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Abstract

Markov decision processes (MDPs) are powerful tools for decision making in uncertain dynamic

environments. However, the solutions of MDPs are of limited practical use due to their sensitivity

to distributional model parameters, which are typically unknown and have to be estimated by the

decision maker. To counter the detrimental effects of estimation errors, we consider robust MDPs

that offer probabilistic guarantees in view of the unknown parameters. To this end, we assume

that an observation history of the MDP is available. Based on this history, we derive a confidence

region that contains the unknown parameters with a pre-specified probability 1− β. Afterwards, we

determine a policy that attains the highest worst-case performance over this confidence region. By

construction, this policy achieves or exceeds its worst-case performance with a confidence of at least

1 − β. Our method involves the solution of tractable conic programs of moderate size.

Notation For a finite set X = {1, . . . , X}, M(X ) denotes the probability simplex in RX . An X -valued

random variable χ has distribution m ∈ M(X ), denoted by χ ∼ m, if P(χ = x) = mx for all x ∈ X . By

default, all vectors are column vectors. We denote by ek the kth canonical basis vector, while e denotes

the vector whose components are all ones. In both cases, the dimension will usually be clear from the

context. For square matrices A and B, the relation A � B indicates that the matrix A − B is positive

semidefinite. We denote the space of symmetric n × n matrices by Sn. The declaration f : X
c7→ Y

(f : X
a7→ Y ) implies that f is a continuous (affine) function from X to Y . For a matrix A, we denote

its ith row by A⊤
i· (a row vector) and its jth column by A·j .

1 Introduction

Markov decision processes (MDPs) provide a versatile model for sequential decision making under uncer-

tainty, which accounts for both the immediate effects and future ramifications of decisions. In the past

sixty years, MDPs have been successfully applied to numerous areas, ranging from inventory control and

investment planning to studies in economics and behavioural ecology [4, 19].
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In this paper, we study MDPs with a finite state space S = {1, . . . , S}, a finite action space A =

{1, . . . , A}, and a discrete but infinite planning horizon T = {0, 1, 2, . . .}. Without loss of generality

(w.l.o.g.), we assume that every action is admissible in every state. The initial state is random and follows

the probability distribution p0 ∈ M(S). If action a ∈ A is chosen in state s ∈ S, the subsequent state is

determined by the conditional probability distribution p(·|s, a) ∈ M(S). We condense these conditional

distributions to the transition kernel P ∈ [M(S)]S×A, where Psa := p(·|s, a) for (s, a) ∈ S × A. The

decision maker receives an expected reward of r(s, a, s′) ∈ R+ if action a ∈ A is chosen in state s ∈ S

and the subsequent state is s′ ∈ S. W.l.o.g., we assume that all rewards are non-negative. The MDP is

controlled through a policy π = (πt)t∈T , where πt : (S×A)t−1×S 7→ M(A). πt(·|s0, a0, . . . , st−1, at−1; st)

represents the probability distribution over A according to which the next action is chosen if the current

state is st and the state-action history is given by (s0, a0, . . . , st−1, at−1). Together with the transition

kernel P , π induces a stochastic process (st, at)t∈T on the space (S ×A)∞ of sample paths. We use the

notation EP,π to denote expectations with respect to this process. Throughout this paper, we evaluate

policies in view of their expected total reward under the discount factor λ ∈ (0, 1):

E
P,π

[
∞∑

t=0

λtr(st, at, st+1)
∣∣∣ s0 ∼ p0

]
(1)

For a fixed policy π, the policy evaluation problem asks for the value of expression (1). The policy

improvement problem, on the other hand, asks for a policy π that maximises (1).

Most of the literature on MDPs assumes that the expected rewards r and the transition kernel P

are known, with a tacit understanding that they have to be estimated in practice. However, it is well-

known that the expected total reward (1) can be very sensitive to small changes in r and P [15]. Thus,

decision makers are confronted with two different sources of uncertainty. On one hand, they face internal

variation due to the stochastic nature of MDPs. On the other hand, they need to cope with external

variation because the estimates for r and P deviate from their true values. In this paper, we assume

that the decision maker is risk-neutral to internal variation but risk-averse to external variation. This

is justified if the MDP runs for a long time, or if many instances of the same MDP run in parallel [15].

We focus on external variation in P and assume r to be known. Indeed, the expected total reward (1)

is typically more sensitive to P , and the inclusion of reward variation is straightforward [7, 15].

Let P 0 be the unknown true transition kernel of the MDP. Since the expected total reward of a policy

depends on P 0, we cannot evaluate expression (1) under external variation. Iyengar [11] and Nilim and

El Ghaoui [17] therefore suggest to find a policy that guarantees the highest expected total reward at a
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given confidence level. To this end, they determine a policy π that maximises the worst-case objective

z∗ = inf
P∈P

E
P,π

[
∞∑

t=0

λtr(st, at, st+1)
∣∣∣ s0 ∼ p0

]
, (2)

where the uncertainty set P is the Cartesian product of independent marginal sets Psa ⊆ M(S) for each

(s, a) ∈ S × A. In the following, we call such uncertainty sets rectangular. Problem (2) determines the

worst-case expected total reward of π if the transition kernel can vary freely within P . In analogy to our

earlier definitions, the robust policy evaluation problem evaluates expression (2) for a fixed policy π, while

the robust policy improvement problem asks for a policy that maximises (2). The optimal value z∗ in (2)

provides a lower bound on the expected total reward of π if the true transition kernel P 0 is contained in

the uncertainty set P . Hence, if P is a confidence region that contains P 0 with probability 1 − β, then

the policy π guarantees an expected total reward of at least z∗ at a confidence level 1− β. To construct

an uncertainty set P with this property, [11] and [17] assume that independent transition samples are

available for each state-action pair (s, a) ∈ S × A. Under this assumption, the samples for each state-

action pair follow independent multinomial distributions whose (unknown) parameters coincide with the

entries of P 0. One can then employ standard statistical techniques to derive a confidence region for P 0.

If we project this confidence region onto the marginal sets Psa, then z∗ provides the desired probabilistic

lower bound on the expected total reward of π.

In this paper, we alter two key assumptions of the outlined procedure. Firstly, we assume that the

decision maker cannot obtain independent transition samples for the state-action pairs. Instead, she has

merely access to an observation history (s1, a1, . . . , sn, an) ∈ (S × A)n generated by the MDP under

some known policy. Secondly, we relax the assumption of rectangular uncertainty sets. In the following,

we briefly motivate these changes and give an outlook on their consequences.

Although transition sampling has theoretical appeal, it is often prohibitively costly or even infeasible

in practice. To obtain independent samples for each state-action pair, one needs to repeatedly direct

the MDP into any of its states and record the transitions resulting from different actions. In particular,

one cannot use the transition frequencies of an observation history because those frequencies violate the

independence assumption stated above. The availability of an observation history, on the other hand,

seems much more realistic in practice. Observation histories introduce a number of theoretical challenges,

such as the lack of observations for some transitions and stochastic dependencies between the transition

frequencies. We will apply results from statistical inference on Markov chains to address these issues.

The restriction to rectangular uncertainty sets has been introduced in [11] and [17] to facilitate

computational tractability. Under the assumption of rectangularity, the robust policy evaluation and

improvement problems can be solved efficiently with a modified value or policy iteration. This implies,
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however, that non-rectangular uncertainty sets have to be projected onto the marginal sets Psa. Not

only does this ‘rectangularisation’ unduly increase the level of conservatism, but it also creates a number

of undesirable side-effects that we discuss in Section 2. In this paper, we show that the robust policy

evaluation and improvement problems remain tractable for uncertainty sets that exhibit a milder form of

rectangularity, and we develop a polynomial time solution method. On the other hand, we prove that the

robust policy evaluation and improvement problems are intractable for non-rectangular uncertainty sets.

For this setting, we formulate conservative approximations of the policy evaluation and improvement

problems. We bound the optimality gap incurred from solving those approximations, and we outline

how our approach can be generalised to a hierarchy of increasingly accurate approximations.

The contributions of this paper can be summarised as follows.

1. We analyse a new class of uncertainty sets, which contains the above defined rectangular uncer-

tainty sets as a special case. We show that the optimal policies for this class are randomised

but memoryless. We develop algorithms that solve the robust policy evaluation and improvement

problems over these uncertainty sets in polynomial time.

2. It is stated in [17] that the robust policy evaluation and improvement problems “seem to be hard

to solve” for non-rectangular uncertainty sets. We prove that both problems are indeed strongly

NP-hard. We develop a hierarchy of increasingly accurate conservative approximations, together

with bounds on the incurred optimality gap.

3. We present a method to construct uncertainty sets from observation histories. In contrast, existing

approaches rely on transition sampling, which is often too costly or infeasible in practice. Our

approach allows to account for different types of a priori information about the transition kernel,

which helps to reduce the size of the uncertainty set. We also investigate the convergence behaviour

of our uncertainty set when the length of the observation history increases.

The study of robust MDPs with rectangular uncertainty sets dates back to the seventies, see [2,

9, 21, 25] and the surveys in [11, 17]. However, most of the early contributions do not address the

construction of suitable uncertainty sets. In [15], Mannor et al. approximate the bias and variance of

the expected total reward (1) if the unknown model parameters are replaced with estimates. Delage

and Mannor [7] use these approximations to solve a chance-constrained policy improvement problem in

a Bayesian setting. Recently, alternative performance criteria have been suggested to address external

variation, such as the worst-case expected utility and regret measures. We refer to [18, 26] and the

references cited therein. Note that we could address external variation by encoding the unknown model

parameters into the states of a partially observable MDP (POMDP) [16]. However, the optimisation of
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POMDPs becomes challenging even for small state spaces. In our case, the augmented state space would

become very large, which renders optimisation of the resulting POMDPs prohibitively expensive.

The remainder of the paper is organised as follows. Section 2 defines and analyses the classes of robust

MDPs that we consider. Sections 3 and 4 study the robust policy evaluation and improvement problems,

respectively. Section 5 constructs uncertainty sets from observation histories. We illustrate our method

in Section 6, where we apply it to the machine replacement problem. We conclude in Section 7.

Remark 1.1 (Finite Horizon MDPs) Throughout the paper, we outline how our results extend to

finite horizon MDPs. In this case, we assume that T = {0, 1, 2, . . . , T} with T < ∞ and that S can be

partitioned into nonempty disjoint sets {St}t∈T such that at period t the system is in one of the states

in St. We do not discount rewards in finite horizon MDPs. If the MDP reaches a terminal state s ∈ ST ,

an expected reward of rs ∈ R+ is received. We assume that p0(s) = 0 for s /∈ S1.

2 Robust Markov Decision Processes

This section studies properties of the robust policy evaluation and improvement problems. Both problems

are concerned with robust MDPs, for which the transition kernel is only known to be an element of an

uncertainty set P ⊆ [M(S)]S×A. We assume that the initial state distribution p0 is known.

We start with the robust policy evaluation problem. We define the structure of the uncertainty sets

that we consider, as well as different types of rectangularity that can be imposed to facilitate compu-

tational tractability. Afterwards, we discuss the robust policy improvement problem. We define several

policy classes that are commonly used in MDPs, and we investigate the structure of optimal policies

for different types of rectangularity. We close with a complexity result for the robust policy evaluation

problem. Since the remainder of this paper almost exclusively deals with the robust versions of the policy

evaluation and improvement problems, we may suppress the attribute ‘robust’ in the following.

2.1 The Robust Policy Evaluation Problem

Consider the policy evaluation problem (2), where we replace the uncertainty set P with

P :=
{
P ∈ [M(S)]

S×A
: ∃ ξ ∈ Ξ such that Psa = pξ(·|s, a) ∀ (s, a) ∈ S ×A

}
. (3a)

Here, we assume that Ξ is a subset of R
q and that pξ(·|s, a), (s, a) ∈ S×A, is an affine function from Ξ to

M(S) that satisfies pξ(·|s, a) := ksa +Ksaξ for some ksa ∈ RS and Ksa ∈ RS×q. We also stipulate that

Ξ :=
{
ξ ∈ R

q : ξ⊤Ol ξ + o⊤l ξ + ω ≥ 0 ∀ l = 1, . . . , L
}
, (3b)
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where Ol ∈ Sq satisfies Ol � 0. We assume that Ξ is bounded and that it contains a Slater point ξ ∈ Rq

which satisfies ξ
⊤
Ol ξ+ o⊤l ξ+ω > 0 for all l. Our definition of Ξ encompasses all compact subsets of Rq

that have a nonempty interior and that result from finite intersections of closed halfspaces and ellipsoids.

Example 2.1 Consider a robust infinite horizon MDP with three states and one action. The transition

probabilities are defined through

pξ(1|s, 1) =
1

3
+
ξ1
3
, pξ(2|s, 1) =

1

3
+
ξ2
3

and pξ(3|s, 1) =
1

3
− ξ1

3
− ξ2

3
for s ∈ {1, 2, 3} ,

where ξ = (ξ1, ξ2) is only known to satisfy ξ21 + ξ22 ≤ 1 and ξ1 ≤ ξ2. We can model this MDP through

Ξ =
{
ξ ∈ R

2 : ξ21 + ξ22 ≤ 1, ξ1 ≤ ξ2
}
, ks1 =

1

3
e and Ks1 =

1

3





1 0

0 1

−1 −1




for s ∈ {1, 2, 3} .

Note that the mapping K cannot be absorbed in the definition of Ξ without violating the Slater condition.

We say that an uncertainty set P is (s, a)-rectangular if

P = ×
(s,a)∈S×A

Psa, where Psa := {Psa : P ∈ P} for (s, a) ∈ S ×A.

Likewise, we say that an uncertainty set P is s-rectangular if

P = ×
s∈S

Ps, where Ps := {(Ps1, . . . , PsA) : P ∈ P} for s ∈ S.

For any uncertainty set P , we call Psa and Ps the marginal uncertainty sets (or simply marginals). For

our definition (3) of P , we have Psa =
{
pξ(·|s, a) : ξ ∈ Ξ

}
and Ps =

{(
pξ(·|s, 1), . . . , pξ(·|s,A)

)
: ξ ∈ Ξ

}
,

respectively. Note that all transition probabilities pξ(·|s, a) can vary freely within their marginals Psa if

the uncertainty set is (s, a)-rectangular. In contrast, the transition probabilities
{
pξ(·|s, a) : a ∈ A

}
for

different actions in the same state may be dependent in an s-rectangular uncertainty set. By definition,

(s, a)-rectangularity implies s-rectangularity. (s, a)-rectangular uncertainty sets have been introduced in

[11, 17], whereas the notion of s-rectangularity seems to be new. Note that our definition (3) of P does

not impose any kind of rectangularity. Indeed, the uncertainty set in Example 2.1 is not s-rectangular.

The following example shows that rectangular uncertainty sets can result in crude approximations of the

decision maker’s knowledge about the true transition kernel P 0.

Example 2.2 (Rectangularity) Consider the robust infinite horizon MDP that is shown in Figure 1.

The uncertainty set P encompasses all transition kernels that correspond to parameter realisations ξ ∈
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1 2

ξ

1 − ξ

1 − ξ ξ

1 2

1 − ξ

ξ

ξ 1 − ξ

Figure 1: MDP with two states and two actions. The left and right charts present the
transition probabilities for actions 1 and 2, respectively. In both diagrams, nodes correspond
to states and arcs to transitions. We label each arc with the probability of the associated
transition. We suppress p0 and the expected rewards.

pξ(2|1, 1)pξ(2|1, 1)pξ(2|1, 1)

pξ(2|1, 2)pξ(2|1, 2)pξ(2|1, 2)

pξ(2|2, 1)pξ(2|2, 1)pξ(2|2, 1)

Figure 2: Illustration of P (left chart) and the smallest s-rectangular (middle chart) and
(s, a)-rectangular (right chart) uncertainty sets that contain P. The charts show three-
dimensional projections of P ⊂ R

8. The thick line represents P, while the shaded areas
visualise the corresponding rectangular uncertainty sets. Figure 1 implies that pξ(2|1, 1) = ξ,
pξ(2|1, 2) = 1 − ξ and pξ(2|2, 1) = ξ. The dashed lines correspond to the unit cube in R

3.

