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Abstract

Copulae provide investors with tools to model the dependency structure
among financial products. The choice of copulae plays an important role in
successful copula applications. However, selecting copulae usually relies on
general goodness-of-fit (GoF) tests which are independent of the particular
financial problem. This paper first proposes a pair-copula-GARCH model
to construct the dependency structure and simulate the joint returns of five

of downside risk management with the so-called D-vine structure, which
considers the Joe-Clayton copula and the Student t copula as building blocks
for the vine pair-copula decomposition. Value at risk, expected shortfall, and
Omega function are considered as downside risk measures in this study. As
an alternative to the traditional bootstrap approaches, the proposed pair-
copula-GARCH model provides simulated asset returns for generating future
scenarios of portfolio value. It is found that, although the Student t pair-
copula system performs better than the Joe-Clayton system in a GoF test,
the latter is able to provide the loss distributions which are more consistent
with the empirically examined loss distributions while optimizing the Omega
ratio. Furthermore, the economic benefit of using the pair-copula-GARCH
model is revealed by comparing the loss distributions from the proposed
model and the conventional exponentially weighted moving average model
of RiskMetrics in this case.
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1 Introduction

A knowledge of dependence structure of financial products has become increas-
ingly important in major financial applications, such as portfolio management, risk
management and financial derivative pricing. Traditional mean-variance portfolio
theory does not consider the nonlinear and asymmetrical dependence of asset re-
turns as the theory assumes multivariate returns being normally distributed (see
Markowitz [1952]). When underlying returns follow a multivariate normal distri-
bution, the Pearson correlation coefficient is sufficient to describe the dependence
between risk factors. However, the multivariate normal distribution assumption
has been challenged in practice. It is widely acknowledged in the literature that
this assumption does not follow the empirical evidence, e.g. the stylised facts in-
troduced by Cont [2001]. Patton [2004] found that both the skewness of individual
asset returns and the asymmetry in the dependence between stocks were econom-
ically significant and statistically significant. The work of Rachev et al. [2005]
also provides empirical evidence rejecting the hypothesis that returns for financial
products are normally distributed and instead shows that the returns exhibit fat
tails and skewness. These stylised facts are important to portfolio management.
For instance, the diversification effect may be overstated if portfolio managers
ignore the nonlinear and asymmetrical dependence structure.

Sklar [1959] proposed a solution for modeling dependence structure of random
variables, i.e. the copula, which isolates dependence structure from univariate
marginal distributions to formulate multivariate distributions. Nelsen [1998] fur-
ther provided a comprehensive introduction of the copula theory. In the literature,
copulae have been widely applied by market practitioners to model dependence
structure of financial risk factors, and most of the copula applications have fo-
cused on modeling bivariate distributions. For example, Embrechts et al. [1999]
proposed copulae as descriptions of dependence between financial risk factors, and
Cherubini et al. [2004] discussed various applications of the copula theory to fi-
nancial problems. Patton [2006] further proposed extensions of the copula theory
to allow for conditioning variables, and employed it to construct flexible models of
the conditional dependence structure of exchange rates. Ammann and Süss [2009]
applied the Skewed t copula to generate meta Skewed Student t distributions, and
it was found that the asymmetry property of the copula helped to improve the
description of dependence structure between equities returns.

Copula functions also have been drawn attention to modeling high-dimensional
distributions. A recent study by Fischer et al. [2009] shows that vine pair-copula
decompositions may be more appropriate for modeling high-dimensional distribu-
tions than other approaches including the multivariate Archimedean copulae, the
Koehler-Symanowski copulae and the Multiplicative Liebscher copulae. However,
it is important that the choice of pair-copula should be considered when using
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the vine pair-copula decompositions. There are two popular types of parametric
copulae: the elliptical copulae, which are extracted from elliptical distributions,
and the Archimedean copulae, which are constructed by using generators from the
Archimedean copula families. Fischer et al. [2009] suggested that the Student t
copula should be the preferred one in most financial applications. However, the
study of Fischer et al. [2009] included the one-parameter Archimedean copulae, it
might have been better if the study had considered the mixture of one-parameter
Archimedean copulae or the two-parameter Archimedean copulae.

As investors may prefer portfolios which are designed for risk minimization, sev-
eral downside risk measures (e.g. Value-at-Risk (VaR), Expected Shortfall (ES)
and Omega ratio) have been considered as an alternative to the variance measure
by financial practitioners in the past decade. Distributing weights to minimize loss
probability of having returns under a given level of risk measures has been applied
to both passive and active portfolio management. For passive portfolio manage-
ment, similar asset allocation problems can be dated back to some studies over
50 years ago. For example, Roy [1952] discussed the optimum distributions with
the so-called ‘safety first’ rule when portfolio returns were assumed to be normally
distributed. Rockafellar and Uryasev [2000] studied resource allocation problems
with VaR or ES minimizations provided that the loss functions were convex and
continuously differentiable. Gilli et al. [2006] discussed portfolio selection problems
which were designed for minimizing downside risks subject to certain real-world
constraints. Vassiliadis et al. [2009] propose a hybrid ant colony optimization algo-
rithm for active portfolio management under a downside risk framework. Copula
theory has been restored to estimate these risk measures in portfolio management.
Most of the VaR-copula studies reveal that the portfolios which consider the nonlin-
ear and asymmetric dependence structure are more robust than those constructed
under the assumption of multivariate normal distribution (see Embrechts et al.
[1999] and Bradley and Taqqu [2004]).

