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Abstract: Given a set of time series, it is of interest to discover subsets that
share similar properties. For instance, this may be useful for identifying and
estimating a single model that may fit conveniently several time series, instead
of performing the usual identification and estimation steps for each one. On
the other hand time series in the same cluster are related with respect to the
measures assumed for cluster analysis and are suitable for building multivariate
time series models. Though many approaches to clustering time series exist, in
this view the most effective method seems to have to rely on choosing some fea-
tures relevant for the problem at hand and seeking for clusters according to their
measurements, for instance the autoregressive coefficients, spectral measures or
the eigenvectors of the covariance matrix. Some new indexes based on goodness-
of-fit criteria will be proposed in this paper for fuzzy clustering of multivariate
time series. A general purpose fuzzy clustering algorithm may be used to esti-
mate the proper cluster structure according to some internal criteria of cluster
validity. Such indexes are known to measure actually definite often conflicting
cluster properties, compactness or connectedness, for instance, or distribution,
orientation, size and shape. It is argued that the multiobjective optimization
supported by genetic algorithms is a most effective choice in such a difficult
context. In this paper we use the Xie-Beni index and the C-means functional
as objective functions to evaluate the cluster validity in a multiobjective opti-
mization framework. The concept of Pareto optimality in multiobjective genetic
algorithms is used to evolve a set of potential solutions towards a set of optimal
non-dominated solutions. Genetic algorithms are well suited for implementing
difficult optimization problems where objective functions do not usually have
good mathematical properties such as continuity, differentiability or convexity.
In addition the genetic algorithms, as population based methods, may yield a
complete Pareto front at each step of the iterative evolutionary procedure. The
method is illustrated by means of a set of real data and an artificial multivariate
time series data set.
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1 Introduction

Cluster analysis of univariate and multivariate time series is gathering increas-
ing interest as wide application fields are arising where a large amount of time
series data is encountered but no labeled data are available. Some important
examples include data mining applications, event detection from time series
data, economic indicators comparison across countries and regions, financial
data investigation, medical data from sensor-based monitoring of patients af-
fected by similar pathologies, data recorded at regular time intervals in geology
or climatology.

This paper deals with the problem of clustering time series data. It consists
of two essential steps, the first one concerned with feature extraction and the
second one concerned with the allocation of time series to groups. Feature ex-
traction involves the computation of the important characteristics of the time
series that are intended to capture their essential properties. For instance, the
data may provide us with suitable measurements to be transformed into features
by using some mathematical transforms. Human eye may sometimes accomplish
the task of distinguishing time series from one another at a glance. More of-
ten characteristics that really matter are hidden in the time series sample and
numerical techniques may be devised that are more efficient and reliable. For
instance, time series may come as a specially long data stretch and visual in-
spection may fail to provide us with a basis for judging to what extent time
series are either different or similar to each other. Another relevant situation
occurs when time series arrays have to be classified. It is apparent that hu-
man detection is unable to identify similar multivariate time series and detect
properties that multivariate time series in a group are likely to share.

We assume that classes are not available in advance so that we have to per-
form an unsupervised classification task. In this case all information has to
be gathered from the data and estimation techniques are needed for both dis-
tinguishing the time series and defining the features that best characterize the
groups. Berkhin (2002) is a useful reference, amongst so many, that emphasizes
connections between clustering and data mining. Surveys of methods for clus-
tering time series may be found in Keogh and Kasetty (2003) and Liao (2005).
An interesting application which is related to outliers in time series has been
considered in Guralnik and Srivastava (1999). For non-stationary time series
classification the SLEX model is proposed in Huang et al. (2004). Algorithms
based on SLEX library are able to extract local (localized in both time and fre-
quency domain) time series spectral features. A special spectral measure called
cepstrum has been considered by Kalpakis et al. (2001). In Wang et al. (2005),
an attempt has been made to select all time series characteristics that are be-
lieved to be really important and put them together to be used within a reliable
and accurate clustering procedure. In the multivariate framework Radhakrish-
nan et al. (2004) formulate the problem of pattern discovery from video records
as a vector time series clustering problem. Eigenvector analysis of similarity
matrix, from principal component analysis, for instance, has been proposed for
developing procedures for multivariate time series classification (Yang and Sha-
habi, 2004; Singhal and Seborg, 2005; Allefeld and Bialonski, 2007). Extensions
of spectral measures for multivariate time series have been discussed by Kak-
izawa et al. (1998). Dissimilarity measures are based on indexes of disparity
between spectral matrices computed for multivariate time series. In this paper



we present a new approach base on goodness-of-fit measures which allows multi-
variate time series of different dimensionality and length to be compared. Some
R2 criteria for linear interpolators and vector autoregressive (VAR) models will
be introduced.

