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Abstract

This paper discusses the application of an index tracking technique to
mutual fund replication problems. By using a tracking error (TE) minimiza-
tion method and two tactical rebalancing strategies (i.e. the calendar based
strategy and the tolerance triggered strategy), a multi-period fund track-
ing model is developed that replicates S&P 500 mutual fund returns. The
impact of excess returns and loss aversion on overall tracking performance
is also discussed in two extended cases of the original TE optimization re-
spectively. An evolutionary method, namely Differential Evolution, is used
for optimizing the asset weights. According to the experiment results, it is
found that the proposed model replicates the first two moments of the fund
returns by using only five equities. The TE optimization strategy under loss
aversion with tolerance triggered rebalancing dominates other combinations
studied with regard to tracking ability and cost efficiency.

Key words. Passive Portfolio Management, Fund Tracking, Multi-
Period Optimization, Differential Evolution.

1 Introduction

In the last decade, individual holdings of corporate stocks have decreased while
holdings through fund management institutions have correspondingly increased.
According to the Investment Company Institute’s official survey, the combined
assets of U.S. mutual funds reached a peak of 12 trillion dollars in May 2008;
although there was a great redemption pressure on the fund industry due to the
recent credit crunch, the net asset value of the funds was in excess of 9 trillion
dollars at the end of 2008. As the survey shows, approximately half of the fund
holdings were claimed and managed by equity funds. The latter typically choose
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from three management styles, namely active management, passive management,
or a blend of the two. The literature shows that most of actively managed equity
funds underperform their passive benchmark portfolios after adjustments are made
for fund management fees and expenses. For example, actively managed funds
usually do not outperform index mutual funds which are passively managed to
mimic certain indices in the long-term (see Malkiel [1995], Carhart [1997], Bogle
[1999] and Haslem et al. [2008]). According to the official survey, the number of
U.S. index funds increased almost three-fold from 134 to 373, in which the number
of S&P 500 index funds rose from 72 to 124 at a growth rate of over 70% in the
last decade. And more recently, the institutional investment in index funds was
increased dramatically after the bankruptcy of major investment banks on Wall
Street in September 2008.

While investing in funds brings several advantages (such as professional man-
agement) over direct investments in equities, expenses such as management fees
or distribution fees have continued to increase during the last two decades. The
question of whether charging higher fund fees benefits investors has been discussed
at great length (see Anderson and Ahmed [2005]). Furthermore, researchers have
drawn attention to a confusing phenomenon in the fund market: while fund fees
and expenses vary quite a lot, the return patterns of the funds typically show rela-
tively small amounts of dispersion. Therefore, it is not necessary to use expensive
funds if the performance of funds are similar. As Sharpe [1966] has pointed out,
funds with lower expenses tend to have higher reward-to-risk ratios; and investors
should avoid using expensive funds since the high fund fees reduce the overall
payout.

This paper extends index tracking techniques to perform index fund return
replication. From the literature, several index tracking methods have been dis-
cussed by researchers: the classic tracking error (TE) minimization method of
Roll [1992]; the principal components factor model and the cointegration based
index tracking method in Alexander and Dimitriu [2004, 2005]. The classic index
TE minimization model has been widely studied by researchers. Meade and Salkin
[1990] used quadratic programming to construct equity index funds by minimiz-
ing tracking errors between index returns and asset returns which were generated
from the autoregressive conditional heteroskedastic (ARCH) process. Montfort
et al. [2008] applied an optimized sampling method in order to select equities
to minimize tracking errors. As an alternative to traditional numerical methods,
heuristic methods provide ways of approaching difficult combinatorial optimization
problems, especially of solving financial optimization problems. An interesting
feature of heuristic methods is that they combine stochastic search with super-
vised search; this can provide investors with new and efficient methods to obtain
good solutions for complex and constrained optimization problems. Traditional
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deterministic optimization approaches tend to be poorly served for these problems
whose solution space becomes rough and discontinuous after imposing different
types of constraints on optimization problems. Pioneers in computer science and
finance have employed heuristic methods to tackle index tracking problems. For
example, Beasley et al. [2003] proposed an evolutionary heuristic method to obtain
portfolio compositions which tracked market indices. Gilli and Këllezi [2002], and
Maringer [2006a, 2008] adopted Threshold Accepting and Differential Evolution,
respectively, to solve constrained index tracking problems. A comprehensive sur-
vey of heuristic method applications in index tracking can be found in di Tollo
and Maringer [2009].