This paper makes two contributions to the literature. First, it combines pair-
copula decompositions with GARCH models to construct the dependence struc-

modeled by using AR-TGARCH models which allow asymmetric effects from past
innovations to affect the conditional variance (see Rabemananjara and Zakoian
[1993]), and the innovations are modeled by using the Skewed Student t distribu-
tion of Hansen [1994]. The multivariate dependence structure of the innovations
is constructed by using a D-vine pair-copula decomposition proposed by Bedford
and Cooke [2002]. The economic benefit of using the proposed model is illustrated
by the accuracy of simulated loss distribution based on simulated returns from the
model, in the comparison with the losses based on return simulation from other
conventional econometric models, such as the exponentially weighted moving av-
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erage (EWMA) model of RiskMetrics [1996].
Secondly, this paper discusses the copula selection problem for the vine pair-

copula decomposition from the perspective of downside risk management. Aas
et al. [2007] suggested plotting the original data of each bivariate case or performing
goodness-of-fit (GoF) tests to decide the choice of pair-copula. However, relying
on visual plots may only lead to a rough guess as to the dependence structure, and
existing statistical GoF tests can only distinguish suitable copulae for modeling
the multivariate distributions, rather than choose the most appropriate copula
for a specified financial application. Especially, selecting an optimal copula arises
when examined copula models are able to pass GoF tests with high p-values. Since
financial practitioners usually need to choose only one copula model for a specified
problem, this paper provides a supplementary discussion to the copula selection
problem under such circumstances.

The structure of this paper is as follows. Section 2 introduces pair-copula
decompositions for multivariate dependence construction and Section 3 presents
AR-TGARCH models for modeling marginal distributions. Section 4 gives an
asset allocation problem with downside risk minimization. Section 5 provides the
results of the experiment and a discussion. Section 6 summarizes the paper.

2 Pair-Copula Decompositions with Vine Struc-

tures

2.1 Pair-Copula Decompositions

Bedford and Cooke [2002] suggested decomposing a multivariate density into a
product of marginal densities and conditional densities. The latter can be writ-
ten recursively by using a so-called pair-copula decomposition. Considering a
d-dimensional vector X = (X1, . . . , Xd), the joint density distribution can be ex-
pressed as

f(x1, . . . , xd) = f(xd) · f(xd−1|xd) · f(xd−2|xd−1, xd) · . . . f(x1|x2, . . . , xd). (1)

As Sklar [1959] introduced, any multivariate distribution H with marginal densities
F1(x1), . . . , Fd(xd) may be written as

H(x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)}, (2)

where C denotes a d-dimensional copula, representing a multivariate distribution
with uniformly distributed marginals U on [0, 1]. Therefore, the copula in Eq. (2)
could be written as

C(u1, . . . , ud) = H{F−1
1 (u1), . . . , F

−1
d (ud)}, (3)
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in which F−1
j (uj) is the inverse cumulative distribution function of the j-th marginal

density.
The joint density of the copula function can be found by differentiating Eq.

(3)

f(x1, . . . , xd) = c1,...,d{F1(x1), . . . , Fd(xd)} · f1(x1)· · · fd(xd), (4)

where c1,...,d(· ) denotes a d-dimensional copula density. Then one can obtain the
conditional densities. In a bivariate case, the conditional density can be written
as

f(x1|x2) = c1,2{F1(x1), F2(x2)} · f1(x1), (5)

where c1,2 is the so-called pair-copula density for the two transformed variables.
The conditional density in a multivariate case can be found as

f(x|v) = cx,vj |v−j
{F (x|v−j), F (vj|v−j)} · f(x|v−j), (6)

where vj denotes an arbitrarily chosen component of v, and v−j represents the
v vector excluding the j-th component. Joe [1996] showed that F (x|v) could be
computed by using

F (x|v) =
∂Cx,vj |v−j

{F (x|v−j), F (vj|v−j)}
∂F (vj|v−j)

. (7)

However, the pair-copula decompositions in high-dimensional cases (e.g. d ≥ 3)
are not unique. For example, there are two possible pair-copula densities for a 3-
dimensional case:

f(x1|x2, x3) = c1,2|3{F (x1|x3), F (x2|x3)} · f(x1|x3), or (8)

f(x1|x2, x3) = c1,3|2{F (x1|x2), F (x3|x2)} · f(x1|x2). (9)

In order to arrive at a unique decomposition, the so-called vines, e.g. the D-
vine and the canonical vine were introduced by Bedford and Cooke [2002] and
Kurowicka and Cooke [2005] to graphically describe the decomposition scheme
of vine structures. The vines actually generalize the Markov trees which have
been used within the area of uncertainty analysis to build up high-dimensional
dependent distributions (see Cooke et al. [1991]. As the D-vine structure has
been successfully applied and recommended by researchers for modeling equity
returns in high-dimensional cases (see Aas et al. [2007] and Fischer et al. [2009]),
this structure is adopted in this paper. The D-vine structure is shown in Figure
1. The figure describes a 5-dimensional structure which comprises four chains
Υj, j = 1, . . . , 4. Each chain has 6− j nodes and 5− j edges. The edge represents
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Figure 1: The Five-Dimensional D-vine Structure
(reproduced from Aas et al. [2007])
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a pair-copula density, and the edge label corresponds to the subscript in the pair-
copula density. In total, a number of d(d− 1)/2 bivariate copulae with a number
of d marginal densities jointly define the multivariate density.

The density of a d-dimensional distribution with the D-vine pair-copula de-
composition can be found in Aas et al. [2007] as

f(x1, . . . , xd) =
d∏

k=1

f(xk)
d−1∏
j=1

d−j∏
i=1

ci,i+j|i+1,...,i+j−1

{F (xi|xi+1, . . . , xi+j−1), F (xi+j|xi+1, . . . , xi+j−1)}. (10)

In the 5-dimensional case, the copula density with the D-vine decomposition is
written as

f(x1, x2, x3,x4, x5) =

f5(x5) · f(x4|x5) · f(x3|x4, x5) · f(x2|x3, x4, x5) · f(x1|x2, x3, x4, x5).
(11)

The conditional densities in Eq. (11) can be further decomposed by using the
pair-copula densities with the marginal distributions

f(x4|x5) =c45{F4(x4), F5(x5)} · f4(x4) (12)

f(x3|x4, x5) =c35|4{F (x3|x4), F (x5|x4)}
· c34{F3(x3), F4(x4)} · f3(x3) (13)

f(x2|x3, x4, x5) =c25|34{F (x2|x3, x4), F (x5|x3, x4)}
· c24|3{F (x2|x3), F (x4|x3)} · c23{F2(x2), F3(x3)} · f2(x2) (14)

f(x1|x2, x3, x4, x5) =c15|234{F (x1|x2, x3, x4), F (x5|x2, x3, x4)}
· c14|23{F (x1|x2, x3), F (x4|x2, x3)}
· c13|2{F (x1|x2), F (x3|x2)} · c12{F1(x1), F2(x2)} · f1(x1).

