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Abstract

We consider polynomial optimization problems pervaded by a sparsity pattern. It has

been shown in [1, 2] that the optimal solution of a polynomial programming problem with

structured sparsity can be computed by solving a series of semidefinite relaxations that possess

the same kind of sparsity. We aim at solving the former relaxations with a decomposition-

based method, which partitions the relaxations according to their sparsity pattern. The

decomposition-based method that we propose is an extension to semidefinite programming of

the Benders decomposition for linear programs [3] .

Key words: Polynomial optimization, Semidefinite programming, Sparse SDP relaxations,

Benders decomposition

1 Introduction

We consider polynomial optimization problems (POPs) with a sparsity pattern. To handle this

class of problems, we introduce a decomposition-based method based on the well-known Benders

decomposition [3]. Two interesting properties characterize our method. Firstly, the problem

structure plays a key role in the applicability of the presented method. Secondly, although the

decomposition method that we propose admits as input a polynomial optimization problem, it is

not applicable to it but to its sparse semidefinite (SDP) relaxation.

It has been shown in [1, 2] that the optimal solution of a polynomial optimization problem with a

structured sparsity can be computed by solving a series of SDP relaxations. Moreover, the SDP
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relaxations inherit the sparsity pattern that underlies the polynomial optimization problem. In

view of this, we exploit the structure (sparsity pattern) of the SDP relaxation and partition the

set of (moment1) variables into appropriate subsets. As a result, the SDP problem (relaxation) is

decomposed into a master problem and several subproblems. The master problem is an optimiza-

tion problem over the coupling variables2, and each subproblem is an optimization problem over

one of the remaining sets of variables, which are independent of each other. The master problem

is equivalent to the SDP problem (relaxation) we intend to solve. However, it possesses an infinite

number of constraints and for this reason at each iteration of our procedure we deal with a relaxed

version of it. The objective value of the relaxed master problem at each iteration is a lower bound

on the optimal objective value of the SDP problem. As a result, by solving a series of relaxed

master problems we obtain a sequence of increasing lower bounds on the optimal objective value

of the SDP relaxation.

Our algorithm is in line with the Benders decomposition for linear programs [3]. However, there

exist two main differences between our procedure and the classical Benders. In the latter, the

finiteness of the procedure is guaranteed due to the fact that the feasible regions of the subproblems

are polyhedral cones, hence finitely generated. On the other hand, the feasible regions of our

subproblems, i.e. the so-called spectrahedra [4], are not polyhedral. Therefore, they possess an

infinite number of generators. Despite this fact, finite ǫ-convergence is shown in Theorem 4.1.

Furthermore, in classical Benders the set of variables is partitioned into two disjoint subsets

yielding one subproblem at each iteration. We partition the set of variables into several subsets,

based on the problem structure, to yield more than one subproblems.

Our algorithm is divided into two phases. The first phase involves the method of partitioning

the variables, thus we will usually refer to it as the preprocess phase. The second phase is the

major body of the algorithm and involves the decomposition-based method for the sparse SDP

relaxations. For simplicity, we may often refer to the decomposition-based method as our algorithm

or our method. Nevertheless, the preprocess phase is equally important since it sets up the problem

data and makes the decomposition-based method applicable.

Contribution. The contribution of this paper is twofold: (i) an extension of the Benders de-

composition to semidefinite programming is introduced; (ii) the proposed decomposition-based

method is employed to solve polynomial optimization problems via their sparse SDP relaxations.

We ought to mention that sparse relaxations are weaker than their dense counterparts since they

1We will refer to the objective variables of the SDP relaxations as moment variables due to the theory underlying
the sparse SDP relaxation technique. This technique is discussed in Section 2.2.

2These are the (moment) variables that appear in all the constraints.
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include fewer constraints. As a result, and as pointed out in [5], the solution of the sparsely relaxed

problem may be less accurate than the solution of the densely relaxed problem if the latter were

possible to be used instead3. However, in this work we choose to focus on tackling polynomial

problems through their sparse relaxations only, due to the great potential sparsity offers, includ-

ing the applicability of the sparse SDP relaxation technique to large-scale polynomial problems.

Moreover, not only can the sparsity pattern that pervades a polynomial optimization problem

be automatically detected using the procedure described in [6], but also general polynomial opti-

mization problems can be transformed into their sparse equivalent using the method introduced

in [5].

The paper is organized as follows. Section 2 is devoted to a brief overview of the underlying theory.

In Section 3, the preprocess phase is described. In Section 4, we introduce the decomposition-

based method for solving sparse SDP problems. Theoretical results, including convergence of our

procedure, are analyzed. Section 5 includes technical details of our procedure, while Section 6

discusses the performance of our algorithm when tested on benchmark problems and presents the

corresponding numerical results. Section 7 concludes.

Notation. Let Sn be the vector space in IR(n+1

2 ) of symmetric n × n matrices. The inner

product in this space is: 〈A, B〉 = tr(AB), for A, B ∈ Sn. The trace tr(·) is the sum of diagonal

elements of a square matrix and is a linear function. A matrix A ∈ Sn is positive semidefinite if

xTAx ≥ 0 for all vectors x ∈ IRn. Similarly, a matrix A ∈ Sn is positive definite if xTAx > 0

for all vectors x 6= 0 ∈ IRn. It is common to write A � 0 (A ≻ 0) to denote that A is positive

semidefinite (positive definite) matrix and the notation A � B implies that A − B � 0. In

addition, by X := Mat(x) we denote the n × n symmetric matrix whose (i, j)th element is the

((j − 1)n + i)th element of a vector x ∈ IRn2

. In the same vein, x := vec(X) denotes a vector

x ∈ IRn2

whose ((j − 1)n + i)th component is the (i, j)th component of a matrix X ∈ Sn. The

cone Kn = {x ∈ Rn2

| x = vec(X); X � 0} is the cone of vectors obtained from the vectorization

of symmetric positive semidefinite matrices and x �Kn 0 means that x ∈ Kn.

