∗, µ) (1− τpk((m1 + ξk) /2M1)) . (44)

The stepsize strategy in Step 2.4 of the algorithm determines τpk such that

ρ ≤ 1− τpk((m1 + ξk) /2M1) ≤ 1/2.

Since by Lemmas 3.2–3.4 the descent property φ1(w
p
k, ∆wp

k; ck+1, µ) ≤ 0
holds, there exists a τpk to ensure that (44) and hence Eq. (24) holds. There-
fore {Φ1(w

p
k; ck, µ)} is monotonically decreasing.

Corollary 3.2 The sequence {x̄k} generated by the algorithm is bounded
away from zero.

Proof. Assume, to the contrary, that the sequence {‖x̄k‖} → 0. Then

{B(x̄k)} → ∞.

From Assumption A5 (the feasible region is bounded), the sequences f(xk),
{‖G(vk, x̄k)‖} and {x̄k} must be bounded. Hence the sequence

{Φ1(w
p
k; c∗, µ)} → ∞.

This contradicts the monotonic decrease of this sequence established in The-
orem 3.1.
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Lemma 3.5 For fixed µ, the lower bounds LBi
k and the upper bounds UBi

k,
i = 1, 2 . . . n of the box constraints in the dual stepsize rule are bounded away
from zero and bounded from above respectively, if the corresponding x̄i

k, of
the iterates x̄k are also bounded above and away from zero.

Proof. Established in Ref. 18 for the dual stepsize rule.
This also implies that {zk} is a sequence bounded above and away from

zero. We have thus established that both {x̄k} and {zk} are bounded se-
quences. Next we attempt to show that {yk} is also bounded. We establish
an intermediate result in the next lemma and then proceed to prove that a
unit step along ∆yk results in sequence {yk + ∆yk} being bounded.

In the next paragraph we derive a reduced Newton system for our algo-
rithm. Iterate subscripts and function arguments are omitted.

From the Newton system (16), solving (16c) for ∆zk we obtain

∆z = −X̄−1Z∆x̄− z + µX̄−1e. (45a)

Substituting the latter in (16b), we can write (16) as

−〈e, ∆y〉 = − [1− 〈y, e〉]
Q∆x̄ +∇x̄G(v, x̄)T ∆y + X̄−1Z∆x̄ + z + µX̄−1e = −∇x̄G(v, x̄)T y + z

−∆ve +∇x̄G(v, x̄)∆x̄ = −G(v, x̄)

which after cancellations and some re-arrangement gives

−〈e, ∆y + y〉 = −1
∆ve − ∇x̄G(v, x̄)∆x̄ = G(v, x̄)

∇x̄G(v, x̄)T (∆y + y) + (Q + X̄−1Z)∆x̄ = −µX̄−1e

which in matrix form is written as0 −eT 0
e 0 −∇x̄G(v, x̄)
0 ∇x̄G(v, x̄)T Q + X̄−1Z

  ∆v
y + ∆y

∆x̄

 = −

 1
−G(v, x̄)
µX̄−1e

 . (45b)

Lemma 3.6 Let wk be a sequence of vectors generated by our algorithm.
Then the matrix sequence {R−1

k } is bounded, where

Rk =

0 −eT 0
e 0 −∇x̄G(v, x̄)
0 ∇x̄G(v, x̄)T Q + X̄−1Z

 .
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Proof. For simplicity, we shall suppress arguments and subscripts. The
reduced matrix can be written as

R =

(
0 A

−AT B

)
=

0 −eT 0
e 0 −∇x̄G
0 ∇x̄G

T Q + X̄−1Z


where

A =
(
−e 0

)
, B =

(
0 −∇x̄G

∇x̄G
T Q + X̄−1Z

)
.