[0, 1]. This MDP can be assigned an uncertainty set of the form (3). Figure 2 visualises P and the

smallest s-rectangular and (s, a)-rectangular uncertainty sets that contain P.

From now on, we always consider uncertainty sets of the form (3). We may sometimes call a generic

uncertainty set non-rectangular to emphasise that it is neither s- nor (s, a)-rectangular.

2.2 The Robust Policy Improvement Problem

We now consider the policy improvement problem, which asks for a policy that maximises the worst-case

expected total reward (2) over an uncertainty set of the form (3). Remember that a policy π represents

a sequence of functions (πt)t∈T that map state-action histories to probability distributions over A. In

its most general form, such a policy is history dependent, that is, at any time period t the policy may

assign a different probability distribution to each state-action history (s1, a1, . . . , st−1, at−1; st).

Due to the storage requirements of history dependent policies, one typically prefers more ‘economical’

policy classes. A policy π is called Markovian if πt is determined by st and t for all t ∈ T . A Markovian

policy π is called stationary if πt is solely determined by st for all t ∈ T . In finite horizon MDPs,

Markovian and stationary policies are equally expressive since the sets St are disjoint. In infinite horizon

MDPs, however, stationary policies form a strict subset of the class of Markovian policies. A policy π

is called deterministic if πt places all probability mass on one action for each t ∈ T ; otherwise, π is

called randomised. In the following, we will focus on stationary policies due to their favourable storage
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requirements. We denote by Π the set of all randomised stationary policies for a given MDP instance.

It is well-known that non-robust finite and infinite horizon MDPs always allow for a deterministic

stationary policy that maximises the expected total reward (1). Optimal policies can be determined via

value or policy iteration, or via linear programming. Finding an optimal policy, as well as evaluating (1)

for a given stationary policy, can be done in polynomial time. For a detailed discussion, see [4, 19, 22].

To date, the literature on robust MDPs has focused on (s, a)-rectangular uncertainty sets. For

this class of uncertainty sets, it is shown in [11, 17] that the worst-case expected total reward (2) is

maximised by a deterministic stationary policy π for finite and infinite horizon MDPs. Optimal policies

can be determined via extensions of the value and policy iteration. For some uncertainty sets, finding

an optimal policy, as well as evaluating (2) for a given stationary policy, can be achieved in polynomial

time. Moreover, the policy improvement problem satisfies the following saddle point condition:

sup
π∈Π

inf
P∈P

E
P,π

[
∞∑

t=0

λtr(st, at, st+1)
∣∣∣ s0 ∼ p0

]
= inf

P∈P
sup
π∈Π

E
P,π

[
∞∑

t=0

λtr(st, at, st+1)
∣∣∣ s0 ∼ p0

]
(4)

A similar result for robust finite horizon MDPs is discussed in [17].

We now show that the benign structure of optimal policies over (s, a)-rectangular uncertainty sets

partially extends to the broader class of s-rectangular uncertainty sets.

Proposition 2.3 (s-Rectangular Uncertainty Sets) Consider the policy improvement problem for

a finite or infinite horizon MDP over an s-rectangular uncertainty set of the form (3).

(a) There is always an optimal policy that is stationary.

(b) It is possible that all optimal stationary policies are randomised.

Proof As for claim (a), consider a finite horizon MDP with an s-rectangular uncertainty set. By

construction, the probabilities associated with transitions emanating from state s ∈ S are independent

from those emanating from any other state s′ ∈ S, s′ 6= s. Moreover, each state s is visited at most once

since the sets St are disjoint. Hence, any knowledge about past transition probabilities cannot contribute

to better decisions in future time periods, which implies that stationary policies are optimal.

Consider now an infinite horizon MDP with an s-rectangular uncertainty set. Appendix A shows

that the saddle point condition (4) extends to s-rectangular uncertainty sets. For any fixed transition

kernel P ∈ P , the supremum over all stationary policies on the right-hand side of (4) is equivalent to the

supremum over all history dependent policies. By weak duality, the right-hand side of (4) thus represents

an upper bound on the worst-case expected total reward of any history dependent policy. Since there

is a stationary policy whose worst-case expected total reward on the left-hand side of (4) attains this

upper bound, claim (a) follows.
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ξ; 0

1 − ξ; 0

1; 1

1; 0

1

2

3

1 − ξ; 0

ξ; 0

1; 1

1; 0

1

2

3

Figure 3: MDP with three states and two actions. The left and right figures present the
transition probabilities and expected rewards for actions 1 and 2, respectively. The first and
second expressions in the arc labels correspond to the probabilities and expected rewards of
the associated transitions, respectively. Apart from that, the same drawing conventions as in
Figure 1 are used. The initial state distribution p0 places unit mass on state 1.

As for claim (b), consider the robust infinite horizon MDP that is visualised in Figure 3. The

uncertainty set P encompasses all transition kernels that correspond to parameter realisations ξ ∈ [0, 1].

This MDP can be assigned an s-rectangular uncertainty set of the form (3). Since the transitions are

independent of the chosen actions from time 1 onwards, a policy is completely determined by the decision

β = π0(1|1) at time 0. The worst-case expected total reward is

min
ξ∈[0,1]

[
βξ + (1 − β)(1 − ξ)

] λ

1 − λ
= min {β, 1 − β} λ

1 − λ
.

Over β ∈ [0, 1], this expression has its unique maximum at β∗ = 1/2, that is, the optimal policy is

randomised. If we replace the self-loops with expected terminal rewards of r2 := 1 and r3 := 0, then we

obtain an example of a robust finite horizon MDP whose optimal policy is randomised.

Figure 3 illustrates the counterintuitive result that randomisation is superfluous for (s, a)-rectangular

uncertainty sets. If we project the uncertainty set P associated with Figure 3 onto its marginals Psa,

then the transition probabilities in the left chart become independent of those in the right chart. In this

case, any policy results in an expected total reward of zero, and randomisation becomes ineffective.

We now show that in addition to randomisation, the optimal policy may require history dependence

if the uncertainty set lacks s-rectangularity.

Proposition 2.4 (General Uncertainty Sets) For finite and infinite horizon MDPs, the policy im-

provement problem over non-rectangular uncertainty sets is in general solved by non-Markovian policies.

Proof Consider the robust infinite horizon MDP with six states and two actions that is visualised

in Figure 4. The uncertainty set P encompasses all transition kernels that correspond to parameter

realisations ξ ∈ [0, 1]. This MDP can be assigned an uncertainty set of the form (3). Since the transitions

do not depend on the chosen actions except for π2, a policy is completely determined by the decision

β = (β1, β2), where β1 = π2(1|1, a0, 2, a1; 4) and β2 = π2(1|1, a0, 3, a1; 4).
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1

2

3

4

5

6

ξ; 0

1 − ξ; 0

ξ; 0

1 − ξ; M

1 − ξ; 0

ξ; M

ξ; 0

1 − ξ; 0

1; 1

1; 0

1

2

3

4

5

6

ξ; 0

1 − ξ; 0

ξ; 0

1 − ξ; M

1 − ξ; 0

ξ; M

1 − ξ; 0

ξ; 0

1; 1

1; 0

Figure 4: MDP with six states and two actions. The initial state distribution p0 places unit
mass on state 1. The same drawing conventions as in Figure 3 are used.

The conditional probability to reach state 5 is ϕ1(ξ) := β1ξ + (1 − β1)(1 − ξ) if state 2 is visited and

ϕ2(ξ) := β2ξ + (1 − β2)(1 − ξ) if state 3 is visited, respectively. Thus, the expected total reward is

2λξ(1 − ξ)M +
λ3

1 − λ
[ξ ϕ1(ξ) + (1 − ξ)ϕ2(ξ)] ,

which is concave in ξ for all β ∈ [0, 1]2 ifM ≥ λ2/(1−λ). Thus, the worst (minimal) expected total reward

is incurred for ξ∗ ∈ {0, 1}, independently of β ∈ [0, 1]2. Hence, the worst-case expected total reward is

min
ξ∈{0,1}

λ3

1 − λ
[ξ ϕ1(ξ) + (1 − ξ)ϕ2(ξ)] =

λ3

1 − λ
min {β1, 1 − β2} ,

and the unique maximiser of this expression is β = (1, 0). We conclude that in state 4, the optimal policy

chooses action 1 if state 2 has been visited and action 2 otherwise. Hence, the optimal policy is history

dependent. If we replace the self-loops with expected terminal rewards of r5 := λ3/(1 − λ) and r6 := 0,

then we can extend the result to robust finite horizon MDPs.

Although the policy improvement problem over non-rectangular uncertainty sets is in general solved

by non-Markovian policies, we will restrict ourselves to stationary policies in the remainder. Thus, we

will be interested in the best deterministic or randomised stationary policies for robust MDPs.

2.3 Complexity of the Robust Policy Evaluation Problem

We show that the policy evaluation problem over non-rectangular uncertainty sets is strongly NP-hard.

To this end, we will reduce the evaluation of (2) to the 0/1 Integer Programming (IP) problem [8]:

0/1 Integer Programming.

Instance. Given are F ∈ Zm×n, g ∈ Zm, c ∈ Zn, ζ ∈ Z.

Question. Is there a vector x ∈ {0, 1}n
such that Fx ≤ g and c⊤x ≤ ζ?

Assume that x ∈ [0, 1]
n

constitutes a fractional vector that satisfies Fx ≤ g and c⊤x ≤ ζ. The

following lemma shows that we can obtain an integral vector y ∈ {0, 1}n
that satisfies Fy ≤ g and
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c⊤y ≤ ζ by rounding x if its components are ‘close enough’ to zero or one.

Lemma 2.5 Let 0 < ǫ ≤ min {ǫF , ǫc}, where 0 < ǫF < mini

{( ∑
j |Fij |

)−1
}

and 0 < ǫc <
( ∑

j |cj |
)−1

.

Assume that x ∈ ([0, ǫ] ∪ [1 − ǫ, 1])n satisfies Fx ≤ g and c⊤x ≤ ζ. Then Fy ≤ g and c⊤y ≤ ζ for

y ∈ {0, 1}n
, where yj := 1 if xj ≥ 1 − ǫ and yj := 0 otherwise.

Proof By construction, F⊤
i· y ≤ F⊤

i· x+
∑

j |Fij | ǫF < F⊤
i· x+ 1 ≤ gi + 1 for all i ∈ {1, . . . ,m}. Similarly,

we have that c⊤y ≤ c⊤x +
∑

j |cj | ǫc < c⊤x + 1 ≤ ζ + 1. Due to the integrality of F , g, c, ζ and y, we

therefore conclude that Fy ≤ g and c⊤y ≤ ζ.

We can now prove strong NP-hardness of the policy evaluation problem.

Theorem 2.6 Deciding whether the worst-case expected total reward (2) over an uncertainty set of the

form (3) exceeds a given value γ is strongly NP-hard for deterministic as well as randomised stationary

policies and for finite as well as infinite horizon MDPs.

Proof Let us fix an IP instance specified through F , g, c and ζ. W.l.o.g., we can assume that ζ ≤
∑

j [cj]
+

because all feasible IP solutions are binary. We construct a reduction to a robust infinite

horizon MDP as follows. The states are S =
{
bj, b

1
j , b

0
j : j = 1, . . . , n

}
∪{c0, τ}, there is only one action,

and λ ∈ (0, 1) can be chosen freely. The state transitions and expected rewards are illustrated in Figure 5.

The uncertainty set P contains all transition kernels associated with ξ ∈ [0, 1]
n

that satisfy Fξ ≤ g. We

choose M >
(
λn

∑
j |cj |

)
/
(
2ǫ2

)
, where ǫ is chosen as in Lemma 2.5, and set γ := λ2ζ. Following our

discussion in Section 2.1, the described MDP instance can be constructed in polynomial time with respect

to the size of the IP instance (which we henceforth abbreviate as ‘in polynomial time’).1

We show that the answer to the IP instance is affirmative if and only if the worst-case expected total

reward (2) does not exceed γ. Indeed, assume that the answer to the IP instance is affirmative, that is,

there is a vector x ∈ {0, 1}n that satisfies Fx ≤ g and c⊤x ≤ ζ. The transition kernel associated with

ξ = x is contained in P and leads to an expected total reward of λ2c⊤ξ ≤ λ2ζ = γ. This implies that

the worst-case expected total reward (2) does not exceed γ either. Conversely, assume that (2) does not

exceed γ. For the constructed MDP, the expected total reward (1) is continuous in ξ. Since P is compact,

we can therefore assume that the value of (2) is attained by a transition kernel associated with some

ξ∗ ∈ Ξ. By construction of Ξ, ξ∗ satisfies ξ∗ ∈ [0, 1]
n

and Fξ∗ ≤ g. Assume that ξ∗q /∈ ([0, ǫ] ∪ [1 − ǫ, 1])

for some q ∈ {1, . . . , n}. In this case, the expected total reward under ξ∗ is greater than or equal to

2λξ∗q (1 − ξ∗q )M/n − λ2
∑

j [−cj]+ > λ2
∑

j [cj ]
+ ≥ γ, which contradicts our assumption. We have thus

established that ξ∗ ∈ ([0, ǫ] ∪ [1 − ǫ, 1])n. Under the transition kernel associated with ξ∗, the expected

1Note that the set Ξ associated with the MDP instance might not contain a Slater point. However, one can decide in
polynomial time whether the system of linear equations Fx ≤ g, x ∈ [0, 1]n is strictly feasible. If this is not the case, one
can furthermore reduce the system to a strictly feasible one in polynomial time.
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b11

b01

ξ1; 0

1 − ξ1; 0

1 − ξ1; M
ξ1; 0

ξ1; M

1 − ξ1; 0

bn

b1n

b0n

ξn; 0

1 − ξn; 0

1 − ξn; M

ξn; 0

ξn; M

1 − ξn; 0

c0 τ

ξ1/n; nc1
ξ2/n; nc2

ξn/n; ncn

1 − e⊤ξ/n; 0

1; 0

Figure 5: MDP with 3n + 2 states and one action. The distribution p0 places a probability
mass of 1/n on each state bj , j = 1, . . . , n. The drawing conventions from Figure 3 are used.

reward in periods 0 and 1 is guaranteed to be non-negative, while the expected reward from period 2

onward amounts to λ2c⊤ξ∗. Since the expected total reward under ξ∗ does not exceed γ, we therefore

have that λ2c⊤ξ∗ ≤ γ = λ2ζ, which implies that c⊤ξ∗ ≤ ζ. Hence, we can apply Lemma 2.5 to obtain a

vector ξ′ ∈ {0, 1}n that also satisfies Fξ′ ≤ g and c⊤ξ′ ≤ ζ. We have thus shown that the answer to the

IP instance is affirmative if and only if the worst-case expected total reward (2) does not exceed γ.

If we could decide in polynomial time whether the worst-case expected total reward of the constructed

MDP exceeds γ, we could also decide IP in polynomial time. Since IP is strongly NP-hard [8], we

conclude that the policy evaluation problem (2) is strongly NP-hard for MDPs with a single action and

uncertainty sets of the form (3). Since the policy space of the constructed MDP reduces to a singleton,

our proof applies to robust MDPs with deterministic and randomised stationary policies. If we remove

the self-loop emanating from state τ , introduce a terminal reward rτ := 0 and multiply the rewards in

period t with λ−t, our proof furthermore applies to robust finite horizon MDPs.

