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Abstract

We present an international portfolio optimization model where we
take into account the two different sources of return of an international
asset: the local returns denominated in the local currency, and the returns
on the foreign exchange rates. The explicit consideration of the returns on
exchange rates introduces non-linearities in the model, both in the objec-
tive function (return maximization) and in the triangulation requirement
of the foreign exchange rates. The uncertainty associated with both types
of returns is incorporated directly in the model by the use of robust op-
timization techniques. We show that, by using appropriate assumptions
regarding the formulation of the uncertainty sets, the proposed model
has a semidefinite programming formulation and can be solved efficiently.
While robust optimization provides a guaranteed minimum return inside
the uncertainty set considered, we also discuss an extension of our formu-
lation with additional guarantees through trading in quanto options for
the foreign assets and in equity options for the domestic assets.

Keywords robust optimization, international portfolio optimization, quanto

options, semidefinite programming

1 Introduction

The seminal work of Markowitz [20] in 1952 on portfolio optimization initiated
great interest and further academic research in the area of risk management. It
was only in 1968, however, that this same interest was extended to international
portfolios, that is, to portfolios with assets denominated in foreign currency. In
his seminal work, Grubel [13] suggests a model that explains how international
capital movements are a function not only of the interest rate differential be-
tween countries, but also of the growth rate of asset holdings.

International portfolios are attractive from the point of view of risk diversi-
fication, as it is expected that assets in the same economy have a higher correla-
tion among themselves than with assets in other countries. Levy and Sarnat [18]
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present an estimate of the potential gains on international diversification for the
period 1951-67. They conclude that the traditional approach of comparing the
returns of the developed countries with those of the developing ones underesti-
mated the impact of international diversification. The low correlation between
these two different economies allows the reduction of the portfolio variance.

Eun and Resnick [9] question previous studies on the benefits of international
diversification, as these did not take into account the uncertainty related to the
estimation of the returns. Moreover, they alert for the risk associated with
fluctuating exchange rates, as unfavorable movements have the potential to
override asset gains. With this in mind, they propose a hedging strategy based
on the short selling of an expected amount of foreign currency at the forward
rate. They show that from the point of view of an US investor, this hedging
strategy outperforms unhedged strategies.

The issue of hedging the currency risk has stimulated Black to suggest a
universal hedging formula [4]. He suggests that foreign assets should be hedged
equally by investors in all countries, though not fully. Glen and Jorion intro-
duce forward contracts in order to protect against depreciations of the foreign
exchange rates and optimize simultaneously over the weight allocation between
assets and currencies [12]. They show that portfolios with hedging restrictions,
limited to the size of the foreign asset holdings, in general perform better than
portfolios with unitary or universal hedging strategies. Larsen and Resnick [17]
note, however, that all published results relate to ex-post portfolios, and do not
take into account the parameter uncertainty resulting from estimations. In their
studies, they test the performance of hedging strategies when parameter inputs
are estimated from historical data. They find that “when dealing with historical
market data, the degree of parameter uncertainty is so severe that one cannot
reliably base parameter inputs or sophisticated hedging strategies upon it.” A
survey of the topic may be found in Shawky et al. [24].

More recently, Topaloglou et al. [27, 28] present a multi-stage stochastic
programming model that jointly determines the asset weights and the corre-
sponding hedge ratios for the international currencies, using the Conditional
Value-at-Risk (CVaR) as a risk measure. In their work, the authors include not
only forward contracts but also currency and quanto options to hedge against
the foreign exchange risk. They find that only “in-the-money” put options have
a comparable performance with forward contracts. Because currency options
are more flexible than forwards, it has been thought that these would be more
appropriate hedging instruments, as the investor is not sure of the future cash
inflow [11]. Steil, on the other hand, argues that the underlying of the currency
option is the foreign exchange, which does not correspond to the contingency
underlying the exposure, the asset return [25]. Instead, he suggests that quanto
options, which convert the price of an underlying asset into another asset at
a fixed guaranteed rate, are more adequate for international asset allocation
problems [14].

We deal with the uncertainty inherent to parameter estimation in interna-
tional portfolio optimization by applying robust optimization techniques. This
idea has initially been developed by Rustem and Howe [23]. We expand on their
work by reformulating the problem in a convex tractable framework and by sub-
sequently implementing the model using historical market data. The paradigm
of robust optimization gained the attention of the academic community after the
simultaneous works of Ben-Tal and Nemirovski [3] and El-Ghaoui and Lebret
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[8]. In the robust optimization framework, uncertainty is incorporated directly
in the model by considering the returns as random variables. An uncertainty set
is then specified, which reflects the investor’s expectations of the future returns,
and the model is optimized over this entire set. We refer the reader to Ben-Tal
et al. [1] for a recent survey of robust optimization and its applications.

