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Abstract

The problem of forecasting from vector autoregressive models has attracted considerable

attention in the literature. The most popular non-Bayesian approaches use large sample

normal theory or the bootstrap to evaluate the uncertainty associated with the forecast.

The literature has concentrated on the problem of assessing the uncertainty of the

prediction for a single period. This paper considers the problem of how to assess the

uncertainty when the forecasts are done for a succession of periods. It describes and

evaluates bootstrap method for constructing confidence bands for forecast paths. The

bands are constructed from forecast paths obtained in bootstrap replications with an

optimisation procedure used to find the envelope of the most concentrated paths. The

method is shown to have good coverage properties in a Monte Carlo study.
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1 Introduction

Vector autoregressive models (VARs) made popular by Sims (1980) are widely used in forecasting.

While practitioners are usually concerned with forecasting the path that a variable (or a collection

of variables) will follow, the literature has concentrated mostly on the problem of assessing the

uncertainty associated with the prediction for a single period, either the next period or the one

h-steps ahead. Two cases have received most attention: construction of asymptotic and bootstrap

prediction intervals for single-variable forecast done for a particular period and construction of

asymptotic and bootstrap confidence regions for multi-variable forecasts performed for a single

period (see for example Kim (1999, 2001, 2004), Grigoletto (2005), Lütkepohl (2005)). In small

samples the bootstrap methods of Efron (1979) have been shown to have better properties than

asymptotic ones (Kim (1999, 2001), Grigoletto (2005)). More extensive evidence on the adequacy

and advantages of the bootstrap has been obtained for the problem of constructing prediction

intervals for forecasts calculated from AR model (see Masarotto (1990), Thombs and Schucany

(1990), Kabaila (1993), Breidt at al. (1995), Clements and Taylor (2001), Kim (2002)).

This paper describes and evaluates the method for constructing a confidence band for a path

of forecasts for a single variable in a stationary VAR. Jordà and Marcellino (2008) have recently

discussed methods of band construction for paths based on asymptotic theory. The technique

proposed in this paper uses the bootstrap and builds on the methods for constructing confidence

bands for impulse response functions described in Staszewska (2007). The bands are constructed

from forecast paths obtained in bootstrap replications.

Bootstrap samples are constructed from the backward representation of the VAR with the use

of the bootstrap-after-bootstrap procedure of Kilian (1998). The bootstrap-after-bootstrap method

has been previously employed for the construction of prediction regions by Kim (2001, 2004) and

prediction intervals for AR models by Clements and Taylor (2001), Kim (2002) and Clements and

Kim (2007). Using VAR’s backward representation ensures that last observations in the pseudo-

datasets are the same as in the original sample and guarantees that forecasts are conditional on past

observations (see Thombs and Schucany (1990) in the context of AR forecasting and Kim (1999,

2001, 2004) and Grigoletto (2005) for VAR forecasting). The confidence band is then constructed

as the envelope of the bootstrap forecast paths which are closest to the forecast path obtained on

the basis of the original sample.

The coverage properties of confidence bands constructed according to the new method are
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investigated by means of Monte Carlo experiments. The performance of these bands is compared

with the performance of the asymptotic Scheffé’s and Bonferroni’s methods described by Jordà

and Marcellino (2008). As it is common in the literature to present the results of a forecasting

exercise by showing a graph of the forecast path together with prediction intervals appropriate for

making marginal inferences about single-period forecasts, coverage properties of one type of such

naive band created by joining up bootstrap prediction intervals are also studied.

The main finding of the paper is that the bands created according to the new method of band

construction have good coverage properties for both small and large sample sizes and for short and

long forecasting horizons. In small samples their performance is better than the performance of the

asymptotic confidence bands. The joined up prediction intervals perform very poorly and should

not be used for making joint inferences about a succession of forecasts.

The outline of the paper is as follows. Section 2 considers the calculation of forecast path from

a stationary VAR model. Sections 3 and 4 describe how the bootstrap samples are obtained and

introduce the new method of constructing confidence band for the forecast path. The design and

the results of the Monte Carlo experiments are given in Sections 5 and 6. Conclusions are presented

in Section 7.