Remark 2.7 Theorem 2.6 remains valid if definition (3) is altered to require that Ol = 0 and ol ∈ {0, 1}q
.

This follows from the fact that IP remains strongly NP-hard if F and g are binary, see [8].

Remark 2.8 Throughout this section we assumed that P is a convex set of the form (3). If we extend

our analysis to nonconvex uncertainty sets, then we obtain the results in Table 1. Note that the complexity

of the policy evaluation and improvement problems will be discussed in Sections 2.3, 3 and 4.
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uncertainty set P optimal policy complexity

(s, a)-rectangular, convex deterministic, stationary polynomial
(s, a)-rectangular, nonconvex deterministic, stationary strongly NP-hard
s-rectangular, convex randomised, stationary polynomial
s-rectangular, nonconvex randomised, history dependent strongly NP-hard
non-rectangular, convex randomised, history dependent strongly NP-hard

Table 1: Properties of infinite horizon MDPs with different uncertainty sets. From left to
right, the columns describe the structure of the uncertainty set, the structure of the optimal
policy, and the complexity of the policy evaluation and improvement problems over randomised
stationary policies. Each uncertainty set is of the form (3). For nonconvex uncertainty sets,
we do not require the matrices Ol in (3b) to be negative semidefinite. The properties of finite
horizon MDPs are similar, the only difference being that MDPs with s-rectangular nonconvex
uncertainty sets are optimised by randomised stationary policies.

3 Robust Policy Evaluation

It is shown in [11, 17] that the worst-case expected total reward (2) can be calculated in polynomial

time for certain types of (s, a)-rectangular uncertainty sets. We extend this result to the broader class of

s-rectangular uncertainty sets in Section 3.1. On the other hand, Theorem 2.6 shows that the evaluation

of (2) is strongly NP-hard for non-rectangular uncertainty sets. We therefore develop conservative

approximations for the policy evaluation problem over general uncertainty sets in Section 3.2. We

bound the optimality gap that is incurred by solving these approximations, and we outline how these

approximations can be refined. Although this section primarily sets the stage for the policy improvement

problem, we stress that policy evaluation is an important problem in its own right. For example, it finds

frequent use in labour economics, industrial organisation and marketing [15].

Our solution approaches for s-rectangular and non-rectangular uncertainty sets rely on the reward

to-go function. For a stationary policy π, we define the reward to-go function v : Π × Ξ 7→ RS through

vs(π; ξ) = E
pξ,π

[
∞∑

t=0

λtr(st, at, st+1)
∣∣∣ s0 = s

]
for s ∈ S. (5)

vs(π; ξ) represents the expected total reward under the transition kernel pξ and the policy π if the initial

state is s ∈ S. The reward to-go function allows us to express the worst-case expected total reward as

inf
ξ∈Ξ

E
pξ,π

[
∞∑

t=0

λtr(st, at, st+1)
∣∣∣ s0 ∼ p0

]
= inf

ξ∈Ξ

{
p⊤0 v(π; ξ)

}
. (6)

We simplify our notation by defining the Markov reward process (MRP) induced by pξ and π. MRPs are

Markov chains which pay a state-dependent reward at each time period. In our case, the MRP is given by

the transition kernel P̂ : Π×Ξ
a7→ RS×S and the expected state rewards r̂ : Π × Ξ

⊣7→ RS defined through
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P̂ss′ (π; ξ) :=
∑

a∈A

π(a|s) pξ(s′|s, a) (7a)

and r̂s(π; ξ) :=
∑

a∈A

π(a|s)
∑

s′∈S

pξ(s′|s, a) r(s, a, s′). (7b)

Note that r̂(π; ξ) ≥ 0 for each π ∈ Π and ξ ∈ Ξ since all expected rewards r(s, a, s′) were assumed to be

non-negative. For s, s′ ∈ S, P̂ss′(π; ξ) denotes the probability that the next state of the MRP is s′, given

that the MRP is currently in state s. Likewise, r̂s(π; ξ) denotes the expected reward that is received in

state s. By taking the expectation with respect to the sample paths of the MRP and reordering terms,

we can reformulate the reward to-go function (5) as

v(π; ξ) =

∞∑

t=0

[
λ P̂ (π; ξ)

]t

r̂(π; ξ), (8)

see [19]. The following proposition brings together several results about v that we will use later on.

Proposition 3.1 The reward to-go function v has the following properties.

(a) v is Lipschitz continuous on Π × Ξ.

(b) For given π ∈ Π and ξ ∈ Ξ, w ∈ RS satisfies w = r̂(π; ξ) + λ P̂ (π; ξ)w if and only if w = v(π; ξ).

(c) For given π ∈ Π and ξ ∈ Ξ, if w ∈ RS satisfies w ≤ r̂(π; ξ) + λ P̂ (π; ξ)w, then w ≤ v(π; ξ).

Proof For a square matrix A ∈ Rn×n, let Adj(A) and det(A) denote the adjugate matrix and the

determinant of A, respectively. From equation (8), we see that

v(π; ξ) =
[
I − λ P̂ (π; ξ)

]−1
r̂(π; ξ) =

Adj
(
I − λ P̂ (π; ξ)

)
r̂(π; ξ)

det
(
I − λ P̂ (π; ξ)

) ∀ ξ ∈ Ξ. (9)

Here, the first identity follows from the matrix inversion lemma, see e.g. Theorem C.2 in [19], while the

second equality is due to Cramer’s rule. The adjugate matrix and the determinant in (9) constitute

polynomials in π and ξ, and the matrix inversion lemma guarantees that the determinant is nonzero

throughout Ξ. Hence, the fraction on the right hand-side of (9) has bounded first derivative on Π × Ξ,

which implies that it is Lipschitz continuous on Π × Ξ. We have thus proven assertion (A).

Assertions (b) and (c) follow directly from Theorems 6.1.1 and 6.2.2 in [19], respectively.
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Proposition 3.1 allows us to reformulate the worst-case expected total reward (6) as follows.

inf
ξ∈Ξ

{
p⊤0 v(π; ξ)

}
= inf

ξ∈Ξ
sup

w∈RS

{
p⊤0 w : w ≤ r̂(π; ξ) + λ P̂ (π; ξ)w

}

= sup
ϑ:Ξ 7→RS

{
inf
ξ∈Ξ

{
p⊤0 ϑ(ξ)

}
: ϑ(ξ) ≤ r̂(π; ξ) + λ P̂ (π; ξ)ϑ(ξ) ∀ ξ ∈ Ξ

}

= sup
ϑ:Ξ

c
7→RS

{
inf
ξ∈Ξ

{
p⊤0 ϑ(ξ)

}
: ϑ(ξ) ≤ r̂(π; ξ) + λ P̂ (π; ξ)ϑ(ξ) ∀ ξ ∈ Ξ

}
(10)

Here, the first equality follows from Proposition 3.1 (b)–(c) and non-negativity of p0, while the last

equality follows from Proposition 3.1 (a). Theorem 2.6 implies that (10) is intractable for general

uncertainty sets. In the following, we approximate (10) by replacing the space of continuous functions

in the outer supremum with the subspaces of constant, affine and piecewise affine functions. Since the

policy π is fixed in this section, we may omit the dependence of v, P̂ and r̂ on π in the following.

3.1 Robust Policy Evaluation over s-Rectangular Uncertainty Sets

We show that the policy evaluation problem (10) is optimised by a constant reward to-go function if the

uncertainty set P is s-rectangular. The result also points out an efficient method to solve problem (10).

Theorem 3.2 For an s-rectangular uncertainty set P, the policy evaluation problem (10) is optimised

by the constant reward to-go function ϑ∗(ξ) := w∗, ξ ∈ Ξ, where w∗ ∈ RS is the unique fixed point of the

contraction mapping φ(π; ·) : RS 7→ RS defined through

φs(π;w) := min
ξs∈Ξ

{
r̂s(π; ξs) + λP̂⊤

s· (π; ξs)w
}

∀ s ∈ S. (11)

Remark 3.3 A function ϕ : RS 7→ RS is called contraction mapping if there is some γ ∈ [0, 1) such that

‖ϕ(w) − ϕ(w′)‖ ≤ γ ‖w − w′‖ for all w,w′ ∈ RS. The iterated application of ϕ to any w ∈ RS converges

to the unique fixed point w∗ that satisfies w∗ = ϕ(w∗), see [19].

Proof of Theorem 3.2 We prove the assertion in two steps. We first show that w∗ solves the restriction

of the policy evaluation problem (10) to constant reward to-go functions:

sup
w∈RS

{
p⊤0 w : w ≤ r̂(ξ) + λP̂ (ξ)w ∀ ξ ∈ Ξ

}
(12)

Afterwards, we prove that the optimal values of (10) and (12) coincide for s-rectangular uncertainty sets.

In view of the first step, we note that the objective function of (12) is linear in w. Moreover, the

feasible region of (12) is closed because it results from the intersection of closed halfspaces parametrised

by ξ ∈ Ξ. Since w = 0 is feasible in (12), we can append the constraint w ≥ 0 without changing the
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optimal value of (12). Hence, the feasible region is also bounded, and we can apply Weierstrass’ extreme

value theorem to replace the supremum in (12) with a maximum. Since each of the S one-dimensional

inequality constraints in (12) has to be satisfied for all ξ ∈ Ξ, (12) is equivalent to

max
w∈RS

{
p⊤0 w : ws ≤ r̂s(ξ

s) + λP̂⊤
s· (ξ

s)w ∀ s ∈ S, ξ1, . . . , ξS ∈ Ξ
}
.

We can reformulate the semi-infinite constraints in this problem to obtain

max
w∈RS

{
p⊤0 w : ws ≤ min

ξs∈Ξ

{
r̂s(ξ

s) + λP̂⊤
s· (ξ

s)w
}

∀ s ∈ S
}
. (13)

Note that the constraints in (13) are equivalent to w ≤ φ(π;w), where φ is defined in (11). One can

adapt the results in [11, 17] to show that φ(π; ·) is a contraction mapping. Hence, the Banach fixed

point theorem guarantees existence and uniqueness of w∗ ∈ RS . This vector w∗ is feasible in (13), and

any feasible solution w ∈ RS to (13) satisfies w ≤ φ(π;w). According to Theorem 6.2.2 in [19], this

implies that w∗ ≥ w for every feasible solution w to (13). By non-negativity of p0, w
∗ must therefore

maximise (13). Since (12) and (13) are equivalent, we have thus shown that w∗ maximises (12).

We now prove that the optimal values of (10) and (13) coincide if P is s-rectangular. Since (13) is

maximised by the unique fixed point w∗ of φ(π; ·), we can reexpress (13) as

min
w∈RS

{
p⊤0 w : ws = min

ξs∈Ξ

{
r̂s(ξ

s) + λP̂⊤
s· (ξ

s)w
}

∀ s ∈ S
}
.

This problem is equivalent to

min
w∈RS

min
ξs∈Ξ:
s∈S

{
p⊤0 w : ws = r̂s(ξ

s) + λP̂⊤
s· (ξ

s)w ∀ s ∈ S
}
. (14)

The s-rectangularity of the uncertainty set P implies that (14) can be reformulated as

min
w∈RS

min
ξ∈Ξ

{
p⊤0 w : ws = r̂s(ξ) + λP̂⊤

s· (ξ)w ∀ s ∈ S
}
. (15)

For a fixed ξ ∈ Ξ, w = v(ξ) is the unique feasible solution to (15), see Proposition 3.1 (b). By Weierstrass’

extreme value theorem, (15) is therefore equivalent to the policy evaluation problem (10).

The fixed point w∗ of the contraction mapping φ(π; ·) defined in (11) can be found by applying

the following robust value iteration. We start with an initial estimate w1 := 0. In the ith iteration,

i = 1, 2, . . ., we determine the updated estimate wi+1 via wi+1 := φ(π;wi). Since φ(π; ·) is a contraction

mapping, the Banach fixed point theorem guarantees that the sequence wi converges to w∗ at a geometric
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rate. The following corollary investigates the computational complexity of this approach.

Corollary 3.4 If the uncertainty set P is s-rectangular, then problem (10) can be solved to any accuracy

ǫ in polynomial time O
(
q3L3/2S log2 ǫ−1 + qAS2 log ǫ−1

)
.

Proof Assume that at each iteration i of the robust value iteration, we evaluate φ(π;wi) to the accuracy

δ := ǫ(1 − λ)2/(4 + 4λ). We stop the algorithm as soon as
∥∥wN+1 − wN

∥∥
∞

≤ ǫ(1 − λ)/(1 + λ) at some

iteration N . This is guaranteed to happen within O
(
log ǫ−1

)
iterations [19]. By construction, wN+1 is

feasible for the policy evaluation problem (10), see [19]. We can adapt Theorem 5 from [17] to show that

wN+1 satisfies
∥∥wN+1 − w∗

∥∥
∞

≤ ǫ. Hence, wN+1 is also an ǫ-optimal solution to (10).

We now investigate the complexity of evaluating φ to the accuracy δ. Under mild assumptions,

interior point methods can solve second-order cone programs of the form

min
x∈Rn

{
f⊤x : ‖Ajx+ bj‖2 ≤ c⊤j x+ dj ∀ j = 1, . . . ,m

}
,

where Aj ∈ Rnj×n, bj ∈ Rnj , cj ∈ Rn and dj ∈ R, j = 1, . . . ,m, to any accuracy δ in polynomial time

O
(√

m
[
n3 + n2

∑
j nj

]
log δ−1

)
, see [14]. For w ∈ RS , we can evaluate φ(π;w) by solving the following

second-order cone program:

minimise
ξ

∑

a∈A

π(a|s) (ksa +Ksaξ)
⊤ (rsa + λw) (16a)

subject to ξ ∈ R
q

∥∥∥∥∥∥∥




Ωl

−o⊤l



 ξ +




0

1−ωl

2





∥∥∥∥∥∥∥
2

≤ o⊤l ξ +
ωl + 1

2
∀ l = 1, . . . , L, (16b)

where (rsa)s′ := r(s, a, s′) for (s, a, s′) ∈ S ×A× S and Ωl satisfies Ω⊤
l Ωl = Ol. We can determine each

matrix Ωl in time O
(
q3

)
by a Cholesky decomposition, we can construct (16) in time O

(
qAS + q2L

)
,

and we can solve (16) to accuracy δ in time O
(
q3L3/2 log δ−1

)
. Each step of the robust value iteration

requires the construction and solution of S such problems. Since the constraints of (16) only need to

be generated once, this results in an iteration complexity of O
(
q3L3/2S log δ−1 + qAS2

)
. The assertion

now follows from the fact that the robust value iteration terminates within O
(
log ǫ−1

)
iterations.

Depending on the properties of Ξ defined in (3b), we can evaluate the mapping φ more efficiently.

We refer to [11, 17] for a discussion of different numerical schemes.

Remark 3.5 (Finite Horizon MDPs) For a finite horizon MDP, we can solve the policy evaluation

problem (10) over an s-rectangular uncertainty set P via robust backward induction as follows. We start
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with wT ∈ RS defined through wT
s := rs if s ∈ ST ; := 0 otherwise. At iteration i = T − 1, T − 2, . . . , 1,

we determine wi through wi
s := φ̂s(π;wi+1) if s ∈ Si; := wi+1

s otherwise. The operator φ̂ is defined as

φ̂s(π;w) := min
ξs∈Ξ

{
r̂s(π; ξs) + P̂⊤

s· (π; ξs)w
}

∀ s ∈ S.

An adaptation of Corollary 3.4 shows that we obtain an ǫ-optimal solution to the policy evaluation

problem (10) in time O
(
q3L3/2S log ǫ−1 + qAS2

)
if we evaluate φ̂ to the accuracy ǫ/(T − 1).