Cluster analysis is an application field where evolutionary computing has
been repeatedly and successfully proposed. Evolutionary computing is used to
denote stochastic population-based search methods. These methods are believed
to be able to solve complex optimization problems which cannot be formulated
in terms of mathematically well behaved objective functions. In case of small
size problems complete enumeration of the feasible potential solution is viable.
The only task that is left consists in calculating the objective function for each
item of an exhaustive list. Then, the optimal solution may be chosen. For
medium size problems dynamic programming, branch and bound algorithms for
instance, may find the solution in a reasonable computing time. These are ex-
amples of deterministic methods that may lead to the exact solution provided
that proper conditions are met. If the space of feasible potential solutions is
large, exhaustive computation is ruled out soon. Deterministic methods, which
include as well gradient-based methods when applicable, may lead to local op-
tima instead of the global one either because the solution space is large and
the algorithm does not have the capability of exploring all regions efficiently
or there are many local optima such that the algorithm is confined to one of
them at the end. Stochastic search is a powerful device to encompass local
optima and weaken the mathematical constraints that the objective function
is often not really able to satisfy. Moreover, if several patterns are allowed
to be explored simultaneously, chances of successfully attaining the global op-
timal solution increase considerably. These methods are included within the
evolutionary computing methods as they mimic the evolution of a population
toward adaptation to the environment. The most representative examples of
this class are genetic algorithms (GAs). The GAs (Holland, 1975) start with
a population chosen at random, then selection and ”genetic operators” such
as mutation and crossover drive the evolution of the population through sev-
eral generations. Latest generations are believed to include the individuals that
encode better solutions. More precisely, individuals in each generation encode
solutions that on the average are closer approximations to the optimal solution
than those provided by the preceding generation. Applications to statistical
estimation problems have been considered by Pasia et al. (2005, for instance).
Efficient GA-based techniques have been suggested for general clustering prob-
lems (Bezdek and Aathaway, 1994; Bandyopadhyay and Maulik, 2002; Maulik
and Bandyopadhyay, 2000, 2003). Evolutionary computing algorithms may be
modified to incorporate features from either general heuristic methods (Winker
and Gilli, 2004) or deterministic and gradient-based methods. General heuristics
are, for instance, the ant colony optimization (Handl et al., 2003), swarm intel-
ligence (Handl and Meyer, 2007), tabu search (Al-Sultan, 1995) and simulated
annealing (Kirkpatrick et al., 1983; Brooks and Morgan, 1995). Hybridization
of GAs has been suggested with gradient-based methods, for instance. In this
latter case the stochastic search is devoted to explore promising regions of the
solution space. Then, steepest descent algorithms, for instance, may start from
some initial point close enough to the global optimum to refine the search.
Heuristics for clustering time series have been examined, including GAs and
hybrid GAs, in Baragona et al. (2001), for instance. Often cluster validity had



better evaluated by using several possibly conflicting indexes of cluster validity
(Bezdek and Pal, 1998) that need to be simultaneously optimized. For such
problems often a single optimum solution does not exist and we have a solu-
tion set that consists of several alternative solutions to the problems. In Deb
(2001); Bandyopadhyay et al. (2007a,b); Handl and Knowles (2007) multiobjec-
tive clustering methods are introduced that use the search capability of genetic
algorithms. A new model of multiobjective simulated annealing algorithm called
AMOSA (Bandyopadhyay et al., 2008) has been developed as well.

The paper is organized as follows. The Pareto optimality in the multiobjec-
tive optimization framework is introduced in Section 2. The GAs for solving the
multiobjective optimization problem is introduced in Section 3. Experimental
results from the applications of the fuzzy multiobjective clustering algorithm
NSGAII (Deb, 2001) on univariate and multivariate time series data sets are
reported in Sections 4 and 5, respectively. Conclusions are drawn in Section 6.

2 Multiobjective optimization and Pareto opti-
mality

Application of techniques having physical or natural correspondence for solv-
ing difficult optimization problems has been receiving widespread attention for
the last two decades. It has been found that these techniques consistently out-
perform classical methods like gradient descent search when the search space is
large, complex and multimodal. Simulated annealing (SA) is one such paradigm
having its foundation in statistical mechanics, which studies the behavior of a
very large system of interacting components in thermal equilibrium. Genetic
algorithms, another popular search technique, mimics the principles of natural
genetic systems, including inheritance and the Darwin’s theory of selection of
the fittest. Some other popular techniques are particle swarm optimization,
differential evolution, ant colony optimization, etc (Konar, 2005). Though tra-
ditionally these methods have been used to solve single objective optimization
problems, their applicability in solving multiobjective problems is generating
wide interest in recent times.