There are three main reasons to study the fund replication problem by using
index tracking methods. First, although index mutual funds are usually considered
to be cheap, they tend to outperform most of the actively managed funds in the
long-term according to the literature. Secondly, the application of index tracking
techniques in index mutual fund replications has not been widely discussed in the
literature yet; this paper therefore discusses such applications in order to address
this issue. Thirdly, if the index fund returns can be replicated, the dispersion in
respect of the fund fees and expenses should not be great. Several important issues
which are not usually included in the index tracking discussion are addressed in this
study. For example, the proposed multi-period tracking model involves the tactical
rebalancing issue, the transaction cost limitation and the cash reservation issue. A
cardinality constraint (i.e. using a subset of market equities to track funds) is also
imposed to the optimization problem, as fund managers are reluctant to disclose
their actual holdings.

The paper is organized as follows: Section 2 introduces the fund tracking model
and a population based heuristic method for tackling the multi-period optimization
problem; Section 3 provides the results and discussions from the in-sample and
out-of-sample experiments; Section 4 draws conclusions.

2 Tracking Error Minimization and Multi-period

Readjustment

The optimal solution for the fund tracking problem is a portfolio composed of a
subset of equities. If a fund adopts a passive management, its holding composi-
tion should not change dramatically. In other words, if the tracker successfully
replicates the fund over the in-sample period, the behaviour of the tracker and its
target should be similar over certain out-of-sample periods. The study proposes to
perform the fund replication in two stages: a construction stage and an adjustment
stage. This section starts by introducing the two-stage optimization model, and
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then presents a heuristic method for solving the optimization problem.

2.1 The Optimization Problem for Tracker Construction

At the construction stage, an investor observes the daily prices of N equities, as well
as the daily net asset values (NAV) of target funds over historical time [T$, T0]. Let
T$ and T0 denote the first day and the end of the construction stage respectively.
At time T0, an optimal set of k equities (k < N) and holding quantities ni,T0

need to be known in order to construct a tracker which best replicates its target
over the period [T$, T0]. To measure the similarity of tracker returns and fund
returns, a difference measure between the returns is adopted, i.e. the tracking error

TE =
√

1
T

∑
t(rP,t − rI,t)2. The market value of the tracker at time t is the sum of

the market value of holdings, Pt =
∑N

i=1 ni,t ·Si,t. Since the short selling of equities
is not considered in this study, ni,t must be positive integers. Let Si,t denote the
market price of equity i at time t, and the tracker daily return at time t is defined
as rP,t = ln (Pt/Pt−1). The NAV reflects the dollar value of one share of a fund,
which is used to compute the fund return at time t: rI,t = ln (NAVt/NAVt−1).

The tracker portfolio is constructed with three constraints. Suppose that an
initial budget BT0 is available at T0, and an amount of PT0 =

∑N
i=1 ni,T0 · Si,T0 ≤

BT0 · (1−C) is used to purchase a set of non-negative and integer quantities ni,T0

of equities from the market, where C is the initial cash reserve rate. If an equity
has a price Si,T0 at time T0, the weight invested can be written as xi,T0 = (ni,T0 ·
Si,T0)/PT0 . For the purpose of portfolio diversification, if an equity i is included,
its corresponding weight should satisfy two weight constraints, x`

g ≤ xi,T0 ≤ xu
g ,

otherwise its holding quantity ni,T0 should be zero. After taking out the value PT0

from the initial budget BT0 , one has the initial cash reserve: CashT0 = BT0 − PT0 ,
which is used to cover transaction costs. Secondly, the tracker can only use a subset
k out of the market equities N to track funds. Therefore, a cardinality constraint
]Cg =

∑N
i=1 ICg(i) ≤ k is imposed to control the number of equities purchased. Cg

is the equity set; k the number of equities purchased; and ICg(i) is an indicator
function. It should be noted that introducing lower and upper limits also incurs
implicit cardinality constraints: if the weight of each equity must be kept below
a weight xu

g , at least kmin = b1/xu
gc equities must be bought; on the other hand,

the maximum number of equities which should be purchased for satisfying the
minimum weight constraint is kmax = d1/x`

ge. Finally, the tracker has an upper
limit on the costs of each transaction: the costs cannot grow beyond the amount
which is a small proportion γ of the tracker value Pt, i.e. TCt ≤ γ · Pt. The
transaction costs TC are set as linear functions of the amount for buying the
equities. Thus, the costs can be modelled as TCT0 =

∑
i∈Cg

ρ · ni,T0 · Si,T0 , where ρ
is defined as a transaction cost coefficient. Although the current work uses linear
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transaction cost functions, the model can handle the transaction cost functions
when the solution spaces are not continuous and convex.