2 The forecast path

Consider the VAR(p) for K-dimensional vector of variables y:

yt = A0 +A1yt−1 +A2yt−2 + . . .+Apyt−p + εt, (1)

where A0 is a K × 1 vector of constants, Ai for i = 1, . . . , p, are K ×K coefficient matrices and

εt is a K × 1 vector of i.i.d. innovations. Innovations are such that E(εt) = 0 and E(εtε′t) = Σε,

where Σε is a positive definite matrix with finite elements. The model is stationary i.e. all roots of

the characteristic equation det(IK − A1z − . . .− Apz
p) = 0 lie outside the unit circle.

In what follows, the forecast paths are obtained from (1) with the use of the iterated h-steps

ahead predictor for the yT+h vector, h = 1, . . . , H , relying on the coefficients estimated from a

sample of size T . For the asymptotic methods the h-steps ahead forecasts are calculated as:

ŷT (h) = Â0 + Â1ŷT (h − 1) + Â2ŷT (h − 2) + . . .+ ÂpŷT (h− p), (2)
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where ŷT (h− j) = yT+h−j for h − j ≤ 0 and Âi, for i = 0, . . . , p, are the least squares estimates of

the Ai parameters.

In the bootstrap method, to take into account the least squares parameter estimates bias, a

bias-corrected predictor is considered (the particular form of the bootstrap bias-correction used is

described in Section 3). In this case the forecasts are obtained from:

ŷcT (h) = Â
c
0 + Â

c
1ŷ
c
T (h − 1) + Â

c
2ŷ
c
T (h − 2) + . . .+ Â

c
pŷ
c
T (h− p), (3)

where ŷcT (h − j) = yT+h−j for h − j ≤ 0 and Â
c
i , for i = 0, . . . , p, are the bias-corrected estimates

of the Ai parameters.

The forecast paths for h = 1, . . . ,H for K variables are then sequences of values from ŷT (1),

ŷT (2), . . . , ŷT (H) or ŷcT (1), ŷ
c
T (2), . . . , ŷ

c
T (H).

3 The bootstrap method

The proposed method of confidence band construction uses the residual (nonparametric) bootstrap

to produce an indication of the uncertainty associated with the forecast path. Bootstrap samples

are generated using the bootstrap-after-bootstrap procedure. The bootstrap DGP is based on the

backward representation of the VAR ensuring that forecasts computed in the replications of the

method are conditional on the last observations from the original sample.

The detailed steps of the bootstrap procedure are as follows:

a) using the available sample of data of size T , least squares is used to estimate the parameters of

the forward VAR from (1) and the backward VAR of the form:

yt = H0 +H1yt+1 +H2yt+2 + . . .+Hpyt+p + νt. (4)

Residuals corresponding to parameter estimates Âi and Ĥi, for i = 0, . . . , p, denoted respec-

tively by {ε̂T} and {ν̂T} , are obtained. The residuals are scaled as in Thombs and Schucany

(1990),

b) in the loop with B0 replications pseudo-datasets are generated from:

y∗t = Ĥ0 + Ĥ1y
∗

t+1 + Ĥ2y
∗

t+2 + . . .+ Ĥpy
∗

t+p + ν
∗

t , (5)
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where the p initial values of y∗ are set equal to the last p values of the original series and ν∗t

is a random draw with replacement from {ν̂T } , and also from:

y∗t = Â0 + Â1y
∗

t−1 + Â2y
∗

t−2 + . . .+ Âpy
∗

t−p + ε
∗

t ,

where the p initial values of the variables are set equal to the first p values of the original

series and ε∗t is a random draw with replacement from {ε̂T } . The pseudo-datasets are used

to estimate the parameters of, respectively, (4) and (1) yielding B0 bootstrap estimates Ĥ∗

i

and Â∗i , for i = 0, . . . , p. The parameter estimates biases are then calculated as: bias(Ĥi) =

Ĥ
∗

i − Ĥi and bias(Âi) = Â
∗

i − Âi and bias-corrected estimates are obtained according to:

Ĥc
i = Ĥi− bias(Ĥi) and Â

c
i = Âi− bias(Âi). In case such adjustment implies nonstationarity

of the VAR, a stationarity correction is introduced as in Kilian (1998), resulting in slightly

modified values of Ĥc
i and Âci . Vectors of residuals {ν̂

c
T} and {ε̂cT} , corresponding to bias-

corrected parameter estimates Ĥc
i and Â

c
i and original series are calculated from, respectively,

the backward and forward representations of the model,

c) B replications in the second loop of the bootstrap procedure are performed: pseudo-datasets

are generated from the backward DGP with bias-corrected estimates:

y∗ct = Ĥ
c
0 + Ĥ

c
1y
∗c
t+1 + Ĥ

c
2y
∗c
t+2 + . . .+ Ĥ

c
py
∗c
t+p + ν

∗c
t ,

where the p initial values are set equal to the last p values of the original series and ν∗ct

is a random draw with replacement from {ν̂cT} . On the basis of these pseudo-datasets the

parameters of the forward model are estimated, resulting in parameter estimates Ã∗i . The

estimates Ã∗i are then corrected for the bias using the bias estimates obtained in the first

bootstrap loop according to: Ã∗ci = Ã
∗

i − bias(Âi), unless there is need for implementing the

stationarity correction (see Kilian (1998)) resulting in adjusted values of Ã∗ci .

The bootstrap forecasts are then calculated as:

ŷ∗cT (h) = Ã
∗c
0 + Ã

∗c
1 ŷ

∗c
T (h − 1) + Ã

∗c
2 ŷ

∗c
T (h− 2) + . . .+ Ã

∗c
p ŷ

∗c
T (h− p) + ε

∗c
T+h, (6)

for h = 1, . . . , H, where ŷ∗cT (h − j) = yT+h−j for h − j ≤ 0 and ε
∗c
T+h is a random draw with

replacement from {ε̂cT}.
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The next section describes how bootstrap forecast values, calculated according to (6), can be

used to construct confidence bands for forecast paths.

4 Methods of band construction

The (1 − γ) × 100% confidence band will be constructed by generating B bootstrap paths and

discarding the γ ×B most extreme paths. This method has been used for constructing confidence

bands for impulse response functions by Staszewska (2007). As explained in that article, the idea

can be implemented in different ways and the method used here, referred to as the closest paths

method (CP), is a modification of that used previously. The method is implemented as follows (for

the case of the k-th variable from the y vector, for k = 1, . . . , K):

1. the forecast path is calculated from (3) and B bootstrap paths are obtained from (6),

2. for each period for which the paths are constructed (for h = 1, . . . , H), the smallest and the

largest bootstrap forecasts are identified and the paths they belong to are found. There are

2H such extreme values and maximally 2H paths they belong to,

3. for each of these bootstrap paths the distance from the forecast path obtained on the basis of

the original sample is computed. The distance is treated in two ways, using either square or

absolute errors. In the first case it is calculated as:
∑H

h=1
(ŷck,T (h)− ŷ

∗c
k,T (h))

2, in the second

according to:
∑H

h=1
|ŷck,T (h)− ŷ

∗c
k,T (h)|,

4. a path which is furthest from the forecast path is found and removed from the set of B paths,

5. steps 2)-4) are repeated for B − 1 remaining paths, then for B − 2 and so on until γ × B

paths have been removed,

6. the (1− γ)× 100% confidence band is obtained as the envelope of the remaining (1− γ)×B

bootstrap paths.

In the next section coverage properties of bands created according to this method are studied by

means of Monte Carlo experiments. These coverage probabilities are compared with the coverage

probabilities of alternative bands created according to one naive and two asymptotic methods of

band construction.
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Naive confidence bands are created from interval forecasts for single periods. A method of

constructing bootstrap intervals considered here is the one proposed by Kilian (1998) in the context

of impulse response analysis. The (1 − γ) × 100% prediction interval constructed for the k-th

component of the y vector, for k = 1, . . . , K, at time T + h is given by:

CIk,T (h) =
[
s∗γ/2, s

∗

1−γ/2

]
,

where s∗γ/2 and s
∗

1−γ/2 are the γ/2 and 1 − γ/2 quantiles of the bootstrap distribution of ŷ∗ck,T (h).