The multiobjective optimization may be formally stated as Deb (2001);
Coello Coello (1999); Zitzler and Thiele (1998); Zitzler et al. (2001); Bandyopad-
hyay et al. (2008): Find the vectors x = [x1;x2; . . . ; xn]′ of decision variables
that satisfy the m inequality constraints

gi(x) ≥ 0, i = 1, 2, . . . ,m, (1)

the p equality constraints

hi(x) = 0, i = 1, 2, . . . , p, (2)

and simultaneously optimize the O objective functions

{f1(x), f2(x), . . . , fO(x)}.

The constraints given in Eqns. (1) and (2) define the feasible region F which
contains all the admissible solutions. Any solution outside this region is in-
admissible since it violates one or more constraints. The vector x denotes an



optimal solution in F . In the context of multiobjective optimization the diffi-
culty lies in the definition of optimality, since it happens rarely that a single
vector x represents the optimum solution to all the O objective functions.

An important concept of multiobjective optimization is that of domination.
Most multiobjective optimization techniques use the concepts of dominance re-
lation and Pareto optimality. We give the formal definitions here corresponding
to a maximization problem. The definitions are easily extended to minimization
problems. A solution xi is said to dominate xj if

∀k ∈ {1, 2, . . . , O} fk(xi) ≥ fk(xj)

and

∃k ∈ {1, 2, . . . , O} such that fk(xi) > fk(xj).

Among a set of solutions P , the non-dominated set of solutions P ′ are those
that are not dominated by any member of the set P . A solution x is said to
be non-dominated in P if there exist no solution x∗ which dominates x. The
non-dominated set of the entire search space S is the globally Pareto optimal
set. On many occasions, the globally Pareto optimal set is simply referred to
as the Pareto optimal set. If for every member x in a set P there exists no
solution y (in the neighborhood of x such that ‖y− x‖∞ ≤ ε, where ε is a small
positive number) dominating any member of the set P , then solutions belonging
to the set P constitute a locally Pareto optimal set. In general, a multiobjective
optimization algorithm usually admits a set of solutions that are not dominated
by any solution encountered by it.

There are different approaches to solving multiobjective optimization prob-
lems e.g. aggregating population based non-Pareto and Pareto-based techniques
(Deb, 2001; Coello Coello, 1999). In aggregating techniques, the different ob-
jectives are generally combined into one using weighting or goal based method.
Vector evaluated genetic algorithm (VEGA) is a technique in the population
based non-Pareto approach in which different sub-populations are used for the
different objectives. Multiple objective GA (MOGA), non-dominated sorting
GA (NSGA), niched Pareto GA constitute a number of techniques under the
Pareto based approaches. However, all these techniques, described in Deb (2001)
were essentially non-elitist in nature. NSGAII (Deb, 2001), SPEA (Zitzler and
Thiele, 1998) and SPEA2 (Zitzler et al., 2001) are some relatively recently de-
veloped multiobjective elitist techniques.

3 Genetic algorithms for multiobjective optimiza-
tion

This section describe a multiobjective fuzzy partitioning technique that exploit
the searching capability of GAs for the purpose of clustering time series data
sets.

3.1 Multiobjective fuzzy clustering technique

In this section, we describe the use of NSGAII for evolving a set of near-Pareto-
optimal non-degenerate fuzzy partition matrices. The Xie-Beni index (XB) (Xie



and Beni, 1991) and the C-means functional Jm (Bezdek, 1981) are well known
fuzzy cluster validity indexes that will be considered as the objective functions
to be minimized simultaneously. The technique is described below in detail.

3.1.1 String representation and population initialization

Here the chromosomes are made up of real numbers which represent initially
the features of the time series assumed as centers of the partitions. For C
clusters, the centers encoded in a chromosome in the initial population are
randomly selected C distinct time series from the data set. There is a one-to-
one correspondence between each time series and its features.