For ease of reading, the TE optimization problem is summarized using the
following notations.

min
n

TE =

√∑
t(rP,t − rI,t)2

T0 − T$

s.t.

ni,T0 ∈ N+
0

t ∈ [T$, T0]

kmin < ]Cg =
N∑

i=1

ICg(i) ≤ k < kmax

x`
g ≤

ni,T0 · Si,T0

PT0

≤ xu
g for i ∈ Cg

TCT0 =
∑
i∈Cg

ρ · ni,T0 · Si,T0 ≤ γ · PT0

ni,T0 number of shares of the i-th equity invested at time T0

γ the transaction cost limiting ratio
Pt market value of the tracker at time t
rP,t tracker return at time t
rI,t index fund return at time t
Cg tracker equity set
x`

g minimum weight of each equity
xu

g maximum weight of each equity
TCt transaction cost at time t
ρ transaction cost coefficient
Casht cash reserve at time t
C cash reserve rate
Bt sum of the tracker market value and cash reserve at time t
Si,t per-share market value of the i-th equity at time t
N number of available equities in the equity market

While the market moves over time, the tracker holdings should be revised if
the tracker return drifts away from its target return. The following subsection
introduces the rebalancing problem and two rebalancing strategies.
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2.2 Tracker Rebalancing Stage

At rebalancing time Tj, an optimal adjustment set δ(ni,Tj
) of k equities should

be known. After rebalancing, the replicator should best track its target over the
period [Tj−1, Tj]. The decision variables are a set of adjusted quantities δ(ni,t),
which can be either positive or negative integers. The holding of equity i after the
rebalancing at time t = Tj can be written as: ni,Tj

= ni,Tj−1
+ δ(ni,Tj

). As the
rebalancing involves both selling and buying, the transaction cost is modeled as
twice the cost at the construction stage: TCTj

=
∑

i∈Cg
2 · ρ · |ni,Tj

− ni,Tj−1
| · Si,Tj

.
If the cash reserve is not enough to cover transaction costs, the model will recover
the cash reserve by liquidating assets, which depends on the reserve rate C, the
tracker value Pt, and the optimal holdings of the next period. At the rebalancing
stage, all the constraints from the construction stage must be satisfied. Thus the
optimization problem at this stage is summarized as follows.

min
δ(n)

TE =

√∑
t(rP,t − rI,t)2

Tj − Tj−1

s.t.

δ(ni,Tj
) ∈ Z

ni,Tj
∈ N+

0

t ∈ [Tj−1, Tj]

kmin < ]Cg =
N∑

i=1

ICg(i) ≤ k < kmax

x`
g ≤

(ni,Tj−1
+ δ(ni,Tj

)) · Si,Tj

PTj

≤ xu
g for i ∈ Cg

TCTj
=

∑
i∈Cg

2 · ρ · |ni,Tj
− ni,Tj−1

| · Si,Tj
≤ γ · PTj

2.3 Rebalancing Strategies

Two portfolio rebalancing strategies are usually adopted by market practitioners
(see Eakins and Stansell [2007]). One is portfolio readjustment at regular calendar
interval (e.g. quarterly), which is referred to as calendar based rebalancing. The
other is a tolerance triggered strategy which is based on waiting until triggers reach
certain thresholds.
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2.3.1 Calendar Based Rebalancing

This strategy schedules regular rebalancing at a regular calendar interval Tψ.

1. The model splits the future time horizon [T0, Tω] into M subintervals [T0, T1],
[T1, T2], · · · , [TM−1, Tω] according to a fixed calendar interval Tψ. The inter-
val number M is decided by the length of the rebalancing stage and the time
interval: M = b(Tω − T0)/Tψc.

2. At the rebalancing time Tj, the model

(a) decides an optimal set of quantities δ
(
ni,Tj

)
based on the market infor-

mation over the time period [Tj−1, Tj],

(b) adjusts portfolio holdings ni,Tj
= ni,Tj−1

+ δ(ni,Tj
),

(c) updates cash reserves CashTj
= CashTj−1

− TCTj
, and

(d) waits till the next planned rebalancing point Tj+1 = Tj + Tψ.

3. The model repeats the second step until the end of the rebalancing stage Tω.

2.3.2 Tolerance Triggered Rebalancing

The second strategy employs a rolling window that starts moving from an historical
time. There are M check-points Tj in the rebalancing stage [T0, Tω], following
Tj = j · ℘, j = 1, 2, ..., M and M = b(Tω − T0)/℘c. ℘ is the rolling step. At each
check-point, the model computes trigger values based on the tracker performance
over the current window which starts at an historical time Tς,j = Tj −WL, where
WL is the window length. Three values are considered as trigger tolerances for the
current problem: the TE tolerance ξ1; the lower equity weight limit x`

g; and the
upper equity weight limit xu

g . The rebalancing procedure is described as follows.