3.2 Robust Policy Evaluation over Non-Rectangular Uncertainty Sets

If the uncertainty set P is non-rectangular, then Theorem 2.6 implies that constant reward to-go functions

are no longer guaranteed to optimise the policy evaluation problem (10). Nevertheless, we can still use

the robust value iteration to obtain a lower bound on the optimal value of (10).

Proposition 3.6 Let P be a non-rectangular uncertainty set, and define P := ×s∈S Ps as the smallest

s-rectangular uncertainty set that contains P. The function ϑ∗(ξ) = w∗ defined in Theorem 3.2 has the

following properties.

1. The vector w∗ solves the restriction (12) of the policy evaluation problem (10) that approximates

the reward to-go function by a constant.

2. The function ϑ∗ solves the exact policy evaluation problem (10) over P.

Proof The first property follows from the fact that the first part of the proof of Theorem 3.2 does not

depend on the structure of the uncertainty set P . As for the second property, the proof of Theorem 3.2

shows that w∗ minimises (14), irrespective of the structure of P . The proof also shows that (14) is

equivalent to the policy evaluation problem (10) if we replace P with P.

Proposition 3.6 provides a dual characterisation of the robust value iteration. On one hand, the

robust value iteration determines the exact worst-case expected total reward over the rectangularised

uncertainty set P. On the other hand, the robust value iteration calculates a lower bound on the worst-

case expected total reward over the original uncertainty set P . Hence, rectangularising the uncertainty

set is equivalent to replacing the space of continuous reward to-go functions in the policy evaluation

problem (10) with the subspace of constant functions.

We obtain a tighter lower bound on the worst-case expected total reward (10) if we replace the space

of continuous reward to-go functions with the subspaces of affine or piecewise affine functions. We use

the following result to formulate these approximations as tractable optimisation problems.
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Proposition 3.7 For Ξ defined in (3b) and any fixed S ∈ Sq, s ∈ Rq and σ ∈ R, we have

∃ γ ∈ R
L
+ :




σ 1

2s
⊤

1
2s S



 −
L∑

l=1

γl




ωl

1
2o

⊤
l

1
2ol Ol



 � 0 =⇒ ξ⊤S ξ + s⊤ξ + σ ≥ 0 ∀ ξ ∈ Ξ. (17)

Furthermore, the reversed implication holds if (C1) L = 1 or (C2) S � 0.

Proof Implication (17) and the reversed implication under condition (C1) follow from the approximate

and exact versions of the S-Lemma, respectively (see e.g. Proposition 3.4 in [13]).

Assume now that (C2) holds. We define f(ξ) := ξ⊤S ξ + s⊤ξ + σ and gl(ξ) := −ξ⊤Ol ξ − o⊤l ξ − ωl,

l = 1, . . . , L. Since f and g := (g1, . . . , gL) are convex, Farkas’ Theorem [20] ensures that the system

f(ξ) < 0, g(ξ) < 0, ξ ∈ R
q (18a)

has no solution if and only if there is a nonzero vector (κ, γ) ∈ R+ × RL
+ such that

κf(ξ) + γ⊤g(ξ) ≥ 0 ∀ ξ ∈ R
q. (18b)

Since Ξ contains a Slater point ξ that satisfies ξ
⊤
Ol ξ + o⊤l ξ + ω = −gl(ξ) > 0, l = 1, . . . , L, convexity

of g and continuity of f allows us to replace the second strict inequality in (18a) with a less or equal

constraint. Hence, (18a) has no solution if and only if f is non-negative on Ξ = {ξ ∈ R
q : g(ξ) ≤ 0},

that is, if the right-hand side of (17) is satisfied. We now show that (18b) is equivalent to the left-hand

side of (17). Assume that there is a nonzero vector (κ, γ) ≥ 0 that satisfies (18b). Note that κ 6= 0 since

otherwise, (18b) would not be satisfied by the Slater point ξ. Hence, a suitable scaling of γ allows us to

set κ := 1. For our choice of f and g, this implies that (18b) is equivalent to




1

ξ





⊤ 






σ 1

2s
⊤

1
2s S



 −
L∑

l=1

γl




ωl

1
2o

⊤
l

1
2ol Ol












1

ξ



 ≥ 0 ∀ ξ ∈ R
q. (18b’)

Since the above inequality is homogeneous of degree 2 in
[
1, ξ⊤

]⊤
, it extends to the whole of Rq+1.

Hence, (18b’) is equivalent to the left-hand side of (17).

Proposition 3.7 allows us to bound the worst-case expected total reward (10) from below as follows.

Theorem 3.8 Consider the following variant of the policy evaluation problem (10), which approximates
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the reward to-go function by an affine function,

sup
ϑ:Ξ

a
7→RS

{
inf
ξ∈Ξ

{
p⊤0 ϑ(ξ)

}
: ϑ(ξ) ≤ r̂(ξ) + λP̂ (ξ)ϑ(ξ) ∀ ξ ∈ Ξ

}
, (19)

as well as the semidefinite program

maximise
τ,w,W,γ,Γ

τ (20a)

subject to τ ∈ R, w ∈ R
S , W ∈ R

S×q, γ ∈ R
L
+, Γ ∈ R

S×L
+




p⊤0 w − τ 1

2p
⊤
0 W

1
2W

⊤p0 0



 −
L∑

l=1

γl




ωl

1
2o

⊤
l

1
2ol Ol



 � 0, (20b)

∑

a∈A

π(a|s)




k⊤sa (rsa + λw) 1

2

(
r⊤saKsa + λ

[
k⊤saW + w⊤Ksa

])

1
2

(
K⊤

sarsa + λ
[
W⊤ksa +K⊤

saw
])

λK⊤
saW





−




ws

1
2W

⊤
s·

1
2

(
W⊤

s·

)⊤
0



 −
L∑

l=1

Γsl




ωl

1
2o

⊤
l

1
2ol Ol



 � 0 ∀ s ∈ S, (20c)

where (rsa)s′ := r(s, a, s′) for (s, a, s′) ∈ S ×A× S. Let (τ∗, w∗,W ∗, γ∗,Γ∗) denote an optimal solution

to (20), and define ϑ∗ : Ξ
a7→ RS through ϑ∗(ξ) := w∗ +W ∗ξ. We have that:

(a) If L = 1, then (19) and (20) are equivalent in the following sense: τ∗ coincides with the supremum

of (19), and ϑ∗ is feasible and optimal in (19).

(b) If L > 1, then (20) constitutes a conservative approximation for (19): τ∗ provides a lower bound

on the supremum of (19), and ϑ∗ is feasible in (19) and satisfies infξ∈Ξ

{
p⊤0 ϑ

∗(ξ)
}

= τ∗.

Proof The approximate policy evaluation problem (19) can be written as

sup
w∈R

S,

W∈R
S×q

{
inf
ξ∈Ξ

{
p⊤0 (w +Wξ)

}
: w +Wξ ≤ r̂(ξ) + λP̂ (ξ) (w +Wξ) ∀ ξ ∈ Ξ

}
. (21)

We first show that (21) is solvable. Since p⊤0 (w +Wξ) is linear in (w,W ) and continuous in ξ while Ξ is

compact, infξ∈Ξ

{
p⊤0 (w +Wξ)

}
is a concave and therefore continuous function of (w,W ). Likewise, the

feasible region of (21) is closed because it results from the intersection of closed halfspaces parametrised

by ξ ∈ Ξ. However, the feasible region of (21) is not bounded because any non-positive constant reward

to-go function, that is, any (w,W ) with w ∈ R− and W = 0, constitutes a feasible solution. However,

since (w,W ) = (0, 0) is feasible, we can append the constraint w + Wξ ≥ 0 for all ξ ∈ Ξ without

changing the optimal value of (21). Moreover, all expected rewards r(s, a, s′) are bounded from above
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by r := maxs,a,s′ {r(s, a, s′)}. Therefore, Proposition 3.1 (c) implies that any feasible solution (w,W )

for (21) satisfies w +Wξ ≤ re/(1 − λ) for all ξ ∈ Ξ.

Our results so far imply that any feasible solution (w,W ) for (21) satisfies 0 ≤ w+Wξ ≤ re/(1− λ)

for all ξ ∈ Ξ. We now show that this implies boundedness of the feasible region for (w,W ). The

existence of a Slater point ξ with ξ
⊤
Ol ξ + o⊤l ξ + ωl > 0 for all l = 1, . . . , L guarantees that there is

an ǫ-neighbourhood of ξ that is contained in Ξ. Hence, W must be bounded because all points ξ in

this neighbourhood satisfy 0 ≤ w + Wξ ≤ re/(1 − λ). As a consequence, w is bounded as well since

0 ≤ w + Wξ ≤ re/(1 − λ). Thus, the feasible region of (21) is bounded, and Weierstrass’ extreme

value theorem is applicable. Therefore, (21) is solvable. If we furthermore replace P̂ and r̂ with their

definitions from (7) and go over to an epigraph formulation, we obtain

maximise
τ,w,W

τ (22a)

subject to τ ∈ R, w ∈ R
S , W ∈ R

S×q

τ ≤ p⊤0 (w +Wξ) ∀ ξ ∈ Ξ (22b)

ws +W⊤
s· ξ ≤

∑

a∈A

π(a|s) (ksa +Ksaξ)
⊤

(rsa + λ [w +Wξ]) ∀ ξ ∈ Ξ, s ∈ S. (22c)

Constraint (22b) is equivalent to constraint (20b) by Proposition 3.7 under condition (C2). Likewise,

Proposition 3.7 guarantees that constraint (22c) is implied by constraint (20c). Moreover, if L = 1,

condition (C1) of Proposition 3.7 is satisfied, and both constraints are equivalent.

We can employ conic duality [1, 14] to equivalently replace constraint (20b) with conic quadratic

constraints. There does not seem to be a conic quadratic reformulation of constraint (20c), however.

Theorem 3.8 provides an exact (for L = 1) or conservative (for L > 1) reformulation for the approxi-

mate policy evaluation problem (19). Since (19) optimises only over affine approximations of the reward

to-go function, Proposition 3.1 (c) implies that (19) provides a conservative approximation for the worst-

case expected total reward (10). We will see below that both approximations are tight for s-rectangular

uncertainty sets. First, however, we investigate the computational complexity of problem (20).

Corollary 3.9 The semidefinite program (20) can be solved to any accuracy ǫ in polynomial time

O
(
(qS + LS)

5

2 (q2S + LS) log ǫ−1 + q2AS2
)
.

Proof The objective function and constraints of (20) can be constructed in time O
(
q2AS2 + q2LS

)
.

Under mild assumptions, interior point methods can solve semidefinite programs of the type

min
x∈Rn

{
c⊤x : F0 +

n∑

i=1

xiFi � 0

}
,
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where Fi ∈ Sm for i = 0, . . . , n, to accuracy ǫ in time O
(
n2m

5

2 log ǫ−1
)
, see [23]. Moreover, if all

matrices Fi possess a block-diagonal structure with blocks Gij ∈ Smj , j = 1, . . . , J with
∑

j mj = m,

then the computational effort can be reduced to O
(
n2m

1

2

∑
j m

2
j

)
. Problem (20) involves O(qS + LS)

variables. By exploiting the block-diagonal structure of (20), constraint (20b) gives rise to a single block

of dimension (q+ 1)× (q+ 1), constraint set (20c) leads to S blocks of dimension (q+ 1)× (q + 1) each,

and non-negativity of γ and Γ results in L and SL one-dimensional blocks, respectively.

In Section 4 we discuss a method for constructing uncertainty sets from observation histories. Asymp-

totically, this method generates an uncertainty set Ξ that is described by a single quadratic inequality

(L = 1), which means that problem (20) can be solved in time O
(
q

9

2S
7

2 log ǫ−1 + q2AS2
)
. Note that q

does not exceed S(S − 1)A, the affine dimension of the space [M(S)]S×A, unless some components of ξ

are perfectly correlated. If information about the structure of the transition kernel is available, however,

q can be much smaller. Section 6 provides an example in which q remains constant as the problem size

(measured in terms of S, the number of states) increases.

The semidefinite program (20) is based on two approximations. It is a conservative approximation

for problem (19), which itself is a restriction of the policy evaluation problem (10) to affine reward to-go

functions. We now show that both approximations are tight for s-rectangular uncertainty sets.

Proposition 3.10 Let (τ∗, w∗,W ∗, γ∗,Γ∗) denote an optimal solution to the semidefinite program (20),

and define ϑ∗ : Ξ 7→ R
S through ϑ∗(ξ) := w∗ +W ∗ξ. If the uncertainty set P is s-rectangular, then the

optimal value of the policy evaluation problem (10) is τ∗, and ϑ∗ is feasible and optimal in (10).

Proof We show that any constant reward to-go function that is feasible for the policy evaluation prob-

lem (10) can be extended to a feasible solution of the semidefinite program (20) with the same objective

value. The assertion then follows from the optimality of constant reward to-go functions for s-rectangular

uncertainty sets, see Theorem 3.2, and the fact that (20) bounds (10) from below, see Theorem 3.8.

Assume that ϑ : Ξ 7→ RS with ϑ(ξ) = c for all ξ ∈ Ξ satisfies the constraints of the policy evaluation

problem (10). We show that there is γ ∈ RL
+ and Γ ∈ R

S×L
+ such that (τ, w,W, γ,Γ) with τ := p⊤0 c,

w := c and W := 0 satisfies the constraints of the semidefinite program (20). Since τ = infξ∈Ξ

{
p⊤0 ϑ(ξ)

}
,

ϑ in (10) and (τ, w,W, γ,Γ) in (20) clearly attain equal objective values.

By the proof of Theorem 3.8, there is γ ∈ RL
+ that satisfies constraint (20b) if and only if τ ≤

p⊤0 (w +Wξ) for all ξ ∈ Ξ. Since w +Wξ = c for all ξ ∈ Ξ and τ = p⊤0 c, such a γ indeed exists.

Let us now consider constraint set (20c). Since the constant reward to-go function ϑ(ξ) = c is feasible

in the policy evaluation problem (10), we have for state s ∈ S that

cs ≤ r̂s(ξ) + λP̂⊤
s· (ξ) c ∀ ξ ∈ Ξ.
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1 2 3
ξ; 0 ξ; 0

1 − ξ; 0

1 − ξ; 0

1; 1

Figure 6: MDP with three states and one action. p0 places unit probability mass on state 1.
The same drawing conventions as in Figure 3 are used.

If we replace r̂ and P̂ with their definitions from (7), this is equivalent to

cs ≤
∑

a∈A

π(a|s)(ksa +Ksaξ)
⊤ (rsa + λc) ∀ ξ ∈ Ξ,

which is an instance of constraint (22c) where w = c andW = 0. For this choice of (w,W ), Proposition 3.7

under condition (C2) is applicable to constraint (22c). Hence, (22c) is satisfied if and only if there is

Γ⊤
s· ∈ R

1×L
+ that satisfies constraint (20c). Since (22c) is satisfied, we conclude that we can indeed find

γ and Γ such that (τ, w,W, γ,Γ) satisfies the constraints of the semidefinite program (20).

Propositions 3.6 and 3.10 show that the lower bound provided by the robust value iteration is domi-

nated by the bound obtained from the semidefinite program (20). The following example highlights that

the quality of these bounds can differ substantially.

Example 3.11 Consider the robust infinite horizon MDP that is visualised in Figure 6. The uncertainty

set P encompasses all transition kernels that correspond to parameter realisations ξ ∈ [0, 1]. This MDP

can be assigned an uncertainty set of the form (3). For λ := 0.9, the worst-case expected total reward is

λ2/(1− λ) = 8.1 and is incurred under the transition kernel corresponding to ξ = 1. The solution of the

semidefinite program (20) yields the (affine) approximate reward to-go function ϑ∗(ξ) = (6.5, 9ξ, 10)⊤

and therefore provides a lower bound of 6.5. The unique solution to the fixed point equations w∗ =

φ(w∗), where φ is defined in (11), is w∗ = (0, 0, 1/[1 − λ]). Hence, the best constant reward to-go

approximation yields a lower bound of zero. Since all expected rewards are non-negative, this is a trivial

bound. Intuitively, the poor performance of the constant reward to-go function is due to the fact that it

considers separate worst-case parameter realisations for states 1 (ξ = 1) and 2 (ξ = 0).