(15)

The conditional cumulative distributions in Eq. (13) to Eq. (15) can be further
decomposed by using Eq. (7)

F (x3|x4) =
∂C34{F3(x3), F4(x4)}

∂F4(x4)
(16)

F (x5|x4) =
∂C45{F4(x4), F4(x5)}

∂F4(x4)
, (17)
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F (x2|x3, x4) =
∂C24|3{F (x2|x3), F (x4|x3)}

∂F (x4|x3)
(18)

F (x2|x3) =
∂C23{F2(x2), F3(x3)}

∂F3(x3)
(19)

F (x4|x3) =
∂C34{F3(x3), F4(x4)}

∂F3(x3)
(20)

F (x5|x3, x4) =
∂C35|4{F (x4|x5), F (x3|x4)}

∂F (x3|x4)
(21)

F (x5|x4) =
∂C45{F4(x4), F5(x5)}

∂F4(x4)
(22)

F (x3|x4) =
∂C34{F3(x3), F4(x4)}

∂F4(x4)
, (23)

F (x1|x2, x3, x4) =
∂C14|13{F (x1|x2, x3), F (x4|x2, x3)}

∂F (x4|x2, x3)
(24)

F (x1|x2, x3) =
∂C13|2{F (x1|x2), F (x3|x2)}

∂F (x3|x2)
(25)

F (x1|x2) =
∂C12{F1(x1), F2(x2)}

∂F2(x2)
(26)

F (x3|x2) =
∂C23{F2(x2), F3(x3)}

∂F2(x2)
(27)

F (x4|x2, x3) =
∂C24|3{F (x2|x3), F (x4|x3)}

∂F (x2|x3)
(28)

F (x2|x3) =
∂C23{F2(x2), F3(x3)}

∂F3(x3)
(29)

F (x4|x3) =
∂C34{F3(x3), F4(x4)}

∂F3(x3)
, (30)
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F (x5|x2, x3, x4) =
∂C25|34{F (x2|x3, x4), F (x5|x3, x4)}

∂F (x2|x3, x4)
(31)

F (x2|x3, x4) =
∂C24|3{F (x2|x3), F (x4|x3)}

∂F (x4|x3)
(32)

F (x2|x3) =
∂C23{F2(x2), F3(x3)}

∂F3(x3)
(33)

F (x4|x3) =
∂C34{F3(x3), F4(x4)}

∂F3(x3)
(34)

F (x5|x3, x4) =
∂C35|4{F (x3|x4), F (x5|x4)}

∂F (x3|x4)
(35)

F (x3|x4) =
∂C34{F3(x3), F4(x4)}

∂F4(x4)
(36)

F (x5|x4) =
∂C45{F4(x4), F5(x5)}

∂F4(x4)
. (37)

To check whether the pair-copula decomposition is suitable for modeling the de-
pendence structure of a specified data set, Aas et al. [2007] performed a GoF test for
the vine pair-copula based on a probability integral transform (PIT) which was sug-
gested by Rosenblatt [1952]. The PIT transforms a set of d-dimensional dependent
variables Xi into a new set of variables Xi which are supposed to be independent
and uniformly distributed on [0, 1]d. To verify whether the transformed variables
are independent and uniformly distributed, a new variable R =

∑d
i=1{Φ−1(Xi)}2

is introduced, and the null hypothesis that R follows a χ2 distribution with d DoF
is tested. Only this GoF test is considered in this paper since the main interest
of the paper focuses on financial applications rather than statistical studies. For
a more sophisticated GoF tests reference should be made to the study of Genest
et al. [2009].

Inference of the pair-copula parameters and simulation of the random numbers
with the D-vine structure need the conditional cumulative copula functions and
its inverse functions. The following subsections introduce the two functions of the
Student t copula and the Joe-Clayton copula. This paper follows the parameter
inference and random number simulation processes suggested by Aas et al. [2007].

2.2 The Student t Copula

The bivariate Student t copula has the form

Ct
ν,ρ(u) =

∫ t−1
ν (u1)

−∞

∫ t−1
ν (u2)

−∞

Γ(ν+2
2

)

Γ(ν
2
)
√

(πν)2|ρ|

(
1 +

x>ρx

ν

)− ν+2
2

dx, (38)
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where ui is the value after taking xi as the input of its cumulative probability

function. After taking the derivatives ct(u1, u2) = ∂2Ct(u1,u2)
∂u1∂u2

, one has the bivariate
Student t copula density:

ct
ν,ρ(u1, u2) =

1√
|ρ|

Γ(ν+2
2

)Γ(ν
2
)

Γ(ν+1
2

)2

∏2
k=1(1 + t−1

ν (uk)2

ν
)

ν+1
2

(1 + (t−1
ν (u))′ρ−1(t−1

ν (u))
ν

)
ν+2
2

, (39)

where ν denotes the DoF of the Student t copula. Γ(·) is the Gamma function,
and ρ represents the correlation coefficient matrix.

The conditional cumulative function on u2 of the bivariate Student t copula is
defined as

ht(u1, u2; ν, ρ) = tν+1


t−1

ν (u1)− ρ · t−1
ν (u2)√

(ν+(t−1
ν (u2))2)(1−ρ2)

ν+1


 . (40)

The inverse of the ht function is given by Aas et al. [2007]

h−t(u1, u2; ν, ρ) = tν

(
t−1
ν+1(u1) ·

√
(ν + (t−1

ν (u2))2)(1− ρ2)

ν + 1
+ ρ · t−1

ν (u2)

)
. (41)

2.3 The Joe-Clayton Copula

The Joe-Clayton copula belongs to the two-parameter families of Archimedean
copulae (BB7 in Joe [1997]), and it has the form

Cjc(u1, u2; τ
U , τL) = 1−

(
1− (

(1− (1− u1)
κ)−γ + (1− (1− u2)