1. At each check-point Tj, the tracker has the starting point of the j-th window,
Tς,j = Tj −WL with j = 1, 2, ..., M .

2. (a) If any one of the following conditions is violated:√
1

WL
·∑Tj

t=Tς,j
|rP,t − rI,t|2 < ξ1,

ni,Tj
·Si,Tj

PTj
> x`

g, and
ni,Tj

·Si,Tj

PTj
< xu

g , the

model
(i) finds an optimal set of δ(ni,Tj

) based on the market information in
the time period [Tς,j, Tj],
(ii) adjusts portfolio holdings: ni,Tj

= ni,Tj−1
+ δ(ni,Tj

),
(iii) updates cash reserves: CashTj

= CashTj−1
− TCTj

;

(b) otherwise the model keeps the holdings unchanged: ni,Tj
= ni,Tj−1

;
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(c) the model waits till the next check-point Tj+1 = Tj + ℘.

3. The model repeats the second step up till the end of rebalancing stage Tω.

2.4 Extensions of Traditional Tracking Error Optimization

2.4.1 Extension to Include Excess Return

Gilli and Këllezi [2002] considered the following average positive deviations from
market benchmarks, or the average excess return (ER):

ER = 1
TN

∑
t(rP,t − rI,t), for rP,t ≥ rI,t

as a part of the index tracking objective, where TN represents the number of
returns observed over the period. The model considers index fund return as the
benchmark, and modifies the classic TE optimization objective as follows:

min λ · TE − (1− λ) · ER.

λ is a value between 0 and 1, representing the weighting difference of the measure
between TE and ER.

2.4.2 Extension to Include Loss Aversion

The classic TE minimization objective cannot distinguish between positive and
negative deviations of the tracker relative to its target, due to ignorance of the
sign of return deviations. Loss averse investors tend to strongly prefer avoiding
losses to acquiring gains, therefore the behaviour can be modelled by introducing
an aversion coefficient ϑ to the TE measure with ϑ > 1 (see Maringer [2008]).

∆̃r =

{
rP,t − rI,t rP,t ≥ rI,t

(rP,t − rI,t) · ϑ rP,t < rI,t
.

Thus the original objective function at the construction and rebalancing stage is
modified to:

min T̃E =

√
1

TN

∑
t

(∆̃r)2.

2.5 The Optimization Method

Heuristic methods provide ways of tackling combinatorial optimization problems,
and they are most suitable for solving constrained financial optimization problems.
Differential Evolution (DE) is a population based heuristic method which was
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originally proposed by Storn and Price [1997] for the optimization problems with
continuous space. It generates new solutions by combining three solutions, and
cross-over with a fourth solution. After the linear combination and cross-over,
the generated solution would replace the current best solution if the generated
solution has a higher fitness value. More specifically, for each current solution vp,
a new solution vc is generated from the following procedure: randomly selecting
three different members from the current population (p1 6= p2 6= p3 6= p); and then
linearly combining the solution vectors at probability π1, or inheriting the original
p-th solution at probability otherwise. With the standard DE method, only the
population size P , the scaling factor F and the cross-over probability π1 need to
be considered. A variant of DE takes the advantage of diversity which is brought
from having noise in the linear combination and cross-over, to escape from local
optima convergence and avoid premature convergence. The noise is generated by
adding normally distributed random numbers to F value and the difference of two
solution vectors respectively. Vectors z1 and z2 represent the extra noise in the
algorithm; they contain random numbers being zero with probability π2 and π3

respectively, or following normally independent distribution N(0, σ2
1) and N(0, σ2

2).
The linear combination and cross-over procedure are described as follows:

vc[i] :=

{
vp1[i] + (F + z1[i]) · (vp2[i]− vp3[i] + z2[i]) with probability π1

vp[i] otherwise,

where π1 is the cross-over probability. After the linear combination and cross-over,
DE asses the fitness of the solution, which is defined as the negative objective
function values, due to the minimization problem in the model. More specifically,
if the fitness value of vc is higher than the one of vp, the solution vp is replaced
by vc, and the updated vp exists in the current population; otherwise vp survives.
The process is repeated until a halting criterion is met. The DE algorithm is
described by using the pseudo code as follows.

