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Abstract

In this paper, we address the global optimization of two interesting nonconvex prob-

lems in finance. We relax the normality assumption underlying the classical Markowitz

mean-variance portfolio optimization model and consider the incorporation of skewness

(third moment) and kurtosis (fourth moment). The investor seeks to maximize the ex-

pected return and the skewness of the portfolio and minimize its variance and kurtosis,

subject to budget and no short selling constraints. In the first model, it is assumed that

asset statistics are exact. The second model allows for uncertainty in asset statistics. We

consider rival discrete estimates for the mean, variance, skewness and kurtosis of asset

returns. A robust optimization framework is adopted to compute the best investment

portfolio maximizing return, skewness and minimizing variance, kurtosis, in view of the

worst-case asset statistics. In both models, the resulting optimization problems are non-

convex. We introduce a computational procedure for their global optimization.

Keywords: Mean-variance portfolio selection, Robust portfolio selection, Skewness,

Kurtosis, Decomposition methods, Polynomial optimization problems

1 Introduction

In this paper, we consider two interesting finance applications. Both are extensions of well-

established convex models to their nonconvex counterpart. The first finance application we

consider is the problem of selecting an optimal investment portfolio that consists of holdings

in a number of assets, assuming that the asset statistics are exact. According to the classical
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mean-variance approach devised by [1] the investor’s goal is to maximize the expected return

of the portfolio (first moment or mean) and minimize its risk (second central moment or

variance). However, the aforesaid model is based on the assumption that asset returns are

normally distributed. As empirical evidence suggests [2], normality may not be the case in

reality. On the contrary, asset return distributions are generally characterized by asymmetries

and/or fat tails [3, 4]. In order to relax the normality assumption, we incorporate skewness

(third central moment) and kurtosis (fourth central moment) in the optimal portfolio selection.

In our model the investor’s goal is to maximize the expected return and the skewness of the

portfolio, and minimize the variance and the kurtosis of the portfolio, subject to satisfying

the budget constraint and excluding short sales. Our choice is supported by the generally

established fact that investors prefer odd moments and are averse to the even ones [5]1.

The consideration of higher moments in portfolio selection is in fact a very old idea. Since

at least early sixties there has been a controversy over the issue whether or not higher order

moments should be incorporated into the portfolio selection. Some studies, such as [7, 8, 9,

10, 11, 12], supported the importance of higher moments in optimal portfolio selection, and

others, like [13, 14, 15, 16], have regarded the consideration of higher order moments with

disfavor2. However, almost all recent studies suggest that significant gains and great potential

arise from taking into account higher moments [17, 18, 19, 20, 21, 22, 23]. The latter studies

have offered a substantial insight into the resulting nonconvex portfolio selection problem,

as well as the corresponding three-dimensional efficient frontiers. Nonetheless, their solution

strategies see the problem from local optimization viewpoint3, e.g. Lai and Chunhachinda et

al. employ polynomial goal programming, Athayde et al. and Jondeau et al. use first order

conditions. Our work also adopts the belief that higher moments should not be neglected,

but differs from the foregoing works in that it formulates and solves the (nonconvex) portfolio

selection problem in a general global optimization framework. A closely related work has

been carried out by Parpas et al. who apply a stochastic global optimization algorithm to

solve the nonconvex portfolio selection problem [24]. The interested reader is also referred to

the subsequent work by Maringer et al. [25]. As far as the general use of global optimization

1Brockett et al. [6] contradict the fact that investors prefer the odd to the even moments, but such a
discussion is out of the scope of this thesis.

2These authors consolidated the adequacy of the mean-variance approximations for various utility functions
and empirical return distributions.

3These authors employ local approaches to solve the global optimization problem arising.
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in finance is concerned, Konno provides a review of global optimization in portfolio selection

models, and Maranas et al. use a deterministic global optimization algorithm to tackle a

multi-period model [26].

The second finance application considered in this paper is the robust counterpart of the mean-

variance model. In this analysis, the asset statistics are not assumed to be exact as was the

case before. As a result, the portfolio return and risk are expressed by the worst-case mean

and variance of the portfolio, respectively. By introducing uncertainty to the skewness and

kurtosis estimates in addition to mean and variance estimates and assuming the existence

of discrete rival asset estimates, we investigate the robust mean-variance-skewness-kurtosis

portfolio optimization problem. Although the incorporation of higher moments into portfolio

selection has been considered by several authors, as pointed out above, the only work, to the

best of our knowledge, investigating its robust counterpart is by Harvey et al. [21], but from

a significantly different perspective. The authors in that work treat the portfolio selection

problem with higher moments as a two-stage problem. At the first stage they employ a

Bayesian probability model to deal with the data uncertainty. At the second stage they

maximize the mean-variance-skewness expected utility function for the exact asset estimates,

which are the output of the first stage. So, even though the parameter uncertainty is not

ignored, their model does not formally fall into the well-known robust framework. On the

other hand, our work deals, for the first time, with data uncertainty and higher moments in

a robust global optimization framework.

The computational procedure, that we propose, is applicable to polynomial optimization prob-

lems. A polynomial optimization problem is defined as the problem of finding the minimum

of a real-valued multivariate polynomial p(x) : IRn → IR, either unconstrained or constrained

in a compact set K defined by polynomial inequalities and equalities:

p∗ = min
x∈K

p(x). (1)

A set, such as K, comprised of polynomial inequalities and equalities is called basic closed

semialgebraic. Polynomial optimization problems, also known as POPs, are global optimiza-

tion problems and are of great theoretical and practical importance. For the interested reader,

the global optimization of polynomials is tackled in [27, 28, 29]. We employ the results from
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these works into the context of a decomposition-based algorithm, which we apply to the

resulting polynomial optimizations problems arising from both finance applications.

Contribution. Our contribution can be summarized as follows: we reformulate two well-

established (convex) finance models to their nonconvex counterpart by including higher order

moments. We tackle the resulting models in a global optimization framework by employing

a decomposition scheme made for polynomial optimization.

This paper is organized as follows: In Section 2, we address the portfolio optimization prob-

lem with skewness and kurtosis. In Section 3, the worst-case mean-variance-skewness-kurtosis

problem for discrete uncertainty sets is modelled. In Section 4, we describe the global opti-

mization algorithm that we employ to solve the resulting class of problems. In Section 5, we

solve both models, for several assets and investor’s preferences, with the proposed method

and present the numerical results. Section 6 recapitulates.