By assumptions A1, A2, Corollary 3.2 and Lemma 3.5 matrix B−1 exists and
is bounded, with

B−1 =

(
[∇x̄GΩ∇x̄G

T ]−1 −[∇x̄GΩ∇x̄G
T ]−1∇x̄GΩ

Ω∇x̄G
T [∇x̄GΩ∇x̄G

T ]−1 Ω− Ω∇x̄G
T [∇x̄GΩ∇x̄G

T ]−1∇x̄GΩ

)
where Ω = (Q + X̄−1Z)−1. In addition Rk is invertible with

R−1 =

(
[AB−1AT ]−1 −[AB−1AT ]−1AB−1

B−1AT [AB−1AT ]−1 B−1 −B−1AT [AB−1AT ]−1AB−1

)
and is bounded, since all the matrices involved are bounded.

Lemma 3.7 Let {wk} be a sequence of vectors generated by the algorithm.
Then the sequence of vectors, {∆vk, ∆x̄k, yk + ∆yk, ∆zk} is bounded.

Proof. We have shown in Lemma 3.6 that the matrix on the left of the
reduced system (45b) exists and is bounded. Therefore the sequences {∆vk},
{∆x̄k} and {yk + ∆yk} are also bounded. From (45a) and since all elements
on the left are bounded, we deduce that {∆zk} is also bounded.

Lemma 3.8 Let the assumptions of Theorem 3.1 be satisfied and let, for
some k0 and k ≥ k0, the set

U = {wp ∈ RN+1|Φ1(w
p; c∗, µ) ≤ Φ1(w

p
k0

; c∗, µ)} (46)

be compact. Then for all k ≥ k0

lim
k→∞

φ1(w
p
k, ∆wp

k; c∗, µ) = 0. (47)
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Proof. The scalar ρ ∈ (0, 1/2) determined by the stepsize strategy of Step 2.4
is such that

ρ ≤ 1− τpk((m1 + ξk) /2M1) ≤ 1/2.

By solving for τpk we can write,

τpk ≤ 2M1((1− ρ) / (m1 + ξk)).

From the last one, the largest value τpk can take whilst ensuring satisfaction
of the Armijo rule in Step 2.4 is

τ̃pk = min{1, 2M1((1− ρ) / (m1 + ξk))}.

According to Step 2.4, τpk is chosen by reducing by a factor of β the maximum
allowed step length τ̂pk until inequality (24) is satisfied. Therefore τpk ∈
[βτ̃pk, τ̃pk] and such a choice also satisfies (24).

As f and g are twice continuously differentiable and U is a compact set,
there is a scalar ξ̄ < ∞ such that ξk ≤ ξ̄. Thus, since M1, m1 > 0, we have

τpk ≥ τ̄pk > 0,

for all k, for the stepsize strategy defined by inequality (24) and for some

τ̄pk = min{1, 2M1((1− ρ) /
(
m1 + ξ̄

)
)}.

It is then obvious that the stepsize τpk is always bounded away from zero.
In addition, from Armijo’s rule and Lemmas 3.1, 3.2 we have

Φ1(w
p
k+1; c∗, µ)− Φ1(w

p
k; c∗, µ) ≤ ρτpkφ1(w

p
k, ∆wp

k; c∗, µ) < 0. (48)

Having assumed that the level set U is bounded, we can deduce that

lim
k→∞

∣∣Φ1(w
p
k+1; c∗, µ)− Φ1(w

p
k; c∗, µ)

∣∣ = 0,

which when combined with (48) and the fact that ρ, τpk > 0 proves the
lemma.

Lemma 3.9 Let the assumptions of Lemma 3.8 be satisfied. Then

lim
k→∞

‖∆x̄k‖ = 0 (49a)

and
lim
k→∞

‖∆vk‖ = 0. (49b)

Equivalently
lim
k→∞

‖∆wp
k‖ = 0. (49c)
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Proof. We have shown in (43) that for ‖Gk‖2 /∈ (0, εG)

‖∆x̄k‖2 ≤ −(1/M1)φ1(∆wp
k, w

p
k; c∗, µ),

for M1 = min{σk, m2}. Since M1 > 0, (49a) holds from the previous lemma.
Bearing in mind Remark 2.1 we derive the validity of (49c) which in turn
yields the validity of (49b).

