Document Actions

Publications

See also: ORCID 0000-0003-2193-8375 and Google Scholar.

 

 

Featured in:

Keller, V.H., González Miera, G., Kamat, P.V., Women Scientists at the Forefront of Energy Research: Part 6. ACS Energy Lett. 2024, 9, 1, 275–287, doi.org/10.1021/acsenergylett.3c02582.

 
11.
Minnmann, P.; Schubert, J.; Kremer, S.; Rekers, R.; Burkhardt, S.; Ruess, R.; Bielefeld, A.; Richter, F.H.; Janek, J. Editors' Choice – Visualizing the Impact of the Composite Cathode Microstructure and Porosity on Solid-State Battery Performance. J. Electrochem. Soc. 2024, accepted. DOI 10.1149/1945-7111/ad510e

 

 
10.

Schlautmann, E., Weiß, A., Maus, O., Ketter, L., Rana, M., Puls, S., Nickel, V., Gabbey, C., Hartnig, C., Bielefeld, A., Zeier, W.G., Impact of the Solid Electrolyte Particle Size Distribution in Sulfide-Based Solid-State Battery Composites. Adv. Energy Mater. 2023, 2302309, doi.org/10.1002/aenm.202302309

 
9. Bielefeld, A., How to Develop Useful Models for Solid-State Batteries – A Plea for Simplicity and Interdisciplinary CooperationBatteries and Supercaps 2023, 6, e202300180, doi.org/10.1002/batt.202300180.  
8. Rana, M., Rudel, Y., Heuer, P., Schlautmann, E., Rosenbach, C., Ali, M.Y., Wiggers, H., Bielefeld, A., Zeier, W.G., Toward Achieving High Areal Capacity in Silicon-Based Solid-State Battery Anodes: What Influences the Rate-Performance? ACS Energy Lett. 2023, 8, 3196-3203, doi.org/10.1021/acsenergylett.3c00722.  
7. Minnmann, P.Strauss, F.Bielefeld, A.Ruess, R.Adelhelm, P.Burkhardt, S.Dreyer, S. L.Trevisanello, E.Ehrenberg, H.Brezesinski, T.Richter, F. H.Janek, J., Designing Cathodes and Cathode Active Materials for Solid-State BatteriesAdv. Energy Mater. 2022, 2201425, 10.1002/aenm.202201425.
6.

Bielefeld, A., At the Interface of Simulation and Experiment in Composite Cathodes for All-Solid-State Batteries, PhD Thesis 2022, 10.22029/JLUPUB-637.

 
5.

Bielefeld, A., Weber, D. A., Rueß, R., Glavas, V., Janek, J., Influence of Lithium Ion Kinetics, Particle Morphology and Voids on the Electrochemical Performance of Composite Cathodes for All-Solid-State BatteriesJ. Electrochem. Soc. 2022, 169, 020539, 10.1149/1945-7111/ac50df.

4. Bielefeld, A., Weber, D. A., Janek, J., Modeling Effective Ionic Conductivity and Binder Influence in Composite Cathodes for All-Solid-State BatteriesACS Appl. Int. Mater. 2020, 12, 12821-12833, 10.1021/acsami.9b22788.
3.

Ruess, R., Schweidler, S., Hemmelmann, H., Conforto, G., Bielefeld, A., Weber, D. A., Sann, J., Elm, M. T., Janek, J., Lithium Transport Kinetics in LiNi0.8Co0.1Mn0.1O2 Cathode Active Materials and the Contrasting Consequences for the Performance of Lithium-Ion Batteries with Liquid or Solid ElectrolytesJ. Electrochem. Soc. 2020, 167, 100532, 10.1149/1945-7111/ab9a2c.

 
2. Bielefeld, A., Weber, D. A., Janek, J., Microstructural Modeling of Composite Cathodes for All-Solid-State BatteriesJ. Phys. Chem. C 2019, 123, 1626-1634, 10.1021/acs.jpcc.8b11043.
1.

Hördt, A., Bairlein, K., Bielefeld, A., Bücker, M., Kuhn, E., Nordsiek, S., Stebner, H., The dependence of induced polarization on fluid salinity and pH, studied with an extended model of membrane polarization, J. Appl. Geophy. 2016, 135, 408-417, 10.1016/j.jappgeo.2016.02.007.