κ)−γ − 1
)−1/γ

)1/κ

κ = 1/(log2(2− τU))

γ = −1/(log2 τL). (42)

τL and τU denote the lower and the upper dependence measures respectively.
After differentiating the copula function, one has the Joe-Clayton copula density
function

cjc(u1, u2; τ
U , τL) =

R

Q2
· (1−Q−1/γ)1/κ

(Q1/γ − 1)2
· {−1 + κ · (Q1/γ + γ · (Q1/γ − 1)

)}

(43)

R = (1− (1− u1)
κ)−γ−1 (1− u1)

κ−1 (1− (1− u2)
κ)−γ−1 (1− u2)

κ−1 (44)

Q =
{−1 + (1− (1− u1)

κ)−γ + (1− (1− u2)
κ)−γ} . (45)
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The cumulative function of the copula conditioning on u2 is written as

hjc(u1, u2; τ
U , τL) =

{
1− {−1 + (1− (1− u1)

κ)−γ + (1− (1− u2)
κ)−γ}−1/γ

}1/κ−1

·{−1 + (1− (1− u1)
κ)−γ + (1− (1− u2)

κ)−γ}−1/γ−1

· {1− (1− u2)
κ}−γ−1 · (1− u2)

κ−1. (46)

Bisection method, which is a numerical method to find roots of equations, is em-
ployed to solve the inverse of the hjc(·) function with respect to the first variable
u1, i.e. the inverse of the conditional distribution function. For a general intro-
duction of the bisection method and its applications can be found in Burden and
Faires [2005] and Berry and Zuo [2009].

3 AR-Threshold-GARCH Model for Margins

Over the last few decades, GARCH models proposed by Bollerslev [1987] and
Engle [1982] have been applied by researchers to characterize the stylised facts in
asset returns. For example, the multivariate GARCH models have been suggested
in modeling high-dimensional distributions for risk management, optimal hedging
and contagion study (see Bollerslev et al. [1988], Hansson and Hordahl [1998],
and Bae et al. [2003]). However, Ang and Bekaert [2002] and Ang and Chen
[2002] reported that the multivariate GARCH models might not well describe
the tail dependence structure. As an alternative, copula-GARCH methods are
recommended by researchers to model multivariate distributions. When applying
copula-GARCH models, the univariate residuals from GARCH models are usually
explained by using approaches such as empirical distribution functions, kernel
functions, fat tail distributions or the Extreme Value Theory.

One of the advantages of using GARCH models is that the extensive frame-
work of GARCH-type models, such as the GJR-GARCH, the FI-GARCH and
the threshold-GARCH (TGARCH), is able to capture the well-known return trait
of different financial products. In the literature, the AR-TGARCH models have
been successfully employed by researchers to model return of financial products
(see Jondeau and Rockinger [2006], Floros [2007] and Lai et al. [2009]). Based on
preliminary experiments, the return mean functions of the equities are modeled
by using AR processes in this paper. Let the returns of an asset be given by rt,
the AR-TGARCH model is defined by

rt =ϕ0 + ϕ1rt−1 + ϕ2rt−2 +· · ·+ εt, (47)

εt =σtςt, (48)

σ2
t =α0 + α+

1 (ε+
t−1)

2 + α−1 (ε−t−1)
2 + β1σ

2
t−1, (49)

ςt ∼SkT(η, λ). (50)
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Eq. (47) defines the conditional mean function with parameters ϕt of the AR
processes and the innovation εt. As the lag number of the AR processes depends on
individual equities, it is not specified in Eq. (47). Eq. (48) defines the innovation
εt as the product of the conditional volatility, σt and the residual, ςt. The dynamics
of volatility is given by Eq. (49) with the notation of ε+

t = max(εt, 0) and ε−t =
max(−εt, 0). Due to the positivity and the stationarity constraints of the volatility
process, the TGARCH parameters should satisfy the constraints: α0, α

+
1 , α−1 , β1 ≥

0, and (α+
1 + α−1 )/2 + β1 < 1 as Glosten et al. [1993] suggested. Eq. (50) specifies

the residuals by using a Skewed Student t distribution, which was defined by
Hansen [1994]

SkT(ẏ; η, λ) =

{
bc(1 + 1

η−2
( bẏ+a

1−λ
)2)−(η+1)/2 if ẏ < −a/b,

bc(1 + 1
η−2

( bẏ+a
1+λ

)2)−(η+1)/2 if ẏ ≥ −a/b,
(51)

where

a ≡ 4λc
η − 2

η − 1
, b2 ≡ 1 + 3λ2 − a2, c ≡ Γ(η+1

2
)√

π(η − 2)Γ(η
2
)
. (52)

λ represents the asymmetry parameter, and ẏ follows the standard Student t dis-
tribution with a marginal DoF η.

The ς of each return series are taken as the marginal observations, i.e. the
u in the Student t copula model and the Joe-Clayton copula model introduced
in Section 2.2 and Section 2.3 respectively. In this paper, the two-step maximum
likelihood method which has been studied and discussed by Genest et al. [1995],
is employed to estimate the parameters of copula models.

4 Portfolio Construction with Downside Risk Min-

imization

4.1 Optimization Problem

The optimization problem for asset selection with downside risk minimization has
been discussed by Gilli et al. [2006], whereas this paper addresses the copula
selection with the asset allocation problem. At time t0, there is an initial wealth B0

to be invested in a set of N assets with prices Si,0, i = 1, ..., N . At the beginning
of the planning investment horizon t0, the asset returns ri and the portfolio value
PT at the end of the horizon are unknown, whereas they may be estimated by
employing simulation studies.