Theorem 3.2 Let the assumptions of the previous lemma hold. Then for
µ fixed, the algorithm asymptotically generates a point that satisfies the per-
turbed KKT conditions (11).

Proof. Let (v∗(µ), x̄∗(µ), z∗(µ), y∗(µ)) be a point such that {vk} → v∗(µ),
{x̄k} → x∗(µ), {zk} → z∗(µ), k∗ ≤ k ∈ K. The existence of such a point is
ensured since—by Assumption A2, Corollary 3.2 and Lemmas 3.5 and 3.7—
the sequence of points (v∗(µ), x̄∗(µ), z∗(µ), y∗(µ)) is bounded for µ fixed and
by Theorem 3.1, the algorithm sufficiently decreases Φ1, ensuring thus that
(vk, x̄k) ∈ U , with U compact.

We begin our proof by showing that for k sufficiently large, τdk becomes
unity by establishing that

lim
k→∞

∥∥zk + ∆zk − µX̄−1
k+1e

∥∥ = 0 (50)

Adding −µX−1
k+1e to both sides of equation (45a) used in the reduced system

and rearranging gives∥∥zk + ∆zk − µX̄−1
k+1e

∥∥ ≤ ∥∥−X̄−1
k Zk

∥∥∥∥∆X̄k

∥∥ + µ
∥∥X̄−1

k − X̄−1
k+1

∥∥ ‖e‖ . (51)

Furthermore,∥∥X̄−1
k − X̄−1

k+1

∥∥2

2
≤ N max

1≤i≤N
{
(
(1/x̄i

k)− (1/x̄i
k+1)

)2}

= N max
1≤i≤N

{(τpk)
2(∆xi

k)
2/(x̄i

k)
2(x̄i

k+1)
2}.

Since τpk ∈ (0, 1], (∆x̄i
k)

2 ≤ ‖∆x̄k‖2
2 and the sequence {x̄k} is bounded away

from zero, from the above inequality and (49a), we can derive

lim
k→∞

∥∥X̄−1
k − X̄−1

k+1

∥∥2

2
≤ N lim

k→∞
max

1≤i≤N
{‖∆x̄k‖2

2 /(x̄i
k)

2(x̄i
k+1)

2} = 0. (52)
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Consequently, letting k →∞ in (51) and using (49a) and (52), we can deduce
that

lim
k→∞

∥∥zk + ∆zk − µX̄−1
k+1e

∥∥ = 0.

As a result, for sufficiently large k,

zk+1 = zk + ∆zk. (53)

Moreover, using ∆zk = −zk + µX̄−1
k e − X̄−1

k Zk∆x̄k, and for k sufficiently
large, the complementarity condition becomes

X̄k+1zk+1 = X̄k+1(zk + ∆zk) = X̄k+1X̄
−1
k (µe− Zk∆x̄k) (54)

From (49a) and the fact that the elements of the diagonal matrix X̄k+1X̄
−1
k

can be written as (x̄i
k+1)/(x̄

i
k) = 1 + τpk∆x̄i

k/(x̄
i
k), for all i = 1, 2, . . . ,m, it is

clear that
lim
k→∞

X̄k+1X̄
−1
k = IN , (55)

where IN is the N × N identity matrix. Therefore, letting k → ∞ in (54)
and using (49a) and (55) yields

lim
k→∞

X̄k+1zk+1 = X̄∗(µ)z∗(µ) = µe. (56)

Also, for k →∞, Eqs (16d) and (49) yield:

lim
k→∞

∇Gk∆x̄k = G(x̄∗(µ)) = 0. (57)

For zk+1 = zk + ∆zk, yk+1 = yk + ∆yk, Eq (16b) can be written as

∇GT
k yk+1 − zk+1 = −Qk∆x̄k. (58)