Example 3.11 shows that the semidefinite program (20) generically provides a strict lower bound

on the worst-case expected total reward if the uncertainty set is non-rectangular. In such cases, we

would like to estimate the incurred approximation error. Note that we obtain an upper (i.e., optimistic)

bound on the worst-case expected total reward if we evaluate p⊤0 v(ξ) for any single ξ ∈ Ξ. Let ϑ∗(ξ)

denote an optimal affine approximation of the reward to-go function obtained from the semidefinite

program (20). This ϑ∗ can be used to obtain a suboptimal solution to argmin
{
p⊤0 v(ξ) : ξ ∈ Ξ

}
by solving
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arg min
{
p⊤0 ϑ

∗(ξ) : ξ ∈ Ξ
}
, which is a convex optimisation problem. Let ξ∗ denote an optimal solution

to this problem. We obtain an upper bound on the worst-case expected total reward by evaluating

p⊤0 v(ξ
∗) = p⊤0

∞∑

t=0

[
λP̂ (ξ∗)

]t

r̂(ξ∗) = p⊤0
[
I − λP̂ (ξ∗)

]−1
r̂(ξ∗), (23)

where the last equality follows from the matrix inversion lemma, see e.g. Theorem C.2 in [19]. We

can thus estimate the approximation error of the semidefinite program (20) by evaluating the difference

between (23) and the optimal value of (20). If this difference is large, the affine approximation of the

reward to-go function may be too crude. In this case, one could use modern decision rule techniques

[3, 10] to reduce the approximation error via piecewise affine approximations of the reward to-go function.

Since the resulting generalisation requires no new ideas, we omit details for the sake of brevity.

Remark 3.12 (Finite Horizon MDPs) Our results can be directly applied to finite horizon MDPs if

we convert them to infinite horizon MDPs. To this end, we choose any discounting factor λ and multiply

the rewards associated with transitions in period t ∈ T by λ−t. Moreover, for every terminal state s ∈ ST ,

we introduce a deterministic transition to an auxiliary absorbing state and assign an action-independent

expected reward of λ−T
rs. Note that in contrast to non-robust and rectangular MDPs, the approximate

policy evaluation problem (20) does not decompose into separate subproblems for each time period t ∈ T .

4 Robust Policy Improvement

In view of (10), we can formulate the policy improvement problem as

sup
π∈Π

sup
ϑ:Ξ

c
7→RS

{
inf
ξ∈Ξ

{
p⊤0 ϑ(ξ)

}
: ϑ(ξ) ≤ r̂(π; ξ) + λ P̂ (π; ξ)ϑ(ξ) ∀ ξ ∈ Ξ

}
. (24)

Since π is no longer fixed in this section, we make the dependence of v, P̂ and r̂ on π explicit. Section 3

shows that the policy evaluation problem can be solved efficiently if the uncertainty set P is s-rectangular.

We now extend this result to the policy improvement problem.

Theorem 4.1 For an s-rectangular uncertainty set P, the policy improvement problem (24) is optimised

by the policy π∗ ∈ Π and the constant reward to-go function ϑ∗(ξ) := w∗, ξ ∈ Ξ, that are defined as

follows. The vector w∗ ∈ RS is the unique fixed point of the contraction mapping ϕ defined through

ϕs(w) := max
π∈Π

{φs(π;w)} ∀ s ∈ S, (25)

where φ is defined in (11). For each s ∈ S, let πs ∈ argmaxπ∈Π {φs(π;w∗)} denote a policy that attains
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the maximum on the right-hand side of (25) for w = w∗. Then π∗(a|s) := πs(a|s) for all (s, a) ∈ S ×A.

Proof In analogy to the proof of Theorem 3.2, we can rewrite the policy improvement problem (24) as

max
π∈Π

max
w∈RS

{
p⊤0 w : ws ≤ r̂s(π; ξs) + λ P̂⊤

s· (π; ξs)w ∀ s ∈ S, ξ1, . . . , ξS ∈ Ξ
}
.

By definition of φ, the S semi-infinite constraints in this problem are equivalent to the constraint w ≤

φ(π;w). If we interchange the order of the maximum operators, we can reexpress the problem as

max
w∈RS

{
p⊤0 w : ∃π ∈ Π such that w ≤ φ(π;w)

}
. (26)

Note that φs only depends on the components π(·|s) of π. Hence, we have w∗ = φ(π∗;w∗), and π∗ and w∗

are feasible in (26). One can adapt the results in [11, 17] to show that ϕ is a contraction mapping. Since

w∗ = ϕ(w∗) and every feasible solution w to (26) satisfies w ≤ ϕ(w), Theorem 6.2.2 in [19] therefore

implies that w∗ ≥ w for all feasible vectors w. By non-negativity of p0, π
∗ and w∗ must then be optimal

in (26). The assertion now follows from the equivalence of (24) and (26).

The fixed point w∗ of the contraction mapping ϕ defined in (25) can be found via robust value

iteration, see Section 3.1. The following result analyses the complexity of this method.

Corollary 4.2 The fixed point w∗ of the contraction mapping ϕ defined in (25) can be determined to

any accuracy ǫ in polynomial time O
(
(q +A+ L)1/2(qL+A)3S log2 ǫ−1 + qAS2 log ǫ−1

)
.

Proof We apply the robust value iteration presented in Section 3.1 to the contraction mapping ϕ. To

evaluate ϕs(w), we solve the following semi-infinite optimisation problem:

maximise
τ,π

τ (27a)

subject to τ ∈ R, π ∈ R
A

τ ≤
∑

a∈A

πa(ksa +Ksaξ)
⊤(rsa + λw) ∀ ξ ∈ Ξ, (27b)

π ≥ 0, e⊤π = 1. (27c)

Second-order cone duality [1, 14] allows us to replace the semi-infinite constraint (27b) with the following
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linear and conic quadratic constraints:

∃Y ∈ R
q×L, z ∈ R

L, t ∈ R
L : τ −

∑

a∈A

πak
⊤
sa (rsa + λw) ≤ −

L∑

l=1

(
1 − ωl

2
zl +

ωl + 1

2
tl

)
(27b.1)

L∑

l=1

(
Ω⊤

l Y·l −
1

2
ol [tl − zl]

)
=

∑

a∈A

πaK
⊤
sa (rsa + λw) (27b.2)

∥∥∥∥∥∥∥




Y·l

zl





∥∥∥∥∥∥∥
2

≤ tl ∀ l = 1, . . . , L. (27b.3)

Here, Ωl satisfies Ω⊤
l Ωl = −Ol. The assertion now follows if we evaluate ϕ(wi) at iteration i to an

accuracy δ < ǫ(1 − λ)2/8 and stop as soon as
∥∥wN+1 − wN

∥∥
∞

≤ ǫ(1 − λ)/4 at some iteration N .

In analogy to Remark 3.5, we can solve the policy improvement problem for finite horizon MDPs via

robust backward induction in polynomial time O
(
(q +A+ L)1/2(qL +A)3S log ǫ−1 + qAS2

)
.

Since the policy improvement problem (24) contains the policy evaluation problem (10) as a special

case, Theorem 2.6 implies that (24) is intractable for non-rectangular uncertainty sets. In analogy to Sec-

tion 3, we can obtain a suboptimal solution to (24) by considering constant approximations of the reward

to-go function. The following result is an immediate consequence of Proposition 3.6 and Theorem 4.1.

Corollary 4.3 For a non-rectangular uncertainty set P, consider the following variant of the policy

improvement problem (24), which approximates the reward to-go function by a constant function.

sup
π∈Π

sup
w∈RS

{
p⊤0 w : w ≤ r̂(ξ) + λP̂ (ξ)w ∀ ξ ∈ Ξ

}
(28)

Problem (28) is optimised by the unique fixed point w∗ ∈ RS of the contraction mapping ϕ defined in (25).

In analogy to Proposition 3.6, the policy improvement problem (24) is equivalent to its approxima-

tion (28) if we replace P with ×s Ps. We can try to obtain better solutions to (24) over non-rectangular

uncertainty sets by replacing the constant reward to-go approximations with affine or piecewise affine

approximations. The associated optimisation problems are bilinear semidefinite programs and as such

difficult to solve. Nevertheless, we can obtain a suboptimal solution with the following heuristic.

Algorithm 4.1. Sequential convex optimisation procedure.

1. Initialisation. Choose π1 ∈ Π (best policy found) and i := 1 (iteration counter).

2. Policy Evaluation. Solve the semidefinite program (20) for π = πi and store the τ -, w- and W -

components of the solution in τ i, wi and W i, respectively. Abort if i > 1 and τ i = τ i−1.
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3. Policy Improvement. For each s ∈ S, solve the semi-infinite optimisation problem

maximise
σs,πs

σs (29a)

subject to σs ∈ R, πs ∈ R
A

ws +W⊤
s· ξ + σs ≤

∑

a∈A

πsa

(
ksa +Ksaξ)

⊤(rsa + λ [w +Wξ]
)

∀ ξ ∈ Ξ, (29b)

πs ≥ 0, e⊤πs = 1, (29c)

where (w,W ) = (wi,W i). Set πi+1(a|s) := π∗
sa for all (s, a) ∈ S × A, where π∗

s denotes the πs-

component of an optimal solution to (29) for state s ∈ S. Set i := i+ 1 and go back to Step 2.

Upon termination, the best policy found is stored in πi−1, and τ i is an estimate for the worst-case

expected total reward of πi−1. Depending on the number L of constraints that define Ξ, this estimate

is exact (if L = 1) or a lower bound (if L > 1). We can equivalently reformulate (if L = 1) or

conservatively approximate (if L > 1) the semi-infinite constraint (29b) with a semidefinite constraint.

Since this reformulation parallels the proof of Theorem 3.8, we omit the details. Step 3 of the algorithm

aims to increase the slack in the constraint (20c) of the policy evaluation problem solved in Step 2. One

can show that if σs > 0 for some state s ∈ S that can be visited by the MDP, then Step 2 will lead to a

better objective value in the next iteration. Algorithm 4.1 converges to a partial optimum of the policy

improvement problem (24). We refer to [12] for a detailed convergence analysis.

5 Constructing Uncertainty Sets from Observation Histories

Assume that an observation history

(s1, a1, . . . , sn, an) ∈ (S ×A)
n

(30)

of the MDP under some known stationary policy π0 is available. We can use the observation (30) to con-

struct an uncertainty set that contains the MDP’s unknown true transition kernel P 0 with a probability

of at least 1−β. The worst-case expected total reward of any policy π over this uncertainty set then pro-

vides a valid lower bound on the expected total reward of π under P 0 with a confidence of at least 1 − β.

In the following, we first define the structural uncertainty set which incorporates all available a priori

information about P 0. We then combine this structural information with the statistical information in

the form of observation (30) to construct a confidence region for P 0. This confidence region will not be

of the form (3). Section 5.3 therefore elaborates an approximate uncertainty set that is in line with the
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methods presented in Sections 3 and 4. We close with an asymptotic analysis of our approach.

5.1 Structural Uncertainty Set

Traditionally, uncertainty sets for the transition kernels of MDPs are constructed under the assumption

that all transitions (s, a, s′) ∈ S×A×S are possible and that no a priori knowledge about the associated

transition probabilities is available. In reality, however, one often has structural information about the

MDP. For example, some transitions may be impossible, or certain functional relations between the tran-

sition probabilities may be known. We condense this kind of information into the structural uncertainty

set P0, which captures all available a priori knowledge about the MDP. The use of structural information

excludes irrelevant transition kernels and therefore leads to a smaller uncertainty set (and hence a tighter

lower bound on the expected total reward). In Section 6, we will exemplify the benefits of this approach.

Formally, we assume that the structural uncertainty set P0 represents the affine image of a set Ξ0,

and that P0 and Ξ0 satisfy our earlier definition (3) of P and Ξ. In the remainder of the paper, we

denote by ξ0 the parameter vector associated with the unknown true transition kernel P 0 of the MDP,

that is, P 0
sa = pξ0

(·|s, a) for all (s, a) ∈ S ×A. We require that

(A1) Ξ0 contains the parameter vector ξ0 in its interior: ξ0 ∈ int Ξ0.

Assumption (A1) implies that all vanishing transition probabilities are known a priori. This requirement

is standard in the literature on statistical inference for Markov chains [5], and it is naturally satisfied if

structural knowledge about the MDP is available. Otherwise, one may use the observation (30) to infer

which transitions are possible. Indeed, it can be shown under mild assumptions that the probability to

not observe a possible transition decreases exponentially with the length n of the observation [5]. For a

sufficiently long observation, we can therefore assign zero probability to unobserved transitions.

We illustrate the construction of the structural uncertainty set P0 in an important special case.

Example 5.1 For every state-action pair (s, a) ∈ S × A, let Ssa ⊆ S denote the (nonempty) set of

possible subsequent states if the MDP is in state s and action a is chosen. Assume that all sets Ssa

are known, while no other structural information about the MDP’s transition kernel is available. In the

following, we define Ξ0 and pξ(·|s, a) for this setting. For (s, a) ∈ S × A, all but one of the probabil-

ities corresponding to transitions (s, a, s′), s′ ∈ Ssa, can vary freely within the (|Ssa| − 1)-dimensional

probability simplex, while the remaining transition probability is uniquely determined through the others.

We therefore set the dimension of Ξ0 to q :=
∑

(s,a)∈S×A(|Ssa| − 1). For each (s, a) ∈ S ×A, we define

the set Ssa of explicitly modelled transition probabilities through Ssa := Ssa \ {ssa}, where ssa ∈ Ssa can

be chosen freely. Let µ be a bijection that maps each triple (s, a, s′), (s, a) ∈ S × A and s′ ∈ Ssa, to a
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component {1, . . . , q} of Ξ0. We identify ξµ(s,a,s′) with the probability of transition (s, a, s′). We define

Ξ0 :=




ξ ∈ R
q : ξ ≥ 0,

∑

s′∈Ssa

ξµ(s,a,s′) ≤ 1 ∀ (s, a) ∈ S ×A




 (31)

and set pξ(s′|s, a) := ξµ(s,a,s′) for (s, a) ∈ S×A and s′ ∈ Ssa, as well as pξ(ssa|s, a) := 1−∑
s′∈Ssa

ξµ(s,a,s′)

for (s, a) ∈ S ×A. The constraints in (31) ensure that all transition probabilities are non-negative.

5.2 Confidence Regions from Maximum Likelihood Estimation

In the following, we use the observation (30) to construct a confidence region for ξ0. This confidence

region will be centred around the maximum likelihood estimator associated with the observation (30),

and its shape will be determined by the statistical properties of the likelihood difference between ξ0

and its maximum likelihood estimator. To this end, we first calculate the log-likelihood function for

the observation (30) and derive the corresponding maximum likelihood estimator. We then use existing

statistical results for Markov chains (hereafter MCs) to construct a confidence region for ξ0.

We remark that maximum likelihood estimation has recently been applied to construct confidence

regions for the newsvendor problem [24]. Our approach differs in two main aspects. Firstly, due to the

nature of the newsvendor problem, the observation history in [24] constitutes a collection of independent

samples from a common distribution. Secondly, the newsvendor problem belongs to the class of single-

stage stochastic programs, and the techniques developed in [24] do not readily extend to MDPs.