Notation. The notation adopted in the entire paper is as follows: Rit denotes the return

on asset i at time t and N the total number of returns on asset i. In addition, Ri expresses

the average return on asset i. Next, let µi be the expected return (mean) of Ri and σij be the

covariance between Ri and Rj. Similarly, let sijk be the coskewness of Ri, Rj and Rk and kijkl

the cokurtosis of Ri, Rj , Rk and Rl. It is clear that σii, siii, kiiii are the variance, skewness

and kurtosis of Ri, respectively. These asset statistics and their formulae are summarized

in Tables 1 and 2, respectively. In a portfolio consisting of n assets, the collection of mean

estimates µ1, . . . , µn forms the vector of means µ ∈ IRn, and the variance/covariance estimates

form the covariance matrix Σ ∈ IRn×n. In the same vein, the skewness/coskewness estimates

and the kurtosis/cokurtosis estimates are elements of the coskewness matrix S ∈ IRn×n2
and

cokurtosis matrix K ∈ IRn×n3
, respectively. For example, in a portfolio with two assets, i.e.

n = 2, the asset estimates read:

µ =





µ1

µ2



 Σ =





σ11 σ12

σ21 σ22



 S =





s111 s112 s211 s212

s121 s122 s221 s222
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Moment Symbol

Expected return (Mean) of asset i µi

Variance of asset i σii

Skewness of asset i siii

Kurtosis of asset i kiiii

Covariance of assets i and j σij

Coskewness of assets i, j and k sijk

Cokurtosis of assets i, j, k and l kijkl

Table 1: Asset Statistics (Moments): Symbols

Moment Definition Formula

µi E[Ri]
1

N

N
X

t=1

Rit

σii E[(Ri − µi)2]
1

N − 1

N
X

t=1

(Rit − µi)
2

siii E[(Ri − µi)3]
1

N

N
X

t=1

(Rit − µi)
3

kiiii E[(Ri − µi)
4]

1

N

N
X

t=1

(Rit − µi)
4

σij E[(Ri − µi)(Rj − µj)]
1

N − 1

N
X

t=1

(Rit − µi)(Rjt − µj)

sijk E[(Ri − µi)(Rj − µj)(Rk − µk)]
1

N

N
X

t=1

(Rit − µi)(Rjt − µj)(Rkt − µk)

kijkl E[(Ri − µi)(Rj − µj)(Rk − µk)(Rl − µl)]
1

N

N
X

t=1

(Rit − µi)(Rjt − µj)(Rkt − µk)(Rlt − µl)

Table 2: Asset Statistics (Moments): Definitions & Formulae

and

K =





k1111 k1112 k1211 k1212 k2111 k2112 k2211 k2212

k1121 k1122 k1221 k1222 k2121 k2122 k2221 k2222



 .

2 Portfolio Optimization with Skewness & Kurtosis

We consider a portfolio of n risky assets held over a single period. The profit R on the

portfolio as whole is R =
∑n

i=1 xiRi, where xi is the proportion of the portfolio invested

on asset i. Observe that the Ri’s, and consequently R, are random variables. Hence, the

return R of the portfolio is a weighted sum of random variables. According to the classical
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mean-variance model [1], the investor originally sought to find the weights so as to maximize

his expected profit (mean of portfolio return) with the minimum possible risk (variance of

portfolio return). The optimization problem that arises from this approach is quadratic and

has several equivalent formulations. The reader may consult [30] for a detailed review. We

present two of these below:

max
x∈X

λ1

n
∑

i=1

µixi − λ2

n
∑

i,j=1

σijxixj, (2)

min
x∈X

n
∑

i,j=1

σijxixj

s.t.
n

∑

i=1

µixi ≥ Rmin.

(3)

The input parameter Rmin on the right hand side of the constraint in the latter model rep-

resents a lower bound on the expected return. On the other hand, the input parameters

λ1 and λ2 in the former formulation sum up to one, i.e. λ1 + λ2 = 1, and express the in-

vestor’s preferences towards the importance of mean and variance. Both formulations model

the trade-off between the expected return and the risk. By solving problem (2) for different

values of (λ1, λ2), or problem (3) for different values of Rmin, one can obtain a sequence of

optimal portfolios on the so-called efficient frontier4. In both models, X represents the set

of feasible portfolios. The xi’s are percentages and not the actual amount invested on each

asset, and as a result we have the constraint
∑n

i=1 xi = 1 to represent the budget constraint.

In addition, short sales are excluded, so we have that xi ≥ 0 for all i. These two types of

constraints form a polyhedral set of feasible portfolios:

X = {x ∈ IRn |

n
∑

i=1

xi = 1, x ≥ 0}. (4)

In our analysis, the goal of the investor is a generalization of the goal in (2). In particular, the

investor aims at finding the weights so as to maximize his odd moments (mean, skewness) while

minimizing his even moments (variance, kurtosis). The portfolio weights are still constrained

in the set X. We also assume that the estimates of asset statistics are exact. Thus, for fixed

4An efficient portfolio provides the maximum expected return for a given variance or less, and the minimum
variance for a given expected return or more [31].
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asset statistics {µi}, {σij}, {sijk} and {kijkl} the problem of choosing the optimal portfolio

based on the first four moments of the portfolio return becomes:

max
x∈X

λ1

n
∑

i=1

µixi − λ2

n
∑

i,j=1

σijxixj + λ3

n
∑

i,j,k=1

sijkxixjxk − λ4

n
∑

i,j,k,l=1

kijklxixjxkxl. (5)

In the same vein as in (2), the scalars λ1 to λ4 are the investor’s preferences to the four

moments and they sum up to one, i.e. λ1 + λ2 + λ3 + λ4 = 1. The objective function in

formulation (5) is a real-valued polynomial of degree four, the objective vector is x ∈ IRn

and the set X is a simplex. It is clear that (5) is a polynomial optimization problem of total

degree four.

