Dr. Marcel Ruth
Research Associate, Kekulé-Fellow
Field of Work
Machine Learning, Graph Representations, Computational Chemistry, Data Science, Molecular Catalysis
Publications
- M. Ruth, D. Gerbig, P. R. Schreiner, A Machine Learning Approach for Bridging the Gap between Density Functional Theory and Coupled Cluster Energies, J. Chem. Theory Comput. 2023, 19, 15, 4912–4920.
- M. Ruth, D. Gerbig, P. R. Schreiner, Machine Learning of Coupled Cluster (T)-Energy Corrections via Delta (Δ)-Learning, J. Chem. Theory Comput. 2022, 18, 8, 4846–4855.
- E. Solel, M. Ruth, P. R. Schreiner, London Dispersion Helps Refine Steric A-Values: Dispersion Energy Donor Scales, J. Am. Chem. Soc. 2021, 143, 49, 20837–20848.
- B. Bernhardt, M. Ruth, H. P. Reisenauer, P. R. Schreiner, Aminohydroxymethylene (H2N–C̈–OH), the Simplest Aminooxycarbene, J. Phys. Chem. A 2021, 125, 32, 7023–7028.
- E. Solel, M. Ruth, P. R. Schreiner, London Dispersion Helps Refine Steric A-Values: The Halogens, J. Org. Chem. 2021, 86, 11, 7701–7713.
- B. Bernhardt, M. Ruth, A. K. Eckhardt, P. R. Schreiner, Ethynylhydroxycarbene (H–C≡C–C̈–OH), J. Am. Chem. Soc. 2021, 143, 10, 3741–3746.
Teaching
- Chemie-BK14 / BLC-13 Organische Chemie 2 - Reaktionsmechanismen
- 07-BDS-10 / 07-NDS-04 Ringvorlesung Data Science (Molecular Machine Learning)
General Research Interest
- Machine Learning / Artificial Intelligence
- Computational Chemistry
- Organocatalysis
- Quantum Mechanical Tunneling
- Matrix Isolation