3.1.2 Computing the objectives

For computing the XB and Jm indexes the centers encoded in a chromosome,
corresponding to the selected features, are first extracted. We assume as an
example that the extracted features, called variables afterwards, are the coeffi-
cients of the autoregressive model fitted to each time series and the time delay
between each time series and a reference series. Let the centers be denoted by
v1, v2, . . . , vC . The membership values uik, i = 1, 2, . . . , C and k = 1, 2, . . . , n
are computed as follows (Bezdek, 1981):

uik =
1∑C

j=1(
D(vi,xk)
D(vj ,xk) )

2
m−1

, for 1 ≤ i ≤ C; 1 ≤ k ≤ n, (3)

where D(vi, xk) and D(vj , xk) are distances between centers and variables. m is
the weighting coefficient. Note that while computing uik using Equation (3), if
D(vj , xk) is equal to zero for some j, then uik is set to zero for all i = 1, . . . , C,
i 6= j, while ujk is set equal to one. Subsequently, the centers encoded in a
chromosome are updated using the following equation (Bezdek, 1981)

vi =
∑n

k=1(uik)mxk∑n
k=1(uik)m

, 1 ≤ i ≤ C, (4)

and the cluster membership values are recomputed. We may define

Jm =
c∑

i=1

n∑

k=1

um
ikD2(vi, xk). (5)

The XB index is defined as a function of the ratio of the total variation σ to
the minimum separation sep of the clusters. Here σ and sep can be written as

σ(U, V ;X) =
c∑

i=1

n∑

k=1

u2
ikD2(vi, xk), (6)

and

sep(V ) = min
i 6=j

{||vi − vj ||2}, (7)

where ||.|| is the Euclidean norm, and D(vi, xk), as mentioned earlier, is the
distance between the pattern xk and the cluster center vi. The XB index is



then written as

XB(U, V ;X) =
σ(U, V ;X)
n sep(V )

=
∑c

i=1(
∑n

k=1 u2
ikD2(vi, xk))

n(mini6=j{||vi − vj ||2}) . (8)

Note that when the partitioning is compact and good, value of σ should be
low while sep should be high, thereby yielding lower values of the XB index.
The objective is therefore to minimize either XB or Jm for achieving proper
clustering.

3.1.3 Considering both time delays and autoregressive coefficients

When only the time delays or the autoregressive coefficients are considered sep-
arately, computing the distance between the center of the ith cluster, denoted
by vi, and the kth time series, denoted by xk is straightforward.

When both these parameters are considered together, then the distance
D(vi, xk) is computed as follows:

D(vi, xk) = w1 ×
D(videlay, xkdelay)

max delay
+ w2 × D(viauto, xkauto)

max auto
, (9)

where videlay and xkdelay are the delay parameters of the cluster center and the
individual time series, while viauto and xkauto are the corresponding autoregres-
sive coefficients. The factors w1 and w2 are the weighting coefficients indicating
the relative importance of the two parameters. For the purpose of this article,
these are set to 0.5. The factors max delay and max auto are the maximum
values of the distances based on delays and autoregressive coefficients, respec-
tively, between any two time series in the data. These are computed from the
input data, and are used for the purpose of normalizing the two distances.

Once the combined distances of a time series xk from all the cluster centers
are computed, the one with the minimum distance is identified and xk is assigned
to that cluster. In this way, all the time series data points are partitioned, and
the XB indexes corresponding to time delays and autoregressive coefficients are
computed. Subsequently, the centers are updated as in Equation 4.

3.1.4 Genetic operators

NSGAII (Deb, 2001) is used as the underlying multiobjective optimization algo-
rithm. Here, initially a random parent population P0 of size N is created. Then
the population is sorted based on the non-domination relation. Each solution of
the population is assigned a fitness which is equal to its non-domination level. A
child population is created from the parent population by using binary tourna-
ment selection, recombination, and mutation operators. Generally according to
this algorithm, the parent and the child populations are combined. Thereafter,
all the solutions are sorted based on their non-domination status. If the total
number of solutions belonging to the best non-dominated set F1 is smaller than
N , F1 is completely included into the next population. The remaining members
of the population are chosen from subsequent non-dominated fronts in the order
of their ranking. A crowded comparison operator based on crowding distance
is used for this purpose. Thereafter, selection, crossover and mutation are used
to create a new population of size N , and the process continues. The crowding
distance operator is used to maintain diversity in the Pareto front. For details



on the different genetic processes, the reader may refer to Deb (2001). The near-
Pareto-optimal strings of the last generation provide the different solutions to
the clustering problem.

4 Experimental results on univariate time series
data

In this section, we first describe the univariate time series data set that has
been used in the experiments. Thereafter, the results of the multiobjective
fuzzy clustering techniques is reported.