3For quadratic polynomial optimization problems, the quality of bounds achieved by sparse and dense relaxation
technique is equally good as reported in [2].
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2 Relevant Theory

2.1 Semidefinite Programming (SDP)

Consider the primal semidefinite programming problem:

z1 = {min
x

cTx | Ax = b, x �Kn 0}, (1)

where c, x ∈ IRn2

, A ∈ IRm×n2

, and its dual:

z2 = {max
y

bTy | c −ATy �Kn 0}, (2)

where b, y ∈ IRm. Semidefinite programming is underpinned by two important theorems, the

strong duality theorem and the extended Farkas lemma. Both theorems are stated below.

Theorem 2.1 (Strong Duality [7]). Let z1 and z2 be the objective values of (1) and (2), respec-

tively. Assume that there exists an m-vector y such that Mat(AyT) ≻ 0. Then, z1 = z2.

Lemma 2.1 (Extended Farkas Lemma [7]). Let b ∈ IRm and A ∈ IRm×n2

be a matrix such that

its rows AT
i = vec(Ai), where Ai are symmetric n×n matrices for i = 1, . . . , m. Furthermore, let

there be an m-vector y such that Mat(ATy) ≻ 0. Then, there exists a symmetric matrix X � 0,

with Avec(X) = b or Ax = b, if and only if yTb ≥ 0 for all y for which Mat(ATy) � 0.

There are several variations of the extended Farkas lemma. For the purposes of our work, we need

to state one of these variations.

Lemma 2.2 ([7]). Let A ∈ IRn2×m be a matrix such that its columns are linearly independent and

are of the form vec(Ai), for symmetric Ai, and let B ∈ IRn×n. Assume that there exists some

symmetric matrix Y ≻ 0 such that vec(Y )TA = 0. Then, Mat(Ax) � B has a solution in x if

and only if 〈B, Y 〉 ≥ 0 for all Y � 0 for which vec(Y )
TA = 0.

In other words, when we deal with the feasibility of the dual SDP problem (2), one of the two

systems will be consistent:

c −ATy �Kn 0 (3)

uTc = −1, uTA = 0, u �Kn 0. (4)

The solution of the system (4) is called the Farkas dual solution. For further reading on semidefinite

programming, the interested reader is referred to [8, 9, 10, 11] and the rich bibliography therein.
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2.2 Sparse SDP Relaxations of Polynomial Problems

Consider the following polynomial optimization problem:

p∗ = { min
x∈IRn

p
∑

k=1

pk(xk) | gj(xk) ≥ 0,
∑

j∈Jk

j = m, k = 1, . . . , p}, (5)

where m denotes the total number of constraints4. Every polynomial involved in the above problem

is a polynomial dependent only on some subset {xk | k ∈ Ik} of the objective variables x ∈ IRn,

where Ik ⊂ {1, . . . , n} and
⋃p

k=1 Ik = {1, . . . , n}. Notice that these index sets {I1, . . . , Ip} may

not be disjoint, in which case their intersection is equal to the set of linking or coupling variables,

namely those variables that appear in all the constraints. In addition, in the definition of problem

(5) observe the existence of another collection of p index sets Jk. These sets are defined as follows:

Jk = {j ∈ {1, . . . , m} | gj ∈ IR[x(Ik)]},

where x(Ik) = {xk | k ∈ Ik}. In other words, for every j ∈ Jk, the constraint gj is only dependent

on the variable set x(Ik). The sets {J1, . . . ,Jp} are disjoint.

The SDP relaxation of order ω for problem (5) is given below [1]:

p∗ω = min
y

p
∑

k=1

∑

αk∈Nn

pαk
yαk

,

s.t. Mω(y, Ik) � 0, k = 1, . . . , p,

Mω−dj
(gjy, Ik) � 0, j ∈ Jk, k = 1, . . . , p,

y0 = 1, (6)

for 2ω ≥ max{deg f, maxj deg gj}, where ω is called order of the relaxation. By increasing ω and

formulating the corresponding sparse relaxations, one obtains a hierarchy of convergent sparse

SDP relaxations. In particular, Theorem 3.1 in [1] shows that, under a certain assumption on the

sparsity pattern, or in other words under an assumption on the sets {I1, . . . , Ip}, the resulting

sequence of optimal objective values of the relaxations converges to the global optimal solution p∗

of (5). Moreover, if (5) has a unique global minimizer x∗, then the resulting sequence of optimal

solution vectors of the relaxations converges to the global minimizer x∗ [1, Theorem 3.1].

The matrices Mω(y, Ik) and Mω−dj
(gjy, Ik) in (6) are called moment and localizing matrices,

respectively. The interested reader can find all the details of the sparse SDP relaxation technique

4We assume that the m constraints of problem (5) also include the p redundant constraints nkM2−‖x(Ik)‖2 ≥ 0,
where nk is the cardinality of index set Ik and M > ‖x‖∞ for all feasible points x, as indicated in [1].
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in [1] and [2]. Given that our paper is focusing on solving the sparse SDP relaxations (6), we restrict

ourselves to addressing the sparse SDP relaxation technique only. For a thorough investigation

of the underlying theory on dense5 SDP relaxations of polynomial programming problems, the

reader is referred to [12, 13] and the references therein. Also, [14] contains an explanatory survey

on the topic.