Since the solutions from DE may be either positive or negative, the no-short-
selling constraint would be violated if one directly took vp as weight solutions.
In other words, the solutions from DE may not be valid for the current problem.
According to the literature, one may use penalty functions to impair the fitness
of solutions which violate constraints. Despite the straightforwardness of using
penalty functions, computational efficiency would be reduced if one intended to use
penalty functions to satisfy all constraints. A mapping function is used to translate
vp into valid equity weights, in order to satisfy the integer, cardinality and weight
constraints. The mapping function first checks the number of positive elements
κ in vp. If κ ≤ 0, the function prohibits the vp entering the fitness evaluation
procedure. Otherwise, the mapping function selects the k largest positive elements
in vp giving κ > k. If the positive number satisfies the condition κ < kmin, the
function picks kmin largest elements from vp. If the positive number of elements
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Algorithm 1 Differential Evolution.
1: randomly initialize population of vectors vp, p= 1...P
2: while the halting criterion is not met do
3: for all current solutions vp, p=1...P do
4: randomly pick p1 6= p2 6= p3 6= p
5: vc[i] ← vp1[i]+(F+z1[i])(vp2[i]−vp3[i]+z2[i]) with probability π1, or vc[i] ← vp[i]

otherwise
6: interpret vc into equity weights
7: compute the fitness value of vc

8: end for
9: for the current solution vp, p = 1...P do

10: if Fitness(vc) > Fitness(vp) then vp ← vc

11: end for
12: end while

satisfies the condition kmin < κ < k, those equities with positive values are included
in the tracker. For further details of the mapping function please refer to Maringer
and Oyewumi [2007].

The included equities are first assigned the minimum weight x`
g, and then they

are increased in proportion to the values in vp until the sum of them add up to
unity. If an equity weight exceeds the maximum weight, its weight is decreased
to xu

g , and the excess part is superadded proportionally to other selected equities
according to their weights. The optimal holding of the i-th equity is computed by
rounding up xi,tPt/Si,t to the closest integer. Usually, a simple rounding approxi-
mation may bring neutrality bias to the final solutions of the problems with binary
variables, e.g. the problem for yes/no decisions. However, an-unit difference in
stock holdings due to the rounding approximation could be usually ignored when
the holding amount of a stock is large. The mapping function has been employed
in previous research; and it is found that the function works properly for similar
problems (see Maringer and Oyewumi [2007]). In addition to the mapping func-
tion, a penalty function is used to guarantee the solutions satisfying the transaction
cost constraint. The penalty function impairs the fitness value of the unsatisfied
solutions by imposing a punishment: −max(CTt − 2 · γ · Pt, 0).

2.6 Experiment Settings and Data

The following experiment settings were used: Initial budget Bt = 10, 000, 000
dollars; Cash Reserve Rate C = 10%; Transaction Cost Limiting Rate γ = 1%;
Transaction Cost Coefficient ρ = 0.1%; Cardinality Size k = 5. Maringer and
Oyewumi [2007] have shown that increasing the cardinality size helps to reduce
the TE. However, this study aims at constructing ‘small’ trackers by using limited
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assets. To the portfolios with fewer dimensions, the transaction costs will be
cheap; and the costs can be easily modelled if the cost functions are nonlinear.
Furthermore, a well diversified portfolio can be achieved by using limited assets (see
Maringer [2006b]). Therefore, the cardinality size in this study was set at a relative
low value, say 5. The calendar based rebalancing strategy considered a rebalancing
time interval Tψ being 60 trading days, representing quarterly readjustment. In
the tolerance triggered rebalancing, the window size WL was set at 60. As a result,
the trigger values were computed by using the information in the last 60 trading
days. A step size ℘ = 10 was adopted, i.e. the minimum rebalancing frequency was
two weeks to prevent the rebalance from occurring too frequently. The TE value
was used as a trigger in the tolerance triggered rebalancing. The TE tolerance
ξ1 was set at 0.004, which is proposed to set the value as twice the in-sample
tracking errors. The equity weight trigger xi,t had minimum and maximum values
being 1% and 50%, respectively. Setting such a high upper limit helps to study the
actual diversification ability of the tracking model, as the DE algorithm has greater
degrees of freedom in choosing asset weights. To the real-world applications, the
upper limit should be reduced further to avoid the risk due to sudden changes of
major index shares (in this study it was found that the maximum weights usually
varied around 40%). In the TE and ER optimization experiments, the weighting
difference λ was set at 50%. In the TE with loss aversion experiments, the aversion
coefficient ϑ was set at 2, thereby doubling the impairment of negative deviations.