Thi study extends the scope of the work in currency only portfolios in Fon-
seca et al. [10] to the more complex case of a portfolio with assets priced in
foreign currency. The main contributions of our work may be summarized as
follows:

1. Application of robust optimization techniques to an international portfolio
optimization problem where assets are denominated in different currencies.

2. Development of a semidefinite programming approximation to overcome
the bilinearities resulting from the multiplication of the asset and the
currency returns.

3. Presentation of a hedging strategy that combines robust optimization with
the investment in quanto options, which allows for a combined protection
of both the asset and the currency risk.

4. Implementation of the suggested models and presentation of numerical
results based on real market data. We describe a series of backtesting
experiments that compare the proposed models with the Markowitz risk
minimization approach.

The rest of this paper is organized as follows. Section 2 formally describes
the problem, the convexity issues arising from the multiplication of two ran-
dom variables, and the solution proposed to overcome these issues by using
semidefinite programming. In Section 3 we extend the range of available assets
to include quanto options, which provide the investor with an additional insur-
ance regarding any depreciations of foreign exchange rates and asset prices. We
implement the proposed models and present numerical results that assess their
performance in Section 4. We conclude in Section 5.

2 Robust International Portfolio Optimization

Our starting point is a US investor who wishes to invest in assets from other
countries. In order to calculate his returns, he must not only take into account
the asset returns in their domestic currency, but also the returns on the foreign
exchange rates. We assume that there are n available assets in the market,
denominated in m foreign currencies. The current and the future price of the
ith asset in its local currency is denoted by P 0

i and Pi, respectively. The local
return of asset i is then ra

i = Pi/P 0
i . We denote by Ej and E0

j the future and
the current spot exchange rate of the jth currency, respectively. Both quantities
are expressed in terms of the base currency per unit of the foreign currency j.
The return on a specific currency j is then described by re

j = Ej/E0
j . The total

return on any asset i will result from the multiplication of the local returns ra
i

with the respective currency returns re
j .

Before we are able to formulate the optimization model, we need to define
an auxiliary matrix O that assigns to each asset exactly one currency. If we
define oij as the ij th element of O, then we have:
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oij =

{

1 if the ith asset is traded in the j th currency
0 otherwise

(1)

In the Markowitz framework [20] we would want to minimize some risk measure,
the portfolio variance, while guaranteeing a minimum expected return, rtarget.
The formulation of our problem would be:

min
w

E {[diag(ra)Ore]′w − E([diag(ra)Ore]′w)}
2

(2)

s. t. E([diag(ra)Ore]′w) ≥ rtarget

w′1 = 1

w ≥ 0

where the variable w denotes the vector of asset weights in the portfolio. Through-
out this article, variables or parameters in bold face denote vectors. We denote
by 1 a vector of all ones, whose dimension is clear from the context.

Considering the currency risk in addition to the asset return risk complicates
matters, as we are multiplying two random variables. The derivation of the
mean and variance of this quadratic function is beyond the scope of this paper.
For a complete exposition, we refer the reader to Rustem [22]. Without loss of
generality, in our exposition we assume that there are no assets in the domestic
currency of the investor. Although this does not alter our discussion, it needs
to be taken into account during computation.

2.1 The Robust Model of International Portfolio Opti-

mization

While the Markowitz mean-variance framework has stimulated a significant
amount of research and still provides the basis for portfolio management, its
assumptions have been subject to criticism. In problem formulation (2), the ex-
pected returns have already been estimated and are taken as given. If, however,
the materialized returns deviate from the estimates, the determined solution
may be far from the optimum or even infeasible. In view of this, we would
like to incorporate directly into the model the uncertainty inherent to the es-
timation of the asset and currency returns. Robust optimization assumes that
the returns are random variables, which may materialize in the future within
a certain interval. This interval, commonly designated as uncertainty set, re-
flects the investor’s expectations as to how the returns will behave and may be
constructed according to some probabilistic measures.

We would like to obtain a solution to our problem that satisfies all the con-
straints, for all the possible values of the returns within that defined uncertainty
set. Hence, we are interested in the worst-case value of the returns for which the
solution is still feasible. The robust counterpart of the international portfolio
optimization model is:

max
w

min
(ra,re)∈Ξ

[diag(ra)Ore]′w (3a)

s. t. 1′w = 1 (3b)

w ≥ 0 (3c)
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where we defined the uncertainty set Ξ as:

Ξ =

{

(ra, re) ≥ 0 : Are ≥ 0 ∧
([

ra

re

]

−
[

r̄a

r̄e

])′

Σ−1

([

ra

re

]

−
[

r̄a

r̄e

])

≤ δ2

}

(4)

The uncertainty set Ξ defined in (4) results from the intersection of two
different sets. The risk associated with the asset and the currency returns is
expressed by the uncertainty set:

Ξ̂ =

{

(ra, re) ≥ 0 :

([

ra

re

]

−
[

r̄a

r̄e

])′

Σ−1

([

ra

re

]

−
[

r̄a

r̄e

])

≤ δ2

}

, (5)

where we assume that Σ is positive definite. This reflects the idea of a joint
confidence interval, where deviations of the returns from their expected values
are weighted by the covariance matrix Σ. Note that Σ does not refer only
to the relationship between assets, but also between assets and currencies, and
between currencies. Indeed, assets and currencies are not thought of as different
and separate entities, but their correlation is taken into consideration when
optimizing for the optimal portfolio weights:

Σ =

[

Σra Σrare

Σ′

rare Σre

]

(6)

The linear system of inequalities Are ≥ 0 reflects the triangular relationship
between the foreign exchange rates, which must be respected at all times to
prevent arbitrage. If we define two exchange rates relative to a base currency,
for example, the USD versus the EUR (USD/EUR) and the USD versus the
GBP (USD/GBP), then we automatically define an exchange rate between the
EUR and the GBP as well. When considering that the foreign exchange rate
returns may be within a specific interval, we must ensure that the corresponding
cross-exchange rate returns are also within adequate intervals. With m foreign
currencies in the model, the number of cross exchange rates is m(m − 1)/2. If
we define as Xjk the future cross exchange rate between Ej and Ek, that is, Xjk

is the number of units of currency j that equals one unit of currency k, then:

Ej ·
1

Ek

· Xjk = 1 (7)

In analogy to our previous notation, X0
jk denotes the current spot cross ex-

change rate, while xjk is the return on the cross exchange rate, that is, Xjk/X0
jk.

We may modify this equation to express the future exchange rates in terms of
the currency returns and the spot exchange rates:

E0
j re

j · 1

E0
kre

k

· X0
jkxjk = 1

⇔ [E0
j · 1

E0
k

· X0
jk] · [re

j · 1

re
k

· xjk] = 1

⇔ re
j · 1

re
k

· xjk = 1

5



Including this constraint, however, will make problem (3) nonconvex. Recall
that although we need to model and estimate the future returns of the cross ex-
change rates, they do not impact our objective function. In fact, their only effect
is to constrain further the uncertainty set (4) originally defined for the exchange
rates. We express the uncertainty associated with the returns of the cross ex-
change rates as intervals centered at the estimate, and subsequently make use
of the triangular relationship to simplify the expression and eliminate the cross
exchange rate returns from the model. Let us assume the cross-exchange rate
returns xkj are between a lower and an upper bound, then:

L ≤ xkj ≤ U

⇔ L ≤ re
j/re

k ≤ U

⇔ Lre
k ≤ re

j ≤ Ure
k, (8)

which can be expressed as a linear system of inequalities, with matrix A as the
respective coefficient matrix.

However, the triangulation requirement is not the only source of nonconvex-
ities in our initial problem formulation (3). Recall that we are multiplying two
different sources of returns: the local asset and the currency returns. A common
approximation to this problem, initially proposed by Eun and Resnick [9], is to
consider the total return on assets as the sum between the local asset returns
and the currency returns. In the following subsection, we present an alterna-
tive semidefinite programming approach, where a linear function is maximized
subject to the constraint that an affine combination of symmetric matrices is
positive semidefinite [30].

2.2 Semidefinite Programming Approximation

We start by rewriting our robust problem (3) in the epigraph form [6]:

max
w,φ

φ (9a)

s. t. [diag(ra)Ore]′w − φ ≥ 0, ∀(ra, re) ∈ Ξ (9b)

1′w = 1 (9c)

w ≥ 0, (9d)

We show how to replace the semi-infinite inequality constraint (9b) by a
linear matrix inequality, using the following result [2]:

Lemma 1. (S-lemma) Given two symmetric matrices W and S of the same
size and assuming the inequality ξ′Wξ ≥ 0 is strictly feasible, that is, ξ̄′W ξ̄ ≥ 0
for some ξ̄ ∈ R

k, then the following equivalence holds:

[ξ′Wξ ≥ 0 ⇒ ξ′Sξ ≥ 0] ⇔ ∃λ ≥ 0 : S � λW . (10)

Lemma 2. (Approximate S-lemma) Consider t symmetric matrices Wl with
l = 1, . . . , t and the following propositions:

(i) ∃λ ∈ R
t with λ ≥ 0 and S − ∑t

l=1 λlWl � 0;
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(ii) ξ′Sξ ≥ 0, ∀ ξ ∈ Ξ := {ξ ∈ R
k : ξ′Wlξ ≥ 0, l = 1, . . . , t}.

For any t ∈ N, (i) implies (ii).

The proof of Lemma 2 follows along similar lines as Proposition 3.4 in
Kuhn et al. [16]. To keep this paper self-contained, we repeat the proof here.