4.1 Data set

Let us consider the monthly indexes of the industrial production in Italy related
to 24 branches (base 1990=100), recorded from 1971:1 through 1996:3 (T = 303
observations for each of K = 24 time series). Data have been drawn from the
database of Italy’s National Statistical Institute (ISTAT). In Table 1 the time
series are listed and their content is accounted for according to the NACE-CLIO
classification system.

We adjusted data for outliers and computed their (natural) logarithmic
transform. The following ARIMA(2, 0, 0)× (0, 1, 0)12 model

(1− φ1B − φ2B
2)(1−B12)xj,t = aj,t, j = 1, . . . , K,

where B is the back-shift operator (Bxj,t = xj,t−1) and {aj,t} is a zero mean
white noise, has been fitted to the time series data set {xj,t}, j = 1, . . . , K.

The first feature is the model structure with n = 2 measurements πj,1 = φ1

and πj,2 = φ2. The autoregressive coefficients, or π-weights in the present
context, have been introduced by Piccolo (1990) as a time series feature suitable
for cluster analysis. The second feature we considered takes into account the
time series alignment. As a matter of fact it is often of interest to classify
time series whether they are leading or lagging with respect to a reference time
series either to compute composite indexes of economic activities or for modeling
and forecasting purpose. A suitable measure of such lead-lag relationships is the
time delay (see Cleveland and Parzen, 1975, for instance). The time delay {dj,λ}
varies with the frequency λ, −π < λ ≤ π, so that for each choice of λ a feature
measure is available. We confine our attention to the long-term components
of each time series and consider the frequencies λ1 = 2π

128 and λ2 = 2π
27 . These

frequencies correspond to periods of 128 and 27 months respectively, the longest
and the shortest cycle ever recorded in Italy since 1945. Then, we assume n = 2
measurements dj(λ1) and dj(λ2), j = 1, . . . , K.

In Figures 1 and 2 the scatter plots of the autoregressive weights and of the
time delays are displayed. Plots look rather different, so we may expect that
the two features correspond to rather different time series properties.

4.2 Implementation Result

Results reported in Baragona et al. (2001) show that using the autoregressive
weights most of the methods considered therein yield the 3 clusters



Table 1: Monthly indexes of industrial production, branches of economic ac-
tivities according to the NACE-CLIO classification. Italy, 1971:1 – 1996:3
label branch of activity

1 coal
2 coke ovens
3 mineral oil refining
4 energy
5 production and preliminary processing of metals
6 non-metallic mineral products
7 chemicals (reference series)
8 metal articles
9 mechanical engineering
10 office and data processing machinery
11 electrical engineering
12 motor vehicles
13 other means of transport
14 meat
15 dairy products
16 other foods
17 drink
18 tobacco
19 textiles
20 leather and leather goods, footwear and clothing
21 timber and wooden furniture
22 paper and paper products, printing and publishing
23 rubber and plastic products
24 other manufacturing industries
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Figure 1: Scatter plot of autoregressive weights πj,1 (horizontal axis) and πj,2

(vertical axis), j = 1, . . . , 24
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Figure 2: Scatter plot of time delays dj(λ1) (horizontal axis) and dj(λ2) (ver-
tical axis), j = 1, . . . , 24

{1, 2, 3, 17, 24}
{4, 5, 6, 7, 8, 9, 10, 13, 15, 21, 22}
{11, 12, 14, 16, 18, 19, 20, 23}.

The same methods applied to the time delay features yield 2 or 3 clusters.
Almost always a single cluster groups most of the time series while the other
2 include a limited number of time series. A typical grouping that is rather
apparent in Figure 2 is, for instance,

{1, 3}
{18}

{the remaining time series}.
The 24 time series are clustered here using both the autoregressive coefficients
and time delays with equal weights and the fuzzy partition objective. The
algorithm resulted automatically into 3 groups, comprising the following time
series:

{1, 3}
{2, 4, 5, 6, 7, 8, 9, 10, 13, 15, 17, 24}

{11, 12, 14, 16, 18, 19, 20, 23}
This result may be considered a good compromise between the partition formed
according to the autoregressive coefficients and the partition formed according
to the time delays. This latter includes a large cluster which contains most of
the time series set and other very small clusters. The partition obtained by the
multiobjective fuzzy genetic clustering contains a first cluster which includes the
time series 1 and 3. This is possibly due to the large delays that characterize
the two basic energy sources that produce 81.14% (Italy, 2004) of total electric
power. The positive delays mean that these are leading series. The other two



clusters composition is similar to that obtained by using only the autoregressive
coefficients for clustering but time series 2, 17 and 24 are added more reliably
to the second cluster. This latter includes industrial production indexes of
heavy industries plus the dairy products, drink and the residual series other
manufacturing industries. These time series are in general lagging (7 months
at most) or coincident. The third cluster is identical to that obtained using
only the autoregressive coefficients. It includes in general leading time series
(no more than 7 months) that seem rather heterogeneous as motor vehicles,
some food-processing industry branches, textiles and plastic products all show
together. In this case clustering is driven by the common time series structure as
independently of their meaning similar models may be fitted to the time series
data.