The technical parameters of DE algorithm are listed as follows. Population size
and iteration number were set at 1,000 and 4,000; the factor F was set at a value
0.5; and the cross-over probability π1 was at 60%. The parameters were used to
generate the artificial noise: π2 = 50%, π3 = 10%, σ2

1 = 0.1 and σ2
2 = 0.1. The

above settings was found to be highly suited for solving this index mutual fund
tracking problem; in preliminary experiments, the relative differences between the
TE and its corresponding lowest TE recorded after independent restarts were found
to be zero or small.

A total of 445 equities were used to track index mutual funds. The following five
S&P 500 index funds were considered as targets in this study: ETRADE S&P 500
Index; Vanguard 500 Index; USAA S&P 500 Index; UBS S&P 500 Index A; and
TIAA-CREF S&P 500 Index Retire. The five index funds were traced by Tracker
1 to 5, respectively. The data comprise of daily prices and the net asset values of
the equities and funds in the period January 2004 to December 2007, downloaded
from Datastream. The equities have price sequences with 1,043 observations. To
decide whether a large or a small data sample is suitable for this fund replication,
different in-sample data sizes are considered at the construction stage and at the
rebalancing stage. The first 250 observations (i.e. the information in 2004) were
used to construct trackers, which would be held from the beginning of 2005. At
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the rebalancing stage, the latest 60 observations at each rebalancing point were
employed to decide on the optimal adjusted quantities.

3 Experiment Results

3.1 In-Sample Tracking Performance

In order to determine how well the model replicates the fund returns over the
in-sample periods, Figure 1 shows the scatter plot of the means and standard de-
viations of the actual and replicated daily returns at monthly intervals by using
the calendar based rebalancing. The first to fifth replicated case are identified by
using different markers: Plus sign, Circle, Asterisk, Point and Cross. It can be
seen that there are linear relationships existing between the fund return moments
and replicated return moments. In order to show clearly the impact of the three
objective functions on the in-sample tracker performance, Figure 2 provides the
TE and the excess return to risk ratio (or the excess Sharpe ratio (rp/σp−rI/σI)),
which were computed at monthly intervals. The return to risk ratio was approx-
imately equal to the Sharpe Ratio when one considers the daily safe rate being
tiny. In the figure, different line styles (i.e. solid, solid-circle, dashed, dotted, and
dash-dot) tell the performance of the five trackers respectively. In Figure 2, the left
and right panels show the in-sample TE and the excess Sharpe ratio respectively.
As the figure shows, the excess Sharpe ratios are improved after considering the
ER and loss aversion; and the TE from the two extended objective functions are
higher than that from the classic TE optimization as expected. For the tolerance
triggered rebalancing, the in-sample tracker performance from the three objective
functions should have been similar to those from the calendar based rebalancing,
since the in-sample results are independent of the rebalancing strategies.

The next subsection provides the results from the out-of-sample experiments
and analysis in order to judge whether the model replicates the fund returns over
the out-of-sample periods. The impact of the objective functions and the two
rebalancing strategies on tracker performance are further explored and discussed.

3.2 The Out-of-Sample Analysis of Replicators

Figure 3 and Figure 4 provide scatter plots of the return means and return standard
deviations. The scatters were computed on the basis of the replicated returns and
fund returns at monthly intervals.

In order to quantify the relationship between the fund return and tracker re-
turn moments, linear regression analysis is employed to study the observations
shown in the scatter plots. Table 2 and Table 3 provide the regression analysis
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(a) Tracking Error Optimization
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(b) Tracking Error with Excess Return Optimization
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(c) Tracking Error with Loss Aversion Optimization

Figure 1: In-Sample Monthly Means and Standard Deviations of Actual and Repli-
cated Returns from Calendar Based Rebalancing.
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(a) Tracking Error Optimization
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(b) Tracking Error and Excess Return Optimization
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(c) Tracking Error and Loss Aversion Optimization

Figure 2: In-Sample Monthly Tracking Errors and Excess Sharpe Ratios from
Calendar Based Rebalancing.
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results. As the two tables show, the R2 values from the standard deviation re-
gression are all higher than the values from the mean regression, indicating that
the model replicates the return standard deviations better than the return means.
The intercept α and slope β values from the analysis can be used as indicators to
evaluate tracking performance: if a tracker perfectly replicates a fund, the regres-
sion intercept and slope should be equal to 0 and 1 respectively. According to the
table, most of the intercept α values from the mean regression are close to 0, and
not statistically different from 0. Although the α values in the standard deviation
regression case are small, they are statistically different from 0 at a 5% confidence
level, indicating the risk of trackers are slightly higher than their targets. The
impact of the extra risk on tracker performance will be discussed together with
the excess Sharpe ratio.