3 Preprocess Phase (Partitioning of Variables)

Our decomposition-based method intends to solve problems (6) by exploiting their decomposable

sparse structure. But the question that arises is how to find (compute) such structure/pattern

and how this would help us partition the set of (moment) variables y. The answer comes from

the fact that the sparsity pattern that underlies the original polynomial optimization problem (5)

is inherited into its sparse SDP relaxation. Therefore, if the polynomial problem has a specific

sparsity pattern expressed by the collection {I1, . . . , Ip}, we are able to specify the sparsity pattern

of the semidefinite relaxation in an equivalent way.

In fact, the sets {I1, . . . , Ip} are the maximal cliques of a chordal graph with as many nodes as

the number of polynomial variables [1, 2]. When the intersection of these sets is nonempty, the

resulting set is the index set of the coupling variables, i.e. the variables that appear in all the

constraints. This phenomenon is known as weak coupling, in contrast to strong coupling where

Ik ∩Ik+j = ∅ for j > 1. In the former case, what is essential to note is that, if we remove (fix) the

coupling variables, there remain p disjoint subsets of independent variables. In other words, if I ′
0

is the set of coupling variables, where I ′
0 ⊂ {1, . . . , n}, then the set {1, . . . , n} \ I ′

0 is partitioned

into p disjoint sets I ′
k such that Ik = I ′

0 ∪ I′
k, k = 1, . . . , p, and Ik ∩ Ij = I ′

0, for all j 6= k [1].

In view of this, if there exists a weak coupling, i.e. p > 1, we automate the partitioning of the

moment variables in problem (6).

In particular, we partition the moment variables in one subset of coupling moment variables and

p disjoint subsets of independent moment variables. To do so, we use the information taken from

the collections I1, . . . , Ip and I ′
0, . . . , I

′
p. Then, the subset of the coupling moment variables6 is

derived from the set of coupling polynomial variables I ′
0, and the ith set of independent moment

variables is derived from the index set or clique Ii of indices of independent polynomial variables

together with the indices of the coupling polynomial variables, i = 1, . . . , p. For convenience of

the reader, let us recapitulate.

5Sparsity pattern is not taken into account.
6The coupling moment variables appear in all the semidefinite constraints of problem (6).
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Remark 3.1. The coupling moment variables are derived from the coupling polynomial variables

index set I ′
0.

Remark 3.2. The ith set of independent moment variables is derived from the ith index set

Ii (= I ′
0 ∪ I′

i), i = 1, . . . , p.

The way the aforesaid subsets are derived is based on the fact that the moment variables corre-

spond to the products of powers of certain variables, i.e. monomials. Since the sparsity pattern

remains unchanged, the ith subset of the moment variables, i = 1, . . . , p, corresponds to the set

of monomials formed by the specific polynomial variables belonging to the index set Ii, up to

the specified relaxation order. Similarly, the set of the coupling moment variables corresponds to

the set of monomials formed by the specific polynomial variables belonging to the index set I ′
0,

up to the specified relaxation order. In other words, two parameters affect the generation of the

subset of coupling moment variables and the p disjoint subsets: the collection I ′
0, I1, . . . , Ip, and

the relaxation order. In fact, the relaxation order determines the number of moment variables7

and the collection I ′
0, I1, . . . , Ip determines which moment variable belongs to which subset. For

instance, let us examine the following example taken from [15]:

Example 3.1.

max 0.5 · (x2
1 + x2

2 + x2
3 + x2

4 + x2
5) + 10.5x1 + 7.5x2 + 3.5x3 + 2.5x4 + 1.5x5 + 10x6,

s.t. 6x1 + 3x2 + 3x3 + 2x4 + x5 ≤ 6.5,

10x1 + 10x3 + x6 ≤ 20,

0 ≤ xi ≤ 1, i = 1, . . . , 5,

0 ≤ x6 ≤ 20.

The sparsity pattern of Example 3.1 is expressed by p = 2 maximal cliques, i.e. I1 = {1, 3, 6}

and I2 = {1, 2, 3, 4, 5}. The coupling polynomial variables are then given by the set I ′
0 = {1, 3}

and the p = 2 disjoint sets of independent polynomial variables are I ′
1 = {6} and I ′

2 = {2, 4, 5}.

If we form the sparse SDP relaxation of order 1, we get a semidefinite problem with 21 moment

variables. These are given in Table 1 along with the corresponding monomials.

The sparsity pattern that underpins the first SDP relaxation of Example 3.1 is expressed by

the set of coupling moment variables (CMV): {y1, y3, y7, y9, y16} extracted from the set I ′
0 of

coupling polynomial variables, and p = 2 disjoint sets of independent moment variables (IMV):

{y6}, derived from the index set I1 and {y2, y4, y5, y8, y10, y11, y12, y13, y14, y15, y17, y18, y19,

y20, y21}, derived from the index set I2. The three foregoing sets are summarized in Table 2.

7The bigger the relaxation order is, the more monomials are considered.
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To sum up, given the sparsity pattern of the polynomial problem, as well as the dimension of

its sparse SDP relaxation of order ω, we can automatically derive the sparsity pattern of the

relaxation. Next, based on the relaxation sparsity pattern, we partition the moment variables

into the set of coupling moment variables and p sets of independent moments variables. Such

a partitioning decomposes the SDP relaxation into several smaller problems, i.e. the (relaxed)

master problem and the subproblems. In what follows, the coupling moment variables are the

objective variables of the master problem in addition to few more objective variables which we

add for convenience, namely the scalar variables z1, . . . , zp. In the same vein, the ith set of

independent moment variables is the set of objective variables of the ith subproblem. More details

on the derivation of the master problem and the subproblems can be found in Section 4. Below we

recapitulate the preprocess phase.

Algorithm 1 Preprocess Phase

Step 1: Input polynomial optimization problem and the desired relaxation order.