5 Clustering multivariate time series data

Specific concepts that arise in the multivariate framework may offer convenient
tools for clustering multivariate time series, for example vector autoregressive
(VAR) modeling, cointegration, vector linear interpolators and spectral matri-
ces. R2 measures have been discussed by Nelson (1976) and Pierce (1979) that
extend to time series data the well known R2 statistic defined in the context of
linear regression analysis. Interpreting R2 in a time series framework correctly
requires careful examination of the relationships with underlying model param-
eters and correlation structure and implies that any time series is associated
an inherent predictability. This latter allows time series to be distinguished us-
ing R2-based features that are both meaningful and easy to compute by using
widely available statistical packages. Following Box and Tiao (1977) we intro-
duce two features for multivariate time series that account for predictability the
first one and for interpolability the second one. Let z = [z1, . . . , zn] denote an
observed p-dimensional multivariate time series where zt = (z1t, . . . , zpt)′ and
assume that z follows the `th order VAR model (see Reinsel, 1993, for instance)

zt = ẑt−1(1) + at, (10)

where

ẑt−1(1) =
∑̀

i=1

Πizt−i (11)

is the expectation of zt conditional on its past values, the Πi’s are p× p matri-
ces and {at} is a sequence of independent and identically distributed random
variables independent of ẑt−1(1) with mean zero and covariance matrix Σ. Let

Γj(z) = E (zt−jzt
′)

denote the lag j autocovariance matrix of zt. By using (10) and (11) it follows

Γ0(z) = Γ0(ẑ) + Σ.

We may reduce to the univariate framework by considering the linear combina-
tion ut = β′zt. From (10) it follows ut = ût−1(1)+vt, where ût−1(1) = β′ẑt−1(1)
and vt = β′at. The predictability of ut from its past may be computed as the



Table 2: Measures of predictability (VAR) and interpolability (linear interpo-
lator) for multivariate time series

index vector autoregression linear interpolator

A-optimality trace (Γ(ẑ)) /trace (Γ(z)) trace (Γ(z̃)) /trace (Γ(z))
E-optimality ρ

(
Γ(z)−1Γ(ẑ)

)
ρ

(
Γ(z)−1Γ(z̃)

)
D-optimality det (Γ(ẑ)) / det (Γ(z)) det (Γ(z̃)) / det (Γ(z))

R2 measure λ = σ2
û/σ2

u, where σ2
u and σ2

û are the variance of ut and ût−1(1) re-
spectively. Predictability is maximized by assuming λ > 0 as larger as possible,
that is

λ =
β′Γ0(ẑ)β
β′Γ0(z)β

has to be chosen equal to the largest eigenvalue of Γ−1
0 (z)Γ0(ẑ). By analogy

with optimal experimental design (Kiefer, 1959) we may call this index the E-
optimality criterion. The analogy may be extended further to define the indexes
trace (Γ0(ẑ)) /trace (Γ0(z)) and det (Γ0(ẑ)) / det (Γ0(z)) as A-optimality and D-
optimality respectively.

Likewise, let the vector autoregressive model (11) be replaced by the multi-
variate linear interpolator model (Battaglia, 1984)

z̃t−1(1) =
m∑

i=1

Φi (zt−i + zt+i) , (12)

where m denotes the linear interpolator order. The A-optimality, E-optimality
and D-optimality indexes for maximum interpolability are then defined using the
variance-covariance matrices computed from (12). The indexes of predictability
and interpolability are displayed in Table 2. ρ denotes the largest eigenvalue
(absolute value). Clustering a set of multivariate time series may be done by
computing both models (11) and (12) for each multivariate time series and
choosing for each of the two some or all of the associated measurements of
predictability and interpolability.

5.1 An artificial data set

For the purpose of experiment we generated from two VAR models 20 artificial
time series and performed the cluster analysis using the genetic multiobjective
method. 10 4-dimensional time series have been generated by a VAR of order
1 and 10 2-dimensional time series have been generated by a VAR of order 2.
In Figures 3 and 4 a sample from the first and second cluster respectively is
displayed.