Proof. For any ξ ∈ Ξ, proposition (i) implies that:

ξ′

[

S −
t

∑

l=1

λlWl

]

ξ ≥ 0 (11)

⇔ ξ′Sξ −
t

∑

l=1

λlξ
′Wlξ ≥ 0 (12)

Because λ ≥ 0 and ξ′Wlξ ≥ 0 for all ξ ∈ Ξ, statement (ii) follows:

ξ′Sξ ≥ ξ′Sξ −
t

∑

l=1

λlξ
′Wlξ ≥ 0 (13)

In order to apply Lemma 2, we rewrite the constraints that define the support
of our uncertain returns in the form:

Ξ = {ξ ∈ R
k : e′1ξ = 1, ξ′Wlξ ≥ 0, l = 1, . . . , t}, (14)

where the first component of the vector ξ is by construction equal to 1. Starting
from the uncertainty set Ξ̂ in (5), we define an equivalent constraint of the form
ξ′W1ξ ≥ 0, where:

ξ =





1
ra

re



 , W1 =

[

(δ2 −
[

r̄a′ r̄e′
]

Σ−1
[

r̄a′ r̄e′
]′

)
[

r̄a′ r̄e′
]

Σ−1

Σ−1
[

r̄a′ r̄e′
]′ −Σ−1

]

A naive incorporation of the triangulation constraint into the new SDP
model would imply constructing as many different symmetric matrices as the
number of constraints, that is, rows in matrix A. We can reduce the number of
constraints by expressing the pair of inequalities (8) as a quadratic constraint.
We define mc as the midpoint between Lre

k and Ure
k, that is, mc = (U +L)re

k/2.
We note that:

Lre
k ≤ re

j ≤ Ure
k (15a)

⇔ Lre
k − mc ≤ re

j − mc ≤ Ure
k − mc (15b)

⇔ L − U

2
re
k ≤ re

j − mc ≤ U − L

2
re
k (15c)

⇔ |re
j − mc| ≤

∣

∣

∣

∣

(

U − L

2

)

re
k

∣

∣

∣

∣

, (15d)

where the operator |·| denotes the absolute value. By squaring expression (15d),
we may further simplify it to:

−UL(re
k)2 − (re

j )
2 + (U + L)re

kre
j ≥ 0. (16)
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For each pairwise inequality in re
j and re

k, we define the set of constraints ξ′Wlξ ≥
0, for l = 2, . . . , t, where:

Wl =





0 0 0
0 0 0
0 0 Ωe



 , (17)

with

Ωe = −(UL)ekek
′ − ejej

′ +
1

2
(U + L)ejek

′ +
1

2
(U + L)ekej

′, (18)

where ek, ej are the canonical basis vectors in R
m.

We are now able to apply Lemma 2 and replace the inequality constraint
(9b) in our original problem with a linear combination of matrices constrained
to be positive semidefinite:

max
w,λ,φ

φ (19a)

s. t. S −
t

∑

l=1

λlWl � 0 (19b)

1′w = 1 (19c)

w, λ ≥ 0 (19d)

where:

S =





−φ 0 0
0 0 1

2diag(w)O
0 1

2O′diag(w) 0





The reformulated problem (19) on the decision variables w and λ constitutes
a conservative approximation, that is, it provides a lower bound to our original
problem (9). A similar procedure to compute lower bounds has been suggested
by Shor and others, see [30]. Moreover, the semidefinite program is a convex
optimization problem, as both its objective function and constraints are convex.
We have therefore eliminated the intractability issues in our model and we are
able to solve it efficiently with a modern semidefinite programming solver such
as SDPT3 [26, 29].

Our investor may also wish to add a further constraint to guarantee a min-
imum expected return. Recall that we are multiplying two random variables,
and without any further assumptions, the expected value of the product of two
random variables is not necessarily the product of each variable expected value.
Rustem [22] provides a computationally tractable approach to evaluate the mean
and variance of the product of two random variables. We follow his approach
to compute the expected value of the portfolio:

E([diag(ra)Ore]′w) ≥ rtarget (20a)

⇔ [diag(r̄a)Or̄e]′w +
1

2
trace(ΣΩ) ≥ rtarget (20b)

where

Ω =

[

0 diag(w)O
O′diag(w) 0

]
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Maximizing the portfolio return in view of the worst possible outcomes of the
asset and the currency returns ensures that the investor receives a guaranteed
wealth at maturity date. In fact, as long as any variation of the asset and
the currency returns stays within the boundaries of the uncertainty set Ξ, the
investor will obtain a portfolio return higher than (or in the worst case equal
to) the value of the objective function determined in (19) — that is the non-
inferiority property of robust optimization. In the next section, we look at
introducing quanto options as another investment alternative. These options
are able to provide the investor not only with an additional profit, but also with
a protection against both a depreciation of the foreign exchange rates and a
decrease of the local asset returns. One of the disadvantages of the proposed
robust optimization approach is that it provides a guarantee only inside the
uncertainty set, while no insurance is provided if the returns materialize outside
the uncertainty set. Because put options are able to lock a certain value of the
foreign exchange rates and of the asset prices, they can provide a protection
outside the uncertainty set considered.