Letting k →∞ in the above and using (49a), we get

lim
k→∞

∥∥∇GT
k yk+1 − zk+1

∥∥ = 0 (59)

or equivalently
∇G(x̄∗(µ))T y∗(µ)− z∗(µ) = 0. (60)

Also, from (53) and considering equation (16a),

1 = 〈yk+1, e〉 (61)
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and therefore letting k →∞, we get

1 = 〈y∗(µ), e〉. (62)

From (62), (60), (58) and (57), we conclude that (v∗(µ), x̄∗(µ), z∗(µ), y∗(µ))
is a solution of the perturbed KKT conditions given in (12).

A consequence of Theorem 3.2 is that, for any convergent subsequence
produced by the algorithm, for µ = µl, there is an iteration k ≥ k̃, such that

‖E(ṽk, x̄k̃, zk̃, yk̃; µ)‖2 ≤ ηµl (63)

for all k ≥ k̃ where η ≥ 0. Record the value of the current iterate as

(ṽl, ˜̄xl, z̃l, ỹl) = (ṽk, x̄k̃, zk̃, yk̃),

and set µl+1 < µl. In this way we generate a sequence of approximate central
points {ṽl, ˜̄xl, z̃l, ỹl}.

3.2 Convergence of the Outer Iterations

In this section it will be shown that the sequence of approximate central
points converge to a KKT point w∗ = (v∗, x̄∗, z∗, y∗) of the original con-
strained minimax problem (7).

For a given and sufficiently small ε ≥ 0, considering the set of all approx-
imate central points, generated by Algorithm 1,

S(ε) = {w̃l : ε ≤
∥∥E(w̃l; µl)

∥∥
2
≤

∥∥E(w̃0; µ0)
∥∥

2
,∀µl < µ0}. (64)

If ε > 0, the stepsize rules described in previous sections guarantee that x̃l

and z̃l ∈ S(ε) are bounded away from zero for l ≥ 0. As a result (˜̄xl)T (z̃l)
are also bounded away from zero in S(ε). The following lemma shows that
the sequence {ỹl} is bounded if the sequence {z̃l} is also bounded.

Lemma 3.10 If Assumption A2 holds, and the iterates x̃l are in a compact
set for l ≥ 0, then there exists a constant M1 > 0 such that∥∥ỹl

∥∥ ≤ M1(1 +
∥∥z̃l

∥∥).
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Proof. We define r̃l = ∇G(x̃l)T ỹl − z̃l, and solve for ∇G(x̃l)ỹl to obtain

∇G(x̃l)T ỹl = z̃l + r̃l.

From the assumptions made, the above equation can be written as:

ỹl = [∇G(x̃l)∇G(x̃l)T ]−1∇G(x̃l)
(
z̃l + r̃l

)
. (65)

Taking norms of both sides of the above equation yields:∥∥ỹl
∥∥ ≤

∥∥[∇G(x̃l)∇G(x̃l)T ]−1∇G(x̃l)
∥∥ (∥∥(z̃l)

∥∥ +
∥∥r̃l

∥∥)
≤ M1(1 +

∥∥z̃l
∥∥) (66)

where the constant M1 is defined as

M1 ≥ [∇G(x̃l)∇G(x̃l)T ]−1∇G(x̃l) max{1,
∥∥r̃l

∥∥}.
and is finite, according to our assumptions.

Lemma 3.11 If the sequence {ṽl, ˜̄xl, z̃l, ỹl} stays in S(ε) for all l ≥ 0, then
it is bounded above.

Proof. From Lemma 3.10 it suffices to show that the sequences {ṽl}, {˜̄xl},
and {z̃l} are bounded from above. Sequence {˜̄xl} is bounded from above;
since f is continuous, by A5 we have that {ṽl} is also bounded. Therefore
we only need to show that {z̃l} is bounded from above. This proof can be
found in Ref. 7.