Step 2: Extract the collections I1, . . . , Ip and I ′
0, . . . , I

′
p, and the dimension/data of the semidefinite

relaxation (procedure from [2]).

Step 3: Compute the sparsity pattern of the semidefinite relaxation, namely the coupling moment

variables and the p disjoint sets of independent moment variables.

Step 4: Output the data of the semidefinite relaxation and its sparsity pattern.

4 Decomposition-Based Method for Sparse SDP Problems

Taking into account the formerly described sparsity pattern of the sparse SDP relaxations (6), we

consider the following SDP problem:

min
y,y1,...,yp

bTy +

p
∑

i=1

diTyi,

s.t. T iy + W iyi + hi �
Kmi 0, i = 1, . . . , p,

Ay + c �Kν 0, (7)

where the variable vector y corresponds to the set of coupling moment variables and the variable

vectors yi, i = 1 . . . , p, correspond to the p disjoint sets of independent moment variables. Fixing
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the coupling variables y yields the following decomposition problem.

min
y

bTy + ρ(y), s.t. Ay + c �Kν 0, (8)

where

ρ(y) =

p
∑

i=1

ρi(y), (9)

ρi(y) = {min
yi

diTyi | W iyi + (hi + T iy) �
Kmi 0}. (10)

The latter problems are the subproblems. Their duals read:

max
λi

(−hi − T iy)
T
λi, s.t. W iTλi = di, λ �

Kmi 0. (11)

The p subproblems (10) and their duals are the means of solving the original SDP problem (7).

Note that subproblems (10) or (11) are independent of each other, a fact that gives rise to the

possibility of a parallel implementation. More details on the implementation can be found in

Section 5. At the moment, we are interested in examining whether the subproblems are feasible

or not. This issue can be tackled using the extended Farkas Lemma 2.2. According to the systems

of equations (3) and (4), the subproblems (10) are infeasible if, for each i = 1, . . . , p, there exists

a Farkas dual solution that satisfies the following system:

(hi + T iy)
T
ui = −1, −W iTui = 0, ui �

Kmi 0. (12)

As a result we obtain the following lemma.

Lemma 4.1 (Feasibility Constraints). Let Y = {y | Ay + c �Kν 0}. Also let V i = {y | T iy +

(W iyi + hi) �
Kmi 0 for some yi}, for all i = 1, . . . , p, and let V =

⋂p

i=1 V i. Then, a point ŷ ∈ Y

is also in V if and only if ŷ satisfies the inequalities below for i = 1, . . . , p:

(hi + T iy)
T
ui ≥ 0, (13)

for all ui �
Kmi 0 such that −W iTui = 0.

Proof. If ŷ ∈ V , then T iy + (W iyi + hi) �
Kmi 0 for some yi, i = 1, . . . , p. Consequently, there are

no Farkas dual solutions and conditions (13) are satisfied for all ui �
Kmi 0 such that −W iTui = 0.

To prove the converse, let us assume that conditions (13) are satisfied for all ui �
Kmi 0 such that

−W iTui = 0 and that ŷ /∈ V . Since ŷ /∈ V , for each i = 1, . . . , p, there exists a Farkas dual solution
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that satisfies the following system:

(hi + T iy)
T
ui = −1, −W iTui = 0, ui �

Kmi 0. (14)

But this contradicts our assumption; hence, ŷ ∈ V .

Conditions (13) are the feasibility constraints. Taking the aforesaid into account, we are able to

rewrite our initial problem (7) as follows:

min
y∈Y ∩V

bTy +

p
∑

i=1

{min
yi

diTyi | W iyi + (hi + T iy) �
Kmi 0}, (15)

where as stated earlier, Y = {y | Ay + c �Kν 0} and V =
⋂p

i=1 Vi for the sets V i = {y | T iy +

(W iyi + hi) �
Kmi 0 for some yi}, i = 1, . . . , p.

The constraints y ∈ Y ∩ V ensure the feasibility of the inner optimization problems, i.e. the

subproblems, so we are able to employ the strong duality Theorem 2.1 and introduce the following

corollary.

Corollary 4.1 (Optimality Constraints). For each subproblem i, i = 1, . . . , p, if there exists an

m-vector yi such that Mat(−W iTyi ≻ 0), then for fixed y ∈ Y the optimal values of (10) equal

those of their duals on Y ∩ V , that is,

ρi(y) = {max
λi

(−hi − T iy)
T
λi | W iTλi = di, λ �

Kmi 0}. (16)

Using Corollary 4.1, problem (15) becomes

min
y∈Y ∩V

bTy +

p
∑

i=1

{max
λi

(−hi − T iy)
T
λi | W iTλi = di, λi �

Kmi 0}. (17)

The optimal solution of each inner dual SDP problem, introduced above, consists of the extreme

points of the corresponding feasible region. So, denoting the extreme points as λi ∈ Λi, where

Λi = {W iTλi = di, λi �
Kmi 0}, and similarly denoting the complementary points as ui ∈ U i,

where U i = {W iTui = 0, ui �
Kmi 0}, we obtain the formulation

min
y

bTy +

p
∑

i=1

{max
λi∈Λi

(−hi − T iy)
T
λi},

s.t. (hi + T iy)
T
ui ≥ 0, ∀ui ∈ U i, i = 1, . . . , p,

Ay + c �Kν 0. (18)
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Finally, we introduce scalars z1, . . . , zp to obtain the following final form of the master problem:

min
y,z1,...,zp

bTy +

p
∑

i=1

zi,

s.t. zi ≥ (−hi − T iy)
T
λi, ∀λi ∈ Λi, i = 1, . . . , p,

0 ≥ (−hi − T iy)
T
ui, ∀ui ∈ U i, i = 1, . . . , p,

Ay + c �Kν 0, (19)

which is equivalent to (7). The first set of constraints consists of the optimality constraints and

the second set includes conditions (13), i.e. the feasibility constraints.