The probability to observe the state-action sequence (30) under the policy π0 and some transition

kernel associated with ξ ∈ Ξ0 is given by

p0(s1)π
0(an|sn)

n−1∏

t=1

[
π0(at|st) p

ξ(st+1|st, at)
]
. (32)

The log-likelihood function ℓn : Ξ0 7→ R ∪ {−∞} is given by the logarithm of (32), where we use the

convention that log(0) := −∞. Thus, we set

ℓn(ξ) :=

n−1∑

t=1

log
[
pξ(st+1|st, at)

]
+ ζ, where ζ := log [p0(s1)] +

n∑

t=1

log
[
π0(at|st)

]
. (33)

Note that the remainder term ζ is finite and does not depend on ξ. Due to the monotonicity of the

logarithmic transformation, the expressions (32) and (33) attain their maxima over Ξ0 at the same

points. Note also that we index the log-likelihood function with the length n of the observation (30).

This will be useful later when we investigate its asymptotic behaviour as n tends to infinity.

The order of the transitions (st, at, st+1) in the observation (30) is irrelevant for the log-likelihood
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function (33). Hence, we can reexpress the log-likelihood function as

ℓn(ξ) =
∑

(s,a,s′)∈N

nsas′ log
[
pξ(s′|s, a)

]
+ ζ, (33’)

where nsas′ denotes the number of transitions from state s ∈ S to state s′ ∈ S under action a ∈ A in

(30), and N := {(s, a, s′) ∈ S ×A× S : nsas′ > 0} represents the set of observed transitions.

We obtain a maximum likelihood estimator ξn by maximising the concave log-likelihood function ℓn

over Ξ0. Since the observation (30) has strictly positive probability under the transition kernel associated

with ξ0, we conclude that ℓn(ξn) ≥ ℓn(ξ0) > −∞. Note that the maximum likelihood estimator may not

be unique if ℓn fails to be strictly concave.

Remark 5.2 (Analytical Solution) Sometimes the maximum likelihood estimator can be calculated

analytically. Consider, for instance, the log-likelihood function associated with Example 5.1.

ℓn(ξ) =
∑

(s,a,s′)∈N :

s′∈Ssa

nsas′ log
[
ξµ(s,a,s′)

]
+

∑

(s,a,ssa)∈N

nsassa
log

[
1 −

∑

s′∈Ssa

ξµ(s,a,s′)

]
+ ζ

The gradient of ℓn vanishes at ξn defined through ξn
µ(s,a,s′) := nsas′/

∑
s′′∈S nsas′′ if

∑
s′′∈S nsas′′ > 0

and ξn
µ(s,a,s′) := 0 otherwise. Since ξn ∈ Ξ0, see (31), it constitutes a maximum likelihood estimator.

For ξ ∈ Ξ0, the log-likelihood ℓn(ξ) describes the (logarithm of the) probability to observe the state-

action sequence (30) under the transition kernel associated with ξ. For a sufficiently long observation,

we therefore expect the log-likelihood ℓn(ξ0) of the unknown true parameter vector ξ0 to be ‘not much

smaller’ than the log-likelihood ℓn(ξn) of the maximum likelihood estimator ξn. Guided by this intuition,

we intersect the set Ξ0 with a constraint that bounds this log-likelihood difference.

Ξ0 ∩ {ξ ∈ R
q : ℓn(ξ) ≥ ℓn(ξn) − δ} (34)

Here, δ ∈ R+ determines the upper bound on the anticipated log-likelihood difference between ξ0 and

ξn. Expression (34) raises two issues. Firstly, it is not clear how δ should be chosen. Secondly, the

intersection does not constitute a valid uncertainty set since it is not of the form (3b). In the following,

we address the choice of δ. We postpone the discussion of the second issue to the next section.

Our choice of δ relies on statistical inference and requires two further assumptions:

(A2) The MC with state set S and transition kernel P̂ (π0; ξ) is irreducible for some ξ ∈ Ξ0, see (7a).

(A3) The matrix with rows [Ksa]⊤s′· for (s, a, s′) ∈ S ×A× S with π0(a|s) > 0 has rank κ > 0.
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Remember that a finite MC with state set S is called irreducible if for any pair of states s, s′ ∈ S, there

is a strictly positive probability that the MC visits state s′ in the future if it is currently in state s.

Assumption (A2) therefore guarantees that the MDP visits every state infinitely often as the observation

length n tends to infinity. Assumption (A3) ensures that the historical policy π0 chooses at least one

state-action pair with unknown transition probabilities pξ0

(·|s, a). If this was not the case, then the

observation (30) would not allow any inference about ξ0, and the tightest possible uncertainty set for

the unknown true transition kernel P 0 would be the structural uncertainty set P0.

We can now establish an asymptotic relation between ξn and ξ0.

Theorem 5.3 Under the assumptions (A1)–(A3), we have

2
[
ℓn(ξn) − ℓn(ξ0)

]
−→

n→∞
χ2

κ, (35)

where ‘−→’ denotes convergence in distribution and χ2
κ is a χ2-distribution with κ degrees of freedom.

Remark 5.4 A sequence of random variables Xi with cumulative distribution functions Fi, i = 1, 2, . . .,

is said to converge in distribution to a random variable X with cumulative distribution function F if

limn→∞ Fn(x) = F (x) at all points x ∈ R where F is continuous.

Proof of Theorem 5.3 See Appendix B.

Theorem 5.3 can be interpreted as follows. The observation (30) constitutes a random vector whose

true distribution is determined by the expression (32) if we set ξ = ξ0. Since ξ0 is unknown, the distribu-

tion of the observation (30) is unknown as well. Similarly, the maximum likelihood estimator ξn depends

on the observation (30) and is therefore a random vector with an unknown distribution. Theorem 5.3

shows, however, that the distribution of the random variable 2
[
ℓn(ξn) − ℓn(ξ0)

]
is asymptotically known:

it converges to a χ2
κ distribution. Thus, under the assumptions (A1)–(A3), we obtain a (1−β)-confidence

region for ξ0 if we set δ in (34) to one half of the (1 − β)-quantile of the χ2
κ distribution.

P
(
ξ0 ∈ Ξ0 ∩ {ξ ∈ R

q : ℓn(ξ) ≥ ℓn(ξn) − δ}
)

≥ 1 − β

The support of the χ2
κ distribution is unbounded above, and thus δ grows indefinitely if β goes to zero.

For a fixed observation length n, the set (34) therefore reduces to Ξ0 for β −→ 0.

Theorem 5.3 provides an asymptotic convergence result for robust infinite horizon MDPs. Robust

finite horizon MDPs, on the other hand, are not directly amenable to an asymptotic analysis since they

reach a terminal state after finitely many transitions. The most natural way to estimate the transition

kernel of a finite horizon MDP is to assume that the MDP is ‘restarted’, that is, the same MDP is run
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several times. Theorem 5.3 can be applied to this situation as follows. We construct an infinite horizon

MDP whose state space consists of the states of the finite horizon MDP, together with an auxiliary

‘restarting’ state τ . Apart from the transitions of the finite horizon MDP, the infinite horizon MDP

contains deterministic transitions from all terminal states s ∈ ST to τ , as well as transitions from τ to all

initial states s ∈ S1 with action-independent transition probabilities p0(s). We do not specify a discount

factor λ or one-step rewards r since they are irrelevant for Theorem 5.3. We interpret m observation

histories (si
1, a

i
1, . . . , s

i
T−1, a

i
T−1, s

i
T ), i = 1, . . . ,m, of the finite horizon MDP as one observation

(s11, a
1
1, . . . , s

1
T−1, a

1
T−1, s

1
T , a

1
T ; . . . ; sm

1 , a
m
1 , . . . , s

m
T−1, a

m
T−1, s

m
T , a

m
T )

of the corresponding infinite horizon MDP. In this concatenated observation, the terminal actions ai
T ∈ A

may be chosen freely. We can now apply Theorem 5.3 to the constructed infinite horizon MDP if it satis-

fies the assumptions (A1)–(A3). This is the case if the finite horizon MDP satisfies the assumptions (A1)

and (A3) and if each of its states can be reached from an initial state s ∈ S1 with p0(s) > 0.

We close with a variant of Theorem 5.3 that relaxes the assumption (A2).

Remark 5.5 Even if assumption (A2) is violated, the MDP will eventually enter a set of irreducible

states S ⊆ S from which it cannot escape. If we remove from the observation (30) all state-action pairs

(s1, a1, . . . , sτ , aτ ) for which st /∈ S, t = 1, . . . , τ , then Theorem 5.3 can be applied to the reduced MDP

that only consists of the states in S.

5.3 Quadratic Approximation

The confidence region for the unknown parameter vector ξ0 in (34) is not consistent with the defini-

tion (3b) that underlies our computational techniques developed in Sections 3 and 4. We therefore

approximate the left-hand side of the constraint ℓn(ξ) ≥ ℓn(ξn) − δ in (34) by a second-order Taylor

expansion around the maximum likelihood estimator ξn and set

Ξn := Ξ0 ∩ {ξ ∈ R
q : ϕn(ξ) ≥ 0} , (36)

where

ϕn(ξ) := [∇ξ ℓn(ξn)]
⊤

(ξ − ξn) − 1

2
(ξ − ξn)

⊤ [
∇2

ξ ℓn(ξn)
]
(ξ − ξn) + δ (37a)
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with

[∇ξ ℓn(ξn)]⊤ =
∑

(s,a,s′)∈N

nsas′

pξn(s′|s, a) [Ksa]⊤s′· (37b)

and ∇2
ξ ℓn(ξn) =

∑

(s,a,s′)∈N

nsas′

[pξn(s′|s, a)]2
(
[Ksa]

⊤
s′·

)⊤ (
[Ksa]

⊤
s′·

)
. (37c)

Note that the expressions in (37b) and (37c) are well-defined since pξn

(s′|s, a) > 0 for all (s, a, s′) ∈ N ,

see our discussion surrounding the log-likelihood function (33’). Moreover, Ξn is of the form (3b) since

it emerges from the intersection of Ξ0 with an ellipsoid. One can show that Ξn contains a Slater point

whenever δ is strictly positive.

The set Ξn in (36) induces an uncertainty set of the form

Pn :=
{
P ∈ [M(S)]S×A : ∃ ξ ∈ Ξn such that Psa = pξ(·|s, a) ∀ (s, a) ∈ S ×A

}
.

We now investigate the asymptotic properties of this uncertainty set as n tends to infinity. In Theorem 5.6

below we establish that Pn converges to the unknown true transition kernel P 0 of the MDP and analyse

the speed of convergence. Afterwards, we show that the solutions of the robust policy evaluation and

improvement problems converge to the solutions of the nominal policy evaluation and improvement

problems under the unknown true transition kernel P 0. All subsequent convergence results rely on the

following stronger version of assumption (A3).

(A3’) The matrix with rows [Ksa]
⊤
s′· for (s, a, s′) ∈ S ×A× S with π0(a|s) > 0 has full rank.

Assumption (A3’) stipulates that the mapping from ξ to the probabilities of all possible transitions

under π0 is injective. Indeed, if assumption (A3’) is violated, then there are different parameter vectors

ξ, ξ′ ∈ Ξ0 such that pξ(s′|s, a) = pξ′

(s′|s, a) for all possible transitions (s, a, s′) under the data generating

policy π0. In this case, we cannot distinguish between ξ and ξ′ based on the information provided by

any observation of the type (30), and the uncertainty set Pn will not converge to a singleton as the

observation length n tends to infinity.

In the following proposition, we analyse the Hausdorff distance between the two sets Ξn and
{
ξ0

}
.

Recall that the Hausdorff distance between two sets X,Y ⊆ Rq is defined as

dH(X,Y ) := max

{
sup
x∈X

inf
y∈Y

‖x− y‖∞ , sup
y∈Y

inf
x∈X

‖x− y‖∞
}
.
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Theorem 5.6 Under the assumptions (A1), (A2) and (A3’), we have

plim
n−→∞

(
nαdH

[
Ξn,

{
ξ0

}])
= 0 ∀α < 1/2, (38)

where ‘plim’ denotes convergence in probability.

Remark 5.7 Theorem 5.6 is equivalent to the statement that

lim
n−→∞

P

(
max
ξ∈Ξn

∥∥ξ − ξ0
∥∥
∞

≤ ǫ

nα

)
= 1

for every α < 1/2 and ǫ > 0.

Proof of Theorem 5.6 See Appendix C.

We now show that under the assumptions of Theorem 5.6, the solution provided by the constant

reward to-go approximation from Proposition 3.6 converges to the expected total reward p⊤0 v(ξ
0) of

policy π as n tends to infinity. Note that Pn constitutes a non-rectangular uncertainty set.

Proposition 5.8 Let ϑn(ξ) = wn be the constant reward to-go approximation described in Proposi-

tion 3.6 if we set Ξ = Ξn. Under the assumptions (A1), (A2) and (A3’), we have

plim
n−→∞

(
nα

∣∣p⊤0 wn − p⊤0 v(π; ξ0)
∣∣) = 0 ∀α < 1/2, (39)

where p⊤0 v(π; ξ0) denotes the expected total reward under π and the unknown true transition kernel P 0.

Remark 5.9 Proposition 5.8 is equivalent to the statement that for every α < 1/2 and ǫ > 0, we have

lim
n−→∞

P

(∣∣p⊤0 wn − p⊤0 v(π; ξ0)
∣∣ ≤ ǫ

nα

)
= 1.

While Ξn is constructed from the observation (30) under the historical policy π0, p⊤0 w
n estimates the

expected total reward of policy π. Note that π0 and π can be different.

Proof of Proposition 5.8 Fix any α < 1/2. By Theorem 5.6, we have

plim
n−→∞

(
nα max

ξ∈Ξn

∥∥ξ − ξ0
∥∥
∞

)
= 0. (40)

The proof of Theorem 3.2 shows that for each wn, n ∈ N, there is ξn,1, . . . , ξn,S ∈ Ξn such that

wn = r̂(π; ξn,1, . . . , ξn,S) + λP̂ (π; ξn,1, . . . , ξn,S)wn, (41)
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where for ξ1, . . . , ξS ∈ Ξn, the rectangular rewards r̂(π; ξ1, . . . , ξS) and the rectangular transition kernel

P̂ (π; ξ1, . . . , ξS) are defined through
[
r̂(π; ξ1, . . . , ξS)

]
s

:= r̂s(π; ξs) and
[
P̂ (π; ξ1, . . . , ξS)

]⊤
s·

:= P̂⊤
s· (π; ξs)

for all s ∈ S, respectively. Note that the existence of ξn,1, . . . , ξn,S does not depend on the structure of

Ξn, see (14). By unrolling the recursion (41), we see that

wn = v(π; ξn,1, . . . , ξn,S) :=

∞∑

t=0

[
λP̂ (π; ξn,1, . . . , ξn,S)

]t

r̂(π; ξn,1, . . . , ξn,S),

where for ξ1, . . . , ξS ∈ Ξn, v(π; ξ1, . . . , ξS) represents a rectangular variant of the reward to-go function

v. One can adapt the proof of Proposition 3.1 (a) to show that this rectangular reward to-go function is

Lipschitz continuous on the compact set Ξ0. Equation (40) therefore implies that

plim
n−→∞

(
nα

∥∥v(π; ξn,1, . . . , ξn,S) − v(π; ξ0, . . . , ξ0)
∥∥
∞

)
= 0.

Equation (39) now follows from wn = v(π; ξn,1, . . . , ξn,S) and v(π; ξ0) = v(π; ξ0, . . . , ξ0).

Proposition 5.8 immediately extends to the affine reward to-go approximations obtained from the

semidefinite program (20).

Corollary 5.10 Let τn denote the optimal value of τ in the semidefinite program (20) with Ξ = Ξn.