When using the calendar based rebalancing, most of the β values are lower
than 1, and statistically different from 1. However, while using the tolerance
triggered rebalancing, there is the evidence that the β values are not statistically
different from 1. Therefore, the tracker using the tolerance triggered strategy
should have had a higher tracking ability than the one using the calendar based
strategy. Moreover, the β values from the two extended objective functions are
higher than the one from the classic TE optimization when the trackers employ the
tolerance triggered strategy. Due to the strict constraints imposed, it is reasonable
that the replication criteria, i.e. the α = 0 and β = 1 criteria are not perfectly
satisfied. However, the current tracking performance could be improved further
by relaxing some constraints, e.g. increasing the cardinality size.

It may be interesting to compare further the tracker performance of the model
using the rebalancing strategies. The sub-figures in Figure 5 report the TE com-
puted at monthly intervals; and the left and right panels of Figure 5 show the
TE as a result of using the calendar based rebalancing and tolerance triggered
rebalancing respectively. There is no significant difference found between the TEs
which are optimized by using the two different rebalancing strategies. In other
words, setting the TE tolerance ξ1 as twice the in-sample TE achieved the same
result as that from the calendar based strategy case.

Figure 6 shows the impact of different objective functions and rebalancing
strategies on the excess Sharpe ratio over the out-of-sample periods. The upper
panel of Figure 6 reveals that there are consistent negative deviations of the ratios
in year 2005. While considering the ER maximization as a part of the objective
function, the negative excess Sharpe ratios in the year are reduced. However, it
should be noted that both the positive and negative deviation of the ratio are
larger than those in the upper panel. In the lower panel, the effect of loss aversion
can be seen. The negative deviations of the excess Sharpe ratios are reduced, while
the positive deviations can still be maintained at the same magnitude as those in
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(b) Tracking Error with Excess Return Optimization
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(c) Tracking Error with Loss Aversion Optimization

Figure 3: Out-of-Sample Means and Standard Deviations of Actual and Replicated
Returns from Calendar Based Rebalancing.
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(c) Tracking Error with Loss Aversion Optimization

Figure 4: Out-of-Sample Means and Standard Deviations of Actual and Replicated
Returns from Tolerance Triggered Rebalancing.
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Table 2: Regression Analysis of Actual and Replicated Return Means.

TE Opt. Ext. 1 Ext. 2
C. T. C. T. C. T.

SSE.(10−3) 0.0983 0.0818 0.1296 0.1427 0.1110 0.0919
R2 0.6494 0.6924 0.5576 0.6682 0.6117 0.7094

ᾱ (10−3) -0.0199 −0.1942 -0.1054 -0.0692 -0.0969 -0.1239
std.(α) (10−3) 0.0661 0.0603 0.0758 0.0796 0.0702 0.0639

p(α 6= 0) 0.7436 0.0016 0.1665 0.3860 0.1696 0.0542
β̄ 0.8950 0.8999 0.8474 1.1238 0.8771 0.9931

std.(β) 0.0532 0.0485 0.0610 0.0640 0.0565 0.0514
p(β 6= 1) 0.0497 0.0413 0.0124 0.0536 0.0308 0.8966

Table 3: Regression Analysis of Actual and Replicated Return Standard Devia-
tions.

TE Opt. Ext. 1 Ext. 2
C. T. C. T. C. T.

SSE(10−3) 0.2516 0.1623 0.3170 0.1736 0.2793 0.2316
R2 0.8206 0.8650 0.7597 0.8664 0.7908 0.8294

ᾱ(10−3) 0.5485 0.7363 1.6700 1.1030 1.0100 0.6546
std.(α)(10−3) 0.2920 0.2346 0.3278 0.2426 0.3077 0.2802

p(α 6= 0) 0.0623 0.0020 < .0001 < .0001 0.0013 0.0208
β̄ 0.9654 0.9176 0.9008 0.9548 0.9245 0.9548

std.(β) 0.0365 0.0293 0.0410 0.0303 0.0384 0.0350
p(β 6= 1) 0.3472 0.0051 0.0163 0.1362 0.0495 0.1973
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(b) Tracking Error with Excess Return Optimization
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(c) Tracking Error with Loss Aversion Optimization

Figure 5: Out-of-Sample tracking errors from using the three objective functions
and two rebalancing strategies (left – calendar based rebalancing, right – tolerance
triggered rebalancing).
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Table 4: Rebalancing Times at Rebalancing Stage.

