BWL XI: New Master's Course: Text Mining
Inhaltspezifische Aktionen

BWL XI: New Master's Course: Text Mining

We will offer a master's course on "Text Mining" in winter semester 19/20. The course will have an interactive format including coding sessions, discussions, and presentations by students. The course is also open to interested bachelor students currently enrolled in the 210- and 240-CP programs.


Course: Text Mining (M. Sc.)

Course details:

  • Module codes: TBA
  • Lecturer: Prof. Dr. Nicolas Pröllochs (BWL XI)
  • Course format: Lecture (6 CP)
  • Term: Winter semester 19 / 20
  • Language: English
  • Grading: Presentation & Term Paper

Course description:

The digital age has ignited a burst in the volume of textual materials available to businesses and the public. Common examples include blog entries, posts on social media platforms, user-generated reviews, descriptions in recommender systems and product advertisements in electronic commerce.  Text mining provides computational techniques to derive actionable (managerial) insights from such unstructured data sources.

The course “Text Mining” provides students with an overview of a wide range of text mining methods:  from regular expressions, to lexicon-based sentiment analysis, to more complex machine learning approaches and supervised text classification. At the end of the course, participants will be familiar with the most important concepts, principles, and algorithms in text mining. The course includes practical sessions focusing on text mining in R. Basic experience in R programming is desirable but not mandatory.


The main objectives of this course are:

1)      Understand the basic concepts of text mining and its relevance for business applications

2)      Gain an overview of different methods, algorithms and software tools for extracting knowledge from unstructured text data

3)      Practice the implementation of text mining applications in R

The number of participants is limited to a maximum number of 24 students. Please register for the course by sending an e-mail to Prof. Dr. Nicolas Pröllochs ( Please attach your current transcript of records (FlexNow printout). If more than 24 students apply, participants will be selected based on their grade in the course "Data Science for Management" and/or their current GPA. The application deadline is October 6, 2019.