Under the assumptions (A1), (A2) and (A3’), we have

plim
n−→∞

(
nα

∣∣τn − p⊤0 v(π; ξ0)
∣∣) = 0 ∀α < 1/2.

Proof Fix α < 1/2. Theorem 5.6 and the Lipschitz continuity of v, see Proposition 3.1 (a), imply that

plim
n−→∞

(
nα max

ξ∈Ξn

∣∣p⊤0 v(π; ξ) − p⊤0 v(π; ξ0)
∣∣
)

= 0.

Proposition 3.1 (c) and Theorem 3.8 ensure that τn ≤ p⊤0 v(π; ξ) for all ξ ∈ Ξn, n ∈ N. We conclude that

plim
n−→∞

(
nα

[
τn − p⊤0 v(π; ξ0)

]+)
= 0,

where [x]
+

:= max {x, 0} for x ∈ R. In a probabilistic sense, τn therefore underestimates p⊤0 v(π; ξ0). At

the same time, Proposition 3.10 guarantees that τn ≥ p⊤0 w
n for the vector wn defined in Proposition 5.8.

Hence, the assertion follows from the convergence of p⊤0 w
n, see Proposition 5.8.

The above convergence results extend to the policy improvement problem discussed in Section 4.

Since the derivation of the following result does not require any new ideas, we state it without a proof.
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Figure 7: MDP for the machine replacement problem. Shown are the transition probabilities
for the two actions ‘do nothing’ (dashed arcs) and ‘repair’ (solid arcs). The states 8, R1 and
R2 pay an expected reward of -20, -2 and -10, respectively, while no reward is received in the
other states. We use the same drawing conventions as in Figure 1.

Proposition 5.11 For Ξ = Ξn, let πn denote an optimal policy determined by Algorithm 4.1 or the

robust value iteration described in Corollary 4.3. Under the assumptions (A1), (A2) and (A3’), we have

plim
n−→∞

(
nα

∣∣∣∣ p
⊤
0 v(π

n; ξ0) − min
π∈Π

{
p⊤0 v(π; ξ0)

}∣∣∣∣

)
= 0 ∀α < 1/2,

where the second term in the absolute value represents the expected total reward of the optimal policy

under the MDP’s unknown true transition kernel P 0.

Note that both the constant and the affine reward to-go approximations guarantee convergence to the

nominal solutions of the policy evaluation and improvement problems as n tends to infinity. However,

the next section will show that we can expect the affine approximations to convergence faster if the

uncertainty set is non-rectangular.

6 Numerical Example

We apply the policy evaluation and improvement methods from Sections 3 and 4 to the machine replace-

ment problem presented in [7]. The problem concerns a single machine whose condition is described by

eight ‘operative’ states 1, . . . , 8 and two ‘repair’ states R1 and R2. At each time period, the decision

maker receives an expected reward that depends on the machine’s current state. The state in the subse-

quent time period is random and depends on both the current state and the chosen action (‘do nothing’ or

‘repair’). The goal is to find a policy that maximises the expected total reward under the discount factor

λ = 0.8. If all transition probabilities are known, we can model this problem as an MDP, see Figure 7.

It is easy to transform this MDP into an equivalent one that satisfies the definitions in Section 1.

Consider the policy that chooses the actions ‘do nothing’ and ‘repair’ with probability 0.8 and 0.2,

respectively, in each operative state 1, . . . , 7. In states 8 and R2, the policy always chooses the action
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n RVI SDP (LB) SDP (UB) P 0 ∈ Pn?

500 -43.90 -30.37 -26.97 87%
1000 -32.34 -20.74 -18.81 92%
2500 -20.35 -15.36 -15.32 91%

500 -16.82 -14.95 -14.95 87%
1000 -15.20 -14.00 -13.99 88%
2500 -14.07 -13.31 -13.30 92%

Table 2: Policy evaluation results for 100 randomly generated observation histories of dif-
ferent observation length n. From left to right, the columns report the observation length,
the average lower bound provided by the robust value iteration (RVI), the average lower and
upper bounds obtained from the semidefinite program (20), and the percentage of instances in
which P 0 is contained in Pn. The first three rows were obtained without a priori knowledge,
whereas the last three rows exploit the structural knowledge described in the text.

‘repair’, while the action ‘do nothing’ is chosen in state R1. The expected total reward of this policy is

−12.34. Assume now that instead of the transition probabilities, we only have access to an observation

history. We can use the structural uncertainty set P0 described in Example 5.1 and intersect it with a

90% confidence region for the unknown transition probabilities, see Section 5.3. The resulting uncertainty

set is non-rectangular, and we can apply the robust value iteration from Proposition 3.6 or solve the

semidefinite program (20) to obtain a lower bound on the worst-case expected total reward (2). The

results for randomly generated observation histories are presented in the first part of Table 2. Note that

the uncertainty set Pn contains the MDP’s true transition kernel P 0 in about 90% of the observation

histories. As the observation length n increases, the lower bounds obtained from both the robust value

iteration and the semidefinite program (20) converge to the true expected total reward. However, the

lower bounds provided by the semidefinite program are significantly tighter. From the optimality gaps

we conclude that the semidefinite programming approximation performs well in this example.

The transition kernel in Figure 7 is highly structured. In particular, the probabilities associated with

the transitions emanating from state s under either action are identical for s ∈ {1, . . . , 7}. We now

assume that although these probabilities are unknown, they are known to be identical for s ∈ {1, . . . , 7}.

This additional information can be incorporated into the structural uncertainty set P0 to reduce the

dimension of Ξ0. The results are presented in the second part of Table 2. As the table shows, the

incorporation of the additional structural information leads to significantly tighter bounds.

We now use the random observation histories to solve the robust policy improvement problem. The

optimal policy for the unknown true transition kernel P 0 achieves an expected total reward of -7.98.

Table 3 reports on the performance of the policies determined by the robust value iteration and the

sequential convex optimisation algorithm from Section 4. Both methods perform well in this example.

Nevertheless, the sequential convex optimisation algorithm provides tighter worst-case estimates. This

is not surprising since the algorithm employs affine approximations of the reward to-go function.
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RVI SCO
n LB nominal LB nominal

500 -12.35 -8.05 -10.45 -8.05
1000 -10.64 -8.00 -9.51 -8.00
2500 -9.50 -7.99 -8.99 -7.99

Table 3: Policy improvement results for 100 randomly generated observation histories of
different observation length n. From left to right, the columns report the observation length,
the average lower bound and nominal performance of the robust value iteration (RVI), and the
average lower bound and nominal performance of the sequential convex optimisation procedure
(SCO). In both cases, the nominal performance describes the expected total reward of the
worst-case optimal policy under the unknown true transition kernel P 0.

We finally remark that we have considered variants of the MDP in Figure 7 with up to 1000 states. On

average, the solution of the associated semidefinite program (20) required between 0.38 secs (10 states)

and 228.92 secs (1000 states). Numerical results for the robust value iteration are reported in [11, 17].

7 Conclusion

We studied robust Markov decision processes (MDPs) in which the transition kernel is unknown. Tradi-

tionally, the policy evaluation and improvement problems for robust MDPs are solved in two steps. In

the first step, one constructs a confidence region for the unknown parameters. Afterwards, one solves a

robust optimisation problem over this confidence region.

We proposed a variant of this approach that differs in two important aspects. Firstly, existing meth-

ods rely on transition sampling to construct the confidence region for the MDP’s transition kernel. In

contrast, we use observation histories which are much easier to obtain in practice. Secondly, previous

approaches solve an unduly conservative approximation of the aforementioned robust optimisation prob-

lem. As we pointed out in Section 2, this approximation can destroy vital characteristics of robust MDPs.

We developed two novel approximations that retain these characteristics. Moreover, our approximations

provide tighter bounds than the existing techniques. We applied our method to the machine replacement

problem, and we demonstrated that our approach scales to nontrivial problem sizes.

Acknowledgements

Financial support from EPSRC Grant EP/H0204554/1 is gratefully acknowledged.

References

[1] F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathematical Programming, 95(1):3–51,
2003.

38



[2] J. D. Bagnell, A. Y. Ng, and J. Schneider. Solving uncertain Markov decision problems. Technical Report
CMU-RI-TR-01-25, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 2001.

[3] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton University Press, 2009.

[4] D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 2. Athena Scientific, 2007.

[5] P. Billingsley. Statistical Inference for Markov Processes. The University of Chicago Press, 1961.

[6] P. Billingsley. Probability and Measure. Wiley Blackwell, 1995.

[7] E. Delage and S. Mannor. Percentile optimization for Markov decision processes with parameter uncertainty.
Operations Research, Accepted for Publication.

[8] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman, 1979.

[9] R. Givan, S. Leach, and T. Dean. Bounded-parameter Markov decision processes. Artificial Intelligence,
122(1–2):71–109, 2000.

[10] J. Goh and M. Sim. Distributionally robust optimization and its tractable approximations. Accepted for
Publication in Operations Research, 2009.

[11] G. N. Iyengar. Robust dynamic programming. Mathematics of Operations Research, 30(2):257–280, 2005.

[12] J. Korski, F. Pfeuffer, and K. Klamroth. Biconvex sets and optimization with biconvex functions: A survey
and extensions. Mathematical Methods of Operations Research, 66(3):373–407, 2007.

[13] D. Kuhn, W. Wiesemann, and A. Georghiou. Primal and dual linear decision rules in stochastic and robust
optimization. Mathematical Programming, Forthcoming, 2009.

[14] M. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of second-order cone programming. Linear
Algebra and its Applications, 284(1–3):193–228, 1998.

[15] S. Mannor, D. Simester, P. Sun, and J. N. Tsitsiklis. Bias and variance approximation in value function
estimates. Management Science, 53(2):308–322, 2007.

[16] G. E. Monahan. A survey of partially observable Markov decision processes: Theory, models, and algorithms.
Management Science, 28(1):1–16, 1982.

[17] A. Nilim and L. El Ghaoui. Robust control of Markov decision processes with uncertain transition matrices.
Operations Research, 53(5):780–798, 2005.

[18] I. C. Paschalidis and S.-C. Kang. A robust approach to Markov decision problems with uncertain transition
probabilities. In Proceedings of the 17th IFAC World Congress, pages 408–413, 2008.

[19] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley &
Sons, 1994.

[20] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

[21] J. K. Satia and R. E. Lave Jr. Markovian decision processes with uncertain transition probabilities. Opera-
tions Research, 21(3):728–740, 1973.

[22] J. N. Tsitsiklis. Computational complexity in Markov decision theory. HERMIS – An International Journal
of Computer Mathematics and its Applications, 9(1):45–54, 2007.

[23] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38(1):49–95, 1996.

[24] Z. Wang, P. W. Glynn, and Y. Ye. Likelihood robust optimization for data-driven newsvendor problems.
Working paper, Department of Management Science and Engineering, Stanford University, USA, 2009.

[25] C. C. White and H. K. Eldeib. Markov decision processes with imprecise transition probabilities. Operations
Research, 42(4):739–749, 1994.

[26] H. Xu and S. Mannor. The robustness-performance tradeoff in Markov decision processes. In Advances in
Neural Information Processing Systems, pages 1537–1544, 2006.

39



A Saddle Point Condition for s-Rectangular Uncertainty Sets

Proposition A.1 For an infinite horizon MDP with an s-rectangular uncertainty set P, we have

sup
π∈Π

inf
P∈P

E
P,π

[
∞∑

t=0

λtr(st, at, st+1)
∣∣∣ s0 ∼ p0

]
= inf

P∈P
sup
π∈Π

E
P,π

[
∞∑

t=0

λtr(st, at, st+1)
∣∣∣ s0 ∼ p0

]
. (42)

Proof It follows from the proof of Theorem 4.1 that the left-hand side of (42) is equivalent to

max
w∈RS

{
p⊤0 w : ws ≤ max

π∈Π
min
ξs∈Ξ

{
r̂s(π; ξs) + λP̂⊤

s· (π; ξs)w
}

∀ s ∈ S
}
.

The constraints in this problem are equivalent to w ≤ ϕ(w), see (25). Since ϕ is a contraction mapping,

see Theorem 4.1, non-negativity of p0 and Theorem 6.2.2 in [19] allow us to reexpress the problem as

min
w∈RS

{
p⊤0 w : ws ≥ max

π∈Π
min
ξs∈Ξ

{
r̂s(π; ξs) + λP̂⊤

s· (π; ξs)w
}

∀ s ∈ S
}
.

The max-min expressions in the constraints satisfy the conditions of Corollary 37.3.2 in [20]. Hence, we

can interchange the order of the operators in the constraints to obtain the following reformulation.

min
w∈RS

{
p⊤0 w : ws ≥ min

ξs∈Ξ
max
π∈Π

{
r̂s(π; ξs) + λP̂⊤

s· (π; ξs)w
}

∀ s ∈ S
}
.

The uncertainty set P is s-rectangular, and the sth constraint only depends on the components π(·|s) of

π. Hence, similar transformations as in Theorems 3.2 and 4.1 yield the following reformulation.

min
w∈RS

min
ξ∈Ξ

{
p⊤0 w : ws ≥ r̂s(π; ξ) + λP̂⊤

s· (π; ξ)w ∀ s ∈ S, π ∈ Π
}
. (43)

Since p0 is non-negative, Theorems 6.1.1 and 6.2.2 in [19] imply that for a given ξ ∈ Ξ, the optimal

solution w satisfies w = maxπ∈Π {v(π; ξ)}. The equivalence of (43) and the right-hand side of (42) now

follows from the property (6) of the reward to-go function v.
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B Proof of Theorem 5.3

The proof of Theorem 5.3 relies on the Theorems 2.1, 2.2 and 5.1 in [5], which establish asymptotic

properties of maximum likelihood estimators of ordinary MCs. To keep the paper self-contained, we

summarise these results in Theorem B.1.

Theorem B.1 Consider a finite MC with state set X = {1, . . . , X} and transition probabilities pxy(θ),

x, y ∈ X , that depend on an unknown parameter vector θ ranging over an open set Θ ⊆ R
U . Assume

that the following conditions are satisfied:

(C1) Each function pxy has continuous partial derivatives of third order throughout Θ.

(C2) The set-valued mapping D(θ) := {(x, y) ∈ X × X : pxy(θ) > 0} is constant, that is, there is a set

D ⊆ X × X such that D(θ) = D for all θ ∈ Θ.

(C3) The Jacobian matrix of the transition kernel (pxy(θ))x,y has rank U throughout Θ.

(C4) For each θ ∈ Θ, the MC is irreducible.

Let (x1, . . . , xm) denote an observation of the MC under its true transition kernel pxy(θ0), where θ0 ∈ Θ,

and let mxy denote the number of observations of transition (x, y) ∈ X×X . For the sequence of functions

fm(θ) :=
∑

(x,y)∈D mxy log [pxy(θ)], Θ contains a sequence of random vectors θm that satisfy

2
[
fm(θm) − fm(θ0)

]
−→

m→∞
χ2

U , (44a)

m1/2
(
θm − θ0

)
−→

m→∞
N (0,Γ). (44b)

Here, N (0,Γ) is a multivariate normal distribution with zero mean and finite covariance matrix Γ ≻ 0.

Moreover, θm is a strict local maximiser of fm with probability going to one as m tends to infinity.

In order to apply Theorem B.1 to MDPs, we interpret the state-action sequence (30) as an observation

history of an ordinary MC. Theorem 5.3 then follows from (44a). To simplify the exposition, we prove

Theorem 5.3 first under assumption (A3’) on page 33. At the end of this section, we extend our proof

to hold under the weaker assumption (A3).