The naive band is then created by joining up prediction intervals constructed for h = 1, . . . , H.

Asymptotic methods of band construction involve Scheffé’s and Bonferroni’s methods described

by Jordà and Marcellino (2008). The Scheffé band for the k-th variable is constructed as:




ŷk,T (1)

ŷk,T (2)
...

ŷk,T (H)



±




√
c2γ(1)√
c2γ(2)

2
...√
c2γ(H)

H



.× P iH ,

where c2γ(h) is the critical value of a χ
2
h-distributed random variable at the (1−γ)×100% confidence

level, P is a lower triangular matrix resulting from the Cholesky decomposition of the covariance

matrix of the forecast path of the k-th variable (ŷk,T (1), ŷk,T (2), . . . , ŷk,T (H))
′ : T−1Ξ̂k,H = PP ′

(the formula for Ξ̂k,H is given by Jordà and Marcellino (2008)) and iH is an H × 1 vector of ones.

The Bonferroni band for the k-th variable is obtained as:




ŷk,T (1)

ŷk,T (2)
...

ŷk,T (H)



± zγ/2H × diag(Ξ̂k,H)

1/2,

where zγ/2H stands for the critical value of a standard normal random variable at an γ/2H signif-

icance level and diag(Ξ̂k,H)1/2 is an H × 1 vector with the square roots of the diagonal entries of

Ξ̂k,H .
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5 Experimental design

The design of the Monte Carlo experiments is to a large extend the same as in Jordà and Marcellino

(2008). The DGP is based on the empirical VAR(4) with 3 variables and intercepts following the

specification of Stock and Watson (2001). The variables include the rate of price inflation (Pt)

(computed as the chain-weighted GDP price index), the unemployment rate (Ut) (measured by the

civilian unemployment rate) and the federal funds rate (Rt). US quarterly data are used covering

the period from 1960:I to 2004:I. The maximum likelihood parameter estimates provide parameter

values in the Monte Carlo DGP. The DGP takes the form:

yt =




1.076

0.125

0.347


 +




0.549 −0.965 0.164

0.029 1.480 0.003

0.084 −1.567 0.962


 yt−1 +




0.118 1.506 −0.128

−0.013 −0.494 0.043

0.197 1.763 −0.364


 yt−2 +

+




0.060 −0.954 0.054

0.002 −0.029 −0.024

−0.070 −0.848 0.333


 yt−3 +




0.261 0.250 −0.098

−0.012 −0.014 0.008

−0.046 0.563 −0.010


 yt−4 + εt,

where yt = (Pt, Ut, Rt)′ and the errors εt are assumed to be normally distributed with variance

matrix: Σ =




0.962 −0.018 0.116

−0.018 0.049 −0.087

0.116 −0.087 0.693


.

In the experiments a number of different sample sizes and forecasting horizons are considered.

Samples of 60, 100 and 400 observations are analysed. The forecast horizons chosen are 1, 4, 8

and 12 periods. Bands for forecast paths of all three variables are considered. The confidence level

(1 − γ) is set to 0.68 or 0.95. Samples are generated from the DGP using random initial values

of the variables. These are obtained by initializing the data generation for the first four values of

all variables set to 0 and "observations" beginning from 100th used as the start-up values of the

variables in the sample. The lag length of the VAR estimated in the Monte Carlo replications is

determined, as in Jordà and Marcellino (2008), with the use of the AICC information criterion of

Hurvich and Tsai (1993). The maximum lag length considered is 8.

The complete set-up of the Monte Carlo experiments, with 1000 replications, is the following:

- in each replication, a sample of data is generated from the Monte Carlo DGP. The DGP is run

8



on beyond the sample size, to obtain the paths of true realisations of variables - the “true

paths”. The parameters of the VAR with automatically selected lag length are estimated

on the basis of the “original sample”. Asymptotic confidence bands are constructed. The

bootstrap procedure is applied to construct the naive and closest paths confidence bands.

The number of replications B is set to 2000 and B0 is set to 1000. In the last step, it is

checked whether the “true path” falls into the different confidence bands,

- the proportion of times that the various bands contain the “true path” is recorded and treated

as the estimated coverage probabilities for the bands.