Theorem 3.3 Let {µl} be a positive monotonically decreasing sequence of
barrier parameters with {µl} → 0, and let {ṽl, ˜̄xl, z̃l, ỹl} be a sequence of
approximate central points satisfying (63) for µ = µl, l ≥ 0. Then, the
sequence {ṽl, ˜̄xl, z̃l, ỹl} is bounded and all of its limit points (ṽ∗, ˜̄x∗, z̃∗, ỹ∗)
satisfy the KKT conditions of problem (8).

Proof. From Lemma 3.11 the sequence {ṽl, ˜̄xl, z̃l, ỹl} is bounded and remains
in the compact set S(ε). Thus it has a limit point in S(ε), denoted by
(ṽ∗, ˜̄x∗, z̃∗, ỹ∗). From (63) and the fact that {µl} → 0, we easily obtain that

lim
l→∞

∥∥E(ṽl, ˜̄xl, z̃l, ỹl; µ)
∥∥

2
= 0

and (ṽ∗, ˜̄x∗, z̃∗, ỹ∗) is a KKT point of the constrained problem (8).
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4 Numerical Results

In this section we present numerical experience related to the concepts pre-
sented. We first start by giving two examples that illustrate the reason why
Φ2 on its own is not suitable for use as a merit function for non-convex opti-
mization. The examples also highlight the usefulness of the proposed method
to overcome the problem. Subsequently we present some numerical results
obtained using an implementation of our method on the CUTE test set. Fi-
nally we describe the progress of our algorithm on two of the test problems,
to note that the switch between the two merit functions indeed occurs.

Example 4.1 Consider the following problem

min f
s.t −x3 ≤ f,

x3 + 1 ≤ f,
x + 1 ≤ f.

As seen in Figure 1 it has a saddle point at x = −0.19 and a minimum at
x = −0.7937. Suppose that we start at x0 = (1.2).

1. Using solely Φ2, after 7 iterations we converge to f ∗ = 0.99, which is
the above the saddle point.

2. Using Φ1, and Φ2 as in Algorithm 1, after 9 iterations we converge to
f ∗ = 0.5 which is the above sought minimum.

Example 4.2 Consider the following example

min L
s.t. xy − 1 + x2 + (y − 1)2 ≤ L,

xy + 1− x2 − (y − 1)2 ≤ L.

As seen in Figure 2 it has a maximum at (x, y) = (0.66667, 1.33333) and a
global minimum at (x, y) = (−0.86603, 1.5). For this problem suppose that
we start from point (x0, y0) = (0.6, 1.3).

1. Using solely Φ2, after 6 iterations we converge to L∗ = 1.33333 which
is the above local maximum.
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2. Switching from Φ1 to Φ2 as in our algorithm, we converge after 13 iter-
ations to L∗ = −1.29904 which is the global minimum of the problem.

The algorithm presented in the preceding section has been implemented
in standard C, and interfaced with AMPL. AMPL (Ref. 20) is a powerful mathe-
matical modeling language that allows the optimization problems to be writ-
ten in a simple algebraic notation, and also provides first and second order
derivatives. The code was tested on a 2.4GHz workstation 2Gb of memory.
The test set consists of thirty-three minimax problems drawn from the CUTE

set, available in AMPL format (Ref. 21).
The algorithm parameters were set as follows. In Step 1, the accuracy of

the stopping criteria is ε0 = 10−6. In Step 2.3, εG = 10−4 and δ = 10. In
Step 2.4, we set θ = 0.9995, β = 0.5, ρ = 10−4, m1 = 1 and M1 = 10. In the
barrier selection rule we set ω = 6.

The numerical results are summarized in Table 1, where we use the fol-
lowing abbreviations:

• Problem : The name of the CUTE set problem as described in Ref. 21.

• Itns : The total number of iterations required to find the optimal so-
lution of the problem.

• c0 : Initial value of the penalty parameter.

• c∗ : Final value of the penalty parameter.

• k∗ : The iteration after which the penalty parameter was unchanged.

