Inhaltspezifische Aktionen

Vortrag: "Navigating the space of symmetric CMC surfaces"

Sebastian Heller (Tübingen)


27.05.2015 von 17:00 bis 18:00 (Europe/Berlin / UTC200)


Hörsaal des Mathematischen Instituts in der Arndtstraße 2, 1. Stock, Raum 111

Termin zum Kalender hinzufügen


Ein Vortrag im Rahmen des Seminars "Gruppen, Geometrie, Dynamik".

Um 16:30 Uhr gibt es vorab Tee und Kekse im Runden Zimmer der Bibliothek des Mathematischen Instituts.

Die Dozenten des Mathematischen Instituts laden alle Interessierten herzlich ein.







We consider compact surfaces of constant mean curvature (CMC) in 3-dimensional space forms.
While the only CMC spheres are round spheres and CMC tori can be explicitly parametrized via integrable systems methods, only very little is known about higher genus CMC surfaces.

In this talk we first give a brief introduction to the spectral curve approach to CMC tori due to Hitchin. In general the constant mean curvature condition of a surface can be translated into the flatness condition of an associated family of SL(2,C)-connections. For tori, the abelian fundamental group allows to reduce flat SL(2,C)-connections to flat line bundle connections, and the associated family can be parametrized in terms of certain algebraic geometric objects - the spectral data - from which the conformal immersion can be reconstructed.

Under the assumption of certain discrete symmetries, irreducible connections on higher genus surfaces can also be parametrized by flat line bundle connections. This enables us to define a generalization of the spectral curve theory for higher genus CMC surfaces. Due to the non-abelian nature, it is hard to construct spectral data for higher genus CMC surfaces explicitly.

In a recent preprint (joint work with L. Heller and N. Schmitt) we have introduced a flow on the spectral data from CMC tori towards higher genus CMC surfaces. We explain how this flow can be used to construct spectral data for higher genus CMC surfaces and to study the moduli space of symmetric CMC surfaces of higher genus.