In Figures 5 and 6 the predictability and interpolability optimality features
extracted from the 20 artificial time series are plotted for each of the A, E and D
optimality criteria. It is apparent that the D-optimality features are rather far
apart between the two multivariate time series groups while the A-optimality
features are close together for the 4-dimensional time series and either smaller
or larger for the 2-dimensional time series, and E-optimality features are rather
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Figure 3: Plot of 100 observations generated from a 4-dimensional VAR model
of order 1 and zero mean white noise with variance matrix I4
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Figure 4: Plot of 100 observations generated from a 2-dimensional VAR model
of order 2 and zero mean white noise with variance matrix I2
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Figure 5: Scatter plot of A, E and D-optimality features related to predictabil-
ity extracted from 20 artificial times series. The points that correspond to the
4-dimensional time series in the first cluster are plotted as circles (blue), those
for the 2-dimensional time series that form the second cluster as squares (red)

mixed between the two groups but for three 2-dimensional time series which
display large measurements.

The two clusters seem well separated according to the predictability measure-
ments. In particular the predictability measurements based on the D-optimality
criterion are markedly different each other. Some overlaps occur, namely in Fig-
ure 5 the measurements from the time series 12, 16, and 17 which belong to the
second cluster are either mixed or close to the measurements from the time
series in the first cluster. The points corresponding to the time series 9 and 17
are nearly coincident though the time series belong actually to different clusters.
The two clusters are better displayed in Figure 6 where the point coordinates are
the interpolability measurements. In this case only the points that correspond
to the time series 9 and 14 nearly overlap though they may be distinguished
easily.

5.2 Implementation Result

Table 3 report the result of application of multiobjective fuzzy clustering for
the multivariate time series data for evolving the cluster centers. Here, the
predictability and interpolability features of the centers are mentioned in terms
of A-optimality, E-optimality and D-optimality.

In Figure 7 the centers computed according to interpolability and predictabil-
ity criteria by fuzzy clustering algorithms are displayed.

The predictability centers seem influenced only by the A and E optimal-
ity indexes as the D-optimality indexes are close to zero (see Table 3). The
interpolability indexes are more balanced as regards their contribution to the
centers location. It may be inferred that the genetic multiobjective fuzzy parti-
tion algorithm is able to exploit successfully the joint contribution of the whole
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Figure 6: Scatter plot of A, E and D-optimality features related to interpola-
bility extracted from 20 artificial times series. The points that correspond to
the 4-dimensional time series in the first cluster are plotted as circles (blue),
those for the 2-dimensional time series that form the second cluster as squares
(red)

Table 3: Centers of clusters computed by the multiobjective fuzzy clustering
algorithm according to 3 features of predictability and 3 of interpolability for
multivariate time series

vector autoregression linear interpolator
cluster A-index E-index D-index A-index E-index D-index

1 0.4877 0.7052 0.0232 0.6491 0.7806 0.1243
2 0.5185 0.6224 0.1868 0.6908 0.7411 0.4174
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Figure 7: 3-dimensional scatter plot of the centers of the two clusters that
group 20 artificial multivariate time series according to several criteria. Centers
are calculated according to predictability fuzzy partition (circles - red) and
interpolability fuzzy partition (squares - blue)

set of indexes. As a matter of fact taking all indexes into account properly is
needed. For instance let the D-optimality index alone be considered as it seems
to guarantee the neat separation of the two time series clusters. Then at least
one time series is likely to be misplaced (the time series 9 in either Figures 5
or 6 seems the most obvious candidate). Using the other two indexes may set
right the issue.

6 Concluding remarks

In this paper techniques for clustering univariate and multivariate time series are
proposed. For clustering, two basic steps are carried, i.e., features extraction,
and assignment of time series to clusters according to an optimality criterion.
Many time series features have been suggested in the literature to represent
interesting characteristics. Their selection is mainly problem-dependent and in
principle features are to be preferred that allow measurements to be calculated
with limited computational effort. On the other hand, assignment of time series
to clusters in the presence of multiple indexes of cluster validity calls for multiob-
jective optimization algorithms. The Pareto optimality has been introduced as
a valuable criterion to solve optimization problems where several often conflict-
ing objectives have to be taken into account simultaneously. The computational
burden may become considerable and many algorithms useful for solving prob-
lems of moderate size are hardly applicable in practice as they turn out to be
too much demanding as regards computational resources. The meta heuristic
methods are probabilistic algorithms that may speed up computation as far as
optimization steps are concerned, so that most of the computing time is merely
spent for objective functions computation. We applied genetic algorithms be-



cause these are the meta heuristic most popular as regards clustering problems
and a considerable amount of knowledge is available. Furthermore genetic al-
gorithms may be used advantageously in the Pareto optimization framework
as the full Pareto front may be estimated in a single step of the algorithm. A
fuzzy clustering approach have been considered for clustering univariate and
multivariate time series data. Implementing Pareto optimality concepts de-
serves further research on theoretical explanation of algorithms behavior and
more comparison studies on the practical side.
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IRIDIA-2003-24.pdf.