The number of constraints of problem (19) is in general infinite. The feasible regions of the

SDP subproblems (10) are nonpolyhedral, which means that they possess an infinite number of

generators, i.e. extreme points. The solution strategy that we follow is relaxation. Hence, we solve

a relaxed version of our master problem ignoring all but few constraints and, at each iteration,

based on the solutions of the subproblems for fixed y, we either add p feasibility constraints or p

optimality constraints. Despite the infinite number of constraints in (19), in Theorem 4.1 we show

finite termination of our procedure within any given accuracy.

The algorithm is characterized by some attractive properties. The subproblems and the master

problem are convex programming problems. The optimality and feasibility constraints are linear.

Thus, at each iteration, the relaxed master problem is only amended by linear constraints. Such

a feature keeps the relaxed master problems simple. Moreover, in case the original polynomial

problem lacks constraints on the coupling variables, then the semidefinite relaxation (7) does not

have any constraints of type Ay+c �Kν 0, which gives rise to the following linear master problem:

min
y,z1,...,zp

bTy +

p
∑

i=1

zi,

s.t. zi ≥ (−hi − T iy)
T
λi, ∀λi ∈ Λi, i = 1, . . . , p,

0 ≥ (−hi − T iy)
T
ui, ∀ui ∈ U i, i = 1, . . . , p. (20)

In such cases, we possess a linear (relaxed) master problem at each iteration and, as is well known,

there are numerous fast and reliable linear programming solvers capable of solving large-scale

linear programming problems, such as lp solve [16].
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4.1 Algorithm

Our decomposition-based method for solving sparse SDP relaxations of polynomial problems is

stated next. In this description of the algorithm, we consider problem (7) as our input problem;

for simplicity, we assume that it has an optimal solution. Our complete procedure, including the

preprocess phase, is presented in the flow diagram of Figure 1.

Algorithm 2 Decomposition-Based Method for Sparse SDP Problems

Step 1: Initialize y (i.e. the set of coupling moment variables) to ŷ1, where ŷ1 ∈ Y ∩ V . Initialize

the iteration counter, e.g. k = 1 and set the lower (LB) and upper (UB) bounds to minus

infinity (−∞) and plus infinity (∞), respectively. Set nopt = 0 and nfeas = 0, where nopt is

the counter for the optimality constraints and nfeas is the counter for feasibility constraints.

Determine the convergence tolerance parameter ǫ > 0.

Step 2: Solve the ith subproblem (10), i = 1, . . . , p, for y = ŷk.

Step 2.1: If all p subproblems are infeasible, obtain p Farkas dual solutions ūi
k and generate p

feasibility constraints

(hi + T iy)
T
ūi

k ≥ 0, i = 1, . . . , p. (21)

Increase the infeasibility counter nfeas = nfeas + 1. Go to Step 3.

Step 2.2: If all p subproblems are feasible, get the optimal objective values ρi(ŷk) and the optimal

solution vectors λ̄i
k, i = 1, . . . , p, and generate the optimality constraints

zi ≥ (−hi − T iy)
T
λ̄i

k, i = 1, . . . , p. (22)

Increase the optimality counter nopt = nopt + 1. Update the upper bound UB =

bTŷk +
∑p

i=1 ρi(ŷk) only if necessary, i.e. if the new upper bound is less than the last

stored upper bound value. Go to Step 3.

Step 3: Solve the relaxed master problem

min
y,z1,...,zp

bTy +

p
∑

i=1

zi,

s.t. zi ≥ (−hi − T iy)
T
λ̄i

m, i = 1, . . . , p, m = 1, . . . , nopt,

0 ≥ (−hi − T iy)
T
ūi

n, i = 1, . . . , p, n = 1, . . . , nfeas,

Ay + c �Kν 0 (23)
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by any suitable algorithm. Let (ŷk+1, ẑ
1
k+1, . . . , ẑ

p
k+1) be the optimal solution. Update the

lower bound: LB = bTŷk+1 +
∑p

i=1 ẑi
k+1. If LB ≥ UB − ǫ, stop. Else increase the iteration

counter k = k + 1 and go to Step 2.

Observe that our decomposition-based method is a word-by-word extension of the Benders de-

composition for linear programs [3] to SDP problems, except that we obtain several (independent)

subproblems in place of one in the classical Benders decomposition.

4.2 Theoretical Convergence

Theorem 4.1 (Finite ǫ-Convergence). Assume that Y ∩ V is a nonempty compact set. Then, for

any given ǫ, the decomposition-based method for sparse SDP relaxations of polynomial problems

terminates in a finite number of steps.

Proof. (This is based on the finite ǫ-convergence proof in [17].) We fix ǫ arbitrarily and suppose

that no termination is achieved. Let 〈zk, yk〉 be the sequence of optimal solutions to (23) at

successive iterations. We may assume that this sequence, or a subsequence, converges to a point

(z∗, y∗) such that y ∈ Y ∩ V , since 〈zk〉 is a nondecreasing sequence bounded above and the

sequence 〈yk〉 belongs to the compact set Y ∩ V . Next, at iteration k + 1, for k sufficiently large,

the optimality constraints which we would normally generate,

z
(k+1)
i ≥ (−hi − T iy(k+1))

T
λ̄i

k, i = 1, . . . , p, (24)

are satisfied by the current solution due to the accumulation of constraints in (23). In addition,

we may assume that the sequence of optimal multiplier vectors 〈λi〉 converges to a point λi∗ for

each subproblem i, i = 1, . . . , p. Then, by the continuity of the polynomial function f(y, λi) =

(−hi − T iy)
T
λi, we have

z∗i ≥ (−hi − T iy∗)
T
λi∗, i = 1, . . . , p. (25)

In what follows, let us call Λi(y) the set of optimal solutions to the dual subproblem (11). In other

words, for each dual subproblem i, i = 1, . . . , p, the set Λi(y) consists of all points λi such that

f(y, λi) = ρi(y). Again by the continuity of the function f(y, λi), we may apply Theorem 1.5 of

[18] in order to show that the sets Λi(y) are upper-semicontinuous mappings at y∗8.