3 Downside Risk Protection with Quanto Op-

tions

Robust optimization provides a guaranteed minimum portfolio return as long as
the returns remain within the uncertainty set considered. Unless the worst case
materializes, the investor will always obtain a better portfolio return. Options
may provide additional guarantees as they allow the investor to lock in a specific
foreign exchange rate or asset price.

In the international portfolio optimization literature, the hedging instrument
typically used is the forward contract, despite this being a binding agreement
where a specific amount of money will be exchanged, thus not offering the
investor any flexibility. Recent works have studied the performance of options
as a hedging instrument. However, results seem to point towards the better
performance of forwards when compared to simple options strategies, see [27].

3.1 Hedging with Quanto Options

Options are a flexible instrument as they give their buyer the right but not the
obligation to buy (call) or sell (put) another asset, called the underlying, at a
future date for a specified price, the strike [15]. While Giddy [11] argues that
options are a better suited instrument for situations in which the amount to be
received in the future is uncertain, Steil [25] states that in the case of foreign
investments, currency options are not suitable as the underlying asset does not
correspond to the contingency that we wish to hedge against. In an international
portfolio, if the investor wishes to be protected against both depreciations of
the foreign exchange rate and losses in the value of the assets, he would have
to buy both currency and equity options. We propose to use quanto options
to overcome these issues. Quanto options or “quantity-adjusting options” are
mostly used in foreign exchange markets, where the price of an underlying asset
needs to be converted into another underlying asset at a fixed guaranteed rate,
[31]. In a study by Ho et al. [14], it is shown that quanto put options provide
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a better downside protection as they take into account the correlation between
the asset and the foreign exchange rate.

In our modelling framework, we follow closely the approach suggested by
Zymler [32]. We define the payoff of a quanto put option Q as the difference
between the strike price K and the spot price of the underlying asset P at
maturity date, translated to the base currency of the investor at a specified
exchange rate Ē:

Q = max
{

0, Ē(K − P )
}

(21)

Note that both the strike price K and the price of the asset P are denominated
in foreign currency and translated at the fixed foreign exchange rate Ē expressed
in units of the base currency per unit of the foreign currency. The exchange rate
chosen is usually the forward rate with the same maturity as the option. In 1992,
Reiner [21] formally derived a pricing formula for quanto options in the domestic
currency, based on the same assumptions as the Black & Scholes model [5]. The
key aspect of his formulation lies in the inclusion of the correlation coefficient
ρ between the foreign equity and the exchange rate. We define the premium pq

of a quanto put option with expiration date in T periods of time as:

pq = Ē
{

Ke−rT N(σs

√
T − d1) − Pe(rf−r−ρσsσfx)T N(d1)

}

(22)

where:

d1 =
log (P/K) + (rf − ρσsσfx + σ2

s/2)T

σs

√
T

, (23)

σs and σfx denote the standard deviation of the asset price and the foreign
exchange rate respectively, N(·) is the standard normal distribution, and r and
rf are the domestic and the foreign risk-free rate respectively. We concentrate
solely on the payoff and pricing functions of put options, as our model will only
include put options. The inclusion of call options could easily be done following
the same approach as for put options. Because we are interested in the potential
hedging benefits of options, we choose to include only put options.

In order to include quanto options in our robust optimization model, we
define as rq

ij the return on the jth quanto option on the ith foreign asset, given
that there are k options available for each asset:

rq
ij = max

{

0,
Ē (Kij − Pi)

pq
ij

}

(24)

Without loss of generality, we assume that each asset has the same number of
options available in the market. The future spot price Pi of the underlying asset
may be rewritten as a function of the return on the ith asset ra

i and the asset’s
spot price P 0

i :

rq
ij = max

{

0,
Ē

(

Kij − P 0
i ra

i

)

pq
ij

}

(25)

As in the previous section, we wish to maximize our portfolio return in view
of the worst-case of the asset and the currency returns, assuming that these
will materialize in the uncertainty set defined in (4). A new vector of weights
wq defines the percentage of the budget allocated to quanto put options. We
formulate our hedging model as:
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max
w,wq,φ

φ (26a)

s. t. [diag(ra)Ore]′w + rq′
wq − φ ≥ 0, ∀(ra, re) ∈ Ξ, rq = f(ra)(26b)

1′w + 1′wq = 1 (26c)

w, wq ≥ 0 (26d)