3 Robust Portfolio Optimization with Skewness & Kurtosis

Contrary to the previous section, the asset statistics are not assumed to be exact in the anal-

ysis that follows. In particular, we assume initially that uncertainty underlies our knowledge

of the mean and variance/covariance estimates. Let Uµ and UΣ denote the uncertainty sets

the mean vector µ and the covariance matrix Σ belong to, respectively. In general, the latter

sets can represent a finite number of scenarios, i.e. discrete mean and variance/covariance

estimates, or they can be interval-type, or ellipsoidal uncertainty sets [32, p. 293]. In order to

remain in a polynomial optimization framework, we assume our uncertainty sets are discrete.

In a portfolio selection problem, based on the traditional Markowitz approach, the goal of the

investor verbally remains the same: he or she seeks to minimize the portfolio risk, subject

to a lower bound on expected return, and subject to budget and no short selling constraints.

However, in this case the portfolio moments are expressed by their worst-case analogues:

min
µ∈Uµ

n
∑

i=1

µixi, (6)

max
Σ∈UΣ

n
∑

i,j=1

σijxixj. (7)

Observe that in the formulations above µ and Σ are the objective variables, while the portfolio

weights (x1, . . . , xn) are considered fixed. By incorporating the worst-case portfolio mean (6)
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and worst-case portfolio variance (7) into the portfolio selection problem (2), or (3), the robust

mean-variance portfolio selection problem reads:

max
x∈X

min
µ∈Uµ

Σ∈UΣ

λ1

n
∑

i=1

µixi − λ2

n
∑

i,j=1

σijxixj , (8)

or,

min
x∈X

max
Σ∈UΣ

n
∑

i,j=1

σijxixj

s.t. min
µ∈Uµ

n
∑

i=1

µixi ≥ Rmin,

(9)

where X is given in (4). The models (8) and (9) are motivated by [33, 34, 35, 36, 37].

In what follows we assume uncertainty not only in our knowledge of the mean vector and the

covariance matrix, but also in our knowledge of the coskewness and cokurtosis matrices. Let

US and UK denote the uncertainty sets that coskewness and cokurtosis matrices belong to.

The worst-case analogues of portfolio skewness and portfolio kurtosis are:

min
S∈US

n
∑

i,j,k=1

sijkxixjxk (10)

max
K∈UK

n
∑

i,j,k,l=1

kijklxixjxkxl. (11)

Our generalized goal remains verbally the same as the goal in (5), namely to minimize the

portfolio risk expressed by the even moments, while maximizing the odd moments, subject

to budget and no short selling constraints. Hence, our model for discrete uncertainty sets is:

max
x∈X

min
µ∈Uµ,Σ∈UΣ

S∈US,K∈UK

λ1

n
∑

i=1

µixi − λ2

n
∑

i,j=1

σijxixj + λ3

n
∑

i,j,k=1

sijkxixjxk − λ4

n
∑

i,j,k,l=1

kijklxixjxkxl. (12)

Problem (12) is a max-min optimization problem, which translates trivially into a polynomial

optimization problem. Namely, by introducing four scalars, one for each portfolio moment,
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we reformulate the above problem as follows:

max
x∈X

z1,z2,z3,z4

λ1z1 + λ2z2 + λ3z3 + λ4z4

s.t.
∑n

i=1 µ
(k1)
i xi ≥ z1, k1 = 1, . . . , |Uµ|,

−
∑n

i,j=1 σ
(k2)
ij xixj ≥ z2, k2 = 1, . . . , |UΣ|,

∑n
i,j,k=1 s

(k3)
ijk xixjxk ≥ z3, k3 = 1, . . . , |US |,

−
∑n

i,j,k,l=1 k
(k4)
ijkl xixjxkxl ≥ z4, k4 = 1, . . . , |UK |,

(13)

where the notation |U.| refers to the number of discrete scenarios belonging to each uncertainty

set. The class of problems resulting from (13) can be treated into the polynomial optimization

framework as these are quartic polynomial optimizations problems.

4 Algorithm: Partitioning Procedure for Polynomial Opti-

mization

Notation: By IR[x] = IR[x, . . . , xn] we denote the polynomial ring over IR in n variables.

In addition, we use Σ2 ⊆ IR[x] to denote the set of squares of polynomials in this polynomial

ring.

We consider the following polynomial optimization problem (POP):

p∗ = min
x,y

p(x, y)

s.t. gi(x, y) ≥ 0, i = 1, . . . ,m,

hj(x, y) = 0, j = 1, . . . , p,

x ∈ X, y ∈ Y,

(14)

where p, g1, . . . , gm, h1, . . . , hp ∈ IR[x]. Also, x = (x, y) ∈ IRn and the sets X ⊆ IRn1 and

Y ⊆ IRn2, where n = n1 + n2, are assumed to be convex and compact. The feasible region of

our problem is a basic closed semialgebraic set, namely a set of polynomial inequalities and

equalities, assumed non-empty and compact:

K = {(x, y) ∈ X × Y ⊆ IRn | gi(x, y) ≥ 0, ∀i, hj(x, y) = 0, ∀j}. (15)
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POPs are generally characterized by nonconvexities, hence are global optimization problems.

As has been shown, one is able to convexify a POP by employing the moment problem and its

interaction with positive polynomials and semidefinite programming [27, 28]. In particular,

one can approximate p∗ by solving a sequence of (convex) semidefinite (SDP) relaxations

of increasing size. The relaxations can be solved efficiently by interior-point methods in

polynomial time [38]. The solutions of the relaxations provide lower bounds to the global

optimal solution p∗ of the POP. These bounds converge asymptotically to p∗ [27]. However,

the size of the POPs tackled by this SDP relaxation technique is limited.

Decomposition methods have always found application in mathematical programming when

one tackled a large-scale problem. These methods convert the solution of the original problem

into the solution of a series of problems of lower dimension. For this reason, we aim at

tackling POPs using decomposition. To achieve this, we extend the well-known generalized

Benders decomposition for convex programs [39] to the global optimization of polynomials

by employing the powerful theoretical results underlying the SDP relaxation technique. This

technique is described in detail in [29].

4.1 Derivation of the Master Problem

The essence of the generalized Benders decomposition is to initially derive the so-called master

problem such that it is equivalent to the original problem, and secondly employ a series of

subproblems in order to solve the master problem.