The upper semicontinuity of the set Λi(y) at y∗ implies that λi∗ ∈ Λi(y∗), i = 1, . . . , p. The former

conclusion yields z∗i ≥ ρi(y
∗), ∀i, or

∑p

i=1 z∗i ≥ ρ(y∗), and this in turn implies bTy∗ +
∑p

i=1 z∗i ≥

8The definition of the upper semicontinuity of a point-to-set mapping can be found in [18].
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bTy∗ + ρ(y∗). By the upper semicontinuity of function ρ(y), we finally conclude that

bTyk +

p
∑

i=1

zk
i + ǫ ≥ bTyk + ρ(yk), (26)

which is equivalent to our termination criterion, i.e LB ≥ UB − ǫ. As a result, our supposition

that the termination criterion is not met was proved false.

Observe that Theorem 4.1 assumes that every fixation of coupling moment variables y yields

feasible subproblems. Namely, it is assumed implicitly that only the optimality constraints are

added to the relaxed master problem at each iteration. However, in practice not all fixations

produce feasible subproblems. To make matters worse, the consecutive addition of feasibility

constraints may prevent the procedure from converging. A failure of convergence is also met

at the generalized Benders decomposition, for the convergence is based on the assumption that

either Y 9 is finite or that optimality constraints are generated for every fixation of y. To overcome

such problematic situation, Grothey et al. suggested a procedure, called feasibility restoration,

that guarantees convergence even in the presence of feasibility constraints [19]. We extended this

work such that it applies to semidefinite programming and included it to our decomposition-based

method. The feasibility restoration and our modified algorithm are described next.

4.3 Feasibility Restoration

As pointed out earlier, the consecutive addition of feasibility constraints may cause failure of

convergence. To rectify this situation, we amend our procedure as follows. Recall how the ith

subproblem (10) would be formulated for y = ŷk,

min
yi

diTyi, s.t. W iyi �
Kmi ci

k, (27)

where

ci
k = (−hi − T iŷk) ∈ IRmi2

, i = 1, . . . , p.

If all subproblems were feasible, the SDP solver would compute a dual optimal solution λ̄i
k for each

subproblem. The solver internally would also compute a feasible primal optimal solution (ȳi
k, s̄i

k)

satisfying the corresponding primal constraints,

W iȳi
k − s̄i

k = ci
k, s̄i

k �
Kmi 0.

9Y is the set to which the vector variable y belongs.
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On the other hand, if all subproblems were infeasible, the SDP solver would certify infeasibility

by computing a Farkas dual solution ūi
k �

Kmi 0 such that W iTūi
k = 0 for each subproblem. The

solver would still compute a primal solution (ȳi
k, s̄i

k) for each subproblem (27), but such a solution

would not satisfy the corresponding primal constraints, i.e.

W iȳi
k − s̄i

k 6= ci
k, s̄i

k �
Kmi 0.

Instead, the latter solution would satisfy a relaxed set of constraints such as

W iȳi
k − s̄i

k = ĉi
k, (28)

s̄i
k �

Kmi 0. (29)

The above constraints give rise to the construction of feasible subproblems. In other words, from

each (infeasible) subproblem (27), we exploit the primal information to compute the modified right-

hand side ĉi
k using Equation (28). Then, we construct the corresponding relaxed ith subproblem,

min
yi

diTyi, s.t. W iyi �
Kmi ĉi

k − αivec(Imi), (30)

which by construction is feasible. By subtracting αivec(Imi) from ĉi
k, where αi > 0 and Imi ∈

IRm×m the identity matrix, we ensure the existence of a strictly feasible solution. Namely, the

Slater-type regularity condition is satisfied and hence strong duality between the primal and dual

formulations holds [20]. Finally, the dual optimal solutions ˆ̄λi
k from the p auxiliary subproblems

(30) are used to generate p optimality constraints,

zi ≥ (−hi − T iy)
T ˆ̄λi

k, i = 1, . . . , p. (31)

To sum up, each time infeasibility is met, not only the p feasibility constraints from the Farkas dual

solutions of the original p subproblems (27) are generated, but also the p optimality constraints

from the p auxiliary subproblems (30). Such an amendment yields the relaxed master problem

below and our modified algorithm is briefly stated in Algorithm 3.

min
y,z1,...,zp

bTy +

p
∑

i=1

zi,

s.t. zi ≥ (−hi − T iy)
T
λ̄i

m, i = 1, . . . , p, m = 1, . . . , nopt,

zi ≥ (−hi − T iy)
T ˆ̄λi

n, i = 1, . . . , p, n = 1, . . . , nfeas,

0 ≥ (−hi − T iy)
T
ūi

n, i = 1, . . . , p, n = 1, . . . , nfeas,

Ay + c �Kν 0. (32)
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Algorithm 3 Decomposition-based method with feasibility restoration

Step 1: The same as in Algorithm 2, i.e. initialize.

Step 2: The same as in Algorithm 2, i.e. solve p subproblems (10) for y := ŷk.

Step 2.1: If all the subproblems are infeasible, generate p feasibility constraints from (27). Com-

pute ĉi
k, i = 1, . . . , p, and solve p auxiliary subproblems (30) to generate p optimality

constraints (31). Add both types of constraints to the relaxed master problem and

increase the feasibility counter nfeas := nfeas + 1. Go to Step 3.