• c∗ : the final value of the penalty parameter.

The majority starting points are the same as those in Ref. 21. For problems
goffin, haifas and mifflin2 (0.0) was used instead. Additionally, for
madsen we used (0.3, 1.0), for oet2 we used (1.0), for polak1 (1.0, 0.05) and
for polak6 (-1.0, 0.0, -1.0, 0.0) were used as the starting point. Finally, for
makela4 the first 10 variables were initialized to (1.0) and variables 11 to 20
were initialized to a value of (-1.0).

The performance of the minimax algorithm in terms of the number of
iterations is provided, along with the results obtained using LOQO, MINOS and
IPOPT on the NEOS server 4.0. LOQO is an infeasible primal dual interior-point
algorithm which uses a hybrid filter and merit function approach. MINOS
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uses a linear simplex method for linear problems, a reduced gradient method
with quasi-Newton approximations for nonlinear objective functions, and
sparse projected Lagrangian method for nonlinear constraints. IPOPT is an
interior-point line search filter method that aims to find a local solution
to general nonlinear programming problems. Our implementation does not
permit timing experiments, or experiments on large scale problems since we
use dense linear algebra operations. We hope that the addition of sparse
large-scale linear algebra routines will allow a more elaborate comparison.
In addition, in Table 1 we compare the performance of the algorithm when
the single augmented Lagrangian merit function is used (column labelled Φ1)
with the performance when both merit functions are used (column labelled
Φ1, Φ2).

Table 1 shows, for the problems solved, that in many cases our algorithm
compares favorably against MINOS, LOQO and IPOPT. For example, in problem
haifam, where MINOS and LOQO failed, it took our algorithm 23 iterations
and IPOPT was more than three times slower (74). Similarly, our algorithm
solved problem polak3 in 20 iterations, a bit faster than LOQO (22), but MINOS
failed and IPOPT was six times slower than our code (132). A similar result
is obtained for problem polak6, where MINOS and IPOPT converged after 232
and 283 iterations, respectively, LOQO in 60 iterations, and our code in only
19 iterations (22 when switching merit functions). On the other hand, for
problem oet2, MINOS failed, LOQO and our code were very slow (162 and 160
iterations, respectively) whereas IPOPT took only 19 iterations.

To demonstrate the switch between the two merit functions, the progress
of the algorithm for problems chaconn1 and mifflin1 is shown in Table 2.

5 Conclusions

We have presented a primal dual-interior-point algorithm for constrained
nonlinear, discrete minimax problems. In the inner iterations of the algo-
rithm we employ a line search framework that uses two merit functions. One
of the merit functions is the l2 merit function. This merit function is initially
used in the inner iteration to guide iterates towards feasibility. Once feasi-
bility has been attained, a switch is made to the second merit function. The
second merit function is the squared norm of the perturbed KKT residual.
The latter is used for the rest of the inner iterations of the algorithm, i.e. until
the perturbed KKT conditions have been satisfied. For the outer iterations
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of the algorithm an adaptive barrier parameter is used. Global convergence
results have been presented. Numerical experimentation on small to medium
scale problems shows that practical value of the proposed approach.

Acknowledgment. The authors would like to thank the two anonymous
for their useful comments.
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Figure 2: Graph for problem of Example 4.2
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MINOS LOQO IPOPT Minimax algorithm
Φ1 Φ1, Φ2