Handl J. and Meyer B. (2007) Ant-based and swarm-based clustering, Swarm
Intelligence, 1, 95–113.

Holland J.H. (1975) Adaptation in Natural and Artificial Systems, University of
Michigan Press, Ann Arbor.

Huang H.Y., Ombao H. and Stoffer D.F. (2004) Discrimination and classification
of nonstationary time series using the SLEX model, Journal of the American
Statistical Association, 99, 763–774.

Kakizawa Y., Shumway R.H. and Taniguchi M. (1998) Discrimination and clus-
tering for multivariate time series, Journal of the American Statistical Asso-
ciation, 93, 328–340.



Kalpakis K., Gada D. and Puttagunta V. (2001) Distance measures for effective
clustering of ARIMA time series, in: Proceedings of the 2001 IEEE Interna-
tional Conference on Data Mining (ICDM’01), San Jose, CA, 273–280.

Keogh E. and Kasetty S. (2003) On the need for time series data mining bench-
marks: A survey and empirical demonstration, Data Mining and Knowledge
Discovery , 7, 349–371.

Kiefer J. (1959) Optimum experimental designs, Journal of the Royal Statistical
Society, Series B , 21, 272–319.

Kirkpatrick S., Gelatt C. and Vecchi M. (1983) Optimization by simulated an-
nealing, Science, 220, 671–680.

Konar A. (2005) Computational Intelligence: Principles, Techniques and Appli-
cations, Springer-Verlag.

Liao T.W. (2005) Clustering of time series data - a survey, Pattern Recognition,
38, 1857–1874.

Maulik U. and Bandyopadhyay S. (2000) Genetic algorithm based clustering
technique, Pattern Recognition, 33, 1455–1465.

Maulik U. and Bandyopadhyay S. (2003) Fuzzy partitioning using real coded
variable length genetic algorithm for pixel classification, IEEE Transactions
on Geosciences and Remote Sensing , 41, 1075–1081.

Nelson C.R. (1976) The interpretation of R2 in autoregressive-moving average
time series models, The American Statistician, 30, 175–180.

Pasia J.M., Hermosilla A.Y. and Ombao H. (2005) A useful tool for statisti-
cal estimation: genetic algorithms, Journal of Statistical Computation and
Simulation, 75, 237–251.

Piccolo D. (1990) A distance measure for classifying ARIMA models, Journal
of Time Series Analysis, 11, 153–164.

Pierce D.A. (1979) R2 measures for time series, Journal of the American Sta-
tistical Association, 74, 901–910.

Radhakrishnan R., Divakaran A. and Xiong Z. (2004) A time series cluster-
ing based framework for multimedia mining and summarization, Technical
Report TR2004-046 December 2004, MITSUBISHI ELECTRIC RESEARCH
LABORATORIES.

Reinsel G.C. (1993) Elements of Multivariate Time Series Analysis, Springer,
New York.

Singhal A. and Seborg D.E. (2005) Clustering multivariate time-series data,
Journal of Chemometrics, 19, 427–438.

Wang X., Smith K.A. and Hyndman R.J. (2005) Characteristic-based clustering
for time series data, Data Mining and Knowledge Discovery , 13, 335–364.



Winker P. and Gilli M. (2004) Applications of optimization heuristics to esti-
mation and modelling problems, Computational Statistics & Data Analysis,
47, 211–223.

Xie X.S. and Beni G. (1991) A validity measure for fuzzy clustering, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 13, 841–847.

Yang K. and Shahabi C. (2004) A PCA-based similarity measure for multivari-
ate time series, in: MMDB ’04: Proceedings of the 2nd ACM international
workshop on Multimedia databases, ACM, New York, 65–74.

Zitzler E., Laumanns M. and Thiele L. (2001) SPEA2: Improving the Strength
Pareto Evolutionary Algorithm, Technical Report 103, Gloriastrasse 35, CH-
8092 Zurich, Switzerland.

Zitzler E. and Thiele L. (1998) An evolutionary algorithm for multiobjective op-
timization: The strength pareto approach, Technical Report 43, Gloriastrasse
35, CH-8092 Zurich, Switzerland.