To relax the normality assumption of the joint returns under the Markowitz
framework, the future portfolio value PT is estimated based on simulated returns,
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i.e. a set of possible realizations of returns, which are generated by using the
proposed pair-copula-GARCH model. In other words, the possible realization of
returns rs,i, with s = 1, ..., nS and i = 1, ..., N are simulated by using the pair-
copula-GARCH model, where nS denoting the number of simulated scenarios.
Thus, the portfolio value of each simulation can be written as

Ps,T =
N∑
i

ni · Si,0 · (1 + rs,i), s = 1, ..., nS, (53)

where ni represents the share number invested in the i-th stock.
The loss of the portfolio from each simulation run is defined as

Ls = P0 − Ps,T , s = 1, ..., nS. (54)

As Gilli et al. [2006] suggested, the VaR1−α estimated from the simulated sce-
narios can be written as the (1−α)-th loss of the nS simulated losses in ascending
order such that L1 ≤ L2, ... ≤ LnS

, then the VaR can be found as

VaR = L(d(1−α)·nSe), (55)

where 1− α is the probability that the loss will not exceed the VaR value.
The ES can be computed as

ES =
1∑

1{Ls>VaR}

∑
Ls1{Ls>VaR}. (56)

The Omega function, which was proposed by Keating and Shadwick [2002],
can be estimated as

Omega = −
∑

Ls1{Ls>0}∑
Ls1{Ls<0}

. (57)

The asset allocation problem can be formulated as

min
n

O(L) (58)

ni ∈ N+
0 (59)

P0 =
N∑
i

ni · Si,0 = B0 (60)

wmin ≤ ni · Si,0

P0

≤ wmax, (61)

where O(·) is the objective function representing the risk measure which is defined
in Eq. (55) to Eq. (57), and n represents the vector of share numbers of each
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equity invested. Eq. (59) denotes an integer constraint on the share numbers.
Eq. (60) is the budget constraint, or the sum-to-one constraint. In other words,
the shares of invested equities comprise a portfolio with a market value of P0 =∑N

i=1 ni · Si,0 = B0, i.e.,
∑N

i=1 wi = 1 with wi =
ni·Si,0

P0
. Eq. (61) imposes a weight

constraint on the holding size of an asset with wmin = 1% and wmax = 50%. The
initial budget B0 was set at $1,000,000.

Given that the pair-copula-GARCH model provides reliable joint asset return
simulations, (i) the portfolio weights should agree with the weights optimized based
on empirically observed return simulations (i.e. the bootstrapped returns), and
(ii) the loss distribution should be consistent with the empirically examined one,
no matter which risk measure is used.

4.2 Optimization Method

Evolutionary methods, such as Genetic Algorithm, Threshold Accepting and Dif-
ferential Evolution, have been used to tackle the complex optimization problems in
finance and economics (see Winker [2001] and Gilli et al. [2008]). Constraints, such
as the lots constraint, can be tackled by using these evolutionary methods. This
paper employs Differential Evolution (DE) (see Storn and Price [1997]) to solve
the optimization problem. DE initializes its population by using random numbers.
For each current solution ıp, a new solution ıc is generated from the following pro-
cess. First, the algorithm randomly selects three different chromosomes from the
current population (p1 6= p2 6= p3 6= p). Then genes of the new chromosome are
generated by linearly combining the genes from the chromosomes at a probabil-
ity π1, otherwise inheriting the genes of the original p-th solution. Extra noises
are considered to escape from local optima and avoid premature convergence. In
this paper, vectors z1 and z2 represent the extra noises. The two vectors contain
random numbers being zero at the probabilities π2 and π3 respectively, or being
normally independent distribution N(0, d2

1) and N(0, d2
2) otherwise. The linear

combination can be described as:

ıc[i] :=

{
ıp1 [i] + (K + z1[i]) · (ıp2 [i]− ıp3 [i] + z2[i]) with probability π1

ıp[i] otherwise,

where π1 is the crossover probability. After the linear combination, DE updates
the population. More specifically, if the fitness value of ıc is higher than the
one of ıp, then ıp is replaced by ıc, and the updated ıp exists in the current
population, otherwise the original ıp survives. Since the solutions from DE may
be either positive or negative, the no-short-selling constraint might be violated
if one directly interprets ıp as portfolio weights. A mapping function is used
to translate the solution into asset weights. The assets are first assigned with
the minimum weight wmin, and then the weights are increased in proportion to
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the values in ıp until the sum of weights add up to unity. If an equity weight
exceeds the maximum weight, its weight is decreased to wmax, and the excess
part is superadded proportionally to other equities according to their weights.
The holding of the i-th equity ni = dwiP0/Si,0e is computed by rounding up to
the closest integer. The mapping function has been employed by Maringer and
Oyewumi [2007] for index tracking.

The technical parameters of DE algorithm are listed as follows. Population size
and iteration number were set at 50 and 500 respectively. The value of K was set
at a value 0.5 and the crossover probability π1 was set at 60%. The parameters
used for generating the noise vectors were π2 = 50%, π3 = 10%, d2

1 = 0.1 and
d2

2 = 0.1.

5 The Experiments

5.1 Data

The portfolio comprises five equities selected from the top ten S&P 500 stocks:
Johnson & Johnson (J&J), Cisco Systems, Bank of America (BoA), General Elec-
tric (GE), and AT&T. These stocks are considered as representatives of five sectors:
healthcare, information technology, finance, industrials and telecommunications.
Daily log-return of the five assets in the period 3 January 2000 to 1 July 2009 are
plotted in Figure 2.

Table 1 summarizes some preliminary descriptive statistics of the daily returns.
Most of the average returns are negative, except for J&J. The unconditional stan-
dard deviations reveal that J&J is the least volatile of the five equities during the
period. The skewness (SK) and the excess kurtosis (eKU) indicate that the five
return distributions are asymmetric and fat-tailed. The autocorrelation and the
heteroscedasticity of the five return series are revealed by using the Ljung-Box and
the ARCH Lagrange multiplier (LM) tests respectively. The statistics from the
Ljung-Box test indicate that the squared return series are autocorrelated up to
lag 10, and the ARCH LM test statistics show the presence of the autoregressive
conditional heteroscedasticity in the five return series up to order 10. The lower
panel of the table reports the unconditional correlation coefficients of the five stock
returns.