If we apply the concept of projection [40], often referred to as partitioning, we can express

problem (14) as a problem in y-space as follows.

p∗ = min
y

v(y)

s.t. y ∈ Y ∩ V,

(16)

where

v(y) = inf
x∈X

p(x, y)

s.t. gi(x, y) ≥ 0, i = 1, . . . ,m,

hj(x, y) = 0, j = 1, . . . , p,

(17)
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and

V = {y | gi(x, y) ≥ 0, ∀i, hj(x, y) = 0, ∀j, for some x ∈ X}. (18)

Observe that v(y) is the optimal value of (14) for fixed y. Hence, v(y) is an upper bound on

p∗. To obtain v(y) for fixed y we have to solve the inner POP,

min
x∈X

p(x, y)

s.t. gi(x, y) ≥ 0, i = 1, . . . ,m,

hj(x, y) = 0, j = 1, . . . , p.

(19)

The set V introduced earlier consists of those values of y for which (19) is feasible and Y ∩V is

the projection of the feasible region of (14) onto y-space. Therefore, by projection we managed

to express problem (14) as a problem onto y-space, namely in terms of problem (16). Problem

(16) is equivalent to (14) and it is the route to solving it [40, Theorem 1]. According to the

generalized Benders decomposition, projection is the first of the three problem manipulatins

that are required to derive the master problem. The next two manipulations consist of

invoking the dual representations of V and v(y). To implement these manipulations, we

employ the Theorems 3.2 and 3.3 from [41], respectively, and reformulate problem (16) as

follows:

min
y,z

z

s.t. 0 ≥ inf
x∈X

{−
∑

I⊆{1,...,m}

σI(x)gI(x, y) −

p
∑

j=1

tj(x)hj(x, y)}, ∀σI ∈ Σ2, t ∈ IR[x],

z ≥ inf
x∈X

{p(x, y) −
m

∑

i=0

σi(x)gi(x, y) −

p
∑

j=1

tj(x)hj(x, y)}, ∀σi ∈ Σ2, t ∈ IR[x],

(20)

which is equivalent to (14) and is our master problem. Theorem 3.2 in its turn employs

the Positivstellensatz [42] to express conditions that prevent the semialgebraic set of the

parametrized subproblem (19) from being empty. On the other hand, Theorem 3.3 is applied

when this set is nonempty, i.e. feasible, and expresses valid inequalities, by employing The-

orem 4.2 from [27], in order to cut off suboptimal points from the feasible set. As a result,

we obtain the set of the so-called feasibility and optimality constraints. These two types

of constraints appear in the master problem (20) in the first and second row, respectively.

However, the number of constraints in the master problem (20) is infinite. For this reason
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relaxation is followed as a solution strategy [40]. In other words, we begin by solving a relaxed

version of (20), the so-called relaxed master problem, ignoring all but few constraints and if

the resulting solution does not satisfy all of the ignored constraints we generate and add to

the relaxed master problem one violated constraint (either from the set of feasibility con-

straints or from the set of optimality constraints). We continue this way until a termination

criterion is satisfied which signals that the obtained solution is optimal within an acceptable

accuracy. The equivalence of the master problem to the original POP implies that every time

we solve a relaxed version of the master problem we get a lower bound on the optimal value

of (14). Hence, solving a series of relaxed master problems yields a sequence of monotonically

increasing lower bounds on the global optimal solution p∗. The algorithm is summarized in

Figure 1. The interested reader is referred to [41] for more details and theoretical results.

In this work, we prove in Theorem 3.4 that our procedure terminates without cycling and

attains ǫ-global optimality. Moreover, asymptotic ǫ-convergence of our procedure is shown in

Theorem 3.5. The asymptoticity comes from the underlying SDP relaxation technique. Nev-

ertheless, practice demonstrated that the algorithm generally terminates in a finite number

of iterations. Finally, we test the performance of our algorithm on a collection of benchmark

problems from GlobalLib [43].

5 Numerical Results

Our data set includes historical stock prices obtained from uk.finance.yahoo.com. The

stocks considered are the stocks that form the Dow Jones Industrial Average, also called the

Dow 30. The historical prices in our possession cover the period between 2 April 1990 and

3 May 2006 on a monthly basis. Let us denote two successive historical prices as Pi,t and

Pi,t+T , where i = 1, . . . , n, t = 1, . . . , N + 1 and T is a period of one month, then the asset

return Rit corresponding to asset i and time period t is:

Rit =
Pi,t+T − Pi,t

Pi,t
. (21)

After converting the historical prices into asset returns using (21), the formulae presented

in Table 2 were employed to compute the asset statistics µi, σij, sijk, kijkl, for all i, j, k, l =

12



Input POP

Divide set of variables to
disjoint subsets x and y

Initialize: k := 1, y := y(1),
UB := ∞, LB := −∞

Solve subproblem

for y = y(k) Feasible
No

Yes

Use Positivstellensatz
dual solution to generate
the feasibility constraint

k := k + 1, y := y(k)
Use optimal solution to
generate the optimality
constraint & update UB

Add constraint to the
relaxed master problem

No

Yes

LB ≥ UB − ǫ

Solve relaxed master
problem to obtain

y(k+1) & update LB

End

Figure 1: Partitioning procedure for POPs
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1, . . . , n. In the robust case, where the asset statistics belong to a discrete set of rival estimates,

we perturbed the historical prices in possession to derive a different collection of prices. This

perturbation process was performed as many times as the number of scenarios5. Next, for

each different collection of prices we computed the asset statistics using again Equation (21)

and the formulae from Table 2. In Table 3, the computed asset statistics (moments) of

the original data are presented6. Note that the comoments such as covariance, coskewness

and cokurtosis, are not presented for the sake of a convenient presentation. For randomly

generated investor’s preferences (λ1, λ2, λ3, λ4) (see Table 4) and for several combinations

of stocks we created a number of models based on Equation (5). In addition, for several

scenarios we created the corresponding worst-case models based on Equation (13). Table 5

summarizes the name and notation we use for each problem instance7. In what follows, MVO

stands for Mean-Variance Optimization corresponding to the model (2). Similarly, MVSKO

and RMSKO stand for Mean-Variance-Skewness-Kurtosis Optimization, i.e. model (5), and

Robust Mean-Variance-Skewness-Kurtosis Optimization, i.e. model (13), respectively.