Replicator 1 Replicator 2 Replicator 3 Replicator 4 Replicator 5
TE Opt. 2005 3 7 3 2 4

2006 3 8 2 0 0
2007 2 7 3 0 0
sum 8 22 8 2 4

Ext. 1 2005 3 9 4 5 7
2006 5 13 0 0 2
2007 2 13 1 1 6
sum 10 35 5 6 15

Ext. 2 2005 3 8 3 4 4
2006 0 7 0 1 0
2007 1 9 1 2 1
sum 4 24 4 7 5

the middle panel. The statistical results suggest that the excess Sharpe ratios are
not significantly different from 0 at a 5% confidence level. The insignificancy of
the excess Sharpe ratios indicates that the extra risk taken by the trackers has
been compensated by return premiums.

When comparing the left and right panels of Figure 6, the tolerance triggered
rebalancing tends to produce more consisting positive deviations of the excess
Sharpe ratio, than that using the calendar based rebalancing over the years 2006
and 2007. These positive deviations also explain the reason of the higher β values
shown in Table 2.

Cost efficiency is an important criterion for rebalancing strategy evaluation. In
the experiments, the rebalancing stage consisted of three years. Thus there would
be 12 rebalances if one takes 60 trading days as rebalancing interval in the cal-
endar based strategy. It will be interesting to know how many rebalancing times
occur during the rebalancing period while using the tolerance triggered rebalanc-
ing; Table 4 records the number of rebalances in this case. From the table, it is
found that excepting Replicator 2, most of the rebalancing times of others in the
rebalancing stage are less than 12, suggesting the tolerance triggered strategy is
more cost-efficient than the calendar based strategy.

To explore the reason for the high rebalancing times of Replicator 2, the actual
fund returns are used to be studied. Table 5 shows the means and standard
deviations which were computed based on the actual and replicated returns. It
should be noted that Fund 2 exceeds the other four funds by yielding almost two
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(c) Tracking Error and Loss Aversion Optimization

Figure 6: Out-of-Sample excess Sharpe ratios from using the three objective func-
tions and two rebalancing strategies (left – calendar based rebalancing, right –
tolerance triggered rebalancing).
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and four times more than that of others in 2005 and 2007, but it gains only half
of the rewards of others in 2006. The remarkable performance of Fund 2 implies
that the fund may adopt a different management strategy from that of the passive
management style, thereby resulting in the high tracking errors (the case of solid
line with circle marker in Figure 5) and the high rebalancing times.

In Table 5, one may note that most of the negative returns of the replicators
occur in 2005; correspondingly, it is straightforward to observe that the excess
Sharpe ratios are negative during 2005 from Figure 6. This evidence indicates
that the tracker portfolios constructed at the beginning are not robust. One possi-
ble explanation for this is that the authors made use of one year observations, i.e.
the fist 250 daily data to construct the trackers. Using long historical data, e.g.
one year or half year observations to analyze index compositions may be appro-
priate, whereas it may lead to unreliable outcomes for fund tracking. The main
difference between indices and index funds is that the funds are under professional
management. To maintain effective diversification of portfolios, fund mangers nor-
mally do not keep their holdings unchanged for such long periods, e.g. one year.
Therefore, a long data sample will shield the true fund compositions if there is
rebalance taken place just before the tracker construction; thus, using short term
data, e.g. quarterly data may be more appropriate. Apart from directly using
short term data samples, one can modify the TE definition to include a weighting
factor, for more recent time periods getting a higher weighting than other time
periods (see Beasley et al. [2003]).

4 Conclusion

In this paper, the authors develop a fund tracking model in order to track index
mutual funds with constraints on the cardinality size, assets’ weights, transaction
costs, and integer constraints. For the first time, this paper proposes to decom-
pose the index mutual fund replication into the traditional index tracking problem
and a multi-period optimization problem. By employing a heuristic method to
solve the optimization problem, an empirical study is performed to track five S&P
500 mutual funds dynamically. The regression results show that the model repli-
cates the first two moments of index fund returns by using limited equities; more-
over, the optimized tracker portfolios do not exhibit significant difference between
the original and replicated Sharpe ratios. By setting the tracking error tolerance
at twice the in-sample tracking error in the tolerance triggered rebalancing, the
model produced the same tracking error magnitude as that using the calendar
based rebalancing. Also, it has been shown that tolerance triggered rebalancing
outperformed the calendar based rebalancing in terms of both tracking ability and
cost-efficiency. Financial practitioners may employ the model to build up their
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own portfolios based on any interesting index mutual funds for certain purposes,
such as the funds from different geographical areas for global investments. In fu-
ture research, the short selling constraint may be relaxed; some financial products,
such as bonds, futures and options may be included into tracker portfolios for more
advanced applications, e.g. enhanced index funds (EIF) replications. Differential
Evolution is reliable and flexible enough for these further extensions.
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