Note that rq, though dependent on two parameters, is interpreted as a vector.
Writing the return on the quanto options rq as a function f(·) of the local asset
returns ra, implies that constraint (26b) must be satisfied for all the random
returns in Ξ, plus:

rq
ij ≥ Ē

(

Kij − P 0
i ra

i

)

pq
ij

, ∀ i = 1, . . . , n, ∀ j = 1, . . . , k (27)

rq
ij ≥ 0, ∀ i = 1, . . . , n, ∀ j = 1, . . . , k (28)

Again, we will use Lemma 2 to derive an equivalent tractable formulation to
the hedging problem (26). As in Section 2, we rewrite the constraints referring
to the quanto options in the quadratic form:

ξ′qWlξq ≥ 0, with l = 1, . . . , 2(kn),

where the vector ξq is augmented by the variables rq:

ξ′q =
[

1 ra re rq
]

.

This is possible because the first element of the Ξ vector is 1.
Note that there are k options for each asset of the n assets, and that for

each option a symmetric matrix W on the returns and on the non-negativity
constraint must be considered. Therefore the total number of new matrices to
be introduced in the model amounts to 2(kn). Given that the vector ξq has
been augmented by (kn) new variables, the symmetric matrices regarding the
uncertainty set (4) must also reflect this change and be augmented by (kn) rows
and columns.

With these additional matrices, we are now able to replace the semi-infinite
inequality (26b) in our hedging model (26) with a linear combination of matrices
constrained on their positive semidefiniteness:

max
w,wq,λ,φ

φ (29a)

s. t. S −
t

∑

l=1

λlWl � 0 (29b)

1′w + 1′wq = 1 (29c)

w, wq, λ ≥ 0 (29d)

where:

S =









−φ 0 0 1
2w′

q

0 0 1
2diag(w)O 0

0 1
2O′diag(w) 0 0

1
2wq 0 0 0
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Note that the consideration of a large number of options may result in numerical
problems during computation, as for each option considered, we include two new
matrices Wl. Moreover, increasing the number of matrices can have an adverse
effect on the quality of the approximation to the optimal solution.

As before, we could also include a constraint on the expected portfolio return:

E([diag(ra)Ore]′w) ≥ rtarget (30)

We do not include the option returns in this constraint, as we are only interested
in their hedging potential and not on speculating with options. Given their
leverage effect and the fact that we optimize for the worst-case of the currency
and the asset returns, if no restrictions were set on the options’ weight, the
optimal solution would be to invest the full budget on “in-the-money” options.
With our approach however, the investor guarantees a certain expected portfolio
return resulting from the asset returns and is able to invest the remainder budget
in options, if that is the optimal solution.

In model (29) we use options as an additional mean to optimize for the
worst-case return within the uncertainty set. We now elaborate a model where
options are used in order to limit the investor’s exposure to market realisations
outside the uncertainty set:

max
w,wq,φ

φ (31a)

s. t. [diag(ra)Ore]′w − φ ≥ 0, ∀(ra, re) ∈ Ξ (31b)

[diag(ra)Ore]′w + rq′
wq − βφ ≥ 0, ∀ra, re ≥ 0, rq = f(ra) (31c)

1′w + 1′wq = 1 (31d)

w, wq ≥ 0, (31e)

Constraint (31c) imposes the portfolio value comprised of both assets and op-
tions to be greater than a percentage β of the worst-case return, when the
random returns materialize outside the uncertainty set.

By investing in put options, the investor is able to lock in a certain price
of the underlying asset denominated in his domestic currency. In the case of
foreign assets, the exchange risk is effectively eliminated by considering a fixed
foreign exchange rate in which to translate the respective payoff. Depending on
the total investment in options, in particular relative to the amount invested
in foreign assets, the investor may benefit from an increased protection even
when the asset returns fall outside the uncertainty set considered. In the next
section, we perform a series of experiments following the implementation of both
the robust and the hedging models.

4 Numerical Results

The theoretical framework developed in Sections 2 and 3 will now be used to
compute optimal solutions to our international portfolio model. We assume
the point of view of a US investor who wishes to invest not only in domestic
assets, such as the S&P500 and the NASDAQ, but also in foreign assets. We
consider 3 international indexes, namely, the German DAX and the French
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CAC40, both denominated in EUR, and the Swiss SMI in CHF. The models
were implemented in YALMIP [19] together with the semidefinite programming
solver SDPT3 [26, 29]. The expected returns on the local assets and on the
foreign exchange rates, as well as the covariance matrix are constructed from 10
years of monthly data between October 1998 and September 2008, see Table 1.

Ret. (%) Std. (%) Correl.