5The number of rival scenarios was the same for the four portfolio moments, i.e. k1 = . . . = k4 in equation
(13).

6The stock of KRAFT FOODS INC (KFT) was the only stock, among the components of the Dow 30, with
no historical data available since as early as April 1990, and it was left out of our portfolios.

7The problems were written in GAMS scalar format.
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Mean Variance Skewness Kurtosis Mean Variance Skewness Kurtosis

3M 0.004197 0.006159 −0.001264 0.0007842 Intel 0.008035 0.02043 −0.002743 0.002066

Alcoa 0.003997 0.01248 −0.001289 0.001574 IBM 0.004121 0.01031 −0.000572 0.000746

Amex 0.008432 0.008001 −0.001687 0.001056 J & J 0.005288 0.008085 −0.001944 0.001119

AT&T 0.0003379 0.007329 −0.0008968 0.0006125 JPMorgan 0.01004 0.01216 −0.0008873 0.0008576

Bank of America 0.006625 0.009463 −0.001024 0.0008125 Kraft Foods − − − −

Boeing 0.005623 0.007976 −0.001 0.0005436 McDonald’s 0.005275 0.007538 −0.00137 0.0007816

Caterpillar 0.007621 0.01105 −0.001484 0.001165 Merck 0.001962 0.009355 −0.001836 0.001284

Chevron 0.003073 0.005566 −0.001118 0.0006448 Microsoft 0.005384 0.01749 −0.002078 0.001977

Cisco 0.01493 0.02657 −0.003976 0.003438 Pfizer 0.003672 0.01148 −0.003261 0.002153

Coca-Cola 0.00123 0.006478 −0.001302 0.0006626 P & G 0.004114 0.008042 −0.002227 0.001241

DuPont 0.003854 0.005465 −0.0003252 0.0002285 Travelers 0.005575 0.009206 −0.0003556 0.001086

ExxonMobil 0.004853 0.004799 −0.00123 0.0006995 United Tech. 0.007094 0.009772 −0.002669 0.001558

General Electric 0.002714 0.008691 −0.00249 0.001596 Verizon −0.001229 0.006466 −0.0007095 0.000707

Hewlett-Packard 0.007825 0.01632 −0.001859 0.001692 Wal-Mart 0.005395 0.009374 −0.001814 0.001116

The Home Depot 0.005372 0.01055 −0.001282 0.0008179 Walt Disney 0.001455 0.01133 −0.003588 0.002773

Table 3: Moments of assets used

15



Model λ1 λ2 λ3 λ4 Model λ1 λ2 λ3 λ4

1 0.267 0.256 0.252 0.225 13 0.196 0.019 0.293 0.492

2 0.377 0.0601 0.395 0.168 14 0.27 0.118 0.2 0.411

3 0.276 0.25 0.213 0.261 15 0.391 0.498 0.0994 0.0118

4 0.308 0.0697 0.396 0.226 16 0.43 0.123 0.114 0.333

5 0.255 0.15 0.365 0.23 17 0.125 0.155 0.612 0.108

6 0.21 0.132 0.378 0.28 18 0.426 0.246 0.0177 0.31

7 0.0739 0.255 0.298 0.374 19 0.218 0.437 0.0861 0.258

8 0.548 0.0597 0.113 0.279 20 0.564 0.157 0.233 0.0465

9 0.248 0.257 0.268 0.227 21 1.000 0.000 0.000 0.000

10 0.332 0.287 0.0541 0.326 22 0.000 1.000 0.000 0.000

11 0.243 0.301 0.295 0.161 23 0.000 0.000 1.000 0.000

12 0.0488 0.489 0.0212 0.441 24 0.000 0.000 0.000 1.000

Table 4: Investor’s preferences: trade-off among four portfolio moments

Model Type Assets Scenarios Problem Name

i MVSKO n − portfolioi n

i RMVSKO n k portfolioi n k

Table 5: Summary of Problem Instances

Table 6 contains the optimal portfolios for each problem instance after we applied the par-

titioning procedure discussed in Section 4. In particular, the optimal vector x of portfolio

weights8 (multiplied by ten), and the optimal values of the four portfolio moments are re-

ported in the first five columns of the table. The last column holds the number of iterations

performed by our algorithm such that a 10−8 accuracy between the lower and upper bounds

computed is achieved9. The missing values in a row denote that the specific instance was not

handled by our program. For further numerical results, the reader may consult Table 5 in

[41]. Table 6 in this paper and Table 5 in [41] demonstrate that the optimization of the first

four moments of a portfolio consisting of up to twenty assets, in the deterministic case, and up

to up to sixteen assets and ten scenarios, in the robust max-min case, can be solved efficiently

by our procedure. Finally, Figures 2 and 3 depict, respectively, the resulting efficient frontiers

and lines for three, six and ten assets10. Observe that the robust efficient frontier (RMVSKO)

8Note that all reported portfolio weights add up to one, but due to rounding may not appear to do so.
9The accuracy was decreased to 10−6 for portfolios with more than six assets. For this reason, problems of

smaller size may appear to require more iterations than larger problems.
10The portfolio of three assets includes the Cisco, J & J and JPMorgan stocks. The portfolio of six assets

includes the Alcoa, Amex, Caterpillar, Cisco, General Electric and Hewlett-Packard stocks. The portfolio of
ten assets includes the 3M, Amex, Boeing, Cisco, General Electric, Home Depot, Intel, J & J, Microsoft and
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is a lower bound on the classical efficient frontier (MVO) in Figure 2. This in line with the

results in [44] where the robust MVO is shown to yield an efficient frontier lower or equal to

the infimum of all classical efficient frontiers consistent with the model. In particular, when

Uµ and UΣ are convex the robust efficient frontier coincides with the infimum of all sampled

efficient frontiers [44]. Based on our empirical findings, this fact appears to be also true in the

efficient M-V-S and M-V-K lines in Figure 3. On the other hand, marginally lower than the

classical MVO frontier is the MVSKO efficient frontier in Figure 2. This should be justified

by the not so large departure from normality of the selected assets. Jondeau et al. support

that using randomly selected US stocks is not always appropriate [22]. For this reason, among

other data sets, they use three specific former components of the index S&P 100 because these

are characterized by large departure from normality11. Taking this into account, more tests

for several data sets is on progress.