Before presenting the results of the Monte Carlo investigations it is useful to compare the bands

created according to the different methods for a single sample. Figure 1 shows the forecast paths

for P,U and R based on the Jordà and Marcellino (2008) dataset constructed for 8 periods ahead,

together with 95% confidence bands involving joined up prediction intervals, Bonferroni’s and

Scheffé’s bands and the closest paths squared band. The forecast path is represented by the solid

line, dashed line indicates the joined up prediction intervals, the solid line with crosses corresponds

to the Bonferroni band, solid line with boxes to the Scheffé band and solid line with circles to the

band constructed according to the closest paths method.

The graph illustrates well quite different shapes of the bands. The most significant feature is

that the closest paths band is the widest for initial periods while the Scheffé band lies outside the

remaining bands for later periods. The joined up confidence intervals are generally the narrowest

apart from period 1 for which the band can be wider than the Scheffé band.

Of course it is possible to provide bands corresponding to different confidence levels and plot

them on a single diagram. The result would be like the fan charts used by the Bank of England to

present uncertainty about future levels of inflation; see e.g. Bank of England (2008). The Bank’s

charts, however, seem to be constructed by joining up confidence intervals for forecasts done for

single periods.

6 Results

The coverage probabilities estimated for different confidence bands in the Monte Carlo experiments

are given in Tables 1-2 of the Appendix. Tables 3-4 report additionally the average widths of the

bands measured as sum of bands’ spreads at periods covered by the forecasting horizon.
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Figure 1: 8-steps ahead forecast paths for the Jordà and Marcellino (2008) dataset together with
different 95% confidence bands

It can be seen that the naive method of joining up a number of prediction intervals works rather

badly. For forecasting horizons beyond 1 the naive bands have coverage probabilities for the paths

substantially below the designed confidence levels. The probabilities decrease as the forecasting

horizon is extended. The bands are the narrowest, but given their poor properties it cannot be

considered as an advantage.

The performance of the asymptotic bands is much better, especially for the largest sample size

and confidence level of 0.95. In smaller samples, for longer forecasting horizons the Bonferroni

bands have coverage probabilities which exceed the nominal confidence level, while the Scheffé

bands tend to underachieve these values. The bands are much wider than the naive ones. For

longer forecasting horizons the Scheffé bands open out and become wider than the Bonferroni ones.

Of all the methods, the closest paths method performs the best. Its properties are good for

both smaller and larger sample sizes, shorter and longer forecasting horizons and both confidence

levels. The two versions of the method, in which distance is interpreted in an absolute and squared

error sense have very similar properties. The bands are wider than the naive ones. For shorter

forecasting horizons they can be also wider than both types of asymptotic bands, but for longer

horizons they become narrower than the Scheffé bands. They may be wider or narrower than the
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Bonferroni bands depending on the confidence level which influences the coverage properties of the

latter.

7 Conclusions

This paper has described and evaluated a new method for constructing confidence bands for forecast

paths obtained from a VAR. The evaluation was by means of Monte Carlo experiments using a

DGP and sample sizes of the kind used in macroeconomics. The method was shown to achieve

accurate coverage probabilities for different sample sizes, forecasting horizons and confidence levels.

Its performance was compared with that of the asymptotic methods recently proposed by Jordà

and Marcellino (2008) and it performed better, especially in small samples.
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Appendix