A bootstrap approach, the exponentially weighted moving average (EWMA)
model, and the proposed pair-copula GARCH model were used separately to sim-
ulate the daily returns of the five equities. The bootstrap approach was adopted
to generate return simulations with a bootstrap number of nS = 20, 500. In each
simulation, a block size of 20 returns was randomly drawn from the set of 824 daily
returns in the period 3 January 2006 to 30 June 2009. The planned investment

15



Table 1: Summary Statistics on the Five Daily Returns

J&J Cisco BoA GE AT&T
Mean 0.0001 -0.0004 -0.0002 -0.0005 -0.0003
Max 0.1154 0.2182 0.3021 0.1798 0.1508
Min -0.1725 -0.1405 -0.3421 -0.1368 -0.1354
SD 0.0146 0.0311 0.0361 0.0229 0.0208
SK -0.6018 0.3322 -0.2921 0.0915 0.1345
eKU 14.5283 5.1659 22.8774 7.2292 4.3939

Q(1) 22.5018 54.0363 237.3108 148.6092 31.0346
p-values 0.0000 0.0000 0.0000 0.0000 0.0000
Q(10) 262.1906 497.9050 1,377.3619 1,093.9157 559.5125

p-values 0.0000 0.0000 0.0000 0.0000 0.0000
LM(1) 22.4624 53.9455 236.8924 148.7618 30.9800

p-values 0.0000 0.0000 0.0000 0.0000 0.0000
LM(10) 145.3386 217.6292 472.3026 438.0548 257.3098
p-values 0.0000 0.0000 0.0000 0.0000 0.0000

J&J 1 0.185033 0.267299 0.373999 0.346643
Cisco 0.185033 1 0.332776 0.458931 0.326552
BoA 0.267299 0.332776 1 0.575315 0.360903
GE 0.373999 0.458931 0.575315 1 0.404473

AT&T 0.346643 0.326552 0.360903 0.404473 1

period considered in this paper is one month. The sum of the daily log-return
of each block defines a monthly log-return. This return simulation follows the
approach of Gilli et al. [2006].

A rolling window strategy was adopted to simulate joint asset returns by using
the proposed pair-copula GARCH model. As using GARCH models usually re-
quires large data samples, the parameters of the pair-copula GARCH model were
estimated based on the daily returns of a six-year period, i.e. the rolling window
starts from January 2000 with a window length of wl = 1, 500. The daily return
simulations were generated by using the pair-copula GARCH model with the es-
timated parameters at a monthly interval. For example, the daily observations
from 2 January 2000 to 30 December 2005 were first used to infer the parameters
of the pair-copula-GARCH model. Then the possible realizations of daily asset
returns in January 2006 were simulated by using the pair-copula-GARCH model
with the estimated parameters. The six-year window rolls at an interval of 20
observations, i.e. ℘ = 20, roughly representing a monthly frequency. Thus, there
were 41 updates over the period 3 January 2006 to 30 June 2009. A block size of
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20 returns with a number of 500 were simulated by using the pair-copula-GARCH
model for each month. Consequently, the simulated returns consist of a total sim-
ulation scenarios of nS = 20, 500 with a block size of 20 in the period 3 January
2006 to 30 June 2009. Figure 3 briefly describes the simulation process.

In addition to the bootstrap approach and the pair-copula-GARCH model,
a block size of 20 daily returns for the five assets were simulated by using the
EWMA model with an iteration number of 500 at the beginning of each month
from 3 January 2006 to 30 June 2009. The simulated daily returns were generated
based on the recent 250 historical observations with a decay factor at 0.94 (see
RiskMetrics [1996]). Consequently, the number of simulated scenarios of the block
returns was 20,500 over the examined period in this case.

5.2 Estimation of the Marginal Models

Figure 4 provides the estimated parameters of the marginal AR-TGARCH models

that most of the parameters are volatile during the U.S. subprime and the recent
financial crisis. Table 2 reports the parameters and statistics of the marginal
AR-TGARCH models from the last update (i.e. the period July 2004 to June
2009). The first part of Table 2 shows a clear asymmetric volatility responding
to the positive and negative innovations in the five return series. Although the
parameters satisfy the constraint (α̂+

1 +α̂−1 )/2+β̂1 < 1, the volatility of most stocks
(e.g. J&J, BoA and GE) tends to follow an explosive GARCH process when the
past innovation is negative, which implies that negative innovations may lead to
temporal instability.

The marginal DoF parameter η̂ and the asymmetry parameter λ̂ of the Skewed
Student t distributions are reported below the TGARCH parameters. The DoF
parameters of the five equities have a range of 4 to 8, implying that the normal
distribution assumption is inappropriate in modeling the residuals. Although the
asymmetry parameters λ̂ are not different from 0 at the 5% significance level, it has
been decided to include the asymmetry parameter in the model after applying the
two-sample Kolmogorov-Smirnov (KS) test. The empirically observed residuals
were compared with a hypothesized distribution which was constructed by using
the Student t CDF with the marginal parameters (indicated by KS testa). Then
the same empirically observed residuals were compared with another hypothesized
distribution which was constructed by using the Skewed Student t CDF with
the estimated parameters (indicated by KS testb). Interestingly, all of the p-values
from the KS testa are lower than the 5% significance level, rejecting the hypothesis
that the two distributions follow the same continuous distribution, implying that
the Skewed Student t distribution may still not be able to model the residuals.
On the contrary, the p-values in the KS testb are very high, supporting that the
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Skewed Student t distribution is more appropriate than the standard Student t
distribution in modeling the marginal distributions.