Wal-Mart stocks.
11Due to changes in the market, we were not able to retrieve the historical prices for these three stocks.
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Problem 10 ∗ x P. Mean P. Var P. Skew P. Kurt Iters

portfolio1 6 (0.0, 2.0, 4.8, 0.0, 1.6, 1.6) 0.0104 0.0965 −0.0764 0.1326 16

portfolio1 6 10 (1.6, 2.1, 3.2, 0.0, 2.0, 1.1) 0.0086 0.1061 −0.0568 0.1021 5 1
2

portfolio2 6 (0.0, 0.8, 6.6, 0.0, 0.5, 2.0) 0.0123 0.1226 −0.1058 0.1724 9

portfolio2 6 10 (0.6, 1.5, 4.8, 0.0, 1.8, 1.3) 0.0103 0.1347 −0.0765 0.1315 4 1
2

portfolio3 6 (2.3, 2.7, 2.0, 0.2, 1.8, 0.9) 0.0073 0.0633 −0.0498 0.0875 21

portfolio3 6 10 (2.2, 2.4, 1.4, 1.3, 1.8, 0.9) 0.0064 0.0824 −0.0465 0.0815 6 1
2

portfolio4 6 (1.9, 2.6, 2.4, 0.0, 1.9, 1.1) 0.0078 0.0676 −0.0509 0.0925 20

portfolio4 6 10 (2.0, 2.5, 1.6, 1.1, 1.8, 0.9) 0.0067 0.0846 −0.0468 0.0831 5 1
2

portfolio5 6 (1.4, 2.7, 3.3, 0.0, 1.6, 1.0) 0.0087 0.0760 −0.0600 0.1043 16

portfolio5 6 10 (2.0, 2.4, 1.9, 0.9, 1.9, 0.9) 0.0070 0.0870 −0.0478 0.0849 3 1
2

portfolio6 6 (2.9, 2.6, 0.5, 1.8, 1.7, 0.6) 0.0053 0.0542 −0.0478 0.0786 21

portfolio6 6 10 (2.5, 2.2, 0.9, 1.7, 1.9, 0.9) 0.0057 0.0788 −0.0464 0.0793 4 1
2

portfolio7 6 (2.5, 2.7, 1.8, 0.5, 1.7, 0.8) 0.0069 0.0607 −0.0493 0.0846 22

portfolio7 6 10 (2.3, 2.4, 1.3, 1.4, 1.9, 0.9) 0.0063 0.0814 −0.0464 0.0808 5 1
2

portfolio8 6 (0.0, 0.8, 6.4, 0.0, 0.8, 2.1) 0.0120 0.1193 −0.1011 0.1668 20

portfolio8 6 10 (0.6, 1.5, 4.7, 0.0, 1.8, 1.4) 0.0102 0.1326 −0.0744 0.1290 12 1
2

portfolio9 6 (0.0, 2.0, 4.7, 0.0, 1.6, 1.6) 0.0103 0.0956 −0.0753 0.1312 16

portfolio9 6 10 (1.6, 2.1, 3.2, 0.0, 2.1, 1.1) 0.0085 0.1054 −0.0563 0.1014 5 1
2

portfolio10 6 (2.3, 2.8, 2.2, 0.1, 1.7, 0.9) 0.0075 0.0643 −0.0510 0.0888 19

Continued on next page
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Problem 10 ∗ x P. Mean P. Var P. Skew P. Kurt Iters

portfolio10 6 10 (2.2, 2.4, 1.4, 1.3, 1.8, 0.9) 0.0064 0.0825 −0.0467 0.0815 5 1
2

portfolio11 6 (1.9, 2.7, 2.6, 0.0, 1.7, 1.0) 0.0080 0.0688 −0.0534 0.0942 19

portfolio11 6 10 (2.1, 2.5, 1.6, 1.1, 1.8, 0.9) 0.0067 0.0842 −0.0472 0.0828 8 1
2

portfolio12 6 (1.7, 2.5, 2.5, 0.0, 2.0, 1.2) 0.0079 0.0687 −0.0510 0.0939 26

portfolio12 6 10 (2.0, 2.4, 1.7, 1.0, 1.9, 1.0) 0.0068 0.0857 −0.0469 0.0838 10 1
2

portfolio13 6 (3.0, 2.5, 0.5, 1.7, 1.6, 0.6) 0.0053 0.0542 −0.0481 0.0788 21

portfolio13 6 10 (2.5, 2.2, 0.8, 1.7, 1.9, 0.9) 0.0057 0.0788 −0.0463 0.0793 5 1
2

portfolio14 6 (2.5, 2.6, 1.3, 1.0, 1.8, 0.8) 0.0064 0.0577 −0.0472 0.0812 21∗

portfolio14 6 10 (2.3, 2.3, 1.1, 1.4, 1.9, 0.9) 0.0061 0.0806 −0.0459 0.0803 5 1
2

portfolio15 6 (0.3, 1.7, 3.2, 0.0, 2.6, 2.2) 0.0090 0.0827 −0.0551 0.1105 18

portfolio15 6 10 (1.3, 1.8, 2.8, 0.0, 2.5, 1.6) 0.0083 0.1045 −0.0510 0.0996 11 1
2

portfolio16 6 (2.6, 2.6, 1.2, 1.1, 1.7, 0.8) 0.0062 0.0567 −0.0473 0.0803 21

portfolio16 6 10 (2.3, 2.3, 1.1, 1.5, 1.9, 0.9) 0.0060 0.0801 −0.0461 0.0800 4 1
2

portfolio17 6 (2.3, 2.7, 2.0, 0.3, 1.8, 0.9) 0.0073 0.0630 −0.0498 0.0872 22

portfolio17 6 10 (2.2, 2.4, 1.4, 1.3, 1.8, 0.9) 0.0064 0.0823 −0.0465 0.0814 6 1
2

portfolio18 6 (1.6, 2.7, 3.0, 0.0, 1.7, 1.0) 0.0083 0.0721 −0.0558 0.0986 20

portfolio18 6 10 (2.0, 2.4, 1.7, 1.0, 1.9, 0.9) 0.0068 0.0856 −0.0473 0.0838 9 1
2