Table 1. Estimated coverage probabilities of different 68% confidence bands

T = 60 T = 100 T = 400

P U R P U R P U R

H = 1

pred. interv. 0.656 0.662 0.651 0.660 0.671 0.668 0.659 0.693 0.703

Bonf. 0.619 0.630 0.616 0.634 0.645 0.645 0.653 0.685 0.696

Schef. 0.619 0.630 0.616 0.634 0.645 0.645 0.653 0.685 0.696

CP abs 0.664 0.658 0.649 0.650 0.673 0.673 0.662 0.690 0.704

CP sq 0.664 0.658 0.649 0.650 0.673 0.673 0.662 0.690 0.704

H = 4

pred. interv. 0.322 0.431 0.379 0.299 0.421 0.359 0.297 0.466 0.360

Bonf. 0.658 0.726 0.684 0.696 0.763 0.714 0.742 0.824 0.802

Schef. 0.489 0.570 0.523 0.502 0.580 0.521 0.537 0.649 0.605

CP abs 0.681 0.638 0.659 0.666 0.657 0.645 0.665 0.699 0.691

CP sq 0.686 0.651 0.666 0.674 0.660 0.650 0.662 0.695 0.678

H = 8

pred. interv. 0.215 0.292 0.258 0.213 0.276 0.262 0.144 0.267 0.245

Bonf. 0.675 0.755 0.703 0.788 0.774 0.746 0.803 0.840 0.813

Schef. 0.463 0.554 0.514 0.534 0.572 0.547 0.532 0.633 0.597

CP abs 0.675 0.659 0.658 0.721 0.660 0.665 0.676 0.665 0.675

CP sq 0.674 0.666 0.656 0.728 0.668 0.668 0.677 0.670 0.675

H = 12

pred. interv. 0.167 0.242 0.210 0.164 0.189 0.201 0.099 0.200 0.187

Bonf. 0.674 0.757 0.712 0.768 0.789 0.760 0.811 0.862 0.850

Schef. 0.461 0.575 0.499 0.516 0.558 0.546 0.524 0.631 0.645

CP abs 0.703 0.689 0.658 0.742 0.684 0.697 0.688 0.705 0.695

CP sq 0.699 0.702 0.658 0.738 0.688 0.698 0.695 0.703 0.696
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Table 2. Estimated coverage probabilities of different 95% confidence bands

T = 60 T = 100 T = 400

P U R P U R P U R

H = 1

pred. interv. 0.944 0.947 0.946 0.948 0.940 0.938 0.949 0.954 0.95

Bonf. 0.921 0.925 0.928 0.926 0.928 0.917 0.95 0.952 0.948

Schef. 0.921 0.925 0.928 0.926 0.928 0.917 0.95 0.952 0.948

CP abs 0.948 0.946 0.944 0.950 0.945 0.938 0.952 0.953 0.949

CP sq 0.948 0.946 0.944 0.950 0.945 0.938 0.952 0.953 0.949

H = 4

pred. interv. 0.843 0.841 0.848 0.839 0.868 0.841 0.847 0.895 0.886

Bonf. 0.903 0.904 0.896 0.923 0.926 0.914 0.955 0.954 0.953

Schef. 0.846 0.873 0.870 0.878 0.893 0.885 0.913 0.940 0.938

CP abs 0.941 0.907 0.925 0.941 0.933 0.919 0.952 0.941 0.948

CP sq 0.941 0.906 0.922 0.947 0.936 0.924 0.949 0.939 0.946

H = 8

pred. interv. 0.784 0.828 0.796 0.817 0.822 0.796 0.794 0.826 0.798

Bonf. 0.871 0.914 0.871 0.923 0.935 0.923 0.949 0.969 0.968

Schef. 0.818 0.903 0.867 0.899 0.917 0.893 0.921 0.943 0.929

CP abs 0.920 0.907 0.918 0.946 0.937 0.934 0.939 0.940 0.951

CP sq 0.921 0.906 0.917 0.950 0.941 0.935 0.937 0.939 0.947

H = 12

pred. interv. 0.772 0.775 0.771 0.803 0.801 0.807 0.794 0.826 0.798

Bonf. 0.857 0.921 0.884 0.928 0.928 0.931 0.949 0.969 0.968

Schef. 0.814 0.898 0.864 0.884 0.907 0.902 0.921 0.943 0.929

CP abs 0.920 0.932 0.937 0.952 0.947 0.946 0.939 0.940 0.951

CP sq 0.920 0.939 0.934 0.952 0.947 0.943 0.937 0.939 0.947
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Table 3. Average width of different 68% confidence bands

