Research on Polymer Synthesis and Templating of Metal Oxides
Polymer Synthesis and Templating of Metal Oxides
Why do we focus on mesoporous materials?
Ordered mesoporous metal oxides possess a tremendously larger surface area than non-templated powders. Therefore, they are applied as promising model materials for, among others, heterogeneous catalysis, gas storage, and energy conversion. The polymer used for templating the metal oxide dictates pore size and shape. As the synthesis protocols for both polymers and mesoporous metal oxides are well-established in the research group of Prof. Smarsly, pore morphologies of tailor-made pore geometry and size can be achieved, which allows understanding the relationship between porosity and property of a material.
The in-depth characterization of the pore structure is one of the core disciplines of our group. Here, state-of-the art methods like electron microscopy, physisorption, small-angle X-ray scattering, and tomography are applied for a resolution down to the nanometer scale.
Current Research Projects / Contacts
Within his research project, Lysander is synthesizing block copolymers and with these, mesoporous iridium dioxide thin films of tailored pore size and wall thickness. The aim is to study the influence of the pore structure on the stability of the electrocatalyst in the acidic water electrolysis. Feel free to stop by office B 8 if you are interested in a Bachelor’s/Master’s or advanced thesis!
Further Reading
Impact of Aliovalent / Isovalent Ions (Gd, Zr, Pr, and Tb) on the Catalytic Stability of Mesoporous Ceria in the HCl Oxidation Reaction
P. Cop, R. Maile, Y. Sun, O. Khalid, I. Djerdj, P. Esch, S. Heiles, H. Over, B. M. Smarsly (2020). ACS Appl. Nanomat., 3, 7406 - 7419.
DOI: 10.1021/acsanm.0c00994
Comparison of In-Plane Stress Development in Sol–Gel- and Nanoparticle-Derived Mesoporous Metal Oxide Thin Films
P. Cop, S. Werner, K. Hess, R. Meinusch, B.M. Smarsly H. Kozuka(2019). Langmuir, 35, 50, 16427-16437.
DOI: 10.1021/acs.langmuir.9b02455
Comparative Microstructural Analysis of Non-graphitic Carbons by Wide-angle X-ray and Neutron Scattering
T. Pfaff, F. Badaczewski, M. O. Loeh, A. Franz, J.-U. Hoffmann, M. Reehuis, W. G. Zeier, B. M. Smarsly (2019). The Journal of Physical Chemistry C, 123, 20532 - 20546.
DOI: 10.1021/acs.jpcc.9b03590
In-plane stress development in mesoporous thin films
P. Cop, S. Kitanom, K. Niinuma, B.M. Smarsly, H. Kozuka (2018). Nanoscale, 10(15), 7002-7015.
DOI: 10.1039/C8NR00793D
Sustainable and surfactant-free high-throughput synthesis of highly dispersible zirconia nanocrystals
C. Suchomski, D.J. Weber, P. Dolcet, A. Hofmann, P. Voepel, J. Yue, M. Einert, M. Moeller, S. Werner, S. Gross, I. Djerdj, T. Brezesinski, B.M. Smarsly (2017). J. Mater. Chem. A, 5(31), 16296-16306.
DOI: 10.1039/C7TA02316B
Mesoporous niobium-doped titanium dioxide films from the assembly of crystalline nanoparticles: study on the relationship between the band structure, conductivity and charge storage mechanism
J. Yue, C. Suchomski, P. Voepel, R. Ellinghaus, M. Rohnke, T. Leichtweiss, M.T. Elm, B. M. Smarsly (2017). J. Mater. Chem. A, 5(5), 1978-1988.
DOI: 10.1039/C6TA06840E
Polymer-Templated Mesoporous Li4Ti5O12 as a High-Rate and Long-Life Anode Material for Rechargeable Li-Ion Batteries
J. Yue, C. Suchomski, T. Brezesinski, B. M. Smarsly (2015). ChemNanoMat, 1, 415 – 421.
DOI: 10.1002/cnma.201500078
Poly(ethylene oxide)- block -poly(hexyl acrylate) Copolymers as Templates for Large Mesopore Sizes─A Detailed Porosity Analysis
L.Q. Wagner , E. Prates da Costa , C. Glatthaar , F. Breckwoldt , M. Zecca, P. Centomo, X. Huang, C. Kübel, H. Schlaad, M. Kriechbaum, H. Amenitsch, M. Thommes, B.M. Smarsly (2023). Chem. Mater. 35, 23, 9879-9899.
DOI: https://doi.org/10.1021/acs.chemmater.3c01255