portfolio19 6 (2.3, 2.7, 1.9, 0.3, 1.8, 0.9) 0.0072 0.0625 −0.0493 0.0865 21

portfolio19 6 10 (2.2, 2.4, 1.4, 1.3, 1.9, 0.9) 0.0064 0.0822 −0.0464 0.0813 5 1
2

portfolio20 6 (2.4, 2.7, 1.7, 0.6, 1.8, 0.9) 0.0068 0.0602 −0.0484 0.0839 21

Continued on next page
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Problem 10 ∗ x P. Mean P. Var P. Skew P. Kurt Iters

portfolio20 6 10 (2.2, 2.4, 1.3, 1.3, 1.9, 0.9) 0.0063 0.0814 −0.0462 0.0808 5 1
2

portfolio1 10 (0.0, 3.4, 0.7, 4.4, 0.0, 0.0, 0.7, 0.6, 0.0, 0.2) 0.0108 0.0887 −0.0739 0.1233 15

portfolio1 10 10 (0.4, 2.1, 1.5, 3.1, 0.0, 0.8, 0.4, 0.9, 0.3, 0.5) 0.0090 0.0994 −0.0528 0.0960 4 1
2

portfolio2 10 − − − − − −

portfolio2 10 10 (0.0, 3.0, 1.1, 4.6, 0.0, 0.0, 0.3, 0.6, 0.0, 0.5) 0.0108 0.1259 −0.0744 0.1235 7 1
2

portfolio3 10 (1.1, 2.4, 1.3, 1.9, 0.0, 0.0, 0.5, 1.4, 0.0, 1.4) 0.0079 0.0577 −0.0435 0.0794 7

portfolio3 10 10 (1.6, 1.2, 1.7, 1.1, 0.3, 1.0, 0.2, 1.4, 0.7, 0.9) 0.0066 0.0734 −0.0380 0.0714 2 1
2

portfolio4 10 (0.6, 2.5, 1.1, 2.3, 0.0, 0.0, 0.6, 1.5, 0.0, 1.5) 0.0084 0.0625 −0.0447 0.0852 6 1
2

portfolio4 10 10 (1.4, 1.4, 1.7, 1.4, 0.0, 1.0, 0.3, 1.4, 0.7, 0.8) 0.0071 0.0766 −0.0380 0.0740 2 1
2

portfolio5 10 (0.5, 3.5, 1.3, 2.8, 0.0, 0.0, 0.4, 0.9, 0.0, 0.7) 0.0092 0.0696 −0.0592 0.0993 4 1
2

portfolio5 10 10 (1.3, 1.7, 1.7, 1.7, 0.0, 0.9, 0.1, 1.3, 0.6, 0.7) 0.0074 0.0791 −0.0410 0.0764 2 1
2

portfolio6 10 (2.2, 0.9, 1.7, 0.4, 0.5, 0.4, 0.4, 1.6, 0.3, 1.6) 0.0057 0.0481 −0.0369 0.0669 17

portfolio6 10 10 (1.8, 0.7, 1.7, 0.3, 1.0, 1.1, 0.1, 1.4, 0.8, 1.0) 0.0055 0.0695 −0.0364 0.0681 2 1
2

portfolio7 10 (1.5, 2.4, 1.4, 1.6, 0.0, 0.0, 0.4, 1.5, 0.0, 1.4) 0.0077 0.0562 −0.0441 0.0779 6

portfolio7 10 10 (1.6, 1.1, 1.7, 0.9, 0.5, 1.0, 0.1, 1.4, 0.7, 0.9) 0.0063 0.0720 −0.0383 0.0703 2 1
2

portfolio8 10 (0.0, 4.1, 0.0, 5.7, 0.0, 0.0, 0.2, 0.0, 0.0, 0.0) 0.0121 0.1065 −0.0940 0.1500 16

portfolio8 10 10 (0.0, 2.9, 1.1, 4.5, 0.0, 0.0, 0.4, 0.5, 0.0, 0.5) 0.0107 0.1248 −0.0730 0.1221 4 1
2

portfolio9 10 (0.0, 3.4, 0.6, 4.4, 0.0, 0.0, 0.7, 0.6, 0.0, 0.3) 0.0108 0.0887 −0.0738 0.1232 3 1
2

portfolio9 10 10 (0.5, 2.1, 1.5, 3.0, 0.0, 0.8, 0.4, 0.9, 0.4, 0.5) 0.0090 0.0984 −0.0517 0.0949 4 1
2

portfolio10 10 (1.1, 2.7, 1.3, 1.9, 0.0, 0.0, 0.4, 1.3, 0.0, 1.3) 0.0080 0.0586 −0.0466 0.0818 6 1
2

Continued on next page
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Problem 10 ∗ x P. Mean P. Var P. Skew P. Kurt Iters

portfolio10 10 10 (1.6, 1.3, 1.7, 1.1, 0.3, 1.0, 0.1, 1.4, 0.7, 0.9) 0.0066 0.0734 −0.0386 0.0715 2 1
2

portfolio11 10 (0.6, 3.0, 1.0, 2.4, 0.0, 0.0, 0.5, 1.4, 0.0, 1.2) 0.0087 0.0642 −0.0500 0.0893 5 1
2

portfolio11 10 10 (1.5, 1.5, 1.7, 1.4, 0.0, 1.0, 0.2, 1.3, 0.7, 0.8) 0.0071 0.0760 −0.0390 0.0736 2 1
2

portfolio12 10 (0.4, 2.5, 1.0, 2.4, 0.0, 0.0, 0.6, 1.5, 0.0, 1.5) 0.0086 0.0641 −0.0449 0.0869 5 1
2

portfolio12 10 10 (1.4, 1.4, 1.7, 1.5, 0.0, 1.0, 0.3, 1.4, 0.6, 0.7) 0.0072 0.0778 −0.0382 0.0750 2 1
2

portfolio13 10 (2.2, 1.0, 1.7, 0.4, 0.4, 0.3, 0.3, 1.5, 0.2, 1.6) 0.0057 0.0473 −0.0372 0.0659 7

portfolio13 10 10 (1.8, 0.7, 1.7, 0.4, 1.0, 1.1, 0.1, 1.4, 0.8, 1.0) 0.0055 0.0695 −0.0370 0.0682 2