Step 2.2: The same as in Algorithm 2.

Step 3: The same as in Algorithm 2, except that the amended relaxed master problem (32) is solved

in place of the relaxed master problem (23).

5 Implementation

Our method was implemented in C++ and several essential tools were incorporated. To begin

with, our program reads as input a file in GAMS scalar format. The input files were found in [21].

After the input file is read and parsed, we employ a set of functions from SparsePOP [6] in order

to extract the sparsity pattern of the input polynomial problem, as well as to generate the sparse

semidefinite relaxation. We also use a set of functions for permuting and factorizing symbolically

sparse matrices. This set of functions is part of CHOLMOD [22].

After the sparse semidefinite relaxation is computed and the polynomial sparsity pattern is ob-

tained, several routines were implemented in order to determine the coupling moment variables,

the p disjoint sets of independent moment variables and the data that correspond to the relaxed

master and each subproblem.

At each iteration of our main algorithm, we solve the SDP subproblems with the CSDP solver

[23], which not only outputs the solution when found, but also the Farkas dual solution in case

of infeasibility10. Finally, in order to solve the SDP relaxed master problem at each iteration, we

employ the CSDP solver [23].

Furthermore, we compare our results with the results obtained if CSDP were used in place of our

decomposition-based method for solving the computed sparse SDP relaxation of the POP. To

10All well-known SDP solvers such as DSDP [24], SDPA [25] and SeDuMi [26] compute the Farkas dual solution in
case of infeasibility, since it serves as a certificate of infeasibility.
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compute the sparse SDP relaxations, we employ a set of functions from SparsePOP. However, the

SparsePOP solver is mainly implemented in Matlab and calls SeDuMi to solve the computed sparse

SDP relaxations. We considered it more convenient to have everything implemented in C++; for

this reason, we replicated SparsePOP usage in C++, using CSDP in place of SeDuMi. From this

point onward, we refer to our C++ version of SparsePOP as SparsePOP/CSDP. Hence, let us refer

to the optimal objective value computed by our decomposition-based method as p∗ω and to the

one computed by SparsePOP/CSDP as p∗ω,bmrk. Similarly, let us call the optimal solution vector

produced by our method as x∗ and the one computed by SparsePOP/CSDP as x∗
bmrk. To evaluate

the accuracy of our solution against the benchmark solution, the following metrics were used:

ǫp∗ =
| p∗ω,bmrk − p∗ω |

max{1, | p∗ω,bmrk |}
, ǫx∗ = max

{

| x∗
i,bmrk − x∗

i |

max{1, | x∗
i,bmrk |}

}

, (33)

where x∗
i (x∗

i,bmrk) corresponds to the ith element of the vector x∗ (x∗
bmrk).

6 Computational Experience

Let us consider Example 3.1. Applying our method to its first and second sparse SDP relaxations,

i.e. ω = 1 and ω = 2 respectively, we get the convergent bounds presented in Figure 2. Recall

that the global optimal solution of this example is p∗ = −213, with its first SDP relaxation giving

a lower bound equal to p∗1 = −214 and its second relaxation giving the global optimal solution,

i.e. p∗2 = p∗ = −213. Figure 3 is another graphical example of convergent bounds computed by

our method and it corresponds to test problem st e21. In particular, we tested our method to

a collection of polynomial optimization problems taken from [21] and some indicative results are

presented in Table 311. For a detailed list of numerical results, the reader is referred to [27]. The

first two columns of Table 3 show the problem dimensions, i.e. n is the number of polynomial

variables and m is the number of constraints, while column ω records the order of the sparse SDP

relaxation used. The following three columns hold the number of iterations and the values of

metrics stated in equation (33).

Remarks: Our code should be able to compute the value that SparsePOP/CSDP computes. Table

3 demonstrates that this is true in all cases with good accuracy. However, as the theory of SDP

relaxation technique implies, the solution of the relaxation is not always the global optimal solution

of the POP. Consequently, the same applies to our solution. However, as we increase the relaxation

order, we will be able to compute a better and better approximation of the global optimal solution

11Note that test problem Bex2 1 2 is Example 3.1.
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of the POP.

Moreover, several numerical issues were met. The most important one was the difficulty in comput-

ing a starting feasible point. It was observed that, when the starting point made all subproblems

infeasible, then in most of the cases the relaxed master problem at the first iteration was unbounded

and our procedure was terminated. As a remedy to this problem, an interesting algorithm is in-

tended to be incorporated as a Phase 1 between the preprocess phase and the decomposition-based

method. The algorithm will be a modification of a similar Phase 1 algorithm discussed in [28].

The latter algorithm is also iterative and requires the solution of an optimization problem and

the computation of an approximate analytic center at each iteration. Other numerical issues were

met when CSDP did not make any progress in solving one or more subproblems or was stuck at the

edge of dual feasibility. In such cases, our procedure was terminated. We would like to examine

whether or not the use of another SDP solver could reduce some of these numerical problems. In

addition, there were some cases where, although the subproblems were either solved to optimality

or infeasibility was detected and the corresponding cuts were added, little progress did happen in

the increment of the lower bound toward the optimal solution of the relaxation. On the contrary,

the upper bound tended to reach the optimal solution of the relaxation quite early in the process.

Nevertheless, the slow progress in the lower bound slowed down the convergence between the lower

and upper bounds. What is more, in cases where feasibility cuts were only added at some point

onward, convergence was either extremely slow or not possible 12. This does not contradict finite

ǫ-convergence shown in Theorem 4.1, since its proof is based on adding optimality constraints

only. Such a situation also appears in [17]. In practice, the addition of feasibility cuts does not

usually prevent the procedure from converging. However, in cases where convergence appears to

be very slow, the feasibility restoration is essential to ensure convergence.