DAX 3.37 23.40 1.00
CAC40 3.40 18.64 0.92 1.00
SMI 2.39 14.76 0.77 0.82 1.00
S&P500 2.09 14.14 0.79 0.77 0.72 1.00
NASDAQ 2.93 27.79 0.71 0.67 0.48 0.83 1.00

EUR 2.15 8.28 -0.14 -0.19 -0.19 0.01 0.02 1.00
CHF 2.34 8.55 -0.23 -0.27 -0.28 -0.06 -0.05 0.94 1.00

Table 1: Distributional parameters of annual returns (Oct-98 to Sep-08)

4.1 Portfolio Composition

Throughout this section, we will designate problem (19) as the robust problem,
and problem (29) as the hedging problem. We first would like to measure the
impact of the size of the uncertainty set on the chosen assets and then assess
how the introduction of options influences these choices.

The size of the uncertainty set, defined by δ2, is a subjective parameter,
which depends on the risk aversion of the investor. Mainly, the uncertainty set
should reflect the investor’s expectations of the future returns, and it can be
constructed according to some probabilistic measures of the returns distribution.
If we assume the future returns are normally distributed and δ2 is assigned the
value of the αth percentile of a χ2 distribution with v degrees of freedom, then
there is a probability of α% that the future returns will be inside the uncertainty
set [7]:

if δ2 = (χ2)−1(α%, v) ⇒ Prob((ra, re) ∈ Ξ) ≥ α%

The degrees of freedom should be equal to the number of random returns in the
portfolio.

We first compare the portfolio composition between the Markowitz model
and the robust model. We find that both models invest in the same assets, but
with different weights. We also measure the impact of increasing the size of
the uncertainty set on the worst-case return in the case of the robust model,
see Figure 1. As expected, the higher the value of δ, the smaller the worst-
case return, that is, our robust model is only able to guarantee the investor
with a smaller return. We also note that when an expected return constraint is
included, the worst-case return is smaller. This difference is more accentuated
for higher values of δ. As we now impose a return constraint, weights are
allocated differently in order to satisfy this constraint, therefore the optimizer
is not able to guarantee the same return anymore.

We now include a further guarantee for the investor in the form of options,
and assess how that impacts the portfolio composition. We have included five
different options for each asset: simple put options for the domestic assets and
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Figure 1: Relationship between worst-case return and parameter δ

quanto put options for the foreign assets. The considered strike prices are at
the maximum distance of 10% from the current spot price of the underlying
asset, and are equally distant from each other. We have therefore included two
options “in-the-money”, two options “out-of-the-money”, and one option “at-
the-money”. The option prices are calculated according to the pricing formula
proposed by Reiner [21] in the case of quanto options, see Section 3. Standard
put option prices were calculated according to the Black & Scholes model [5].

Figure 1 depicts the impact of a larger uncertainty set, that is, higher val-
ues of δ, on the worst-case portfolio return, when options are included as an
alternative investment strategy. The first thing to note is that the worst-case
return with options in the portfolio is always higher than or equal to the one
without options, irrespective of the size of the uncertainty set. Investing in
options thus provide an additional guarantee in the form of a lower bound on
the portfolio value. Because we do not impose any restriction on the hedging
strategy, options may be bought even when there are no portfolio holdings on
the respective underlying asset. In the case of our particular data set and if we
do not consider a constraint on the expected return, the weight allocated to put
options decreases for larger uncertainty set sizes, from 28%, when δ = 0.5, to
15% when δ = 4.5, concentrating on “in-the-money” put options. Also, if we
add an expected return constraint, investment in options decreases considerably,
weighing only about 1% of the portfolio. Moreover, the options chosen to invest
in are either “at-the-money” or “out-of-the-money”, given that additional re-
sources have to be allocated to the assets in order to satisfy the expected return
constraint.

The choice for “in-” and “at-the-money” put options, though it may seem
surprising, can be explained by the fact that we are not optimizing for the
worst-case of the options returns but only for the worst-case of the assets and
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the currencies returns. If that was the case, the optimal put option would
have a strike price equal or very close to the worst-case asset price. With our
formulation, the chosen options provide not only a hedging guarantee, but also
a profit opportunity.

4.2 Model Evaluation with Historical Market Prices

We want to evaluate the performance of both the robust and the hedging models
under real market conditions and over a long period of time. To this end, we
consider the real index returns and the respective real currency returns in the
period from October 1998 until September 2008. Each month we calculate the
optimal asset allocation taking the expected asset and currency returns as the
mean of the historical returns from the previous twelve months. The upper and
lower bounds of the cross-exchange rates were calculated based on their mean
returns for the period considered plus the standard deviation for the same period
multiplied by a factor of ±1.5. These bounds and the covariance matrix Σ are
assumed to remain constant throughout this period. At the end of each month,
the actual portfolio return is computed based on the materialized returns, and
the options (if any) are exercised or left to expiry depending on the spot price of
the asset. This procedure is repeated every month, and the accumulated wealth
is calculated.