portfolio14 10 (1.7, 1.8, 1.5, 1.2, 0.0, 0.1, 0.5, 1.5, 0.0, 1.7) 0.0070 0.0520 −0.0389 0.0714 6 1
2

portfolio14 10 10 (1.7, 0.9, 1.7, 0.7, 0.6, 1.1, 0.2, 1.4, 0.8, 0.9) 0.0061 0.0711 −0.0369 0.0694 2 1
2

portfolio15 10 (0.0, 1.9, 0.0, 3.3, 0.0, 0.0, 1.0, 1.3, 1.2, 1.2) 0.0093 0.0782 −0.0432 0.1024 5

portfolio15 10 10 (0.0, 1.7, 0.8, 2.8, 0.0, 1.0, 0.6, 0.8, 1.4, 0.9) 0.0087 0.1020 −0.0408 0.0958 7 1
2

portfolio16 10 (1.8, 1.8, 1.5, 1.0, 0.0, 0.2, 0.4, 1.5, 0.1, 1.6) 0.0068 0.0508 −0.0386 0.0699 7

portfolio16 10 10 (1.7, 0.9, 1.7, 0.7, 0.7, 1.1, 0.1, 1.4, 0.8, 1.0) 0.0060 0.0706 −0.0371 0.0691 2 1
2

portfolio17 10 (1.2, 2.4, 1.3, 1.8, 0.0, 0.0, 0.5, 1.4, 0.0, 1.4) 0.0079 0.0577 −0.0438 0.0795 7

portfolio17 10 10 (1.6, 1.2, 1.7, 1.1, 0.3, 1.0, 0.2, 1.4, 0.7, 0.9) 0.0066 0.0732 −0.0381 0.0713 2 1
2

portfolio18 10 (0.2, 3.2, 1.0, 2.7, 0.0, 0.0, 0.5, 1.3, 0.0, 1.1) 0.0091 0.0684 −0.0541 0.0956 4 1
2

portfolio18 10 10 (1.4, 1.5, 1.7, 1.5, 0.0, 1.0, 0.2, 1.3, 0.6, 0.7) 0.0072 0.0777 −0.0397 0.0750 2 1
2

portfolio19 10 (1.2, 2.3, 1.3, 1.8, 0.0, 0.0, 0.5, 1.4, 0.0, 1.5) 0.0077 0.0565 −0.0424 0.0777 7

portfolio19 10 10 (1.6, 1.2, 1.7, 1.0, 0.3, 1.0, 0.2, 1.4, 0.7, 0.9) 0.0065 0.0731 −0.0378 0.0711 2 1
2

portfolio20 10 (1.4, 2.2, 1.3, 1.5, 0.0, 0.0, 0.4, 1.4, 0.0, 1.5) 0.0074 0.0539 −0.0409 0.0742 7

Continued on next page
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Problem 10 ∗ x P. Mean P. Var P. Skew P. Kurt Iters

portfolio20 10 10 (1.6, 1.1, 1.7, 0.9, 0.5, 1.0, 0.1, 1.4, 0.7, 0.9) 0.0063 0.0720 −0.0377 0.0702 2 1
2

portfolio5 16 (0.0, 0.0, 2.4, 0.0, 0.0, 1.5, 0.0, 0.0, 1.7, 0.7, 0.0, 3.3, 0.0, 0.0, 0.0, 0.4) 0.0080 0.0623 −0.0498 0.0872 14

portfolio5 16 10 (0.8, 0.0, 1.7, 0.1, 0.4, 0.8, 0.5, 0.3, 1.0, 0.6, 0.1, 1.5, 0.6, 0.0, 0.5, 1.0) 0.0063 0.0683 −0.0374 0.0674 4 1
2

portfolio10 16 (0.3, 0.0, 1.7, 0.0, 0.0, 1.0, 0.0, 0.0, 2.4, 0.6, 0.0, 2.1, 0.3, 0.0, 0.3, 1.2) 0.0069 0.0506 −0.0386 0.0702 14

portfolio10 16 10 (0.8, 0.0, 1.1, 0.5, 0.4, 0.6, 0.7, 0.6, 1.2, 0.4, 0.3, 1.0, 0.7, 0.1, 0.6, 1.0) 0.0054 0.0608 −0.0327 0.0606 5 1
2

portfolio15 16 (0.0, 0.0, 1.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.8, 0.6, 4.2, 0.0, 0.0, 0.0, 2.0) 0.0079 0.0703 −0.0439 0.0991 14

portfolio15 16 10 − − − − − −

portfolio20 16 (0.8, 0.0, 1.3, 0.0, 0.0, 0.8, 0.0, 0.0, 2.5, 0.5, 0.0, 1.7, 0.5, 0.0, 0.6, 1.4) 0.0064 0.0468 −0.0345 0.0647 14

portfolio20 16 10 (0.8, 0.0, 0.9, 0.6, 0.3, 0.6, 0.7, 0.8, 1.3, 0.3, 0.3, 0.9, 0.6, 0.2, 0.6, 1.0) 0.0051 0.0590 −0.0313 0.0589 5 1
2

Table 6: Partitioning procedure for POPs: portfolio weights and moments (assets from Dow 30)22
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Figure 2: MVO, MVSKO & RMVSKO Efficient Frontiers

6 Conclusions and Future Plans

The purpose of this paper was twofold. Firstly, we extended two convex finance models to

their nonconvex analogues. In particular, we modelled the portfolio optimization problem

and its worst-case, or robust, counterpart with higher order moments. To the best of our

knowledge, it is the first work considering skewness and kurtosis in a robust framework with

discrete uncertainty sets. Secondly, we handled the proposed models in a global optimization

of polynomials framework using decomposition. The results obtained are certainly promising

and support our belief that decomposition may play an important role in polynomial opti-

mization and as a by-product in optimization in finance. However, several issues arise from

this work and need to be taken into account. For example, the algorithm requires further

investigation so as to be able to handle larger problems. What is more, the models addressed

in this paper express the trade-off among the four portfolio moments through the objective

function. Hence, they do not allow for skewness and/or kurtosis constraints. Such an amend-

ment is essential should the investor require to enforce a lower bound on skewness and/or an

upper bound on kurtosis. It is also essential for the generation of efficient surfaces, as opposed

to efficient lines produced by the current models (see Figure 3).
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