7 Discussion

In this work we deal with polynomial problems with a sparsity pattern, which has been shown

to be inherited into their sparse SDP relaxations. By exploiting this sparsity pattern, we apply

a decomposition method to the sparse SDP relaxations aiming at solving polynomials problems.

At each iteration of our algorithm, we solve p subproblems and the relaxed master problem. The

subproblems give a sequence of upper bounds and the relaxed master problems give a sequence of

lower bounds. Our procedure terminates when these bounds are very close.

12The maximum number of iterations was reached and the procedure was terminated. The maximum number of
iterations was set to 500.
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Many ideas have been raised from this work and remain to be examined. Firstly, a difficulty often

met was the computation of a starting point to make all subproblems feasible. The remedy to this

situation is the incorporation of a Phase 1 algorithm, such as the one discussed in [28]. This is

an iterative algorithm and requires the solution of an optimization problem and the computation

of an approximate analytic center at each iteration. We intend to extend it for the purposes

of our work. Next, to improve the performance of our algorithm we intend to exploit the fact

that the subproblems are solved independently at each iteration. At the moment, this property

has been developed in a sequential algorithm. We intend to explore how our algorithm could be

converted into a parallel algorithm hoping to gain in terms of efficiency and time. A similar work

has been carried out in [29, 30]. Lastly, a very interesting extension of our algorithm is to separate

it from the POP framework and amend it accordingly so as to make it directly applicable to a

sparse SDP problem. This would yield a decomposition algorithm for sparse SDPs and would

potentially be very useful in large-scale semidefinite programming. To achieve the separation of

the decomposition-based method from the POP, we should aim at detecting and extracting the

sparsity pattern of the SDP problem independently of any POP it may approximate. If the SDP

sparsity pattern can be detected independently, then the decomposition-based method is ready

for application in sparse semidefinite programming.
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Table 1: Moment variables and corresponding monomials for the first SDP relaxation of Example 3.1

Moment
Variable
(MV)

Monomial
(M)

MV M MV M

y1 x1 y8 x1x2 y15 x2x5

y2 x2 y9 x1x3 y16 x2
3

y3 x3 y10 x1x4 y17 x3x4

y4 x4 y11 x1x5 y18 x3x5

y5 x5 y12 x2
2 y19 x2

4

y6 x6 y13 x2x3 y20 x4x5

y7 x2
1 y14 x2x4 y21 x2

5
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Table 2: Partitioning of variables for the first SDP relaxation of Example 3.1

CMV IMV (1) IMV (2)

y1 y6 y2 y11 y17

y3 y4 y12 y18

y7 y5 y13 y19

y9 y8 y14 y20

y16 y10 y15 y21
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Table 3: Decomposition-based method on test problems

Problem n m ω iters ǫp∗ ǫx∗

Bex2 1 2 6 2 1 3 1.24e − 09 1.54e − 07

Bex2 1 2 6 2 2 8 1.2e − 08 2.25e − 07

Bex2 1 3 13 9 1 6 7.35e − 09 1.1e − 08

Bex2 1 8 24 10 1 4 1.17e − 08 0.0023

Bex3 1 1 8 6 2 165 8.92e − 06 0.00232

Bex3 1 1 8 6 3 152 7.45e − 06 0.00101

Bex5 2 2 case1 9 6 1 9 6.04e − 09 1.39e − 06

Bex5 3 2 22 16 1 3 1.4e − 10 0.667

Bex5 4 2 8 6 2 114 1.74e − 07 2.1e − 05

Bex9 1 1 13 12 1 10 5.04e − 09 0.013

Bex9 1 1 13 12 2 99 7.56e − 05 0.594

Bex9 1 2 10 9 1 12 1.13e − 09 0.00121

Bex9 1 4 10 9 1 11 8.93e − 06 0.000119

Bex9 1 5 13 12 1 2 2.33e − 09 0.0808

Bex9 1 5 13 12 2 24 5.17e − 09 0.0451

Bex9 1 8 14 12 1 5 6.79e − 11 0.0257

Bex9 2 1 10 9 1 2 1.028e − 07 9.192e − 06

Bex9 2 2 10 11 1 4 7.27e − 06 8.03e − 05

Bex9 2 4 8 7 1 3 6.73e − 10 0.0441

Bex9 2 4 8 7 2 36 3.41e − 09 4.33e − 06

Bex9 2 5 8 7 1 1 2.43e − 09 3.73e − 07

Bex9 2 8 6 5 1 1 1.62e − 09 2.42e − 08

Bex9 2 8 6 5 2 6 6.94e − 09 3.72e − 06

Balkyl 14 7 3 121 9.76e − 05 0.0067

Bhaverly 12 9 1 8 2.06e − 05 0.000218

Bst e05 5 3 1 2 9.61e − 06 0.432

Bst e05 5 3 2 143 4.42e − 06 0.000258

Bst e07 10 7 1 7 1.49e − 09 3.7e − 08

Bst e07 10 7 2 83 1.78e − 07 0.000507

st e21 6 6 1 4 3.88e − 09 1.83e − 09

st e21 6 6 2 25 1.12e − 08 2.93e − 08

Bst bpaf1a 10 10 1 6 4.68e − 09 1.1e − 05

Bst bpaf1b 10 10 1 7 2.04e − 09 1.72e − 08

st glmp kk90 5 7 2 4 8.66e − 09 3.44e − 09

st glmp kk90 5 7 3 5 4.93e − 08 7.1e − 09
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End

Figure 1: Decomposition-based method for sparse POPs (including preprocess phase)
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