The lower panel in Table 2 provides results of the Ljung-Box test and the ARCH
LM test. Since the Ljung-Box test assumes the errors being normally distributed,
an extra process should be implemented before applying the test. As Smith [1985]
and Lai et al. [2009] suggested, the standardized residuals were first transferred into
cumulative probabilities by using the Skewed Student t CDF with the estimated
parameters; and then the inverse Gaussian CDF function was employed to transfer
the observations back to the standard normal variables before applying the Ljung-
Box test. As the test statistics show, there is no serial correlation up to 10 lags
in the transformed residuals and the squared ones at the 5% significance level.
The ARCH effect has been removed from the five equity return series according
to the statistics of the ARCH LM test. It is found that the findings based on the
estimated parameters and test statistics from other 40 updates are consistent with
those discussed above. Therefore, the AR-TGARCH Skewed Student t models
should be suitable for modeling the marginal distributions.
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Figure 2: Daily Return of the Five Assets
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5.3 Estimation of the Copula Models

Table 3 reports the parameter estimates of the two vine pair-copula models of
the last update (i.e. the period July 2004 to June 2009). The ordering of the
equities (i.e. J&J, Cisco, BoA, GE and AT&T corresponding to the risk factor 1
to 5 in the first chain) is decided based on the ordering of estimated DoF from
fitting a bivariate Student copula to each pair of risk factors as Aas et al. [2007]
suggested. The subscripts of the pair-copula in the table or the edge label of the
vine structure can be found in Figure 1. The upper panel in Table 3 reports the
estimated parameters from the maximum likelihood estimation (MLE), and the
standard errors extracted from the inverse of the Hessian matrix of the Joe-Clayton
pair-copula system. It is found that most of τ̂U are greater than τ̂L, except for the
case of J&J and GE conditioning on Cisco and BoA (i.e. τ̂L > τ̂U in C14|23).

Table 3: Estimated Parameters of the Pair-Copula Models (the 41st update)

Joe-Clayton τ̂L τ̂U τ̂L τ̂U

C12 0.1070 0.2080 C24|3 0.0130 0.2430
(0.0014) (0.0012) (0.0001) (0.0010)

C23 0.2140 0.2530 C35|4 0.0170 0.1640
(0.0015) (0.0011) (0.0005) (0.0073)

C34 0.3550 0.3480 C14|23 0.1010 0.0500
(0.0011) (0.0009) (0.0011) (0.0015)

C45 0.2510 0.2430 C25|34 0.0030 0.1500
(0.0013) (0.0012) (0.0000) (0.0010)

C13|2 0.0280 0.1900 C15|234 0.0030 0.0390
(0.0004) (0.0008) (0.0000) (0.0009)

LL 877.8221
χ2 test: statistic 8.9631 p-value 0.1757

Student t ρ̂ ν̂ ρ̂ ν̂
C12 0.3512 6.3505 C24|3 0.3315 14.1036

(0.0006) (1.3870) (0.0006) (24.4632)
C23 0.4384 9.1081 C35|4 0.2689 16.1225

(0.0005) (5.2193) (0.0006) (36.1920)
C34 0.5669 12.0732 C14|23 0.2841 13.3628

(0.0003) (15.2316) (0.0007) (18.3792)
C45 0.4546 9.4664 C25|34 0.2341 9.9268

(0.0005) (6.4654) (0.0007) (5.7908)
C13|2 0.2797 20.2949 C15|234 0.1427 38.6106

(0.0006) (38.8564) (0.0007) (262.528)
LL 976.7462

χ2 test: statistic 11.9468 p-value 0.0632
(Standard errors of the estimated parameters are provided in parentheses.)
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Figure 5 shows the estimated τ̂L and τ̂U based on a six-year monthly rolling
window in the period 3 January 2006 to 30 June 2009. As the first four subplots
in chain Υ1 show, most of the lower rank correlation parameters τ̂L increase in
the period, whereas the upper rank correlation parameters τ̂U remain stably. In
addition to the asymmetric dependence structure observed, it is found that the
dependence measures of the copulae τ̂L and τ̂U turn more stable while conditioning
on more risk factors (e.g. in the copulae C13|2, C14|23 and C15|234).

The lower panel in Table 3 reports the estimates of ρ̂, ν̂, and the standard
errors from the Student t pair-copula system of the last update. The estimated
DoF parameter ν̂ is reported after ρ̂. In practice, when ν̂ is greater than 30, the
Student t copula can be approximated by using the Gaussian copula (see Fantazzini
[2009]), which does not consider any tail dependence. When ν̂ is smaller than 3, the
third and fourth moments of the distribution are not defined. As the table shows,
the DoFs of the first four pair-copula in chain Υ1 are smaller and different from
30 at the 5% significance level, whereas the DoF parameters of the pair-copulae in
chains Υ2, Υ3 and Υ4 are not significantly different from 30.

For ease of reading, the ν̂ in the graph has been standardized by dividing by
30 (the DoF which are greater than 30 are replaced by 30 in this case). Figure
6 provides the standardized ˜̂ν and ρ̂ of the examined period based on the six-
year monthly rolling window over the period. It is found that the tail dependence
measure and the correlation of the copulae are reduced when the pair-copulae are
conditional on more risky factors. This finding is consistent with the one observed
from the Joe-Clayton pair-copula model.

The p-values from the χ2 test for the two pair-copula systems are reported
in the upper and lower panels of Table 3 after the estimates of the two pair-
copula systems from the last update respectively. As the p-values indicate, both
the Student t and the Joe-Clayton copula models pass the GoF test at the 5%
significance level in the last update. The p-values from the other updates are
provided in Table 4. It seems that the Joe-Clayton pair-copula system might not
be appropriate in modeling the dependence structure before January 2002, since
the p-values of the χ2 test from the first 24 updates are less than the 5% significance
level. In contrast to the Joe-Clayton pair-copula, the Student t pair-copula system
passes the test well. According to this statistical test, it seems that the Student t
pair-copula system is more suitable than the Joe-Clayton pair-copula for modeling
the dependence structure of the five equities.
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Figure 5: Estimated Parameters of the Joe-Clayton Copula System

(τ̂L – solid lines and τ̂U – dash-dot lines of the Joe-Clayton system. x and y axes
represent the time horizon and the rank correlation measures, respectively.)