Itns Itns Itns c0 Itns c∗ k∗ Itns c∗ k∗
cb2 11 8 7 0.1 8 6.39e11 8 8 1.71e8 6
cb3 2 9 6 0.1 9 4.53e11 9 9 6.94e8 7

chaconn1 24 9 7 0.1 9 3.08e12 9 9 3.7e8 7
chaconn2 2 9 6 0.1 9 4.53e11 9 9 6.94e8 7
congigmz 16 33 30 0.1 27 1.30e12 25 24 3.55e8 22
coshfun 450 22 23 0.0 48 1.81e11 27 48 2.693e6 21

demymalo 30 16 16 0.1 15 1.14e12 15 15 9.91e7 13
gigomez1 40 16 15 0.1 15 2.03e10 15 15 1.75e8 14

goffin 1 11 6 0.0 3 4.88e8 3 3 4.88e8 3
haifam F a maxb 74 0.1 23 3.94e7 23 23 3.94e7 23
haifas 59 12 8 0.1 10 1.03e12 10 10 4.55e8 8

kiwcresc 17 14 20 10 11 9.45e10 11 11 8.51e8 10
madsen 27 11 9 0 23 7.42e8 19 19 1.91e6 18

madsschj 1083 22 22 0.0 29 3.81e5 29 29 3.81e5 29
makela1 26 14 18 1.0 13 1.69e12 13 13 1.19e8 11
makela2 21 12 8 0.1 11 2.63e9 11 11 7.5e7 10
makela3 22 11 6 0.1 10 1.65e2 8 10 1.65e2 8
makela4 1 11 6 0.1 4 0.1 1 4 0.1 1
mifflin1 24 9 7 0.1 9 2.81e12 9 9 2.52e8 7
mifflin2 11 10 8 1 10 4.34e10 10 12 6.2e7 8

minmaxrb 24 10 10 1 15 1e12 15 17 2.94e8 15
oet1 159 14 39 0.0 17 730.57 1 17 730.57 1
oet2 Fa 162 19 0.1 159 2.12e10 155 160 2.12e10 155

polak1 Fa 11 6 0.1 7 2.04e11 7 7 5.3e7 5
polak2 136 17 19 0.1 9 2.44e8 9 9 2.44e8 9
polak3 Fa 22 132 1 20 2.55e12 20 20 1 1
polak4 7 12 14 1 9 1.44e8 8 9 1.44e8 8
polak5 16 38 31 0.1 14 6.04e8 9 14 6.04e8 9
polak6 232 60 283 1 19 3.09e8 19 22 3.09e8 19

pt 1 14 20 0.0 31 1.06e12 31 32 3.77e8 29
rosenmmx 87 18 73 0.1 16 3.27e8 16 16 3.27e8 16

spiral 62 24 17 1 23 1.41e12 22 23 8.32e8 17
womflet 35 88 17 0.1 15 9e11 15 15 8.88e8 13

afailure: superbasics limit too small.
bunable to solve within maximum number of iterations (default=500)

Table 1: Numerical results comparison
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Problem Itns Merit Function c f xk

chaconn1
1 Φ1 10.1 3.94732 (1.00258, 0.28172)
2 Φ1 10.1 2.02875 (1.17320, 0.84020)
3 Φ1 10.1 2.00637 (1.12765, 0.88404)
4 Φ1 10.1 1.95879 (1.13755, 0.89775)
5 Φ1 2.6e4 1.95294 (1.13914, 0.89915)
6 Φ1 3.3e6 1.95230 (1.13907, 0.89950)
7 Φ1 3.7e8 1.95223 (1.13904, 0.89955)
8 Φ2 3.7e8 1.95222 (1.13904, 0.89956)
9 Φ2 3.7e8 1.95222 (1.13904, 0.89956)

mifflin1
1 Φ1 45.08 -0.04027 (0.99856, 0.98040)
2 Φ1 45.08 -0.654271 (1.13630, 0.43687)
3 Φ1 45.08 -0.87024 (1.11624, 0.00233)
4 Φ1 45.08 -0.982121 (1.0176, 0.00003)
5 Φ1 1.9e4 -0.99805 (1.00195, 0)
6 Φ1 2.1e6 -0.99980 (1.00020, 0)
7 Φ1 2.5e8 -0.99998 (1.00002, 0)
8 Φ2 2.5e8 -0.99999 (1, 0)
9 Φ2 2.5e8 -0.99999 (1, 0)

Table 2: Progress of the algorithm for chaconn1, mifflin.
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