Dr. David Lenz
Dr. David Lenz |
Projektmitarbeiter |
---|---|
![]() |
Telefon: 0641 / 99-22655 Sekretariat: 0641 / 99-22641 E-Mail: David Lenz Anschrift: Justus-Liebig-Universität Gießen Fachbereich Wirtschaftwissenschaften Professur für Statistik und Ökonometrie Licher Str. 64 35394 Gießen
|
Responsibility
- Postdoctoral Researcher DynTOBI Project
- DynTOBI - Dynamische Textdaten-basierte Output-Indikatoren als Basis einer neuen Innovationsmetrik
(TOBI - dynamic text data based output indicators as basis for a novel innovation metric) - In cooperation with Centre for European Economic Research (ZEW) in Mannheim
Research Interests
- Data Science
- Machine Learning
- Forecasting
- Deep Learning
- Text Mining
- Neural Networks
- Big Data
- CryptoCurrencies
Grants
- NVIDIA Titan V GPU Grant
Articles in Refereed Journals
- Abbasiharofteh, Milad, Miriam Krüger, Jan Kinne, David Lenz und Bernd Resch (2023), The digital layer: alternative data for regional and innovation studies, Spatial Economic Analysis, 1-23. http://dx.doi.org/10.1080/17421772.2023.2193222
- Arifi, Dorian, Bernd Resch, Jan Kinne und David Lenz (2023), Innovation in hyperlink and social media networks: Comparing connection strategies of innovative companies in hyperlink and social media networks, PLOS ONE 18(3): e0283372.
https://doi.org/10.1371/journal.pone.0283372 - Schmidt S, Kinne J, Lauterbach S, Blaschke T, Lenz D, Resch B (2022) "Greenwashing in the US metal industry? A novel approach combining SO2 concentrations from sattelite data, a plant-level firm database and web text mining". Science of The Total Environment, Volume 835
- Dörr JO, Kinne J, Lenz D, Licht G, Winker P (2022) "An integrated data framework for policy guidance during the coronavirus pandemic: Towards real-time decision support for economic policymakers". PLOS ONE 17(2):e0263898.
- D. Lenz, P. Winker (2020), "Measuring the Diffusion of Innovations with Paragraph Vector Topic Models" PLOS ONE. 2020;15(1):1-18
- D. Eugenidis, D. Lenz, C. Leser, F. Schleer-van Gellecom und P. Winker (2020), "Text-mining basierte Analyse der Kapitalmarktreaktionen auf Ad-hoc-Mitteilungen" CORPORATE FINANCE, 2020, 09-10.
- J. Kinne, D.Lenz (2021), "Predicting innovative firms using web mining and deep learning"PLOS ONE. 2021;16(4):1-18
Discussion Papers & Conference Proceedings
- J. Schwierzy, R. Dehghan, S. Schmidt, E. Rodepeter, A. Stoemmer, K. Uctum, J. Kinne, D. Lenz and H. Hottenrott, 2022. "Technology Mapping Using WebAI: The Case of 3D Printing". arXiv preprint arXiv:2201.01125.
- J.Kinne, M. Krüger, D. Lenz, G. Licht, P. Winker (2020),"Corona-Pandemie betrifft Unternehmen unterschiedlich", Tagesaktuelle Webseiten-Analyse zur Reaktion von Unternehmen auf die Corona-Pandemie in Deutschland, ZEW Kurzexpertise Nr. 20-05, Mannheim. Download
- D. Lenz, C. Schulze, M. Guckert (2018),"Real-time Session-Based Recommendations using LSTM with neural Embeddings"Artificial Neural Networks and Machine Learning - ICANN 2018 | SpringerLink.
Expertises
- Dörr, Julian Oliver, Sandra Gottschalk, Jan Kinne, David Lenz and Georg Licht (2020), "Mittelständische Unternehmen in der Corona - Krise im Spiegel ihrer Webseiten", Bundesministerium für Wirtschaft und Energie (BMWi), Mannheim.
Talks
- 2019: Predicting Innovative Firms using Web Mining and Deep Learning, Seminar Webscraping von Unternehmensdaten, Statistisches Bundesamt, Germany
- 2019: Predicting Innovative Firms using Web Mining and Deep Learning, LISH Harvard University Seminar, Cambridge, Massachusetts, Vereinigte Staaten von Amerika (USA)
- 2019: Predicting Innovative Firms using Web Mining and Deep Learning, International Business School Brandeis University Seminar, Waltham, Massachusetts, Vereinigte Staaten von Amerika (USA)
- 2019: Predicting Innovative Firms using Web Mining and Deep Learning, Deutsche Bundesbank Seminar, Deutsche Bundesbank in Frankfurt am Main, Germany
- 2018: Measuring the Diffusion of Innovations with Paragraph Vector Topic Models, 23rd International Conference on Computational Statistics (COMPSTAT), Iasi, Romania
- 2018: Measuring the Diffusion of Innovations with Paragraph Vector Topic Models, 16th ZEW Conference on the Economics of Information and Communication Technologies, ZEW - Zentrum für europäische Wirtschaftsforschung in Mannheim, Germany
- 2018: Measuring the Diffusion of Innovations with Paragraph Vector Topic Models, 20th ZEW Summer Workshop for Young Economists, ZEW - Zentrum für europäische Wirtschaftsforschung in Mannheim, Germany
- 2018: Measuring the Diffusion of Innovations with Paragraph Vector Topic Models, 1st CRoNoS Workshop on Multivariate Data Analysis and Software, Limassol, Cyprus
Repositories