T = 60 T = 100 T = 400

P U R P U R P U R

H = 1

pred. interv. 2.201 0.480 1.871 2.114 0.465 1.788 1.977 0.447 1.684

Bonf. 2.047 0.448 1.743 2.000 0.439 1.687 1.947 0.439 1.655

Schef. 2.047 0.448 1.743 2.000 0.439 1.687 1.947 0.439 1.655

CP abs 2.204 0.480 1.872 2.110 0.464 1.785 1.970 0.446 1.678

CP sq 2.204 0.480 1.872 2.110 0.464 1.785 1.970 0.446 1.678

H = 4

pred. interv. 11.916 4.024 13.013 11.081 3.876 12.448 9.752 3.589 11.401

Bonf. 18.679 6.291 20.384 17.729 6.179 19.895 16.741 6.144 19.542

Schef. 17.569 6.302 20.229 16.564 6.207 19.739 15.306 6.181 19.385

CP abs 18.430 5.621 19.023 17.338 5.415 18.277 15.579 5.033 16.849

CP sq 18.409 5.625 19.145 17.292 5.427 18.387 15.465 5.042 16.932

H = 8

pred. interv. 30.875 11.687 36.656 27.740 10.874 34.120 23.375 9.751 30.545

Bonf. 53.761 20.406 63.765 50.127 19.594 61.237 46.575 19.382 60.661

Schef. 58.106 22.929 71.870 54.370 21.892 69.308 49.800 21.716 69.144

CP abs 52.413 18.353 59.045 48.020 17.215 55.426 42.059 15.653 50.351

CP sq 52.326 18.286 58.916 47.853 17.125 55.328 41.744 15.579 50.181

H = 12

pred. interv. 53.943 21.449 66.314 48.720 19.621 62.455 39.385 17.002 52.791

Bonf. 96.967 39.213 118.130 91.067 37.430 115.650 83.914 36.323 111.970

Schef. 114.600 45.509 143.420 109.110 41.974 141.890 100.200 40.316 138.170

CP abs 94.705 36.060 111.750 87.442 33.488 106.200 74.081 29.707 92.474

CP sq 94.396 35.928 111.400 87.188 33.317 105.790 73.657 29.535 91.964
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Table 4. Average width of different 95% confidence bands

T = 60 T = 100 T = 400

P U R P U R P U R

H = 1

pred. interv. 4.315 0.948 3.680 4.175 0.914 3.515 3.910 0.878 3.320

Bonf. 4.034 0.884 3.435 3.941 0.866 3.325 3.838 0.865 3.261

Schef. 4.034 0.884 3.435 3.941 0.866 3.325 3.838 0.865 3.261

CP abs 4.311 0.944 3.680 4.160 0.910 3.501 3.890 0.874 3.302

CP sq 4.311 0.944 3.680 4.160 0.910 3.501 3.890 0.874 3.302

H = 4

pred. interv. 23.628 7.985 25.863 21.911 7.679 24.645 19.262 7.088 22.498

Bonf. 26.649 8.976 29.082 25.294 8.816 28.384 23.885 8.766 27.881

Schef. 27.215 9.580 30.953 25.696 9.435 30.206 23.833 9.398 29.681

CP abs 28.841 9.348 30.907 26.975 9.021 29.606 24.127 8.396 27.298

CP sq 28.868 9.291 30.854 26.967 8.957 29.530 23.983 8.336 27.193

H = 8

pred. interv. 62.116 23.544 73.975 55.259 21.726 68.188 46.216 19.306 60.440

Bonf. 71.577 27.169 84.896 66.740 26.088 81.532 62.010 25.806 80.764

Schef. 81.017 31.638 99.452 75.816 30.250 95.925 69.583 30.022 95.690

CP abs 79.940 29.546 93.527 71.701 27.343 86.368 61.487 24.558 77.220

CP sq 79.823 29.396 93.236 71.630 27.194 86.129 61.353 24.374 76.973

H = 12

pred. interv. 110.590 43.641 136.160 97.819 39.373 125.830 77.894 33.671 104.690

Bonf. 125.360 50.693 152.720 117.730 48.388 149.510 108.480 46.957 144.750

Schef. 151.880 59.987 189.280 144.530 55.508 187.210 132.830 53.401 182.370

CP abs 145.610 56.964 177.010 130.060 51.657 163.920 106.250 44.516 138.470

CP sq 145.090 56.666 176.070 129.750 51.341 163.020 105.940 44.215 137.620
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