25



06
07

08
09

0

0.
51

C
12

06
07

08
09

0

0.
51

C
23

06
07

08
09

0

0.
51

C
34

06
07

08
09

0

0.
51

C
45

06
07

08
09

0

0.
51

C
13

|2

06
07

08
09

0

0.
51

C
24

|3

06
07

08
09

0

0.
51

C
35

|4

06
07

08
09

0

0.
51

C
14

|2
3

06
07

08
09

0

0.
51

C
25

|3
4

06
07

08
09

0

0.
51

C
15

|2
34

Figure 6: Estimated Parameters of the Student t Copula System

(Standardized ˜̂ν – solid lines and ρ̂ – dash-dot lines of the Student t system. x
and y axes represent the time horizon and the copula parameters respectively.)
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Table 4: p-Values from the χ2 Test
Updates Student t Joe-Clayton Updates Student t Joe-Clayton

1 0.3857 0.0119 21 0.3640 0.0262
2 0.2876 0.0100 22 0.4766 0.0274
3 0.2059 0.0186 23 0.4675 0.0454
4 0.1571 0.0048 24 0.3668 0.0219
5 0.1605 0.0036 25 0.4736 0.0777
6 0.0998 0.0007 26 0.3453 0.0746
7 0.3818 0.0015 27 0.4175 0.2294
8 0.2231 0.0001 28 0.3565 0.1088
9 0.1735 0.0001 29 0.3153 0.2384
10 0.0889 0.0004 30 0.1545 0.1576
11 0.1746 0.0011 31 0.1668 0.1472
12 0.3257 0.0031 32 0.7488 0.1353
13 0.2757 0.0011 33 0.2777 0.2191
14 0.2726 0.0029 34 0.3611 0.0618
15 0.1865 0.0034 35 0.3376 0.1339
16 0.3796 0.0156 36 0.2824 0.1149
17 0.2625 0.0135 37 0.1950 0.1266
18 0.5222 0.0180 38 0.3994 0.1399
19 0.4417 0.0025 39 0.2132 0.0598
20 0.4777 0.0049 40 0.0497 0.0399
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5.4 Copula Selection with Loss Simulation

The loss distribution based on the bootstrapped asset returns can be considered
as a benchmark to judge the accuracy of the EWMA model and the pair-copula-
GARCH models. The bootstrapped asset returns were directly sampled from
historical returns of the period 3 January 2006 to 30 June 2009, thus the simulated
loss distribution should be close to the real loss distribution. The simulated loss
distributions from the two statistical models were based on the simulated asset
returns from the 41 subperiods, which actually were independent of the historical
asset returns in the period.

Figure 7 provides the portfolio weights from minimizing the VaR, the ES and
the Omega ratio based on the asset returns which are generated by using the
two pair-copula-GARCH models, the EWMA model and the bootstrap approach.
As the figure shows, the portfolio weights optimized from using the four models
agree with each other well when the VaR and the ES measure are minimized,
i.e. J&J, Cisco and AT&T are heavily weighted in the four cases. However,
the portfolio weights optimized from the Joe-Clayton system and the bootstrap
approach, strongly agree with each other while minimizing the Omega ratio as the
lower sub-figure in Figure 7 suggested. The portfolio weights from minimizing the
Omega ratio can be different from the weights from minimizing VaR and ES, since
Omega ratio is developed based on all the moments of return distribution (mean,
volatility, skewness, kurtosis and higher moments).

Figure 8 and Figure 9 provide the simulated and the empirically examined
(i.e. the bootstrapped) loss distributions in the cases of VaR and ES minimization
respectively. As the two figures show, although the gains (i.e. the negative losses)
based on the two pair-copula GARCH models match the bootstrapped one closer,
the EWMA model is able to provide a closer loss distribution to the bootstrapped
one than the pair-copula GARCH models.

However, it is found that the simulated loss distribution based on the Joe-
Clayton system better matches the empirically examined loss distribution which is
assessed by using the bootstrap approach in overall while minimizing the Omega
ratio, as shown in Figure 10. Although the losses from the Joe-Clayton system do
not well match the bootstrapped losses in the loss range [0.5, 2]× 105, tail events
in both of the gains and losses from the two loss distributions agree each other
perfectly.

6 Comments and Summary

This paper suggests a pair-copula-TGARCH system to model the joint return dis-
tributions of five S&P equities for portfolio risk management. It also discusses
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Figure 7: Asset Weights from Downside Risk Minimization
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Figure 8: Cumulative Distribution of Monthly Losses for Minimizing VaR.95
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Figure 9: Cumulative Distribution of Monthly Losses for Minimizing ES.95
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Figure 10: Cumulative Distribution of Monthly Losses for Minimizing Omega
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the copula selection problem for the D-vine pair-copula system. The dependence
structure of the 5-dimensional case is modeled by using the pair-copula decom-
position with the Joe-Clayton copula and the Student t copula. The univariate
distributions are modeled by using AR-TGARCH models with the Skewed Stu-
dent t distribution, which consider the asymmetric effects from past innovations
to affect the conditional variance and the stylised facts (skewness and kurtosis).
The asset allocation model distributes weights by minimizing three risk indicators,
i.e. VaR, ES, and Omega.

As the experimental results suggest, the simple EWMA model is able to pro-
vide reliable asset return simulations for the portfolio constructed by minimizing
the VaR and ES measures. However, the economic benefit of using the pair-copula
GARCH model is revealed by taking the Omega ratio as the risk measure: the
portfolio weights and loss distribution from minimizing the Omega ratio based on
the Joe-Clayton pair-copula system are more consistent with the empirically exam-
ined weights and loss distribution from the bootstrap approach than those from the
Student t system and the EWMA model. The advantage of the Joe-Clayton pair-
copula system is that it considers an asymmetric dependence structure whereas the
Student t copula can only model a symmetric one. Also there is a clear message
to financial analysts that selecting copulae for a specified financial problem relies
solely on statistical tests may lead to unexpected results. For instance, although
the Student t system passes the GoF test better than the Joe-Clayton system, the
former provides a less reliable loss distribution when taking the Omega ratio as a
risk measure.
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Fischer, M., Köck, C., Schlüter, S., and Weigert, F. (2009). An empirical analysis
of multivariate copula models. Quantitative Finance, 9:839–854.

Floros, C. (2007). The use of GARCH models for the calculation of minimum
capital risk requirements: International evidence. International Journal of Man-
agerial Finance, 3:360–371.

Genest, C., Ghoudi, K., and Rivest, L.-P. (1995). A semiparametric estimation
procedure of dependence parameters in multivariate families of distributions.
Biometrika, 82:543–552.

Genest, C., Rémillard, B., and Beaudoin, D. (2009). Goodness-of-Fit tests for
copulas: A review and a power study. Insurance: Mathematics and Economics,
44:199–213.
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