Document Actions

Research group Prof. Dr. Jürgen Janek

Physical chemistry of solids – solid state ionics and electrochemistry

Current notice

Are you interested in joining our group? You can find current vacancies in the job market of JLU Giessen (FB 08, Biologie und Chemie, Physikalisch-Chemisches Institut). You are also welcome to receive further information by e-mail.

Welcome to our homepage!


The Janek research group investigates physicochemical processes that are important for modern solid-state energy and interface technologies.  

Recent Publications

Transition Metal Oxides and Li2CO3 as Precursors for the Synthesis of Ni-Rich Single-Crystalline NCM for Sustainable Lithium-Ion Battery Production
R. Ruess, M. A. Ulherr, E. Trevisanello, S. Schröder, A. Henss, and J. Janek, J. Electrochem. Soc. 169 (2022) 070531; find paper here


Deeper Understanding of the Lithiation Reaction during the Synthesis of LiNiO2 Towards an Increased Production Throughput
P. Kurzhals, F. Riewald, M. Bianchini, S. Ahmed, A. M. Kern, F. Walther, H. Sommer, K. Volz, J. Janek, J. Electrochem. Soc. (2022) 050526; find paper here


A Quasi-Multinary Composite Coating on a Nickel-Rich NCM Cathode Material for All-Solid-State Batteries
D. Kitsche, F. Strauss, Y. Tang, N. Bartnick, A.‐Y. Kim, Y. Ma, C. Kübel, J. Janek, T. Brezesinski, Batter. Supercaps (2022) e202100397; find paper here


In Situ Investigation of Lithium Metal–Solid Electrolyte Anode Interfaces with ToF‐SIMS
S.‐K. Otto, L. M. Riegger, T. Fuchs, S. Kayser, P. Schweitzer, S. Burkhardt, A. Henss, and J. Janek, Adv. Mater. Interfaces. (2022) 210387; find paper here


Influence of Lithium Ion Kinetics, Particle Morphology and Voids on the Electrochemical Performance of Composite Cathodes for All-Solid-State Batteries
A. Bielefeld, D. A. Weber, R. Ruess, V. Glavas, and J. Janek, J. Electrochem. Soc. (2022); find paper here


Defect Chemistry of Individual Grains with and without Grain Boundaries of Al-Doped Ceria Determined Using Well-Defined Microelectrodes
J. Zahnow, M. Bastianello, J. Janek, and M. T. Elm, J. Phys. Chem. C (2022); find paper here

Picture of the month - March 2021

Here you can find alternating insights into our research group. Enlarged versions of all published pictures can be found here.

Solid-state batteries have been researched and characterized with greater intensity in recent years due to their better properties compared to lithium-ion batteries, such as higher safety or broader operating temperature and comparable ionic conductivities. To compensate for the higher density of solid electrolytes, using lithium metal as anode material is necessary to obtain good gravimetric and volumetric energy densities. However, lithium metal is very reactive. If electronically conductive products are formed during the reaction of the solid electrolyte with lithium, this electrolyte cannot be in direct contact with lithium, otherwise short circuits may occur.      

In order to investigate the reaction products of the halide solid electrolyte Li3InCl6 with lithium, lithium is applied to the electrolyte by sputter deposition. In situ X-ray photoelectron spectroscopy (XPS) is used to investigate the resulting decomposition products. It was found that Li3InCl6 decomposes into In2O3 and indium metal, among others. Since indium metal is electronically conductive, the electrolyte will decompose until either Li3InCl6 or the lithium is depleted, thus the electrolyte cannot be used in direct contact with lithium. (Picture submitted by Luise Riegger)

The WG Janek is involved in the following networks


Elektrochemie und Batterien

BMBF-Kompetenzcluster Festbatt2

Kompetenzcluster für Festkörperbatterien


Koordination des Clusters und Vertreten in den Plattformen:

  • Thiophosphate 
  • Hybride 
  • Charakterisierung

DFG-Excellenzcluster POLIS:

Excellenzcluster für Post Lithium Storage


Vertreten in mehreren Forschungsbereichen

BMBF-Projekt AdamBatt:

Fortschrittliche Materialien für die Anwendung in Hybriden Festkörperbatterien


Deutsch-Taiwanesisches Projekt


Alternative Anodenkonzepte für sichere Feststoffbatterien

BMBF-Projekt AQua-PoP:

Oberflächen- und Grenzflächenanalytik von Aktivmaterialien mittels hochaufgelöster analytischer Verfahren

BMBF-Projekt CaTSE2:

Untersuchung der Transport- und Transferprozesse von Li in polykristallinen keramischen Festkörperelektrolyten und an der Kathoden/Elektrolyt Grenzfläche


Deutsch-US-Amerikanisches Projekt


Flüssigelektrolyte für Next-Generation-Batterien: Analyse der Löslichkeit und Diffusion von reaktiven Spezies

BMBF-Projekt EProFest:

Evaluation von Prozessen zur Produktion von Festkörperbatteriekomponenten

BMBF-Projekt FLiPS:

Feststoffbatterien mit Lithiummetall und Polymeren Schutzschichten

BMBF-Projekt GIBS:

German Israeli Battery School


Deutsch-Israelisches Projekt

BMBF-Projekt InCa2:

Grenzflächen in All-Solid-State-Kompositkathoden - Verbesserung der Leistung und Verständnis von Schutzschichten


BMBF-Projekt KaroFest:

Kationen - Anionen RedOx Aktivmaterialien für Feststoffbatterien

BMBF-Projekt LiSi2:

Lithium-Solid-Electrolyte Interfaces


Deutsch-US-Amerikanisches Projekt

BMBF-Projekt OsabanPlus:

Operando-Oberflächenanalytik für Batterien mit 3D-strukturierten Anoden mit hoher Leistung und langer Nutzungsdauer


Deutsch-Japanisches Projekt

BMBF-Projekt ProGrAL:

Prozessnahe Grenzflächencharakterisierung von Aktivmaterialien für Lithiumionenbatterien mit flüssigen und festen Elektrolyten


BMBF-Projekt SilKompAs:

Silizium-basierte Kompositanoden zur Anwendung in sulfidischen Feststoffbatterien

BMBF-Projekt SolidSafe:

Solid State Battery Safety Testing


Deutsch-Japanisches Projekt

BMBF-Projekt SoLiS:

Development of Lithium-Sulfur Solid State Batteries in Multilayer Pouch cells


Neuartige Lignin-basierte Elektrolyte für den Einsatz in Redox-Flow-Batterien


Physik unter harschen Bedingungen