We consider five different options for each asset in the portfolio. In the case
of domestic assets, simple put options are included, while for foreign assets, we
include quanto options. Because quanto options are mainly traded over-the-
counter, there are no records of historical premiums. In order to perform our
backtesting experiment, we simulate the options premiums based on the pricing
formula developed by Reiner [21] described in Section 3. For the simple put
options, we use the Black & Scholes model [5]. We consider five different strike
prices in the range of 10% equally distant from the current asset price. The
fixed foreign exchange rate Ē is assumed to be the historical forward exchange
rate with one month maturity, equal to the option maturity. We consider an
annual risk-free rate of 3.32% for the US investor (based on LIBOR annual rates
for the same period).

We have solved the robust and the hedging models over the considered period
for different sizes of the uncertainty set δ, computed the cumulative gains and
compared them with the results obtained from the Markowitz risk minimization
model. We have also imposed an expected return constraint of 5% per year.
Recall that this expected return must originate only from the asset returns,
which prevents the entire budget from being allocated to options.

Figure 2 depicts the accumulated wealth from October 1998 to September
2008 for the three different models. For this particular data set and parameter
choice, the minimum risk model is outperformed by the robust model, while
the hedging model dominates both the robust and the minimum risk models.
The average annual returns for the robust and the hedging models are 6% and
9% respectively, while the Markowitz model only provides a return of 2.84%.
We have also computed the average annual return for different values of the
parameter δ for both the robust and the hedging models, see Table 2.

Because we are optimizing for the worst-case scenario, our accumulated port-
folio returns, even in times of decreasing asset prices, are never as low as in
the Markowitz model. From January 2002 until September 2003, both the
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Figure 2: Accumulated wealth over the period from Oct98 to Sep08

δ Robust Ret. (%) Hedging Ret. (%)

0.5 6.47 8.31
1 6.02 9.03
1.5 5.98 8.89
2 6.06 9.51
2.5 6.01 11.66
3 5.99 12.56
3.5 5.98 12.80

Table 2: Average annual returns for different values of parameter δ

Markowitz risk minimization model and the robust model incurred in losses,
though not so significant in the latter case. The insurance effect of the put op-
tions is clearly seen in that same period. The hedging model is the only model
that guarantees an accumulated wealth above 1, that is, without any losses to
the investor.

We are also interested in assessing the performance of the hedging model
in the case where options provide an additional guarantee against the future
returns materializing outside the uncertainty set. We have conducted the back-
testing experiment described above for the alternative hedging model (31). We
compared the backtesting results of the robust model with those of the new
hedging formulation for different values of β, namely β ∈ {0.3; 0.5; 0.7; 0.9},
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where δ = 1. We found that there was no improvement from the robust model
when including this new constraint, as all of the curves coincided, yielding an
average annual return of about 6%. We note that with this new formulation the
optimal solution is to invest in “out-of-the-money” options with the strike price
as close as possible to the worst-case asset price. This results differs from our
previous results where preference was given to “at-the-money” options. The fre-
quency of “out-of-the-money” options being exercised is below 50%, therefore in
many cases they represent only a cost. Although potentially more expensive as
it relies on “at-the-money” options, our initial hedging formulation (29) allows
not only for a hedging guarantee, but also for a profit opportunity. Exercised
put options also offer a protection in case the asset and the currency returns
fall outside the uncertainty set, and in this way the additional constraint is
redundant.

Although the backtesting results seem to point towards a good performance
of the hedging model, these results should also be regarded with caution. Be-
cause we use simulated option prices, there is a risk of underestimating these
prices, which favors the investment in options and could cause an upward-bias
of the results. Furthermore, we have not considered the risk of default from the
writer of the option, which in the case of over-the-counter traded options might
be significant.

5 Conclusion

In this paper, we extend the paradigm of robust optimization to the interna-
tional portfolio allocation problem. We show that, although the naive problem
formulation is nonconvex due to the multiplication of asset and currency returns,
it has a tractable convex formulation. The model we obtain by employing the
approximate S-Lemma is a conservative approximation to our original problem.
We further extend the robust optimization approach by complementing it with
an investment in quanto options as an additional insurance. Quanto options
link a foreign equity option with a forward rate, and they have been shown to
be more effective in downside risk protection than the separate consideration of
foreign equity and currency options.

The suggested approach can be considered to be more flexible than the
standard hedging strategies, as it relies on options and robust optimization,
and not exclusively on forward rates. Furthermore, the hedging strategy is
implemented from a portfolio perspective and does not depend on the future
value of any particular asset or currency. The backtesting results seem to point
towards the better performance of the robust model when compared to the
classical Markowitz risk minimization model. The hedging model with options
outperforms both the robust and the risk minimization models in the considered
data set.
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