We interpret the state-action sequence (30) as an observation of n states of an MC with state set

X :=
{
(s, a) ∈ S ×A : π0(a|s) > 0

}
. (45a)

The MC is in state (s, a) ∈ X whenever the underlying MDP is in state s and the decision maker chooses

action a. Note that we omit state-action pairs (s, a) ∈ S × A with π0(a|s) = 0 in (45a). As we will
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see, this is a necessary (but not sufficient) condition for the MC to be irreducible, see condition (C4) of

Theorem B.1. By construction, the MC starts in state (s, a) ∈ X with probability p0(s)π
0(a|s), and it

moves from state (s, a) ∈ X to state (s′, a′) ∈ X with probability pξ0

(s′|s, a)π0(a′|s′), where ξ0 is the

unknown true parameter of the underlying MDP. Since the historical policy π0 is stationary, the MC

indeed satisfies the Markov property.

We can establish the following relationship between the MC and the MDP.

Θ := intΞ0 (45b)

and pxy(θ) := pθ(s′|s, a)π0(a′|s′) for θ ∈ Θ and x = (s, a), y = (s′, a′) ∈ X . (45c)

By assumption (A1), we have ξ0 ∈ int Ξ0. Hence, Θ indeed contains the unknown true parameter vector

θ0 := ξ0 of the MC as required by Theorem B.1.

We now show that the MC defined through (45) satisfies the conditions (C1)–(C4) of Theorem B.1.

Lemma B.2 If the MDP satisfies assumptions (A2) and (A3’), then the MC defined through (45) sat-

isfies the conditions (C1)–(C4) of Theorem B.1.

Proof Condition (C1) is satisfied since pxy is affine in θ for all x, y ∈ X , see definitions (45c) and (3).

As for condition (C2), the definitions (45a) and (45c) imply that

D(θ) =
{
(x, y) ∈ X × X : pθ(s′|s, a) > 0 for x = (s, a) and y = (s′, a′)

}
.

We recall that pθ(s′|s, a) = ksa +Ksaθ. We claim that for any θ ∈ Θ, the set D(θ) equals

D :=
{
(x, y) ∈ X × X : [ksa Ksa]

⊤
s′· 6= 0 for x = (s, a) and y = (s′, a′)

}
.

By construction, D(θ) ⊆ D for all θ ∈ Θ. It remains to show that D ⊆ D(θ) for all θ ∈ Θ. Assume

to the contrary that [ksa Ksa]
⊤
s′· 6= 0 but pθ(s′|s, a) = 0 for x = (s, a), y = (s′, a′) ∈ X and θ ∈ Θ.

Since Θ is an open set, there is a neighbourhood of θ that is contained in Θ, and all points θ′ in this

neighbourhood have to satisfy pθ′

(s′|s, a) ≥ 0. Since pθ(s′|s, a) = 0, this implies that [Ksa]
⊤
s′· = 0, and

hence [ksa]s′ = 0 as well. This contradicts our assumption that [ksa Ksa]⊤s′· 6= 0. We therefore conclude

that pθ(s′|s, a) > 0 for all θ ∈ Θ, that is, D ⊆ D(θ) for all θ ∈ Θ.

We now consider condition (C3). The Jacobian J(θ) ∈ RX2×U of the MC’s transition kernel is defined

through Jxy,u := ∂pxy(θ)/∂θu for x, y ∈ X and u = 1, . . . , U . For x = (s, a), y = (s′, a′) ∈ X , we have

∂pxy(θ)/∂θu = π0(a′|s′) [Ksa]s′u. Thus, assumption (A3’) ensures that J(θ) has rank U .

In view of condition (C4), we note that the irreducibility of a finite MC only depends on the structure
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of the set of transitions with strictly positive probability; the actual probabilities are irrelevant. However,

the proof of condition (C2) implies that for all state pairs (x, y) ∈ X ×X , either pxy(θ) > 0 for all θ ∈ Θ

or pxy(θ) = 0 for all θ ∈ Θ. Hence, the set of transitions with strictly positive probability does not

depend on θ, and the MC defined through (45) is irreducible for all θ ∈ Θ if and only if it is irreducible

for some θ ∈ Θ. Condition (C4) therefore follows from assumption (A2).

We can now apply Theorem B.1 to the MC defined through (45). This allows us to prove Theorem 5.3

under the stronger assumption (A3’).

Proof of Theorem 5.3 Under assumption (A3’) the assumptions of Lemma B.2 are satisfied, and we

can apply Theorem B.1 to the MC defined through (45). Hence, we know that Θ contains a sequence

θn that satisfies (44a), and each θn constitutes a strict local maximiser of fn with probability going to

one as n tends to infinity. By definition (45c) of p, every function fn is concave, which implies that θn

is indeed the unique global maximiser of fn with probability going to one as n tends to infinity.

Let mxy denote the number of observations of transition (x, y) ∈ X ×X in (30). We additionally set

mxy := 0 for (x, y) ∈ (S ×A)2 \ (X × X ). For any θ ∈ Θ, we have

ℓn(θ) =
∑

(s,a,s′)∈N

nsas′ log
[
pθ(s′|s, a)

]
+ ζ =

∑

x=(s,a)∈X ,
y=(s′,a′)∈X :

mxy>0

mxy log
[
pθ(s′|s, a)

]
+ ζ

=
∑

x,y∈X :
mxy>0

mxy log [pxy(θ)] + ψ =
∑

(x,y)∈D

mxy log [pxy(θ)] + ψ = fn(θ) + ψ, (46)

where ψ := log [p0(s1)] + log
[
π0(a1|s1)

]
. The first equality follows from the definition of ℓn in (33’).

The second equality holds because nsas′ =
∑

a′∈Am(s,a),(s′,a′) and m(s,a),(s′,a′) = 0 if π0(a|s) = 0 or

π0(a′|s′) = 0. The third equality follows from the definition (45c) of p and our choice of ψ. As for the

fourth equality, note that all x, y ∈ X with mxy > 0 satisfy pxy(θ
0) > 0 for θ0 = ξ0. Lemma B.2 therefore

ensures that (x, y) ∈ D(θ0) = D. The last equality follows from the definition of fn in Theorem B.1.

From (46) and the fact that θ0 = ξ0 we conclude that ln(ξ0) = fn(θ0) + ψ. Moreover, (46) implies

that θ
n

defined in Theorem B.1 represents the unique global maximiser of ℓn with probability going to

one as n tends to infinity. The assertion of Theorem 5.3 now follows from (44a).

Remark B.3 Throughout this section, we replaced assumption (A3) with the stronger assumption (A3’)

from page 33. Under assumption (A3), the Jacobian of the MC’s transition kernel may violate condi-

tion (C3) of Theorem B.1. We circumvent this problem by decomposing the affine mapping p in (45c)

into the composition of a linear surjection, followed by an affine injection. If we replace Θ with the image

of int Ξ0 under the surjection and p with the injection, all conditions of Theorem B.1 remain satisfied.
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C Proof of Theorem 5.6

We first investigate the convergence behaviour of the sequence ϕn of quadratic functions defined in (37a).

To this end, Lemma C.1 investigates the asymptotic properties of the observation frequencies nsas′ , while

Lemma C.2 investigates ξn, ∇ξℓn(ξn) and ∇2
ξℓn(ξn). These auxiliary results will then allow us to establish

the convergence of the sequence of confidence regions Ξn defined in (36).

We recall that the expected return time of a state s in an MC is defined as the expected number

of transitions between two successive visits of state s. We extend this definition to MDPs by defining

the expected return time of state s under policy π as the expected return time of s in the MC defined

through the state set S and the transition kernel (7a) with ξ = ξ0.

Lemma C.1 Under the assumptions (A1) and (A2), we have

nsas′

n
−→
n→∞

π0(a|s) pξ0

(s′|s, a)
µs

almost surely for all (s, a, s′) ∈ S ×A× S, (47)

where µs ∈ [1,∞) denotes the expected return time of state s ∈ S under policy π0.

Proof We first show that the expected return times µs are finite. To this end, let MCS(π; ξ) denote the

MC defined through the state set S and the transition kernel (7a). Due to assumption (A2), MCS(π0; ξ)

is irreducible for some ξ ∈ Ξ0. By a similar argument as in the proof of Lemma B.2, we may conclude that

MCS(π0; ξ) is indeed irreducible for all ξ ∈ int Ξ0. Assumption (A1) then guarantees that MCS(π0; ξ0)

is irreducible, which implies that its expected return times µs are finite.

In view of equation (47), let ns and nsa denote the numbers of occurrences of state s ∈ S and state-

action pair (s, a) ∈ S × A in the observation (30), respectively. As usual, nsas′ denotes the number of

occurrences of the state-action sequence (s, a, s′) ∈ S ×A× S, and n represents the observation length.

Note that the random variables ns, nsa and nsas′ depend on n. If π0(a|s) = 0, then nsas′ = 0, and (47)

is trivially satisfied. We therefore assume that π0(a|s) > 0. We show that

(A)
ns

n
−→

n→∞

1

µs
a.s., (B)

nsa

ns
−→

n→∞
π0(a|s) a.s., and (C)

nsas′

nsa
−→

n→∞
pξ0

(s′|s, a) a.s.,

where ‘a.s.’ abbreviates ‘almost surely’. Statements (A) and (B) imply that ns and nsa become nonzero

a.s. as n tends to infinity, and therefore the identity nsas′/n = (nsas′/nsa)(nsa/ns)(ns/n) holds a.s. as n

tends to infinity. The assertion of this lemma then follows from the continuous mapping theorem [6].

As for claim (A), note that ns represents the number of visits of MCS(π0; ξ0) to state s ∈ S. Since

MCS(π0; ξ0) is irreducible, the ergodic theorem ensures that ns/n −→ 1/µs a.s. as n tends to infinity [6].

In order to prove claims (B) and (C), we introduce a new MC denoted as MCSA. By construction,
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MCSA is in state s ∈ S whenever the underlying MDP is in state s and the decision maker has not

yet chosen any action, while MCSA is in state (s, a) ∈ S × A whenever the MDP is in state s and the

decision maker has chosen action a (but before the MDP moves to a new state s′). We can interpret the

state-action sequence (30) as an observation of 2n states of MCSA, where MCSA starts in state s1, then

moves to state (s1, a1), after which it enters state s2 and so on. Formally, we define MCSA through the

state set S ∪ (S ×A) and the transition probabilities

pxy =






π0(a|s) if x = s ∈ S and y = (s, a) ∈ S ×A,

pξ0

(s′|s, a) if x = (s, a) ∈ S ×A and y = s′ ∈ S,

0 otherwise.

To prove claim (B), fix (s, a) ∈ S ×A and let Xi be a random binary variable that adopts the value 1

if and only if MCSA moves to state (s, a) after the ith visit of state s. By the strong Markov property, the

random variables Xi are independent and identically distributed with expected value π0(a|s) [6]. Thus,

the strong law of large numbers implies that
∑m

i=1Xi/m −→ π0(a|s) a.s. asm tends to infinity. According

to claim (A), ns −→ ∞ a.s. as n tends to infinity. Hence, we obtain that
∑ns

i=1Xi/ns −→ π0(a|s) a.s. as

n tends to infinity. Claim (B) then follows from the fact that nsa =
∑ns

i=1Xi.

The proof of claim (C) widely parallels the above argumentation for claim (B).

Lemma C.2 Under the assumptions (A1), (A2) and (A3’), observation (30) satisfies

lim
n−→∞

P
(
∇ξℓn(ξn) = 0

)
= 1, (48a)

plim
n−→∞

(
nα

∥∥ξn − ξ0
∥∥)

= 0 ∀α < 1/2, (48b)

plim
n−→∞

(∥∥∥∥
1

n

[
∇2

ξℓn(ξn)
]
− Σ

∥∥∥∥

)
= 0, (48c)

where ∇ξℓn(ξn) and ∇2
ξℓn(ξn) are defined in (37b) and (37c), respectively, and

Σ :=
∑

(s,a,s′)∈N0

π0(a|s)
µs pξ0(s′|s, a)

(
[Ksa]

⊤
s′·

)⊤ (
[Ksa]

⊤
s′·

)
, (48d)

where N0 :=
{
(s, a, s′) ∈ S ×A× S : [ksa Ksa]

⊤
s′· 6= 0

}
. Moreover, the matrix Σ is positive definite.

Proof The proof of Theorem 5.3 shows that the unique global maximiser ξn of ℓn is an element of int Ξ0

with probability going to one as n tends to infinity. This proves (48a).

In view of (48b), consider any sequenceXn of random variables. One can show that if nαXn converges

in distribution, then nβXn converges to zero in probability for all β < α. Thus, (48b) follows from (44b).
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Let us now consider (48c). We can replace the set N in the summation index of ∇2
ξℓn(ξn) in (37c)

with the set N0 used in (48d). Indeed, N ⊆ N0 holds because nsas′ > 0 implies that pξ0

(s′|s, a) > 0 and

therefore [ksa Ksa]
⊤
s′· 6= 0. Likewise, the numerator in (37c) vanishes for each index (s, a, s′) ∈ N0 \ N .

Equation (48c) now follows from Lemma C.1, (48b) and the continuous mapping theorem.

It is clear that Σ is positive semidefinite. Also, x⊤Σx = 0 if and only if [Ksa]⊤s′· x = 0 for all

(s, a, s′) ∈ N0 with π0(a|s) > 0. Assumption (A3’) implies that this is the case if and only if x = 0.

Thus, the matrix Σ has full rank and is therefore positive definite.

We can now prove Theorem 5.6.

Proof of Theorem 5.6 Let B denote the closed unit ball centred at the origin of Rq. For fixed α < 1/2,

(38) is satisfied if and only if for all ǫ, γ > 0, there is m ∈ N such that for all n ≥ m,

P
(
nα

(
Ξn − ξ0

)
⊆ ǫB

)
≥ 1 − γ, (49)

where operations on sets are understood in the Minkowski sense. We define φn(x) := ϕn

(
n−αx+ ξ0

)
.

According to the definition (36) of Ξn, we have

nα
(
Ξn − ξ0

)
⊆ {x ∈ R

q : φn(x) ≥ 0}

because the set on the right-hand side ignores the constraints from Ξ0. Hence, (49) holds if

P ({x ∈ R
q : φn(x) ≥ 0} ⊆ ǫB) ≥ 1 − γ,

which is equivalent to

P ({x ∈ R
q : φn(x) < 0} ⊇ ǫBc) ≥ 1 − γ, (50)

where ǫBc := Rq \ ǫB denotes the complement of ǫB. We prove (50) in two steps. We first show that φn

is negative on ǫBc ∩ 2ǫB. Afterwards, we show that φn(0) > φn(x) for all x ∈ ǫBc ∩ 2ǫB. Since φn is

concave, this implies that φn remains negative on Rq \ 2ǫB with high probability. We can then conclude

that φn is negative on the whole set ǫBc with high probability, which proves (50).

Using the definition (37a) of ϕn and Lemma C.2, one can show that

plim
n−→∞

(
sup

x∈2ǫB

∣∣∣∣n
2α−1φn(x) − 1

2
x⊤Σx

∣∣∣∣

)
= 0, (51)

where Σ is defined in (48d). In a probabilistic sense, n2α−1φn(x) therefore converges uniformly to

x⊤Σx/2 over 2ǫB. Since Σ is positive definite, see Lemma C.2, there is ν > 0 such that Σ � νI, that is,
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x⊤Σx ≥ ν ‖x‖2
for all x. We thus obtain that for any η > 0, we can choose m such that for all n ≥ m,

P

(
n2α−1φn(0) ≥ −η, n2α−1φn(x) ≤ −ν

2
ǫ2 + η ∀x ∈ ǫBc ∩ 2ǫB

)
≥ 1 − γ.

For η < νǫ2/4 this is equivalent to

P (φn(0) > φn(x), {x ∈ R
q : φn(x) < 0} ⊇ ǫBc ∩ 2ǫB) ≥ 1 − γ.

According to our previous discussion, this proves equation (50) and the assertion of the theorem.
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